
International Journal of Fracture
 

Steady-State Propagation of a Mode II Crack in Couple Stress Elasticity
--Manuscript Draft--

 
Manuscript Number: FRAC-D-13-00086R2

Full Title: Steady-State Propagation of a Mode II Crack in Couple Stress Elasticity

Article Type: Original Research

Keywords: Dynamic Fracture;  Couple-Stress Elasticity;  microstructure;  Mode-II crack;  Micro-
rotational inertia;  Complex materials

Corresponding Author: Panos A. Gourgiotis, Ph.D.
University of Trento
Trento, ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Trento

Corresponding Author's Secondary
Institution:

First Author: Panos A. Gourgiotis, Ph.D.

First Author Secondary Information:

Order of Authors: Panos A. Gourgiotis, Ph.D.

Andrea Piccolroaz, Ph.D.

Order of Authors Secondary Information:

Abstract: The present work deals with the problem of a semi-infinite crack steadily propagating in
an elastic body subject to plane-strain shear loading. It is assumed that the mechanical
response of the body is governed by the theory of couple-stress elasticity including
also micro-rotational inertial effects. This theory introduces characteristic material
lengths in order to describe the pertinent scale effects that emerge from the underlying
microstructure and has proved to be very effective for modeling complex
microstructured materials. It is assumed that the crack propagates at a constant sub-
Rayleigh speed. An exact full field solution is then obtained based on integral
transforms and the Wiener-Hopf technique. Numerical results are presented illustrating
the dependence of the stress intensity factor and the energy release rate upon the
propagation velocity and the characteristic material lengths in couple-stress elasticity.
The present analysis confirms and extends previous results within the context of
couple-stress elasticity concerning stationary cracks by including inertial and micro-
inertial effects.

Response to Reviewers: For the response to the reviewer, please refer to the attached PDF. Please, note that
the link to the response PDF file can be found at the end of the revised manuscript.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Steady-State Propagation of a Mode II Crack in Couple Stress

Elasticity

P.A. Gourgiotis∗1 and A. Piccolroaz2

1,2Department of Civil, Environmental & Mechanical Engineering, University of Trento,
via Mesiano 77, Trento, Italy

Abstract

The present work deals with the problem of a semi-infinite crack steadily propagating in
an elastic body subject to plane-strain shear loading. It is assumed that the mechanical
response of the body is governed by the theory of couple-stress elasticity including also
micro-rotational inertial effects. This theory introduces characteristic material lengths in
order to describe the pertinent scale effects that emerge from the underlying microstruc-
ture and has proved to be very effective for modeling complex microstructured materials.
It is assumed that the crack propagates at a constant sub-Rayleigh speed. An exact full
field solution is then obtained based on integral transforms and the Wiener-Hopf tech-
nique. Numerical results are presented illustrating the dependence of the stress intensity
factor and the energy release rate upon the propagation velocity and the characteristic
material lengths in couple-stress elasticity. The present analysis confirms and extends pre-
vious results within the context of couple- stress elasticity concerning stationary cracks
by including inertial and micro-inertial effects.

Keywords: Dynamic fracture; Couple-Stress Elasticity; Microstructure; Mode-II crack; Micro-
rotational inertia; Complex materials

1 Introduction

It is well known that classical continuum theories possess no intrinsic length scale and thus fail
to predict the scale effects observed experimentally in problems with geometric lengths com-
parable to the lengths of the material microstructure (e.g. Fleck and Hutchinson, 1997). This
discrepancy between the classical theoretical predictions and experimental results is found
more pronounced for materials with a coarse-grain structure. In fact, the macroscopical be-
havior of most microstructured materials with non-homogeneous microstructure, like ceramics,
composites, cellular materials, foams, masonry, bone tissues, glassy and semi-crystalline poly-
mers, is strongly influenced by the microstructural characteristic lengths, especially in the
presence of large stress (or strain) gradients (Maranganti and Sharma, 2007a; 2007b).

On the other hand, generalized continuum theories intend to capture the effects of mi-
crostructure by enriching the classical continuum with additional material characteristic length
scales, and, thus, extending the range of applicability of the ’continuum’ concept in an effort to
bridge the gap between classical continuum theories and atomic-lattice theories. A thorough
review of generalized continuum theories can be found in Maugin (2010).

One of the most effective generalized continuum theories has proved to be the theory
of couple-stress elasticity, also known as Cosserat theory with constrained rotations. This
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theory is the simplest gradient theory in which couple-stresses make their appearance. In
particular, the couple-stress theory assumes an augmented form of the Euler-Cauchy principle
with a non-vanishing couple traction, and a strain-energy density that depends upon both the
strain and the gradient of rotation. Such assumptions are appropriate for materials with
granular structure, where the interaction between adjacent elements may introduce internal
moments. In this way, characteristic material lengths may appear representing the material
microstructure. The presence of these material lengths implies that the couple-stress theory
encompasses the analytical possibility of size effects, which are absent in the classical theory.
The fundamental concepts of the couple-stress theory were first introduced by Cauchy (1851),
Voigt (1887) and the Cosserat brothers (1909), but the subject was generalized and reached
maturity only in the 1960s through the works of Toupin (1962), Mindlin and Tiersten (1962),
and Koiter (1964).

Early applications of couple-stress elasticity dealt mainly with stress-concentration prob-
lems concerning holes and inclusions. In recent years, the couple-stress theory and related
gradient theories attracted a renewed and growing interest in dealing with problems of com-
plex microstructured materials. This is due to the inability of the classical theory to predict
the observed scale effects, and also due to the increasing demands for manufacturing devices
at very small scales. This approach and related extensions have been recently employed suc-
cessfully to model size effects in microstructured materials in, among other areas, fracture (see
e.g. Huang et al. 1997; Chen et al. 1998; Huang et al., 1999; Georgiadis, 2003; Radi and Gei,
2004; Gourgiotis and Georgiadis 2007; Radi, 2008; Aravas and Giannakopoulos, 2009; Gourgi-
otis and Georgiadis, 2011; Piccolroaz et al., 2012; Sciarra and Vidoli, 2012b; Antipov, 2012),
plasticity (see e.g. Fleck et al., 1994; Gao et al., 1999; Hwang et al., 2002; Dal Corso and
Willis, 2011), and wave propagation (see e.g. Vardoulakis and Georgiadis, 1997; Georgiadis
and Velgaki, 2003; Georgiadis et al., 2004; Engelbrecht et al., 2005; Polyzos and Fotiadis,
2012; Gourgiotis et al., 2013).

For materials with microstructure, the characteristic material length mentioned before may
be on the same order as the length of the microstructure. For instance, Chen et al. (1998)
developed a continuum model for cellular materials and found that the continuum description
of these materials obey a gradient elasticity theory of the couple-stress type. In the latter
study, the intrinsic material length was naturally identified with the cell size. Mora and
Waas (2000) performing experiments in honeycomb materials estimated that the value of the
characteristic material length ` in couple-stress elasticity is 10d ∼ 15d, where d is the diameter
of the cell of the honeycomb. Also, Chang et al. (2003) associated the microstructural material
constants of the couple-stress theory with the particle size and the inter-particle stiffness in
a granular material. In addition, couple-stress theory was successfully utilized in the past to
model some materials with microstructure like foams (Lakes, 1983) and porous solids (Lakes,
1993). Generally, the couple-stress theory is intended to model situations where a material
with microstructure is deformed in very small volumes, such as in the immediate vicinity of
crack tips, notches, small holes and inclusions, and in micrometer indentations. A recent
study by Bigoni and Drugan (2007) provides an interesting account of the determination of
couple-stress moduli via homogenization of heterogeneous materials.

Regarding now solutions closely related to our problem, we note that due to the com-
plexity of the equations of couple-stress theories, very few dynamic crack problems have been
considered in the literature. In particular, Itou (1972) studied the plane-strain time-harmonic
problem of a mode I finite-length crack in a Cosserat medium with no micro-inertia employ-
ing the method of dual integral equations. In addition, Itou (1981) evaluated numerically the
stress intensity factor for the problem of a propagating Yoffe crack in the context of standard
couple-stress elasticity, analyzing the influence of the crack tip speed on the asymptotics of the
stress field. Han et al. (1990) investigated the dynamic propagation of a finite-length crack
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under mode-I loading in a micropolar elastic solid by numerically solving a system of singular
integral equations. They provided solutions for dynamic stress intensity and couple stress in-
tensity factors by using the obtained values of the strengths of the square root singularities in
macro-rotation and the gradient of micro-rotation at the crack tips. Later, Georgiadis (2003)
using an analytic function method formulated the time-harmonic problem of semi-infinite
crack under anti-plane strain conditions in a material exhibiting gradient effects. Recently,
Mishuris et al. (2012) using the Wiener-Hopf technique solved the problem of a semi-infinite
mode III crack steadily propagating in an elastic solid using the theory of couple-stress elas-
ticity including micro-rotational effects. They showed that the process zone near the crack tip
is strongly influenced by the microstructural parameters, such as the characteristic material
lengths, the micro-inertia, and the maximum crack speed. Finally, Itou (2013) solved the
problem of two collinear finite-length cracks subjected to time-harmonic stress waves imping-
ing normal to the crack faces by using the dynamic couple-stress theory with no micro-inertial
effects. The Schmidt method was utilized to satisfy the boundary conditions along the crack
faces. He presented asymptotic results for the stress and the couple-stress intensity factors
and examined the influence on the solution of the ratio of the characteristic material length
to the pertinent geometrical lengths of the problem.

In the present work, the dynamic theory of couple-stress elasticity is employed to deal with
the problem of a mode II semi-infinite crack propagating steadily at a constant sub-Rayleigh
speed. In this way, the static analysis presented in Gourgiotis et al. (2012) is extended to the
case of steady-state propagation in order to study the effects of micro-inertia and crack-tip
speed on the stress and deformation fields, as well as the variation of the fracture toughness due
to the presence of the microstructure. A micro-inertia term is included in our study because
previous experience with couple-stress analyses of surface waves and anti-plane crack problems
showed that this term is important, especially at high frequencies (Georgiadis and Velgaki,
2003; Mishuris et al., 2012). In fact, including this term in the present problem gives dispersion
curves that mostly resemble with the ones obtained by atomic-lattice considerations. It is
worth noting that this is the first study in the literature concerning a crack propagation
problem under plane-strain conditions in the context of couple-stress elasticity including also
micro-inertial effects.

The paper is organized as follows: In Section 2 the fully dynamical version of couple-stress
elasticity theory with micro-inertia is presented. The micro-rotational inertia term is included
in our formulation by considering the appropriate expression for the kinetic-energy density of
the material particle. In the next Section, the basic equations in plane-strain are provided
and the influence of couple-stresses on the propagation of Rayleigh surface waves is studied.
Unlike the conventional elastic theories, this reasonably simple gradient theory can indeed
predict the dispersive character of Rayleigh waves in a medium with microstructure. The
steady-state mode II crack propagation problem is formulated in Section 4. The analytical
full-field solution is then addressed in Section 5 based on the Fourier transform and the
Wiener-Hopf technique. In Section 6, we present numerical results for the stresses ahead of
the crack-tip and the crack-face displacements. In addition, a closed-form expression for the
stress intensity factor is provided. The dependence of these quantities upon the crack speed
and the characteristic material lengths is also discussed in detail. Finally, we evaluate the
dynamic energy release rate (J-integral) for the steady-state propagating mode II crack. To
this purpose, a new extended definition of the dynamic J-integral is given in the context
of couple-stress elasticity. It is shown that the J-integral can be determined through the
use of distribution theory using only asymptotic results and is strongly influenced by the
microstructure of the material.
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2 Fundamentals of dynamic couple-stress elasticity

In this Section, we present the basic elastodynamic equations of couple-stress elasticity. Our
derivation of basic results relies on the momentum balance laws. Interesting presentations
of the theory can also be found in the works by Mindlin and Tiersten (1962), Koiter (1964),
and Muki and Sternberg (1965). However, the latter formulations do not include inertia and
micro-inertia effects since they are of quasi-static character.

As mentioned before, couple-stress elasticity assumes that: (i) each material particle has
three degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-
vanishing couple traction prevails, and (iii) the strain-energy density depends upon both strain
and the gradient of rotation. In addition, the kinetic-energy density T , within a geometrically
linear theory, takes the following form (Nowacki, 1986)

T =
ρ

2
u̇qu̇q +

I

2
ω̇qω̇q, (1)

where ρ is the mass density, I is the micro-rotational inertia, uq is the displacement vector,
ωq = 1/2eqpk∂puk is the rotation vector, ∂p() = ∂()/∂xp, the superposed dot denotes time
derivative, and the Latin indices span the range (1,2,3) (indicial notation and summation
convention is used throughout). The second term in the RHS of Eq.(1), involving the spin,
represents the micro-rotational inertia of the continuum. This term, which is not encountered
within classical continuum mechanics, reflects the more detailed description of motion in the
present theory.

For a body with bounding surface S and volume V, the balance laws for the linear and
angular momentum read ∫

S
T (n)
q dS +

∫
V
Fq dV =

∫
V
ρüq dV, (2)

∫
S

(eqpkxpT
(n)
k +M (n)

q ) dS +

∫
V

(eqpkxpFk + Cq) dV =

∫
V

(eqpkxpρük + Iω̈q) dV, (3)

where eqpk is the Levi-Civita alternating symbol, T
(n)
q is the surface force per unit area, M

(n)
q

is the surface moment per unit area, Fq is the body force per unit volume, Cq is the body
moment per unit volume, and xp designate the components of the position vector.

Next, pertinent force-stress and couple-stress tensors are introduced by considering the
equilibrium of the elementary material tetrahedron and enforcing (2) and (3), respectively.
The force stress tensor σpq and the couple-stress tensor µpq (both asymmetric) are then defined
by

T (n)
q = σpqnp, M (n)

q = µpqnp, (4)

where np are the direction cosines of the outward unit vector n, which is normal to the surface.
In addition, just like the third Newton’s law T(n) = −T(−n) is proved to hold by considering
the equilibrium of a material ‘slice’, it can also be proved that M(n) = −M(−n). The couple-
stresses µpq are expressed in dimensions of [force][length]−1. Further, σpq can be decomposed
into its symmetric and anti-symmetric components as follows

σpq = τpq + αpq, (5)

with τpq = τqp and αpq = −αqp, whereas it is advantageous to decompose µpq into its deviatoric
and spherical parts in the following manner

µpq = mpq +
1

3
δpqµkk, (6)
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where µ
(D)
pq = mpq, µ

(S)
pq = (1/3)δpqµkk, and δpq is the Kronecker delta. Now, with the above

definitions and the help of the Green-Gauss theorem, one may obtain the stress equations of
motion. In particular, Eq.(2) leads to the following force equation

∂pσpq + Fq = ρüq, (7)

which, by virtue of (5), becomes

∂pτpq + ∂pαpq + Fq = ρüq. (8)

Further, Eq. (3) in conjunction with (7) leads to the following moment equation

∂pµpq + eqpkσpk + Cq = Iω̈q, (9)

which can also be written as

1

2
epqk∂lµlk + αpq +

1

2
epqkCk =

I

2
epqkω̈k. (10)

Combining Eqs. (6), (8), (10) and by taking into account that ∇×∇·µ(S) = 0, yields the
single equation

∂pτpq +
1

2
eqpk∂p∂lmlk +

1

2
eqpk∂pCk + Fq = ρüq +

I

2
eqpk∂pω̈k. (11)

which constitutes the final equation of motion.
For the kinematical description of the continuum, the following quantities are defined in

the framework of the geometrically linear theory

εpq =
1

2
(∂puq + ∂qup), ωpq =

1

2
(∂puq − ∂qup), (12)

ωq =
1

2
eqpk∂puk, κpq = ∂pωq, (13)

where εpq is the strain tensor, ωpq is the rotation tensor, and κpq is the curvature tensor (i.e.
the gradient of rotation or the curl of the strain) expressed in dimensions of [length]−1. Notice
also that (13)2 can alternatively be written as

κpq =
1

2
eqlk∂p∂luk = eqlk∂lεpk. (14)

Equation (14) expresses compatibility for curvature and strain fields. The compatibility equa-
tions for the strain components are the usual Saint Venant’s compatibility equations. Further,
the identity ∂kκpq = ∂k∂pωq = ∂pκkq defines the compatibility equations for the curvature
components. We notice also that κpp = 0 and, therefore, the curvature tensor has only eight
independent components.

The traction boundary conditions, at any point on a smooth boundary or section, consist
of the following three reduced force-tractions and two tangential couple-tractions (Mindlin
and Tiersten, 1962; Koiter, 1964)

P (n)
q = σpqnp −

1

2
eqpknp∂km(nn), R(n)

q = mpqnp −m(nn)nq, (15)

where m(nn) = npnqmpq is the normal component of the deviatoric couple-stress tensor mpq.
We remark that in the case in which edges appear along the boundary, an additional boundary
condition should be imposed. Indeed, as Koiter (1964) pointed out, a force (per unit length)
tangential to the edge should be specified according to the relation: Q = 1

2Jm(nn)K, where JK
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denotes the jump of the enclosed quantity through the edge. This tangential line load along the
edge is the counterpart of the concentrated normal force which may be specified at the corner
of the edge of a Kirchhoff plate or shell. Moreover, it is worth noticing that at first sight, it
might seem plausible that the surface tractions (i.e. the force-traction and the couple-traction)
can be prescribed arbitrarily on the external surface of the body through relations (4), which
stem from the equilibrium of the material tetrahedron. However, in this case, the resulting
number of six traction boundary conditions (three force-tractions and three couple-tractions)
would be in contrast with the five geometric boundary conditions that can be imposed (Koiter,
1964). Indeed, since the rotation vector ωq in couple-stress elasticity is not independent of the
displacement vector, see Eq. (13)1; the normal component of the rotation is fully specified
by the distribution of tangential displacements over the boundary. Therefore, only the three
displacement and the two tangential rotation components can be prescribed independently.
As a consequence, only five surface tractions (i.e. the work conjugates of the above five
independent kinematical quantities) can be specified at a point of the bounding surface of the
body, i.e. Eqs. (15). On the other hand, in the Cosserat (micropolar) theory, the traction
boundary conditions are six since the rotation is fully independent of the displacement vector
(see e.g. Nowacki, 1986). In the latter case, the tractions can directly be derived from the
equilibrium of the material tetrahedron, so (4) are the pertinent traction boundary conditions.

For a linear and isotropic material behavior, the strain-energy density has the following
form

W ≡W (εpq, κpq) =
1

2
λεppεqq + µεpqεpq + 2ηκpqκpq + 2η′κpqκqp, (16)

where (λ, µ, η, η′) are material constants. Then, Eq. (16) leads, through the standard varia-
tional manner, to the following constitutive equations

τpq ≡ σ(pq) =
∂W

∂εpq
= λδpqεkk + 2µεpq, mpq =

∂W

∂κpq
= 4ηκpq + 4η′κqp. (17)

In view of (17), the moduli (λ, µ) have the same meaning as the Lamé constants of classical
elasticity theory and are expressed in dimensions of [force][length]−2, whereas the moduli
(η, η′) account for couple-stress effects and are expressed in dimensions of [force]. Further,
following Mindlin and Tiersten (1962), we assume W to be a positive definite function of its
arguments, so that

3λ+ 2µ > 0, µ > 0, η > 0, −1 <
η′

η
< 1. (18)

Incorporating now the constitutive relations (17) into the equation of motion (11) and using
the geometric relations (12) and (13), one may obtain the equations of motion in terms of the
displacement vector

µ∇2u+ (λ+ µ)∇(∇ · u)− µ`2∇2[∇2u−∇(∇ · u)] = ρü+
I

4
∇×∇× ü, (19)

where ` ≡ (η/µ) is a characteristic material length, and the absence of body forces and
couples is assumed. In the limit ` → 0, the Navier-Cauchy equations of classical linear
isotropic elasticity are recovered from (19). Indeed, the fact that Eqs. (19) have an increased
order w.r.t. their limit case (recall that the Navier-Cauchy equations are PDEs of the second
order) and the coefficient ` multiplies the higher-order term reveals the singular-perturbation
character of the couple-stress theory and the emergence of associated boundary-layer effects.

Next, by taking the divergence and the curl of (19) we obtain the equations governing the
propagation of dilatation and rotation, respectively

c2
p∇2(∇ · u) = ∇ · ü, (20)
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c2
s(1− `2∇2)∇2(∇× u) = (1− h2∇2)∇× ü, (21)

where cp = [(λ+ 2µ)/ρ]1/2 and cs = (µ/ρ)1/2 are the velocities of the pressure (P) and shear
(S) waves, respectively, in the classical elasticity theory, and h = (I/4ρ)1/2 is a characteristic
intrinsic material length associated with the micro-inertia of the material (Mishuris et al.,
2012). An interrelation of the two characteristic microstructural lengths ` and h was given by
Georgiadis and Velgaki (2003) by comparing the forms of dispersion curves of Rayleigh waves
in couple-stress theory with micro-rotational inertia with the ones obtained by the discrete
particle theory (atomic-lattice approach). It is interesting to note that Eq. (20) governing the
propagation of dilatational waves is the same as in the classical theory. On the other hand,
unlike the corresponding case of classical elastodynamics, Eq. (21) is of the fourth order.
This implies that for shear waves, wave signals emitted from a disturbance point propagate
at different velocities. The last statement can be supported by considering a time-harmonic
plane wave solution and determining dispersion relations. Specifically, we consider a plane
wave solution of Eq. (21) in the following form

u = Ad exp
[
i
(
ξ (n · x)− wt

)]
, (22)

where A denotes the amplitude, (d,n) are unit vectors defining the directions of motion and
propagation, respectively, x is the position vector, ξ is the wavenumber, w is the circular
frequency of the plane wave, and i2 = −1. Then, on substituting (22) into Eq. (21), we
obtain the following dispersion relation for the shear waves

w2 = c2
sξ

2(1 + `2ξ2)(1 + h2ξ2)−1. (23)

Accordingly, the phase velocity Vs of the shear waves in couple stress elasticity takes the
following form

Vs ≡
w

ξ
= cs(1 + `2ξ2)1/2(1 + h2ξ2)−1/2. (24)

Equation (24) shows that the propagation velocity of these waves depends on the respective
wavenumber. Hence, shear waves are dispersive in couple-stress elasticity, while the longitu-
dinal waves remain non-dispersive as in the classical theory (Toupin, 1962; Graff and Pao,
1967).

To investigate further upon the nature of the dispersion relation in couple-stress elasticity,
we consider the group velocity υ = dw/dξ at which the energy propagates in a dispersive
medium (Achenbach, 1973). In particular, according to (23) and (24), we obtain

υs = Vs + (`2 − h2)csξ
2(1 + `2ξ2)−1/2(1 + h2ξ2)−3/2. (25)

The following three cases are then distinguished: (i) For ` < h, Eq. (25) implies that υs < Vs,
thus the dispersion for shear waves is normal. (ii) For ` > h, we have υs > Vs indicating that
the dispersion is anomalous. (iii) For ` = h or (`, h)→ 0 (i.e. no material microstructure), the
shear wave velocity degenerates into the non-dispersive velocity of classical elastodynamics.

3 Basic equations in plane-strain

For a body that occupies a domain in the (x, y)-plane under conditions of plane strain, the
displacement field takes the general form

ux ≡ ux(x, y) 6= 0, uy ≡ uy(x, y) 6= 0, uz ≡ 0. (26)

Further, Muki and Sternberg (1965) showed that, if the general 3D equations of Section 2
are combined with the restrictions in (26) and the normalization µkk = 0 of the couple-stress
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field is adopted, all field quantities are independent of the coordinate z. It is noteworthy that,
contrary to the respective plane-strain case in the conventional theory, this independence
is not obvious within the couple-stress theory (Muki and Sternberg, 1965). Notice further,
that except for ωz ≡ ω and (κxz, κyz), all other components of the rotation vector and the
curvature tensor vanish identically. The aforementioned restrictions describe the so called
first planar problem, which is a generalization of the classical in plane elasticity problem
(Ostoja-Starzewski and Jasiuk, 1995). In view of the above, the following kinematic relations
are obtained

εxx = ∂xux, εyy = ∂yuy, εxy = εyx =
1

2
(∂xuy + ∂yux), (27)

ω =
1

2
(∂xuy − ∂yux), κxz = ∂xω, κyz = ∂yω. (28)

Accordingly, the constitutive equations in (17) furnish the non-vanishing components of the
symmetric part of stress and the couple-stress, respectively. Vanishing body forces and body
couples are assumed in what follows. Then, the antisymmetric part of the stresses is found
from (10). In view of the above, the following expressions are written

τxx = (λ+ 2µ)εxx + λεyy, τyy = (λ+ 2µ)εyy + λεxx, τyx = τxy = 2µεxy (29)

mxz = 4µ`2κxz, myz = 4µ`2κyz, (30)

αxx = αyy = 0, αyx = −αxy = 2µ`2∇2ω − I

2
ω̈, (31)

and consequently the (asymmetric) stresses are given as

σxx = τxx, σyy = τyy, σyx = τyx + αyx, σxy = τxy + αxy. (32)

The equation of motion in (19) leads to the following system of coupled PDEs of the fourth
order for the displacement components (ux, uy)

µ∇2ux + (λ+ µ)∂xe− µ`2∇2[∇2ux − ∂xe] = ρüx +
I

2
∂yω̈, (33)

µ∇2uy + (λ+ µ)∂ye− µ`2∇2[∇2uy − ∂ye] = ρüy −
I

2
∂xω̈, (34)

where ∇2 ≡ ∂2
x() + ∂2

y() and e = ∂xux + ∂yuy is the dilatation. Although the above system is
much more complicated than that in the respective case of classical elastodynamics, uncou-
pling by the use of Lamé-type potentials still proves to be successful. The potentials φ(x, y, t)
and ψ(x, y, t) are defined in terms of the displacement components as

ux =
∂φ

∂x
+
∂ψ

∂y
, uy =

∂φ

∂y
− ∂ψ

∂x
. (35)

Consequently, the dilation and the rotation vector become

e = ∇2φ, ω = −1

2
∇2ψ. (36)

Incorporating the above relations into (33) and (34), we derive, after some tedious but straight-
forward algebra, the following uncoupled PDEs, which constitute our field equations. The
potential φ is governed by a second order PDE, whereas the potential ψ satisfies a PDE of
the fourth order, i.e.

c2
p∇2φ = φ̈, (37)

c2
s

(
1− `2∇2

)
∇2ψ =

(
1− h2∇2

)
ψ̈. (38)
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The fact that (35)-(38) comprise the complete solution of the equations of motion (33) and (34)
may be proved by following exactly the steps in Sternberg’s (1960) form of the proof for the
case ` = 0 and h = 0. In fact, it is only necessary to replace in Sternberg’s proof the standard
wave operator governing the shear wave propagation: �2

2 = ∇2 − c−2
s ∂2

t by the modified
operator in couple-stress elasticity with micro-inertia: ♦2

2 =
(
1− `2∇2

)
∇2−c−2

s

(
1− h2∇2

)
∂2
t

(see also Mindlin and Tiersten, 1962).
Accordingly, the stresses and couple-stresses take the following form in terms of the Lamé

potentials

σxx = λ∇2φ+ 2µ

(
∂2φ

∂x2
+

∂2ψ

∂x∂y

)
, (39)

σyy = λ∇2φ+ 2µ

(
∂2φ

∂y2
− ∂2ψ

∂x∂y

)
, (40)

σyx = µ

[
2
∂2φ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

]
− µ`2∇4ψ +

I

4
∇2ψ̈, (41)

σxy = µ

[
2
∂2φ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

]
+ µ`2∇4ψ − I

4
∇2ψ̈, (42)

mxz = −2µ`2∂x∇2ψ, (43)

myz = −2µ`2∂y∇2ψ. (44)

Regarding the traction boundary conditions in the plane strain case, we note that these
are defined through Eqs. (15) by taking also into account that the normal component of
the couple-stress m(nn) is zero. Indeed, since the components (mxx,myy,myx,mxy) of the
couple-stress tensor vanish identically in the plane-strain case (recall that in this case, all field
quantities are independent upon the z coordinate), we conclude that m(nn) ≡ npnqmpq = 0.
This, in turn, implies that no edge forces Q = (1/2)Jm(nn)K appear at the corners of a
boundary or section in plane strain. However, we remark that these edge forces should be
considered in antiplane strain problems, where, in general, m(nn) 6= 0. In addition, pertinent
edge conditions should be taken into account in both plane and antiplane strain problems, in
the more general theory of dipolar gradient elasticity (see e.g. Gourgiotis et al., 2010; Sciarra
and Vidoli, 2012a).

3.1 Propagation of Rayleigh waves in couple-stress elasticity

We close this Section with a brief study of the propagation of Rayleigh waves in couple-stress
elasticity with micro-rotational inertia. A more detailed study can be found in Georgiadis and
Velgaki (2003). To this purpose, we consider the following two-dimensional time-harmonic
response in the half-space y ≥ 0

φ (x, y, t) = Φ(y) · exp
[
i(ξx− wt)

]
, (45)

ψ (x, y, t) = Ψ(y) · exp
[
i(ξx− wt)

]
. (46)

Then, substitution of the above equations into (37) and (38) yields

d2Φ

dy2
− β2

pΦ = 0, (47)

d4Ψ

dy4
− (β2

s + γ2
s )
d2Ψ

dy2
+ β2

sγ
2
sΨ = 0, (48)
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where the following definitions have been employed

β2
p = ξ2 − w2

c2
p

, (49)

β2
s = ξ2 − σ2

s with σs =
1√
2`

[
∆s −

(
1− w2h2

c2
s

)]1/2

, (50)

γ2
s = ξ2 + τ2

s with τs =
1√
2`

[
∆s +

(
1− w2h2

c2
s

)]1/2

, (51)

and

∆s =

[(
1− w2h2

c2
s

)2

+
4`2w2

c2
s

]1/2

. (52)

The criterion for surface waves is that the displacement potentials decay exponentially with
the distance y from the free surface. It is noted that in the context of classical elasticity these
waves are non-dispersive at any frequency. From the solution of the ODEs (47) and (48), we
obtain the displacement potentials (φ, ψ) as

φ = A exp
[
−βpy + i(ξx− wt)

]
, (53)

ψ = B exp
[
−βsy + i(ξx− wt)

]
+ C exp

[
−γsy + i(ξx− wt)

]
. (54)

Since ∆s > 0 always, the quantities (σs, τs) defined in (50) and (51) are real and greater than
zero. Consequently, it can be readily shown that γ2

s is always greater than zero, whereas β2
p

and β2
s have real values greater than zero if only the phase velocity of the Rayleigh waves

is cph = w/ξ < min{Vs, cp}, where Vs is the shear wave velocity for a couple-stress material
defined in Eq. (24).

Now, the pertinent boundary conditions for a traction-free boundary defined by the plane
(x, y = 0) with n = (0, 1) take the following form

σyy(x, 0) = 0, σyx(x, 0) = 0, myz(x, 0) = 0. (55)

Substitution of expressions (53) and (54) into the boundary conditions (55) results in an eigen-
value problem for the wave amplitudes (A,B,C). Accordingly, the vanishing of the pertinent
determinant provides the dispersion equation for the propagation of Rayleigh waves in a ma-
terial characterized by couple-stress elasticity. The analytical expression of the determinant
is very lengthy and is omitted here. A numerical solution was derived using the symbolic
computer program MATHEMATICATM.

Figure 1a shows the variation of the normalized phase velocity cph/cs of the Rayleigh
waves in couple-stress elasticity versus the normalized wavenumber ξd = ξ` for a material
with Poisson’s ratio ν = 0.3. It is observed that for small wavenumbers (low frequencies) the
phase velocity of the Rayleigh wave tends to the respective classical value: cR = 0.927cs. This
is to be expected intuitively since for relatively long wavelengths the wave should not ‘see’ the
material microstructure. On the other hand, for large wave numbers (high frequencies) the
dispersive Rayleigh wave speed depends strongly upon the ratio of the characteristic material
lengths h0 = h/`. In particular, it is observed that as ξd increases, the phase velocity reaches
a plateau attaining a constant value which depends upon h0 and the Poisson’s ratio ν. Indeed,
as it is illustrated in Figure 1b, the following three cases are distinguished as ξd → ∞: (i)
h0 ≤ 0.5; in this case the limit value of the normalized phase velocity depends only upon the
Poisson ratio. (ii) 0.5 < h0 < 1/

√
2; in this case cph/cs depends upon both h0 and ν. In fact,

for ν > ν∗(h0) the ratio becomes constant and tends to the value 1/h0. (iii) h0 ≥
√

1/2; in
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(a) (b)

Figure 1: (a) Dispersive character of Rayleigh waves in couple-stress elasticity. (b) Limit of the Rayleigh
velocity in couple-stress elasticity with respect to the Poisson’s ratio as ξd →∞.

this case we obtain that cph/cs = 1/h0 always, independently of the Poisson’s ratio. Moreover,
it is worth noting that the curve h∗0 = cs/cR in Figure 1a, differs slightly from the classical
elasticity solution,which, in turn, implies that in this case the Rayleigh waves are almost non-
dispersive. The constant h∗0 depends, according to its definition, only upon the Poisson’s ratio;
in fact for a material with 0 ≤ ν ≤ 0.5, we have 0.874 ≤ cR/cs ≤ 0.955, and, consequently, h∗0
ranges from 1.046 ≤ h∗0 ≤ 1.144 (see e.g. Achenbach, 1973). Finally, it should be remarked
that a propagation velocity V is characterized as sub-Rayleigh, which is our case of interest
here, when V < cph. Consequently, when 0 ≤ h0 ≤ h∗0 it suffices that the propagation velocity
is less than the classical Rayleigh velocity i.e. V < cR, whereas for h0 > h∗0 the propagation
is sub-Rayleigh provided that V < cs/h0.

4 Formulation of the crack problem

Consider now a semi-infinite crack in a body of infinite extent under plane strain conditions.
The body is governed by the equations of couple-stress elasticity. The crack propagates with
constant sub-Rayleigh velocity straight along the x-axis and is subjected to a distribution of
shear stresses along the crack faces moving with the same velocity. We now introduce the
standard steady-state assumption for moving sources according to which a steady stress and
displacement field is created in the medium w.r.t. an observer situated in a frame of reference
attached to the tip of the crack, if the crack has been moving steadily (with a velocity V , say)
for a sufficiently long time. In this way, any transients can reasonably be avoided (therefore
gaining considerable simplification in the analysis). Specifically, upon introducing the Galilean
transformation

X = x− V t, Y = y, (56)

the time derivative in the fixed Cartesian system becomes: ∂t = −V ∂X , which, in turn,
implies that the field and the boundary conditions become independent of the time t, and the
variables (x, t) enter the problem only in the combination x − V t. Furthermore, in the new
moving Cartesian coordinate system, partial derivatives w.r.t. t are neglected and the field
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equations (37) and (38) for the Lamé potentials φ (X,Y ) and ψ (X,Y ) can now be written as

(1−m2c2)
∂2φ

∂X2
+
∂2φ

∂Y 2
= 0, (57)

(1−m2)
∂2ψ

∂X2
+
∂2ψ

∂Y 2
− `2

[(
1−m2h2

0

) ∂2(∇2ψ)

∂X2
+
∂2(∇2ψ)

∂Y 2

]
= 0, (58)

where c = cs/cp = [(1− 2ν) /2 (1− ν)]1/2 < 1. Also, m = V/cs and mc = V/cp are the two
Mach numbers. It is worth noting that m < mR with mR = min{1/h0, 1/h

∗
0} and h∗0 = cs/cR,

in order for the crack to propagate with a sub-Rayleigh speed (see also Section 2). Figure 2
depicts the sub-Rayleigh and the super-Rayleigh regimes in couple-stress elasticity.

Figure 2: Sub-Rayleigh and Super-Rayleigh regimes in the m− h0 plane.

Due to the anti-symmetry with respect to the Y = 0 plane, the problem can be viewed as a
half-plane problem in the region Y ≥ 0 under the following boundary conditions

σyx(X,Y =0) = −T (X) for −∞ <X < 0, (59)

σyy(X,Y =0) = 0 for −∞ <X <∞, (60)

myz(X,Y =0) = 0 for −∞ <X <∞, (61)

ux(X,Y =0) = 0 for 0 <X <∞, (62)

where T (X) is the distribution of shear tractions along the crack faces.

5 Full field solution

An exact solution of the boundary value problem described above will be obtained here
through the Fourier transform and the Wiener-Hopf technique (Noble, 1958). The direct
and inverse Fourier transforms are defined as

f∗(s, Y ) =

∫ +∞

−∞
f(X,Y )eisX dX, f(X,Y ) =

1

2π

∫
L
f∗(s, Y )e−isXds, (63)

where L denotes the inversion path within the region of analyticity of the function in the
complex s-plane. Transforming the field equations (57) and (58) with (63)1, we obtain the
following ODEs

d2φ∗

dY 2
− (1−m2c2)s2φ∗ = 0, (64)

12

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



`2
d4ψ∗

dY 4
−
[
1 +

(
2−m2h2

0

)
`2s2

]d2ψ∗

dY 2
+
[(

1−m2
)

+
(
1−m2h2

0

)
`2s2

]
s2ψ∗ = 0. (65)

The above equations have the following general solutions that will be required to be bounded
as Y → +∞

φ∗(s, Y ) = A(s)e−αY , (66)

ψ∗(s, Y ) = B(s)e−β Y + C(s)e−γ Y , (67)

where

α ≡ α(z) =

[(
1−m2c2

)
z2
]1/2

`
, (68)

β ≡ β(z) =

[
1 +

(
2−m2h2

0

)
z2 + χ(z)

]1/2
√

2`
, (69)

γ ≡ γ(z) =

[
1 +

(
2−m2h2

0

)
z2 − χ(z)

]1/2
√

2`
, (70)

χ ≡ χ(z) =
[
1 + 2

(
2− h2

0

)
m2z2 +m4h4

0z
4
]1/2

, (71)

with z = s` being a dimensionless complex variable.
The complex function χ(z) has four branch points at ±ib1 and ±ib2, where

b1,2 =

(
2− h2

0 ∓ 2
(
1− h2

0

)1/2)1/2

mh2
0

. (72)

In particular, when h0 < 1, b1,2 are always real and the branch points are located along the
imaginary axis. In this case, the branch cuts are chosen to run from ±ib1 to ±ib2 (see Fig
A.1a in the Appendix A). On the other hand, when h0 > 1, b1,2 are complex and the branch
points are symmetrically located with respect to the real axis at the four quadrants of the
complex z-plane (Fig. A.1b). Accordingly, z = 0 and z = ±ib0 with

b0 =

(
1−m2

)1/2(
1−m2h2

0

)1/2 , (73)

are additional branch points of the functions β(z) or γ(z) depending on the values of the
parameters m and h0 (the branch cuts of these functions are given in Appendix A). Note,
that b0 is always real when m < mR. In any case, the specific introduction of the branch cuts
secures that the functions (χ, β, γ), are single-valued and positive along the real axis.

Moreover, the transformed expressions for the stresses and displacements that enter the
boundary conditions take the following form

σ∗yx(s, Y ) = −µ
[
`2
d4ψ∗

dY 4
−
(
1 + (2−m2h2

0)`2s2
)d2ψ∗

dY 2

−
(
1− (1−m2h2

0)`2s2
)
s2ψ∗ + 2is

dφ∗

dY

]
,

(74)

σ∗yy(s, Y ) = (λ+ 2µ)
d2φ∗

dY 2
− λs2φ∗ + 2iµs

dψ∗

dY
, (75)

m∗yz(s, Y ) = −2µ`2
(
d3ψ∗

dY 3
− s2dψ

∗

dY

)
, (76)

u∗x(s, Y ) =
dψ∗

dY
− isφ∗. (77)
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Next, in preparation for formulating a Wiener-Hopf equation, the unilateral Fourier transforms
of the unknown stress σyx(X> 0, Y = 0) ahead of the crack tip, and the unknown crack-face
displacement ux(X<0, Y =0) are defined as follows

Σ+(s) =

∫ ∞
0

σyx(X,Y = 0)eisX dX, σyx(X,Y =0) =
1

2π

∫
L

Σ+(s)e−isX ds, (78)

and

U−(s) =

∫ 0

−∞
ux(X,Y = 0)eisX dX, ux(X,Y =0) =

1

2π

∫
L
U−(s)e−isX ds, (79)

where the inversion path is considered to lie inside the region of analyticity of each transformed 
function. In particular, we assume the following finiteness conditions to hold: |σyx(X, Y = 0)| < 
M for X → +∞ and |ux(X, Y = 0)| < N for X → −∞, where (M, N) are positive constants. 
Consequently, the transformed function Σ+(s) is analytic and defined in the upper half-plane 
Im(s) > 0, while U−(s) is analytic and defined in the lower half-plane Im(s) < 0.

Enforcing the boundary conditions (60)-(62), taking into account also (75)-(77) and (79)1,
results in the following equations for the unknown functions A(s), B(s) and C(s)

A(s) =
2i

m2s
U−(s), (80)

B(s) = −(2−m2)(γ2 − s2)

m2β(β2 − γ2)
U−(s), (81)

C(s) =
(2−m2)(β2 − s2)

m2γ(β2 − γ2)
U−(s). (82)

Consequently, Eqs. (80)-(82), together with (59) and (74) provide the final Wiener-Hopf
equation of the problem, connecting the two unknown functions Σ+(s) and U−(s)

Σ+(s)− T−(s) =
µ(2−m2)2 s2

m2 [(s`)2]1/2
K(s`)U−(s), (83)

where T−(s) is the Fourier transform of the loading along the crack-faces. The kernel function
K(s`) is given as

K(z) =
θ2 +

[
z2
]1/2

θ +m2

(β + γ) θ
− `d, (84)

where

θ ≡ θ(z) = `2
β(z)γ(z)

[z2]1/2
=
(
1−m2 + (1−m2h2

0)z2
)1/2

, (85)

and d ≡ d(m, ν) = 4
(
1−m2c2

)1/2
/
(
2−m2

)2
. The problem has now been reduced to the

determination of the unknown functions Σ+(s) and U−(s) from the single functional equation
(83).

5.1 Wiener-Hopf factorization

To proceed further a product-factorization of the kernel K(z) is required. First it is checked
that K(z) has no zeros and no poles in the complex plane in the sub-Rayleigh regime (m ≤
mR). This was verified by using the symbolic computer program MATHEMATICATM.

Moreover, the kernel function exhibits the following asymptotic behavior

lim
|z|→∞

K(z) = `(1− d) +O(z−2), (86)

lim
|z|→0

K(z) = `
[(

1−m2
)−1/2 − d

]
+O(z2). (87)
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This leads us to introduce a modified kernel given as N(z) = K(z)/ [`(1− d)], which possesses
the desired asymptotic property lim|z|→∞N(z) = 1. Indeed, this new form of the kernel
facilitates its product splitting by the use of Cauchy’s integral theorem (Noble, 1958; Roos,
1969). The functional equation (83) takes now the form

Σ+(s)− T−(s) =
µ`(1− d)

(
2−m2

)2
s2

m2 [s`]
1/2
+ · [s`]1/2−

N(s`)U−(s), (88)

where the function
[
(s`)2

]1/2
≡
[
z2
]1/2

is written as a product of two analytic functions in

the upper and lower half-plane, respectively (see e.g. Mishuris et al., 2012)[
z2
]1/2

= [z]
1/2
+ · [z]1/2− . (89)

In addition, the modified kernel splits up as

N(z) = N+(z) ·N−(z), (90)

where

N+(z) = exp

{
1

2πi

∫
Cd

log [N(ζ)]

ζ − z
dζ

}
, (91)

N−(z) = exp

{
− 1

2πi

∫
Cu

log [N(ζ)]

ζ − z
dζ

}
. (92)

The use of the Cauchy integral theorem is depicted in Figure 3. The functions N+(z) and
N−(z) are analytic and nonzero in the half-planes Im(z) > −ε and Im(z) < ε, respectively,
with ε being a real number such that ε→ 0. In fact, introducing ε facilitates the introduction
of the branch cuts for N(z) (see e.g. Georgiadis, 2003). The original integration paths Cd and
Cu extend parallel to the real axis in the complex z-plane. According to the Cauchy integral
theorem, Jordan’s lemma, and by taking into account that N(z) has no poles or zeros in the
finite complex plane, we are allowed to deform the original integration paths and shrink them
to (C ′d, C

′
u) contours around the branch cuts of N(z) extending along: ±ε ≤ Im(z) ≤ ±b0,

and ±b0 ≤ Im(z) ≤ ±b1 (Fig. 3). Note that the second branch of N(z) exists only in certain
cases, depending on the values of (m,h0). A more detailed discussion about the branch points
and the pertinent branch cuts of the kernel function N(z) is given in Appendix B.

This eventually leads to the following forms of the sectionally analytic functions N±(z)
(the analytic derivation is provided in Appendix B)

N±(z) = exp

{
− 1

π

[∫ ib0

0

tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ ± z
+ a

∫ ib1

ib0

tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ ± z

]}
,

(93)
with the properties N+(−z) = N−(z) and N±(z) = 1 for |z| → ∞. The constant a takes
the values 0 or 1 depending on the branches of the kernel function N(z), and is defined in
Appendix B. Moreover, it is noted that when z approaches the branch cuts in the z-plane
from one side or the other, the integrals defining the functions N+(z) or N−(z) become
Cauchy singular integrals. However, these integrals are not singular simultaneously. In fact,
considering that the function N(z) does not have any poles or zeros in the complex z-plane, we
can extend by analytic continuation the functions N+(z) and N−(z) below and above the real
axis, respectively, excluding their pertinent branch cuts. In this way, we may calculate these
exceptional cases without resorting to principal values by employing N±(z) = N(z)/N∓(z),
where we choose in the denominator the N±(z) function that is not defined by a singular
integral.
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Figure 3: Contour integration for the factorization of the kernel function N(z).

In view of the above, Eq. (88) can now be rewritten as

Σ+(s) [s`]
1/2
+

N+(s`)
=
µ`(1− d)

(
2−m2

)2
s2

m2 [s`]
1/2
−

N−(s`)U−(s) +
T−(s) [s`]

1/2
+

N+(s`)
. (94)

5.2 Solution of the Wiener-Hopf equation

We now assume the following form of the loading applied on the crack faces

T (X) =
T0

L
eX/L with −∞ < X < 0, (95)

where T0 and L are positive constants having pertinent dimensions. Transforming (95) with
(63)1 we obtain

T−(s) =
T0

1 + isL
, (96)

so that (94) becomes

Σ+(s) [s`]
1/2
+

N+(s`)
=
µ`(1− d)

(
2−m2

)2
s2

m2 [s`]
1/2
−

N−(s`)U−(s) +
T0 [s`]

1/2
+

N+(s`)(1 + isL)
. (97)

The sum-splitting of the second term in the RHS of (97) is required to complete the decoupling
process. This is be obtained by inspection as

M(z) ≡
T0 [z]

1/2
+

N+(z)(1 + iz`−1L)
= M+(z) +M−(z), (98)

where

M+(z) =
T0

(1 + iz`−1L)

[
[z]

1/2
+

N+(z)
−

[i`/L]
1/2
+

N+(i`/L)

]
, (99)

M−(z) =
T0

(1 + iz`−1L)

[i`/L]
1/2
+

N+(i`/L)
, (100)
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with M+(z) being an analytic function in the same upper half-plane where N+(z) is defined,
while M−(z) is an analytic function in the half-plane where Im(z) < i`/L. Equations (99)
and (100), when combined, allow the final re-arrangement of the Wiener-Hopf equation

Σ+(s) [s`]
1/2
+

N+(s`)
−M+(s`) =

µ`(1− d)
(
2−m2

)2
s2

m2 [s`]
1/2
−

N−(s`)U−(s) +M−(s`) ≡ E(s`). (101)

The above functional equation defines the function E(z) only on the real line. In order to
evaluate this function, it is first necessary to examine the asymptotic behavior of the functions
Σ+(s) and U−(s). In particular, guided by the results concerning the modification of stress
singularities in the presence of couple stresses in plane-strain crack problems subjected to
a quasi-static shear loading (Huang et al., 1997; Gourgiotis et al., 2011), we assume that
the stress and crack-face displacement along the crack faces exhibit the following asymptotic
behavior

σyx(X,Y = 0) = O(X−1/2) as X → +0, (102)

ux(X,Y = 0) = O((−X)1/2) as X → −0. (103)

Further, we consider at this point the transformation formula Xκ FT↔ ik+1Γ(κ+1)s−κ−1, where

Γ() is the Gamma function with κ > −1 (κ 6= 0,+1,+2, ...,). The symbol
FT↔ means that the

quantities on either side of the arrow are connected through the unilateral Fourier-transform.
Then, employing theorems of the Abel-Tauber type (see e.g. Roos, 1969), we obtain the
following asymptotic behavior in the transform domain

Σ+(s) = O(s−1/2) as |s| → +∞ with Im(s) > 0, (104)

U−(s) = O(s−3/2) as |s| → +∞ with Im(s) < 0. (105)

In light of the above, and bearing in mind that: N±(s`)→ 1 and M±(s`)→ 0 as |s| → +∞,
we conclude that the first member of (101) is a bounded nonzero analytic function at infinity
for Im(s) > 0, whereas the second member is a bounded nonzero analytic function at infinity
for Im(s) < 0. Then, based on the theorems of analytic continuation, the two members
define one and the same analytic function E(z) over the entire complex z-plane. Moreover,
Liouville’s theorem leads to the conclusion that E(z) = E0, where E0 is a constant.

The transformed shear stress is now given by (101) as

Σ+(s) = [E0 +M+(s`)]N+(s`) [s`]
−1/2
+ . (106)

The constant E0 can be determined from simple equilibrium considerations. In particular,
from the requirement that the upper part of the body Y ≥ 0 is in equilibrium in the moving
framework, we have:

∫∞
−∞ σyx(X,Y = 0) dX = 0, which, by taking into account Eqs. (78)1

and (96), can be written as −T0 + Σ+(0) = 0. Further, in view of (99) and (106), we obtain
the limit

Σ+(0) ≡ lim
|s|→0

Σ+(s) = `−1/2

[(
1−m2

)−1/2 − d
1− d

]1/2 [
E0 −

T0 [i`/L]
1/2
+

N+(i`/L)

]
s−1/2 +T0 +O(s1/2).

(107)
Thus, the only possibility left from (107) is the vanishing of the term inside the second bracket,
i.e.

E0 =
T0 [i`/L]

1/2
+

N+(i`/L)
. (108)

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Alternatively, the constant E0 can be evaluated from the conditions at remote regions in
the physical plane where the couple-stress effects are diminished. First, we observe that the
exponentially decaying tractions in (95) can be replaced by an equivalent concentrated load
of intensity:

∫ 0
−∞ σyx(X,Y = 0) dX = −T0 at distance L from the crack-tip. Thus, according

to Saint-Venant’s principle and in view of the classical solution of the steady-state problem
of concentrated shear tractions along the crack faces (see e.g. Freund, 1990), we anticipate
that for X → +∞ the shear stress ahead of the crack-tip will behave as in the classical theory
i.e. as ∼ X−3/2. This, in turn, implies the following asymptotic behavior in the transformed
domain: Σ+(s) = O(s1/2) as |s| → 0. Using this result in conjunction with Eq. (107) provides
the same value for the constant E0.

The final transformed expressions (valid for all s in the pertinent half-plane of convergence)
for the stress ahead of the crack-tip and the crack-face displacement then become

Σ+(s) =

[
T0 [i`/L]

1/2
+

N+(i`/L)
+M+(s`)

]
N+(s`) [s`]

−1/2
+ , Im(s) > 0, (109)

U−(s) =
m2

µ`(1− d) (2−m2)2

[
T0 [i`/L]

1/2
+

N+(i`/L)
−M−(s`)

]
[s`]

1/2
−

s2N−(s`)
, Im(s) < 0. (110)

The limits of the latter expressions for |s| → ∞ are found to be

Σ+(s) =
T0 [i]

1/2
+√

L ·N+(i`/L)
s−1/2 +O(s−3/2), (111)

U−(s) =
T0m

2

µ
√
L(1− d) (2−m2)2

[i]
1/2
+

N+(i`/L)
s−3/2 +O(s−5/2), (112)

which, accordingly, provide the following near-tip field as

σyx(X → +0, Y = 0) =
T0√

πLN+(i`/L)
X−1/2, (113)

ux(X → −0, Y = 0) =
2T0m

2

µ
√
πL(d− 1) (2−m2)2 N+(i`/L)

(−X)1/2 . (114)

6 Results

6.1 Analytical representation of displacements, stresses and couple-stresses

The shear stress ahead of the crack tip and the crack opening displacement can be obtained
from (109) and (110), respectively, by employing the inverse Fourier transform according to
(63)2. For a crack propagating with a sub-Rayleigh speed, the functions in (109) and (110)
do not have branch points or poles along the real line, consequently, the path of integration
L coincides with the real line s. In this case we obtain

σyx(X) =
1

2π

∫ ∞
−∞

Σ+(s)e−iXsds, X > 0. (115)

ux(X) =
1

2π

∫ ∞
−∞

U−(s)e−iXsds, X < 0, (116)

Alternatively, taking into account that Σ+(s) and U−(s) are analytic in the upper and lower
half-planes respectively, we can deform the original integration paths by making use of Jor-
dan’s lemma, around the pertinent branch cuts of these functions. In particular, the branch
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Figure 4: Variation of the crack sliding displacement along the upper crack face for three different values:
h0 = {0, h∗0, 1.1h∗0} and various crack speeds.

Figure 5: Variation of the crack sliding displacement at the point X = −5` in couple-stress elasticity and
classical elasticity with respect to the normalized crack speed.

cuts for the functions U−(s) and Σ+(s) can be chosen to be along the negative (Im(s) < 0)
and the positive (Im(s) > 0) imaginary axis, respectively.

The variations of the normalized tangential displacement on the upper crack face Y = +0,
X ≤ 0, versus normalized distance X/` to the crack tip are shown in Fig. 4, for a material
with L/` = 10 and a selected range of values of m, h0 and ν. It is noted that the specific value
L/` = 10 was chosen for most of the graphs in this paper, since for small values of this ratio the
couple-stress effects are more pronounced. In fact, the effect of the ratio L/` on the dynamic
solution is the same as in the stationary mode II crack studied previously by Gourgiotis et al.
(2012). Now, as is in classical elasticity, the crack tip profile is blunted in the couple-stress
solution. Moreover, it observed, that the magnitude of the sliding displacement between the
crack-faces increases as the propagation speed approaches the pertinent Rayleigh velocity, for
every set of material parameters. However, the displacement in couple-stress elasticity remains
always bounded in the sub-Rayleigh regime. This result is in marked contrast with the classical
elastodynamic solution, where the crack face displacements become infinite in magnitude as
we approach the Rayleigh speed (Freund, 1990). This is illustrated more clearly in Fig. 5,
where the variation of the crack face displacement at the point X = −5` is shown with respect
to the normalized propagation speed for h0 = {0, 0.8h∗0}. Since, h0 < h∗0, in both cases, the
Rayleigh velocity takes the value mR = 1/h∗0 = 0.927 for ν = 0.3. As noted earlier, when
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m→ mR, the displacement in classical elasticity becomes unbounded, whereas the respective
displacement in the couple-stress theory increases significantly but remains finite. In addition,
we note that for every propagating velocity m, the crack-face displacements are smaller than
the respective ones in the classical theory. This finding shows that the crack becomes stiffer
due to the effects of the microstructure, here brought into play by rotational gradients. This
trend was also observed for the stationary mode II crack in couple-stress elasticity (Huang et
al., 1999; Gourgiotis and Georgiadis, 2007), and proves that the microstructure may shield
the crack tip from fracture. Finally, we remark that the influence of the Poisson’s ratio ν on
the solution becomes significant as the speed of the crack increases, and is more pronounced
as ν → 0.

Figure 6: Variation of the shear stress ahead of the crack-tip in couple-stress elasticity for three different
values: h0 = {0, h∗0, 1.1h∗0} and various crack speeds.

Next, the variation of the normalized shear stress ahead of the crack-tip with respect
to the normalized distance X/` is depicted in Fig. 6, for a material with L/` = 10, h0 =
{0, h∗0, 1.1h∗0} and ν = {0, 0.5}. It is observed that the effect of the Poisson’s ratio becomes
more significant when h0 → 0 (i.e. in the case of no micro-inertia). Further, it is remarked
that as m → 0 the steady state solution approaches the static solution, irrespectively of the
value of the ratio h0, confirming thus previous results obtained by Gourgiotis et al. (2012) for
the stationary crack. On the other hand, as m→ mR, the zone within which the couple-stress
effects become important increases. Interestingly, when the propagation speed approaches the
Rayleigh velocity, the shear stress takes on negative values very close to the crack-tip within
the range 2` ≤ X ≤ 6`, as is shown in Figure 7a for a material with h0 = 0.8h∗0 (mR = 0.927)
and ν = 0.3. However, these negative values are very small in magnitude and appear only in
the case m → mR and h0 ≤ h∗0. In Figure 7a the near-tip couple-stress asymptotic solution
in (113) and the classical elasticity solution are also depicted. It is noticed that the near-tip
asymptotic field dominates within a zone of 0.5` to the crack tip, but the couple-stress effects
are significant within a zone of 2`. Moreover, as we move away from the crack-tip (X ≥ 8`)
the full field solution approaches gradually the classical elastodynamic solution for every crack
speed.

Finally, Figure 7b shows distribution the couple-stress mxz normalized by T0, versus the
distance X/` to the crack tip for a material with ν = 0.3 and h0 = h∗0. It is observed
that the couple stress decays rapidly as the distance from the crack-tip increases. Also, it
is interesting to note that mxz is bounded at the crack-tip, as in the stationary crack case
(Huang et al., 1997; Gourgiotis and Georgiadis, 2007). In particular, the couple-stress mxz

takes a finite negative value at the crack tip then increases to a bounded positive maximum,
and diminishes monotonically to zero for X >> `, thus recovering the classical solution of
linear elasticity. In general, the couple-stress mxz becomes more pronounced as the crack
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(a) (b)

Figure 7: (a) Variation of the shear stress ahead of the crack-tip in couple-stress elasticity as the crack speed
approaches the Rayleigh velocity. The near-tip asymptotic field and the classical elasticity solution are also
shown. (b) Variation of the couple-stress mxz ahead of the crack-tip for a material with ν = 0.3 and h0 = h∗0
and various crack speeds.

propagation speed approaches the pertinent Rayleigh velocity mR (curve 3).

6.2 The dynamic stress intensity factor

According to Eq.(113) and the definition KII = limX→+0(2πX)1/2σyx(X,Y = 0), the dynamic
(d) stress intensity factor (SIF) in couple-stress elasticity becomes

Kd
II =

√
2T0√

L ·N+(i`/L)
. (117)

In the limit case m → 0, the dynamic SIF (117) degenerates to its static counterpart Ks
II

in couple-stress elasticity derived previously by Gourgiotis et al. (2012). The details of the
pertinent limit procedure and an explicit expression for Ks

II are given in Appendix C.
Furthermore, the ratio of the dynamic SIF in couple-stress elasticity to the respective one

in the classical theory (cl.) is
Kd
II

Kdcl.
II

=
1

N+(i`/L)
, (118)

where Kdcl.
II =

√
2T0/

√
L.

It is noted that in the classical elastodynamic theory the distribution of the shear stress
ahead of the crack-tip does not depend upon the crack speed V . Consequently, the dynamic
stress intensity factor is identical to the corresponding static result for any velocity V : Kdcl.

II =
Kscl.
II (Freund, 1990). This result is in marked contrast with the one obtained here in the

context couple-stress elasticity, where the dynamic SIF in (117) depends upon the speed of
the propagation through the function N+(i`/L). An analogous result was found also by Itou
(1981) for a propagating Yoffe crack in couple-stress elasticity with no micro-inertia. This
dependence is clearly depicted in Fig. 8 for a material with L/` = 10 and ν = 0.3 (h∗0 = 1.078).
Indeed, for curves 1-3, we have h0 ≤ h∗0, which, in turn, implies that the normalized crack
velocity should be m ≤ 1/h∗0 in order for the crack to propagate with a sub-Rayleigh speed
(see also Fig. 2). On the other hand, when h0 > h∗0 (curves 4 and 5), the requirement for
the crack-speed to be sub-Rayleigh is m < 1/h0. It is noteworthy that as the crack speed
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Figure 8: Variation of the ratio of the dynamic SIF to the static SIF in couple-stress elasticity with respect
to normalized crack-speed.

approaches the pertinent Rayleigh limit: m→ mR, a significant but finite increase of the ratio
Kd
II/K

s
II is observed. This increase is more pronounced as h0 → h∗0, where Kd

II = 9.47Ks
II

(curve 3).

(a) (b)

Figure 9: Variation of the ratio of the dynamic SIF to the static SIF in couple-stress elasticity with respect
to the Poisson’s ratio ν for: (a) h0 = 0.8 and (b) h0 = 1.2.

Figure 9 illustrates the effect of Poisson’s ratio on the variation of the ratio of the SIFs
Kd
II/K

s
II , for two values of h0. In particular, in Fig. 9a we have h0 = 0.8 < h∗0 for all ν

(recall that 1.046 < h∗0 < 1.144) and, consequently, m < 1/h∗0 for the crack to propagate
with sub-Rayleigh speed. This requirement is always satisfied for curves 1-3, however, for
m = 0.9 (curve 4), this inequality is satisfied only in the range 0.137 < ν < 0.5. In fact,
as ν → 0.137 the propagation speed approaches the sub-Rayleigh limit speed, resulting to a
steep increase of the dynamic SIF. On the other hand, for propagation velocities m ≤ 0.5 the
ratio varies slowly. Further, in Fig. 9b we have h0 = 1.2 > h∗0 for all ν, and thus, m < 1/h0.
As m→ 1/h0 an increase in the ratio Kd

II/K
s
II is noted again, however, the increase is more

moderate compared to the case h0 ≤ h∗0.
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Finally, we remark that in the limit case `/L → 0 the ratio of the SIFs in couple-stress and 
in classical theory is not unity but exhibits an increase which becomes more pronounced as the 
crack-tip velocity approaches the pertinent Rayleigh limit (Fig. 10). In fact, by taking into 
account (87), (90) and bearing in mind that N+(0) = N−(0), we derive that

lim
`/L→0

Kd
II

Kdcl.
II

=
1

N+(0)
=

(1− d)1/2[
(1−m2)−1/2 − d

]1/2
. (119)

In particular, when m → 0 the ratio of the SIFs becomes: (3 − 2ν)1/2, recovering the result

Figure 10: Variation of the ratio of the dynamic SIFs in couple-stress and classical elasticity with respect to
normalized crack-speed in the limit case `/L→ 0.

derived previously by Gourgiotis et al. (2012) in the quasi-static case (see also Huang et al., 
1999). It is worth noting that a similar increase of the SIF was previously observed by Sternberg 
and Muki (1967) for the quasi-static mode I case in couple-stress elasticity. On the other hand, 
in the micropolar (Cosserat) theory, Antipov (2012) showed that the ratio of the SIFs for the 
respective quasi-static mode II problem tends to unity when the pertinent characteristic 
micropolar lengths tend to zero. As Sternberg and Muki (1967) pointed out the aggravation of 
the SIF can be attributed to the severe boundary layer effects of couple-stress elasticity in 
singular stress-concentration problems. Indeed, in contrast to the micropolar theory, the field 
equations in the standard couple-stress theory are of the fourth-order (due to the dependence of 
the rotation upon the displacement vector - see (19)) having a singular perturbation character 
associated with the emergence of strong boundary-layer effects.

6.3 The dynamic energy release rate

In this Section, we evaluate the dynamic J-integral (energy release rate) in the context of
couple-stress elasticity for a steady-state propagating mode II crack. The J-integral in the
quasi-static case was first established by Atkinson and Leppington (1974) (see also Atkinson
and Leppington, 1977; Lubarda and Markenscoff, 2000). By following relative concepts from
Rice (1968a,b) and Freund (1990), the extended definition of the dynamic J-integral in couple-
stress elasticity takes the following form

Jd = lim
Γ→0

1

V

∫
Γ

{
[W + T ]V nx + P (n)

q

∂uq
∂t

+R(n)
q

∂ωq
∂t

}
dΓ, (120)
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where Γ is a piecewise smooth simple 2D contour surrounding the crack-tip, V is the crack-
tip velocity, W is the strain-energy density (16), T is the kinetic energy density including

micro-rotational inertia terms defined in (1), and (P
(n)
q , R

(n)
q ) are the reduced force-traction

and tangential couple-traction defined in (15). It is noted that in the general transient case
the J-integral is not path-independent (Freund, 1990). However, for the case of steady crack
growth considered here, it can be readily proved following an analogous procedure as the one
proposed by Grentzelou and Georgiadis (2008) for the stationary crack problem, that the J-
integral remains path-independent. Moreover, we note that in the expression for the dynamic
J-integral in (120) the edge forces are not included since the latter are zero under plane-strain
conditions (see also Section 3). Utilizing the Galilean transformation in (56), the J-integral
in the steady-state case becomes

Jd =

∫
Γ

{
[W + T ]nx − P (n)

q

∂uq
∂X
−R(n)

q

∂ωq
∂X

}
dΓ

=

∫
Γ

{
[W + T ]dY −

[
P (n)
q

∂uq
∂X

+R(n)
q

∂ωq
∂X

]
dΓ

}
.

(121)

For the evaluation of the J-integral, we consider the rectangular-shaped contour Γ (surround-
ing the crack-tip) with vanishing ’height’ along the Y -direction and with ε→ 0 (see Fig. 11).
Such a contour was first introduced by Freund (1972) in examining the energy flux into the tip
of a rapidly extending crack and it is particularly convenient in computing energy quantities
in the vicinity of crack tips. In fact, this type of contour permits using solely the asymptotic
near-tip stress and displacement fields. It is noted that upon this choice of contour, the in-
tegral

∫
Γ[W + T ]dY in (121) becomes zero if we allow the ’height’ of the rectangle to vanish.

In this way, the expression for the J-integral becomes

Jd = −2 lim
ε→0

∫ ε

−ε

[
P (n)
q

∂uq
∂X

+R(n)
q

∂ωq
∂X

]
dX. (122)

Figure 11: Rectangular-shaped contour surrounding the crack-tip.

Further, we note that due to the anti-symmetry conditions that prevail in the mode II case,
the normal stress σyy(X,Y = 0) and the couple-stress myz(X,Y = 0) are zero along the whole
crack line. In view of the above, the dynamic J-integral for the mode II plane-strain case
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assumes the following form

Jd = −2 lim
ε→+0

∫ ε

−ε

{
σyy(X,+0) · ∂uy(X,+0)

∂X
+ σyx(X,+0) · ∂ux(X,+0)

∂X

+myz(X,+0) · ∂ω(X,+0)

∂X

}
dX, (123)

= −2 lim
ε→+0

∫ ε

−ε
σyx(X,+0) · ∂ux(X,+0)

∂X
dX.

Now, by using the asymptotic solution (113) and (114), we finally obtain

Jd =
2T 2

0m
2

µπL(d− 1) (2−m2)2 [N+(i`/L)]2
lim
ε→+0

∫ ε

−ε
(X+)−1/2(X−)−1/2dX, (124)

where for any real λ with the exception of λ = −1,−2,−3, ..., the following definitions of
singular distributions (of the bisection type) have been employed

Xλ
+ =

{
Xλ, for X > 0

0, for X < 0
and Xλ

− =

{
0, for X > 0

|X|λ, for X < 0
. (125)

Moreover, the product of distributions inside the integral in (124) is obtained through the use
of Fisher’s theorem (Fisher, 1971), i.e. the operational relation:

(X−)λ(X+)−1−λ = −πδ(X) [2 sin(πλ)]−1 with λ 6= −1,−2,−3, ... (126)

with δ(X) being the Dirac delta distribution. Then, taking into account the properties of the
Dirac delta distribution, we derive the final expression for the J-integral

Jd =
T 2

0m
2
(
1−m2

)1/2
µLQ(m) [N+(i`/L)]2

, (127)

where Q(m) = (d− 1)
(
1−m2

)1/2 (
2−m2

)2
=
(
1−m2

)1/2 [
4
(
1−m2c2

)1/2 − (2−m2
)2]

.

On the other hand, the respective J-integral in the classical theory of elasticity is

Jdcl. =
T 2

0 m
2
(
1−m2

)1/2
µLR(m)

, (128)

where R(m) = 4
(
1−m2

)1/2 (
1−m2c2

)1/2− (2−m2
)2

is the classical Rayleigh function (see
e.g. Ravi-Chandar, 2004).

Combining now the expressions derived previously, we obtain the following relationship
between the corresponding energy release rate (ERR) and SIF in the couple-stress and classical
elasticity theories

Jd =
m2
(
1−m2

)1/2
2µQ(m)

[Kd
II ]

2, Jdcl. =
m2
(
1−m2

)1/2
2µR(m)

[Kdcl.
II ]2. (129)

Accordingly, the ratio of the ERRs in the two theories becomes

Jd

Jdcl.
=
R(m)

Q(m)

[Kd
II ]

2

[Kdcl.
II ]2

=
R(m)

Q(m)

1

[N+(i`/L)]2
. (130)

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



It can be readily shown that as `/L → 0, the ratio of the ERRs tends to unity. Indeed, by
taking into account (87), (90), we derive that

lim
`/L→0

[
N+(i`/L)

]2
=
[
N+(0)

]2
= N(0) =

(
1−m2

)−1/2 − d
1− d

=
R(m)

Q(m)
, (131)

which, in turn, implies that

lim
`/L→0

Jd

Jdcl.
= 1. (132)

It is worth noting that when m → 0, we have Q(m)/R(m) → (3 − 2ν), and thus we recover
the quasi-static limit (Gourgiotis et al., 2012).

As the speed of the crack reaches the classical Rayleigh wave velocity (i.e. mR = 1/h∗0 =
cR/cs) the Rayleigh function becomes zero and, consequently, the ERR in (128) becomes
infinite. This is a common feature of the steady-state problems in classical elasticity where
the SIF does not depend upon the crack-tip velocity. On the other hand, for ` 6= 0 (i.e. when
couple-stress effects are taken into account) the denominator in (127) is never zero in the
range m ∈ [0,mR], which, in turn, implies that the ERR in couple-stress elasticity, remains
always finite even when the crack propagates with the Rayleigh speed.

Figure 12: Distribution of the dynamic ERRs in couple-stress elasticity and classical elasticity with respect
to the normalized crack-tip velocity for three different values: h0 = {0, h∗0, 1.05h∗0}.

Figure 12 depicts the variation of the normalized ERR in couple-stress elasticity and in
classical elasticity with respect to the normalized crack propagation velocity m for a material
with L/` = 10 and ν = 0.3. For curves 1 and 2 the sub-Rayleigh velocity limit is mR =
1/h∗0 = 0.927 with h∗0 = 1.078, whereas for curve 3 (h0 = 1.05h∗0) we have: mR = 1/h0. As
the propagation speed approaches the pertinent sub-Rayleigh limit, an increase is observed in
the dynamic ERR in couple-stress elasticity, however, contrary to the classical elasticity case
(dashed curve), the ERR remains always bounded. The increase becomes more significant
when h0 = h∗0 (curve 2). This is attributed to the fact that in this case the Rayleigh waves
travel almost non-dispersively in an infinite medium governed by couple-stress elasticity, thus,
resembling the classical elasticity situation (see Fig. 1 and the relevant discussion in Section
3). Finally, applying the classical Griffith criterion for the stability of the crack propagation:
Jd = Jdcr, where Jdcr is the critical value depending on the material properties, we conclude
that, for Jdcr constant, the steady state motion studied here is likely to be unstable and that the
crack will accelerate rapidly up to the pertinent limiting Rayleigh velocity as in the classical
theory of elasticity (see e.g. Willis, 1971).
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(a) (b)

Figure 13: Variation of the ratio of the dynamic ERR in couple-stress elasticity to the ERR in classical
elasticity with respect to the normalized crack-tip velocity: (a) for h0 ≤ h∗0 and (b) for h0 > h∗0.

The variation of the ratio of the ERR in couple-stress elasticity to the respective one in
the classical theory versus the normalized velocity is shown in Figures 13a and 13b for the
cases: h0 ≤ h∗0 and h0 > h∗0, respectively. In particular, in the case h0 ≤ h∗0, the ratio of
the ERRs is a monotonically decreasing function of the crack speed (Fig. 13a). In fact, as
the crack speed approaches the sub-Rayleigh limit velocity (m → 1/h∗0), the ratio becomes
zero since at that speed the classical ERR is infinite. It is worth noting that this trend for
the ratio of the ERRs was also observed in the case of a mode II crack propagating with
a sub-Rayleigh speed in a plane triangular-cell lattice (Kulakhmetova et al., 1984; Nieves
et al., 2013). The plane triangular-cell lattice employed in these works consists of point
particles (connected by massless elastic bonds) which interact only with forces and not internal
moments, thus, corresponding to the case of zero micro-rotational inertia (h0 = 0) in the
present study. Moreover, in the latter studies, the global ERR for the crack propagating
through the homogenized medium is naturally identified as the classical (far-field) ERR (Eq.
(128) in our study), whereas the local ERR for the crack propagating through the lattice (i.e.
the energy spent on fracture itself) corresponds to the ERR in couple-stress elasticity (Eq.
(127) in our study) evaluated at the crack-tip (see Fig. 11).

In the case h0 > h∗0, a different trend is observed for the variation of the ratio Jd/Jdcl. (Fig.
13b). Specifically, as h0 increases, the ratio becomes eventually a monotonically increasing
function of the normalized speed. However, in all cases, the ratio remains below unity. More-
over, since h0 > h∗0, the pertinent Rayleigh limiting speed is defined as mR = 1/h0, which
is evidently less than the classical Rayleigh velocity (1/h∗0). Therefore, the curves plotted in
Figure 13b terminate before they reach the zero value.

Finally, Figure 14 displays the dependence of the ratio Jd/Jdcl. upon the ratio of lengths
`/L. It is observed that the ratio Jd/Jdcl. decreases monotonically with increasing values of
`/L. This decrease is more significant as the propagation speed approaches the Rayleigh
limit velocity mR. This finding shows that the couple-stress theory predicts a strengthening
effect since a reduction of the crack driving force takes place as the material microstructure
becomes more pronounced. In fact, as the propagation velocity increases, the strengthening
effect is more evident. In the case when m → mR (curve 4) the ratio of the ERRs tends
eventually to zero for each ` > 0. Also, as `/L → 0, the J-integral in couple-stress elasticity
tends continuously to its counterpart in the classical theory: Jd/Jdcl. → 1. As a final remark,
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Figure 14: Variation of the ratio of the dynamic ERRs in couple-stress and classical elasticity with respect
to the ratio of the characteristic lengths `/L.

we note that in the case m → 0, the steady state solution approaches the static solution,
confirming previous results obtained by Gourgiotis et al. (2012) for the stationary crack.

7 Conclusions

In the present work, which is closely allied in scope to Mishuris et al. (2012), we examined
the plane-strain problem of a semi-infinite mode II crack propagating steadily with constant
sub-Rayleigh speed in a body with microstructure governed by couple-stress elasticity. The
case of shear loading was chosen since, in principle, couple-stress effects are predominant in
this type of deformation (Huang et al., 1999; Gourgiotis and Georgiadis, 2007; Gourgiotis et
al., 2012). An exact full field solution was obtained by using the Fourier transform and the
Wiener-Hopf technique. It was shown that the mode II problem is reduced to a scalar Wiener-
Hopf equation. It is worth noting that this is also the case in the (unconstrained) Cosserat
elasticity, where Antipov (2012) showed that the quasi-static mode II problem can be reduced
to a scalar Riemann-Hilbert problem (RHP), while the opening mode is governed by an order-
2 vector RHP. Moreover, the effect of rotational micro-inertia was also considered in our study
since previous experience with couple-stress analyses of surface waves and anti-plane crack
problems showed that this term is important, especially at high frequencies. It is remarked
that this is the first study in the literature that includes micro-inertial effects in a dynamic
plane-strain crack problem in the context of a generalized continuum theory. Our goal was to
determine possible deviations from the predictions of classical linear elasticity when a more
refined theory is employed to attack plane-strain crack propagation problems. By including
pertinent characteristic material lengths, the theory of couple-stress elasticity utilized here
accounts for effects of microstructure encompassing, thus, the analytical possibility of size
effects, which are absent in the classical theory.

Our results differ in several important respects from the predictions of standard linear
fracture mechanics. It was shown that the microstructural parameters, such as the character-
istic material length ` and the micro-rotational inertia h, and on the other hand the maximum
crack speed, strongly influence the fracture process near a rapidly moving crack. Indeed, it
was observed that depending on the values of the microstructural ratio h0 = h/`, the ac-
tual limiting crack speed under plane strain loading conditions, can be much lower than the
classical Rayleigh wave speed predicted by the standard elastodynamic theory. Experimental
findings (Livne, et al., 2010) shed light to the influence of the fracture process on the limiting
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value. Specifically, for the steady-state crack propagation problem examined here, we have
found that both the SIF and the ERR (J-integral) depend upon the crack speed. In partic-
ular, our results showed that as the crack speed approaches the pertinent Rayleigh velocity
both quantities increase significantly but remain always finite. These findings are in marked
contrast with the classical elasticity results where it is known that: (i) the respective SIF for
the steady-state crack propagation problem does not depend upon the crack-tip speed, and
(ii) the ERR becomes infinite as the propagating crack reaches the Rayleigh velocity. Further,
as in the case of the stationary crack, it was observed that the ERR decreases monotonically
with increasing values of the ratio of the characteristic material length ` over the pertinent
geometrical length L. This means that a decrease of the value of J-integral is noticed in
comparison with the classical theory. Therefore, the couple-stress predicts a strengthening
effect since a reduction of the crack driving force takes place as the material microstructure
becomes more pronounced.

In light of the above, we conclude that couple-stress elasticity can provide a clearer picture
of the failure process near a rapidly moving crack tip than classical elasticity. Motivated by
experimental observations (Rosakis et al., 1999), we intend, in a future work, to extend the
present study to the case of intersonic mode II crack propagation with the aim of gaining
further insight into the physical mechanisms governing the fracture process of microstructured
materials.

Appendix A Branch cuts for the functions χ(z), β(z) and γ(z)

The complex function χ(z) has four branch points (BPs) at ±ib1 and ±ib2, where (b1, b2)
are given in Eq. (72). In the case h0 ≤ 1, (b1, b2) are always real, consequently, the BPs
are located along the imaginary axis (Fig. A.1a). On the other hand, when h0 > 1, (b1, b2)
are complex and the BPS are symmetrically located with respect to the real axis at the four
quadrants of the complex z-plane (Fig. A.1b).

Figure A.1: Branch cuts for the function χ(z)

The complex functions β(z) and γ(z) are four-valued functions (having four Riemann 
sheets). Therefore, the BPs ±ib1 and ±ib2 are double valued BPs for β(z) and γ(z). Also, z = 0 
and z = ±ib0 are additional BPs. However, z = ∞ is not a BP as it can be readily shown by 
utilizing the transformation z = 1/t with t → 0. Now, depending on the parameters h0 and m, 
the branch cuts for the functions β(z) and γ(z) are illustrated in Figures A.2 and A.3, 
respectively, with ε being a real number such that ε → +0. In fact, introducing ε facilitates the 
introduction of the branch cuts corresponding to the branch point (BP) z = 0 of the function 
γ(z). It is also noted that in all cases the BPs of the function χ(z) are also
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BPs of β(z) and γ(z). We remark that the specific introduction of the branch cuts secures
that the functions (χ, β, γ) are always single-valued and positive along the real axis. Finally,
we note that m < mR with mR = min{1/h0, 1/h

∗
0} in order for the crack to propagate with

a sub-Rayleigh speed.

Figure A.2: Branch cuts for the function β(z)

Figure A.3: Branch cuts for the function γ(z)

Appendix B Factorization of the kernel function N(z)

The kernel N(z) is given by the expression

N(z) =
1

1− d

[
θ2 +

[
z2
]1/2

θ +m2

`θ(β + γ)
− d

]
, (B.1)

where the complex function θ ≡ θ(z) is defined in (85). It is noted that the kernel function
N(z) does not have any poles or zeros in the finite complex domain in the sub-Rayleigh regime,
only BPs which depend upon the values of (h0,m). In particular, we distinguish the following
three cases (see Fig. B.1):

• Case I. h0 ≤ 1 and m ≤

√
1−

√
1− h2

0

h0
; then the BPs are: 0 and ±ib0.

• Case II. h0 ≤ 1 and m >

√
1−

√
1− h2

0

h0
; then the BPs are: 0, ±ib0 and ±ib1.

• Case III. h0 > 1; then the BPs are: 0 and ±ib0.
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Figure B.1: Branch cuts and integration paths for the factorization of the kernel function N(z). The positive
imaginary parts of N(z) are given by (B.4) and (B.5), respectively.

Note, that m ≤ mR, always. It should be remarked that for the Cases I and III, the points:±ib1 
and ±ib2 are not BPs of the kernel function N(z). Indeed, although these points are BPs for the 
functions β(z), γ(z) and χ(z) as we have shown, they are removable BPs for N(z). This can be 
readily shown by expanding N(z) in series around these points

N(z) = a0(m, h0) ± a1(m, h0)(z ± ib1) + O(z ± ib1)2, for z → ±ib1, (B.2)

N(z) = a2(m, h0) ± a3(m, h0)(z ± ib2) + O(z ± ib2)2, for z → ±ib2, (B.3)

where an with n = (0, 1, 2, 3) are constants that depend on the parameters (m, h0). Thus, we see 
that around these points the function is single-valued. A similar situation applies for Case II 
where ±ib2 are removable BPs. Furthermore, for all Cases (I)-(III), when ε < Im(z) < b0 and 
Re(z) = +0 (i.e. approaching the branch cut from the right), the real and imaginary parts of 
N(z) take the following form

Re (N(z)) =
|z|(θ2 +m2 − `2γ2)

`3(1− d)|γ|(β2 − γ2)
− d

1− d
, Im (N(z)) = − |z|(θ

2 +m2 − `2β2)

`3(1− d)|β|(β2 − γ2)
, (B.4)

whereas for case II, when b0 < Im(z) < b1 and Re(z) = +0, the real and imaginary parts of
N(z) become

Re (N(z)) = − d

1− d
, Im (N(z)) =

|z|(θ2 +m2 + `2βγ)

`3(1− d)βγ(β + γ)
. (B.5)

Next, taking into account that N(z) → 1 as |z| → ∞ and employing Jordan’s Lemma,
we evaluate the functions N+(z) and N−(z) defined in Eqs. (91) and (92), by closing the
original integration paths Cu and Cd, which extend parallel to the real axis in the complex
z-plane, with large semi-circles at infinity on the upper and lower half-planes respectively,
as it is shown in Fig. 4. Then, a deformation of the integration contour along with the use
of Cauchy’s theorem, allows taking as equivalent integration paths the contours C ′u and C ′d,
around the pertinent branch cuts of N(z) (Fig. B.1). In particular, we obtain for the function
N−(z):
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Cases I and III

N−(z) = exp

{
− 1

2πi

∫
Cu

log [N(ζ)]

ζ − z
dζ

}
= exp

{
− 1

2πi

∫
C′u

log [N(ζ)]

ζ − z
dζ

}

= exp

{
− 1

2πi

(∫
Cε+

+

∫ +ib0

+iε
+

∫
C

b+0

+

∫ +iε

+ib0

)
log [N(ζ)]

ζ − z
dζ

}

= exp

{
− 1

2π

(∫ +ib0

+iε
tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z

+

∫ +iε

+ib0

tan−1

[
−Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z

)}
= exp

{
− 1

π

∫ ib0

iε
tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z

}
.

(B.6)

Case II

N−(z) = exp

{
− 1

2πi

(∫
Cε+

+

∫ +ib1

+iε
+

∫
C

b+1

+

∫ +iε

+ib1

)
log [N(ζ)]

ζ − z
dζ

}

= exp

{
− 1

π

∫ ib1

iε
tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z

}
.

(B.7)

where the function tan−1(·) is defined as

tan−1 y

x
= Tan−1 y

x
+


0, for x > 0

π, for x < 0 and y > 0

−π, for x < 0 and y ≤ 0

(B.8)

where Tan−1(·) is the principal value of the inverse tangent with branch cuts (−i∞, −i] and [i, 
i∞). Also, it is noted that the contour integrals around the branch points of N(ζ) in Eqs.(B.6) 
and (B.7) are all zero. Indeed, by writing ζ = ζk + r0e

iθ, where ζk = ±ik are the branch points of 
N(ζ), with k = (ε, b0, b1), and by taking into account that (ζ − ζk) · log N(ζ) → 0 uniformly as r0 
→ 0, it can readily shown that

lim
r0→0

∫
Ck±

log [N(ζ)]

ζ − z
dζ = 0 with k = (ε, b0, b1). (B.9)

Finally, by letting ε→ 0 and combining (B.6) and (B.7), yields a single formula for N−(z)

N−(z) = exp

{
− 1

π

[∫ ib0

0

tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z
+ a

∫ ib1

ib0

tan−1

[
Im (N(ζ))

Re (N(ζ))

]
dζ

ζ − z

]}
,

(B.10)
where the constant a depends on the branches of N(z) and is defined as

a =

1−H
(√

1−
√

1− h2
0 −mh0

)
, for h0 ≤ 1

0, for h0 > 1
(B.11)

with H( ) being the Heaviside step function. Similarly, integrating along C ′d, we evaluate the
function N+(z) given in (91).
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Appendix C The SIF in the equilibrium case

In the limit m→ 0, we have, according to (73) and (B.11), that b0 = 1 and a = 0. In addition,
the real and imaginary parts of N(z) become, respectively

Re (N(z)) =
1 + 4(1− ν)z2

3− 2ν
, Im (N(z)) =

4(1− ν)

3− 2ν

(
−z2

) 3
2

(1 + z2)
1
2

, (C.1)

for 0 ≤ Im(z) ≤ 1 and Re(z) = +0. In view of the above, the function N+(z) takes the
following form

N+(z) = exp

{
− 1

π

(∫ i

0
tan−1

[
4(1− ν)

(
−ζ2

) 3
2

(1 + ζ2)
1
2 (1 + 4(1− ν)ζ2)

]
dζ

ζ + z

}
, (C.2)

which after changing the variable of integration from ζ to iq and by taking into account the
properties of the inverse tangent function, yields

N+(z) = exp

{
1

π

(∫ 1

0

−π
2

+ tan−1

[(
1− q2

) 1
2
(
1− 4(1− ν)q2

)
4(1− ν)q3

] dq

q + z/i

}

=
1

(1 + i/z)
1
2

exp

{
1

π

(∫ 1

0
tan−1

[(
1− q2

) 1
2
(
1− 4(1− ν)q2

)
4(1− ν)q3

]
dq

q + z/i

}
.

(C.3)

Finally, upon substituting z = i`/L into the above expression, we evaluate the equilibrium SIF
through the relation (117), which agrees exactly with the SIF given previously by Gourgiotis et
al. (2012) for the stationary mode-II crack (see Eq. (126) in the cited work, with τ0 ≡ T0/L).
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