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ABSTRACT

Efficient identification and follow-up of astronomical transients is hindered by the need for
humans to manually select promising candidates from data streams that contain many false
positives. These artefacts arise in the difference images that are produced by most major
ground-based time-domain surveys with large format CCD cameras. This dependence on
humans to reject bogus detections is unsustainable for next generation all-sky surveys and
significant effort is now being invested to solve the problem computationally. In this paper,
we explore a simple machine learning approach to real-bogus classification by constructing a
training set from the image data of ~32 000 real astrophysical transients and bogus detections
from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from
the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates.
This differs from previous work in that it works directly on the pixels rather than catalogued
domain knowledge for feature design or selection. Three machine learning algorithms are
trained (artificial neural networks, support vector machines and random forests) and their
performances are tested on a held-out subset of 25 per cent of the training data. We find the
best results from the random forest classifier and demonstrate that by accepting a false positive
rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent.
However, we also find that a combination of bright star variability, nuclear transients and
uncertainty in human labelling means that our best estimate of the missed detection rate is

approximately 6 per cent.

Key words: methods: data analysis —methods: statistical —techniques: image processing —

SUrveys — supernovae: general.

1 INTRODUCTION

Current transient surveys such as Pan-STARRS1 (PS1; Kaiser et al.
2010), PTF (Rau et al. 2009), LSQ (Baltay et al. 2013), SkyMapper
(Keller et al. 2007) and CRTS (Drake et al. 2009) are efficient dis-
coverers of astrophysical transients. To make these surveys possible
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it has become necessary to automate every step in the data pipeline
including data collection, archiving and reduction. A major goal
for time-domain astrophysics is early detection and rapid follow-
up to enable complete data sets for transients. Artefact rejection
has become the bottleneck between fast transient detection and our
ability to feed these targets to follow-up surveys such as PESSTO
(Smartt et al. 2013) and PTF for early classification. Current arte-
fact rejection typically involves deriving some set of parameters
from the image data of individual detections and thresholding each
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parameter, only promoting those detections that pass the thresholds
to humans for verification.

The numbers of detections that must be scanned by humans is
still on the order of hundreds of objects each night with a high false
positive rate. The processing artefacts produced are a result of many
factors such as saturated sources, convolution issues and detector
defects amongst others, and to a large extent are common across
all surveys. For the next generation of survey, we cannot expect
humans to remain involved in this process of artefact rejection to
the same extent, where for example we expect of the order of 10°
transient detections per night from LSST.!

Significant effort has been devoted to this problem in anticipa-
tion of these next generation surveys, and to enable rapid turnaround
from detection to classification for current surveys. Machine learn-
ing techniques have been used to take advantage of the large
amounts of data gathered by these surveys to train a classifier that
can distinguish real astrophysical transients from artefacts or ‘bo-
gus’ detections. Examples include Donalek et al. (2008) for the
Palomar-Quest survey, Romano, Aragon & Ding (2006) for SNFac-
tory, and Bailey et al. (2007) and du Buisson et al. (2014) for SDSS.
PTF have demonstrated the ability to efficiently characterize de-
tections and initiate rapid follow-up, see Gal-Yam et al. (2014) for
example, where the problem of real-bogus classification has been
addressed by the work of Bloom et al. (2012) and Brink et al. (2013).
While these studies do achieve high levels of performance, the pa-
rameters chosen to represent the images are often dependent on the
specific implementation and strategy of the individual surveys.

In this paper, we investigate a simple representation of the im-
ages by using the pixel intensities in a region around a detection in
a single difference image. This choice of parametrization is inde-
pendent of other aspects of the survey, and is therefore applicable
to any survey performing difference imaging while also lending it-
self to implementation much earlier in the data processing pipeline
(potentially at the source extraction stage). We begin by outlining
the real-bogus problem in the context of PS1 in Section 2, followed
by a description of our training set and image parametrization in
Section 3. In Section 4, we discuss the various machine learning
algorithms we investigate, outline how we select the optimum clas-
sifier and report its performance compared with previous work. We
continue in Section 5 with some further analysis to help under-
stand how we expect the classifier to perform on a live data stream.
Finally, we summarize our results and conclude in Section 6.

2 PS1 AND THE PROBLEM OF REAL-BOGUS
CLASSIFICATION

The PS1 system comprises a 1.8 m primary mirror (Hodapp et al.
2004) and a field of view of 3.3 deg imaged by 60 4800 x 4800 pixel
detectors, constructed from 10 um pixels subtending 0.258 arcsec
(for more details, see Magnier et al. 2013). The PS1 filter system
consists of five filters, gpi, rp1, ip1, Zp1 Similar to SDSS griz (York
et al. 2000) with the addition of yp;, which extends redwards of
zp1.- The system is described in detail by Tonry et al. (2012b).
The PS1 Science Consortium (PS1SC) operates the PS1 telescope
performing two major surveys. The Medium Deep Survey (MDS;
Tonry et al. 2012a) is allocated 25 per cent of observing time for
high-cadence observations of 10 fields, each the size of the PS1
field-of-view. The wide-field 37 survey with 56 per cent observing
time aims to observe the entire sky north of —30 deg declination
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with a total of 20 exposures per year in all five filters for each
pointing.

In this paper, we use images from the MDS. Each night three to
five of the MDS fields are observed. Each epoch is composed of
eight dithered exposures of 8 x 113 s in gp; and rpy, or 8 x 240 s
in ipy, zp; and yp;, producing nightly stacked images of 904 and
1632 s duration (Tonry et al. 2012a). Each stack achieves 5o depths
of around 23.3 mag in gp1, ¥p1, ip1, Zp1 and 21.7 mag in yp;. Images
from the PS1 system are processed by the Image Processing Pipeline
(IPP; Magnier 2006), on a computer cluster at the Maui High Perfor-
mance Computer Center (MHPCC). The images are passed through
a series of processing stages including device detrending, masking
and artefact location. Detrending includes bias correction and flat-
fielding using white light flat-field images from a dome screen, in
combination with an illumination correction obtained by rastering
sources across the field of view. After deriving an initial astrometric
solution, the flat-fielded images are then warped on to the tangent
plane of the sky using a flux-conserving algorithm. The plate scale
for the warped images was originally set at 0.200 arcsec pixel !,
but has since been changed to 0.25 arcsec pixel ! in what is known
internally as the V3 tessellation for the MDS fields. Bad pixels are
masked on the individual images and carried through the stacking
stage to give the nightly stacks.

Difference imaging is performed on a daily basis by two indepen-
dent pipelines. IPP takes the nightly stacks and creates difference
images by subtracting a high-quality reference image from the new
data. Point spread function (PSF) photometry is then performed
on the difference images to produce catalogues of variables and
transient candidates (Gezari et al. 2012; McCrum et al. 2014). The
Transient Science Server (TSS) developed by the PS1SC ingests
catalogues of detections of residual flux in the difference images
and presents potential transients for human eyeballing.

In parallel, an independent set of difference images are produced
at the Centre for Astrophysics at Harvard from the nightly stack
images using the puorpipE (Rest et al. 2014, 2005) software. A
custom-built reference stack is produced and subtracted from the
IPP nightly stack to produce an independent difference image. This
process is described in Gezari et al. (2010, 2012), Chomiuk et al.
(2011), Berger et al. (2012), Chornock et al. (2013) and Lunnan
et al. (2013), and potential transients are visually inspected for
promotion to the status of transient alert. A cross-match between the
TSS and the PHOTPIPE transient streams is performed and agreement
between the detection and photometry is now excellent, particularly
after the application of uniform photometric calibration based on
the ‘ubercal’ process (Schlafly et al. 2012; Magnier et al. 2013).

2.1 Artefacts in difference imaging

In this work, we only use detections from IPP difference imaging
and not the independent pHOTPIPE detections. In Fig. 1, we show a
modular diagram of IPP difference imaging process and the sources
of the main types of artefact.

The first source of bogus detections are chip defects, which take
various forms. After detrending, the chip data are resampled and
geometrically warped to fit a unit area of sky that the data are
projected on to, known as a sky cell. Occasionally, a transient will
lie on a region of the detector that when projected on to the sky
falls on overlapping sky cells. This results in duplicate warp images
of the same chip data, with the object lying close to one of the
sky cell edges. After warping, sky cell edges, chip defects and
saturated sources are masked. Masked pixels in individual exposures
are propagated through the stacking stage.
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Figure 1. Modular diagram of the IPP difference imaging steps and the types of artefacts arising from each stage.

A kernel is derived to degrade a high-quality template image to
match the nightly stack. The template is convolved with this kernel
and subtracted from the nightly stack. This series of steps leads to a
class of artefacts which we refer to as convolution issues. In general,
these arise from the derived kernel not being able to accurately
match all sources in the template to those in the nightly stack. This
causes problems with bright sources where the kernel is unable to
fit the entire PSF of the detection in the nightly stack image. These
artefacts appear as high signal-to-noise (S/N) PSFs but with darker
rings appearing in the wings, an example is shown in the bottom
panel of Fig. 4. We call these unclean subtractions. The flux in these
detections is probably due to a bright stellar variable. Identifying
variable stars (and AGNs) is quite a different problem to detecting
transients and we have chosen not to try to tailor our algorithms to
do both. The efforts in this paper are focused on finding transients,
although inevitably stellar variables from very faint host stars are
detected. Hence we discard these bright stellar variables that appear
in the difference images as they are straightforward to identify. We
find these detections make up ~10 per cent of the bogus detections.

The same convolution issues can lead to poor host galaxy sub-
traction, where an inadequately convolved host can be over or un-
dersubtracted leaving a pattern of positive and negative flux. This
makes it difficult to disentangle any potential real detection. The
third convolution issue we highlight in Fig. 1 arises when point-like
sources in the template image are broader than that of the nightly
stack resulting in an oversubtraction in the wings of the source
in the difference image. This happens when observing conditions
have been particularly good and the nightly stack is of higher quality
than the template image (this is not a frequent occurrence). The final
artefacts from the convolution and subtraction stage are convolution
problems in the cores of faint galaxies, manifesting themselves as
faint nuclear transients and appearing as positive flux in the differ-
ence image. Here the convolution step matches the morphology of
the faint galaxy in the template and nightly stacks well; however, the
peak flux of the convolved template is lower than that in the nightly
stack. This results in the nucleus of the faint galaxy being undersub-
tracted leaving residual flux in the difference image. These artefacts
are the most difficult to identify by eye but are distinguished by
a narrower PSF than expected. It is not always clear if the flux is
due to real variability or an artefact of convolution, in any case
these targets could not be confidently selected as real transients for
follow-up. This highlights one of the major uncertainties in training

the algorithms — secure labelling of real and bogus objects, which
we return to in Sections 5.3 and 5.5.

Another source of artefacts arises during the source extraction
phase. Flux in the nightly stack from diffraction spikes for example
that have no equivalent in the template image get flagged as potential
transients. We refer to these as spurious detections in Fig. 1.

Our approach to date for removing these contaminants has been
to attempt to derive a set of filters based on image statistics de-
rived for each potential transient detection by IPP. These filters
normally take the form of threshold values for some parameters
(see Section 2.2). However, the parameter space is typically large
and the work required to manually develop the optimal set of fil-
ters is impractical. Despite this our current hand-engineered checks
allow only a small fraction of the bogus images through. This still
produces of the order of a few hundred bogus objects each night
passing the cuts and being presented to human scanners for veri-
fication. This is approaching the limit of what can comfortably be
processed by humans on a daily basis and clearly a solution needs
to be found for the next generation of survey.

Over the course of the last ~3 years of the PS1 survey we have
accumulated a large amount of data associated with a few tens of
thousands of astronomical sources that have either been classified
as real objects or artefacts using a combination of the cuts detailed
in Section 2.2 and human scanning. This readily available data
lends itself to data-mining where we hope to use the historic data
to improve on the current method of real-bogus classification. In
Section 2.3, we outline how supervised learning can be applied to
this archive of PS1 data in order to construct a real-bogus classifier
that can be applied to the nightly stream of new data gathered from
PS1 and future surveys. First, we describe the cuts we perform.

2.2 Cuts

Prior to ingesting detections from IPP difference imaging into a
MysQL data base at Queen’s University Belfast (QUB), we perform
pre-ingest cuts based on the detection of saturated, masked or sus-
pected defective pixels within the PSF area. Taking as a typical
night 2013 September 3 [56548 MJD (Modified Julian Date)], the
seven nightly stacks produced 366 267 detections (~52 000 detec-
tions per stack), the pre-ingest cuts rejected 94.88 per cent of these
detections.

MNRAS 449, 451-466 (2015)

STO0Z ‘7 Jequieides uo weying Jo AlseAlun e /610'seuino[pioxo-seluw;/:dny wolj pepeoumoq


http://mnras.oxfordjournals.org/

454  D. E. Wright et al.

The ~18 750 detections passing the pre-ingest cuts are associated
with transient candidates if there are two or more quality detections
within the last seven observations of the field, including detections
in more than one filter, and an rms scatter in the positions of <0.5
arcsec. Each quality detection must be of more than 3¢ significance
and have a Gaussian morphology (XYmoments <1.2). These post-
ingest cuts also include checks for convolution issues, proximity to
bright objects and ‘NaN’ values close to the centre of bright PSFs.
63 percent of the detections that passed the pre-ingest cuts were
rejected during the post-ingest cuts. The remaining detections were
promoted for human screening, where 37 per cent of the detections
were deemed to be real. These real transient candidates are cross-
matched with catalogues of astronomical sources in the MDS fields.
We use our own MDS catalogue and also extensive external cata-
logues (e.g. SDSS, GSC, 2MASS, NED, Milliquas,” Veron AGN,
X-ray catalogues) to make a contextual classification of supernova
(SN), variable star, active galactic nuclei (AGNs) or nuclear tran-
sient. We also cross-match with the Minor Planet Centre to reject
asteroids, though most are removed during the construction of the
nightly stacks.

2.3 Supervised learning for classification

In general, supervised learning entails learning a model from a
training set of data for which we provide the desired output for each
training example. For the purposes of designating a detection as a
real transient or a processing artefact, the desired output for each
image is discrete. In such cases, the problem is a supervised clas-
sification task for which there are a vast array of machine learning
algorithms. In Section 4, we discuss the algorithms we try; however,
all such algorithms are trying to learn a model from the training data
that will allow them to map the input parametrization of each train-
ing example (see Section 3.2) to the desired output or label, while
at the same time ensuring the model performs well on data not seen
during the training phase. For building a real-bogus classifier, this is
an obvious avenue to pursue as we have a large sample of historical
data for which we have labels provided by our current cuts and also
through human eyeballing.

In Fig. 2, we show a sample of both real and bogus examples
drawn at random from the training data. Often bogus detections
show a combination of the factors we describe in Section 2.1 and
typically this affects the centroiding during the source detection
stage.

3 TRAINING SET AND FEATURE
REPRESENTATION

As discussed in the previous section, we must provide a labelled
training set from which the classifier can learn to recognize the
characteristics that can identify detections as being members of one
of the classes: real or bogus. In order to learn a model that will
generalize well to detections in new observations, it is important
that detections in the training set are representative of all detections
we expect to see. In practice, this is easiest to achieve by providing
the learning algorithm with the largest possible training set, indeed
Brink et al. (2013) attribute much of their improvement in perfor-
mance over Bloom et al. (2012) to using a training set with two
orders of magnitude more training examples. In the remainder of
this section, we describe the compilation of the training set, starting

2 http://quasars.org/milliquas.htm
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Figure 2. Example detections randomly selected from the training data.
The two columns on the left show examples labelled as real and the two
on the right show those labelled as bogus. Bogus detections a—c and f show
signs of oversubtraction, with a and f also showing masking. d is a faint
galaxy convolution problem. Detections e and g are saturated sources that
have been masked. Finally, h is an example of an unclean subtraction of a
bright star.

with a description of our training example selection process and
labelling.

3.1 Training set

Over the past 3 years ~1 million potential transients have been
catalogued in the MDS by the TSS. Approximately 8000 of these
objects have been selected by humans as real transients and pro-
moted as potential targets for spectroscopic follow-up. As of the
end of the survey in 2014 May, 515 transients had spectroscopic
classifications.

The aggregate catalogue information for all objects extracted by
IPP and which pass the pre-ingest cuts described in Section 2.2 are
stored in a data base at QUB. Individual detections are associated
with an object if they are spatially coincident within 0.5 arcsec.
This information is presented to humans in the form of webpages.’
The webpages show all the photometric points produced by IPP
in a multicolour light curve. The number of photometric detec-
tions typically ranges from a few to a few dozen depending on the
magnitude and time-scale of the transient objects (see Chomiuk
et al. 2011; McCrum et al. 2014; Rest et al. 2014; for examples of
light curves). These webpages also present a subset of the image
postage-stamps of the detections associated with an object (target
image, reference image and difference image). This subset contains
the first detections of the object of which there are always at least
two (see Section 2.2) and up to five subsequent detections. Each
object is then eyeballed by a human, those that appear to be real

3 Similar webpages are made public for the PS1 3Pi Survey at
http://star.pst.qub.ac.uk/ps1threepi/psdb/public/
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transients are promoted as potential targets for scientific follow-up,
while artefacts are discarded.

Our training examples are drawn from the subset of detections we
choose to present on the human digestible webpages for each object,
as detailed above (typically two to three but less than seven). The
majority of real examples were taken from detections of promoted
objects with no spectroscopic classification. There is no guarantee
that all detections of a promoted object are necessarily a result of
good image subtractions. This prohibits simply assigning a label of
real to all individual detections associated with a promoted target.
In order to ensure that we have a secure, reliable and clean set of
real detections for training, we inspected and individually labelled
4352 detections (from 1919 different transients) as real, discarding
any artefacts from the training set. We augmented this sample of
real detections with data from 53 spectroscopically confirmed SNe
(from 2012 December to 2014 January) for which we used the
complete set of detections (~31 detections per object on average).
These were again manually checked to remove bogus detections.
We held out the first detections of all 53 SNe, which we use for
testing in Section 5.7 and all detections of PS1-13avb, which we
use in Section 5.6. This leaves an additional 1603 real training
examples bringing the total to 5955 real detections.

Over the course of the survey approximately 800 000 objects have
been discarded as artefacts providing of the order of 10° examples
of bogus detections. We randomly sample from the available bogus
examples and aim for four times more bogus examples as real, this
is similar to the proportions used by Brink et al. (2013). Initial
tests with classifiers showed that a significant proportion of the
false positives appeared to be clean subtractions. We improved the
purity of the bogus sample by examining the randomly selected
bogus detections and added any detections that looked like real
transient subtractions to the list of real examples (the effect of label
contamination is further discussed in Section 5.3). This produced an
extra 464 examples for the set of real detections resulting in a final
total of 6419. We then selected four times as many bogus images
from the remainder of the bogus examples we inspected, producing
a sample of 25 676 bogus detections.

The final training set contains 32 095 training examples. We
divide the training examples into two sets, distributed as follows:
75 per cent for training and cross-validation, and 25 per cent for test-
ing. The training examples are randomly shuffled prior to splitting
with the caveat that all detections on the same night of a given object
are included in the same set. This is to avoid detections with almost
identical statistics being in multiple sets and giving a false impres-
sion of a classifiers performance. The construction of the data set is
summarized in Table 1. The label for each training example is a 1
or 0, with 1 representing a label of real and 0 bogus.

The training set we have constructed is representative, containing
examples of detections from different chips, seeing conditions and
filters, with various levels of S/N and examples of all types of
processing artefact.

Table 1. Composition of data sets.

Set Real Bogus Total
Training 4800 19271 24071
Test 1619 6405 8024
Total 6419 25 676 32095

ML for transient discovery in PSI imaging 455

3.2 Feature representation

Machine learning algorithms require a one-dimensional (1D) vector
representation of each training example, where each element of the
vector corresponds to some numeric data or feature that may be
useful to the algorithm for discerning examples belonging to each
class. Previous work in the area of real-bogus classification has
focused on using parameters contained in catalogues generated by
the processing pipeline and more complex features derived from
that information to represent the detections, see table 1 from Brink
et al. (2013) and table 1 from Romano et al. (2006).

The catalogue features available to individual surveys depend on
the implementation of their IPP. When applying machine learning
for real-bogus classification to a new survey it may not be possible
to calculate these features based on the information available in the
catalogues. There is also potential to spend a lot of time deriving and
testing ways to combine the catalogue information that is available
into features that we hope capture the differences between real and
bogus detections. Bogus detections are the result of many factors
and establishing a set of features that can encapsulate them all is dif-
ficult. In contrast simply representing the detections by their pixel
intensity values requires no time spent developing or tuning feature
extractors. Previous work that relies solely on the pixel data has
proven effective for simple visual classification tasks, such as hand
written digits (LeCun et al. 1998). For more complex tasks or to
boost performance much of this work has been performed by learn-
ing a hierarchy of unsupervised features from the pixel data (LeCun
etal. 1998; Coates, Lee & Ng 2011). Establishing a firm benchmark
on the pixel intensity representation allows us to assess the poten-
tial gains from applying these more complex methods and is the
main focus of this paper. Using this representation, we expect the
learning algorithm to identify salient relationships between pixels
for the classification task. In the next section, we discuss our choice
of features and continue in the following section by describing the
preprocessing steps we apply before training.

3.2.1 Feature vector construction

To represent our training examples, we use the pixel data itself. For a
given training example, we construct its feature vector by selecting
a 20 x 20 pixel area (corresponding to ~5 times the average seeing
of PS1) around the centre of what IPP considers a transient, which
we refer to as a substamp. The 1D vector is constructed by shifting
off each column of the substamp and concatenating those columns
together to produce a 400-element vector of pixel intensity values.

In Fig. 3, we show visualizations of these feature vectors along
with the substamp from which they were constructed for examples
of real detections and for various levels of S/N. In Fig. 4, we show
detections labelled as bogus with examples of different types of
artefact. A learning algorithm will learn to identify patterns in the
feature vectors that are characteristic of examples belonging to the
two classes.

The choice of feature representation is independent of the imple-
mentation of the rest of the IPP and survey, with the assumption
that the pixel level data is easily accessible.

3.2.2 Feature preprocessing

Aside from the image processing steps carried out by the pipeline,
we carry out two additional transformations of the data. We first
replace any ‘NaN’ pixel values with 0s. ‘NaN’ pixel values typi-
cally arise from masking or floating point overflows during image

MNRAS 449, 451-466 (2015)
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Figure 4. Similar to Fig. 3 but for bogus examples.

Figure 3. Visualization of feature vectors for detections labelled as real.

The feature vectors are constructed by shifting off each column of the
20 x 20 pixel substamp on the left and appending them together to produce

the 400-element 1D feature vector depicted on the right.
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processing. We choose to replace these pixel values with 0 so as
not to influence the next step in the preprocessing phase. As a sec-
ond step, we apply a feature normalization function which allows
classifiers to focus on relative pixel intensities and limits the effect
of absolute brightness on the classifiers. We apply the following
normalization:

F@) = log (1 + @) , M
x| o

where x is a feature vector and o is the standard deviation of the

pixel intensity values for that feature vector. This is the same nor-

malization function used by EvE* (Bertin 2001) and similar to that

of Romano et al. (20006).

4 OPTIMIZATION OF THE CLASSIFICATION
SYSTEM

In order to achieve the best performance from the machine learn-
ing algorithms discussed in the following sections, it is necessary
to optimize the hyperparameters of each. This is done by a pro-
cess known as cross-validation which is a brute force search of the
hyperparameter space, where a model is trained with the hyperpa-
rameters selected at predetermined intervals within the space. The
best combination is selected by measuring the performance in a
held-out sample of the 24 071 training examples.

Below we give a brief introduction to each of the classifiers. We
also point out the free parameters that must be selected by cross-
validation and discuss this process in depth in Section 4.4.1. To
end this section on optimization, we show the performance of each
classifier on the out of sample data in the test set.

4.1 Artificial neural networks

Artificial neural networks (ANN) comprise a number of intercon-
nected nodes arranged into a series of layers. In this study, we limit
ourselves to a three-layer ANN (consisting of an input layer, a hid-
den layer and an output layer) as those with more than one hidden
layer need more careful training and require more computational
power (Hinton, Osindero & Teh 2006). For our purposes, we train
feed-forward ANNs with back-propagation and randomly initial-
ized weights, where the activation of each node is calculated with
the logistic (sigmoid) function.

By limiting many of the choices for the structure of the ANNS,
we remove the need to select these hyperparameters during the
cross-validation phase in Section 4.4.1 which significantly reduces
the complexity of the space we have to search. This economy of
computation comes at the cost of not testing regions of the pa-
rameter space (e.g. other activation functions) and restricting the
representational power of the ANNs by requiring a single hidden
layer. We are however left with only two hyperparamters to choose
namely the number of nodes that make up the hidden layer s, and
the regularization parameter A through which we attempt to prevent
overfitting. There is some suggestion (Murtagh 1991; Geva & Sitte
1992) that the optimal number of nodes in the hidden layer (s,) is
2n + 1, where n is the number of input features. In our case, n is
fixed at 400 input features, suggesting that we should train ANNs
with s, = 801 nodes; however, training such large networks is be-
yond the scope of this work and we instead choose to test values of
s, in the range 25-200.

4 http://www.astromatic.net/software/eye
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We use our own vectorized implementation of ANNs written in
pyTHON.? The code relies on NuMpY® for efficient array manipulations
and scipy’ for optimization of the objective function.

4.2 Random forests

Random forests (RFs) aim to classify examples by building many
decision trees from bootstrapped (sampled with replacement) ver-
sions of the training data (Breiman 2001). Classifications are then
assigned based on the average of the ensemble of decision trees.
Each individual tree is grown by randomly sampling k features
from the n input features and selecting the feature that best sepa-
rates real examples from bogus as informed by the gini function.
We use SCIKIT-LEARN’S® implementation of RFs where we select
hyperparameters by assigning values to variables n_estimators,
max_features and min_samples_leaf: the total number of trees
in the ensemble, the number of features considered at each split and
the minimum number of examples that define a leaf, below which
no further splitting is allowed. RFs provide the ability to estimate
the importance of each feature which we use in Section 5.2.

4.3 Support vector machines

Support vector machines (SVMs; Cortes & Vapnik 1995) aim to find
the hyperplane in the input feature space that optimally classifies
training examples for linearly separable patterns, while simultane-
ously maximizing the margin, the distance between the training
examples which lie closest to the hyperplane, known as the support
vectors. SVMs can be extended to non-linear patterns with the in-
clusion of a kernel, where the kernel transforms the original input
data into a new parameter space. We again use SCIKIT-LEARN’S imple-
mentation of SVMs where we choose the free parameters namely
the penalty parameter, C (similar to A for ANNs) and the kernel
parameter gamma, which controls the local influence that support
vectors have on the decision boundary. We only try SVMs with
a radial basis function (RBF) kernel, this being the most common
choice and again reduces the parameter space that must be searched.

4.4 Model selection

For each algorithm discussed above, we need a method to choose
the optimal combination of hyperparameters that will achieve
the best performance for the classification task. In order to
compare the relative performance of the different models, we need
some Figure of Merit (FoM). We use the FoM of Brink et al.
(2013) which captures the essence of the problem we are trying
to solve. The FoM is defined as the minimum missed detection rate
(MDR) (false negative rate) that gives a false positive rate (FPR) of
1 per cent. That is, assuming we are willing to accept that 1 per cent
of the images deemed real by the classifier and promoted to human
scanners will turn out to be bogus, what fraction of the real images
would be discarded? With this we can select the model that would
discard the least real images while 1 per cent of images classified as
real can be expected to be bogus.

3 https://www.python.org

6 http://www.numpy.org

7 http://docs.scipy.org/doc/scipy/reference/index.html
8 http://scikit-learn.org/stable/index.html
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4.4.1 Cross-validation

When calculating the FoM to compare the relative performance of
models, it is important that the measurement is made on data that the
model has not inspected during the training phase, otherwise we risk
measuring the performance on data that the model has overfit and
report an FoM that we cannot expect to achieve on out of sample
data. To mitigate this effect, we split the data we designated for
training in Section 3.1 into five subsets or folds with equal numbers
of training examples. We then train each model on four of these folds
and use the fifth as a validation set to measure the performance. The
model is then retrained on four folds but a different fold is held out.
In total the model is trained five times with each fold being held
out once. We then average the results for the five folds and choose
the model that results in the best average FOM. A second advantage
is that for relatively small data sets where the composition of the
validation set may not be representative of the entire population, by
evaluating the performance on each fold in turn and then averaging,
we achieve a better estimate of the actual performance on the entire
data set.

In our case, all three classifiers output a prediction or hypothe-
sis for each example. These hypotheses can be thought of as the
probability a given example has of belonging to the class of real
images, taking on values in the range 0-1. A classifier predicts de-
tections with hypotheses close to 1 are highly likely real transients,
while those close to 0 are bogus. In Fig. 5, we plot the distri-
bution of hypothesis values for a RF with n_estimators=100,
max_features=25 and min_samples_leaf=1 trained on four
folds of the training set. The distribution plotted shows the hypothe-
ses for the held-out fifth fold. To assign a label of real or bogus, we
must define a decision boundary: a hypothesis value above which
the classifier labels detections as real, otherwise detections are la-
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Figure 5. Hypothesis distribution produced during one permutation of five-
fold cross-validation. The hypotheses shown are for images in the held-out
fold. Green shows the hypotheses for the validation examples labelled as
artefacts and red those labelled as real. The decision boundary is selected
such that the fraction of detections labelled as bogus lying above the decision
boundary is 0.01. The FPR can be visualized as the fraction of green bars
with a prediction greater than the decision boundary, the MDR is the fraction
of red bars with predictions less than the decision boundary. The first interval
has a frequency of 2376, but the plot is truncated for clarity.
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Figure 6. An example of the cross-validation process for an RF with
max_features=25 and min_samples_leaf=I.

belled bogus. If the classifier has learnt a useful model, it should
output detections labelled as bogus with a hypothesis below the
decision boundary and those labelled as real above the decision
boundary for the prediction to be correct. Bogus detections with
predictions above the decision boundary are false positives and real
detections with hypotheses below the decision boundary are missed
detections. For our FoM, the decision boundary is selected as the hy-
pothesis value above which only 1 per cent of the bogus detections
lie (dashed line in Fig. 5). The FoM is the fraction of the detections
labelled as real that lie below this choice of decision boundary. Dur-
ing five-fold cross-validation a hypothesis distribution is generated
by predicting hypotheses for the detections in each of the held-out
folds.

In Fig. 6, we show an example of the five-fold cross-
validation process for an RF with max_features=25 and
min_samples_leaf=1. In this example, we vary the number of
decision trees, n_estimators and plot a receiver operator charac-
teristic (ROC) curve for each model. ROC curves are produced by
varying the decision boundary at which we assign a prediction to
a label of real or bogus and calculate the FPR and MDR that deci-
sion boundary produces for the validation set. From the example in
Fig. 6, we see that selecting a value of 100 for n_estimators pro-
duces the best FoM of ~0.167, this means that an FPR=1 per cent
produces an MDR of 16.7 per cent. We also include 5 and 10 per cent
FPR levels for reference. We repeated this process for various sizes
of hidden layer. We also show an example of measuring the FoM
on a data set containing a significant proportion of the training data,
labelled as overfit in Fig. 6.

By replicating this process for both ANNs and SVMs, we were
able to select the optimal set of hyperparameters for each algo-
rithm. In the second column of Table 2, we show the optimal hy-
perparamters selected for each algorithm by cross-validation. By
using the validation sets to select the hyperparameters, there is a
danger that the hyperparameters will in effect have been fitted to
these sets. As a result, the FoM we measure on the validation sets is
not an unbiased measurement of the performance we would expect
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Table 2. Comparison of learning algorithms.
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Classifier

Model parameters

Threshold FoM

Artificial neural network
Support vector machine (RBF)
Random forest

$2=200,A =35 0.547 0.233
C=3, gamma=0.01 0.788 0.196
n_estimators=1000, max_features=25,min_samples_leaf=1 0.539 0.106

to achieve on data not included in the training folds. We deal with
this in the next section.

4.4.2 Testing

Having selected the optimal model for each of the algorithms, we
retrain these models with the entire training set. This allows the
models to learn from more examples. To measure how well we
expect the models selected by cross-validation in the last section
to perform on unseen data, we measure the FOM on the test set,
the 25 percent of the data we held back from both training and
validation. This provides an unbiased estimate of the performance.
In Table 2, we show the FoM measured on the test set. Fig. 7(a)
shows the ROC curve for each model in Table 2. We find that the
RF is the best classifier with an FoM of 0.106.

Fig. 7(b) shows a close-up of the measured FoM for the RF classi-
fier, where the measured FoM is shown along with the performance
we would expect to achieve if we were to allow 5 or 10 per cent
of the bogus detections through to human scanners. For example,
allowing the FPR to slip to 5 percent increases the completeness
to 97.6 percent. We also plot the hypothesis distribution for the
detections in the test set in Fig. 8.

The FoM shown in Fig. 7(b) is the single best classifier we find in
our analysis. Using this classifier on a data stream of nightly obser-
vations from PS1, we would expect that 99 per cent of the detections
promoted to humans would be of real astrophysical transients while
10.6 per cent of the real detections would be rejected by the clas-
sifier. Brink et al. (2013) report an MDR of 7.7 per cent for their
system. As a next step, it is useful to investigate the detections for
which the classifier produces incorrect predictions to see if there are
systematic errors that the classifier makes or if it is making correct
predictions for detections that have been labelled incorrectly during
the construction of the training set.

5 FURTHER ANALYSIS

In this section, we attempt to get a better sense of how we expect the
classifier to perform in practice by characterizing its performance
under various conditions. We aim to identify trends in the kinds of
detections for which the classifier makes incorrect predictions and
investigate the effect that providing the classifier with incorrectly
labelled training and test sets has on the measured FoM. However,
we begin this section by looking at methods to boost performance
by combining classifiers.

5.1 Combining classifiers

As a last step towards boosting performance, we investigated a
selection of methods to combine the RF, SVM and ANN from
Table 2. The predictions of the three methods are correlated: a
candidate highly ranked by the RF is likely to also be highly ranked
by the other two classifiers, but there are still detections of real
transients that are discarded by only one of the classifiers. From
Fig. 9 there are 24 detections labelled as real that only the RF
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Figure7. (a) Comparison of the best models for various learning algorithms
applied to the held-out test set. (b) Detail of ROC curve of the best performing
classifier, the RF shown in (a). At an FPR of 1 per cent, the FoM shows that
in practice we expect to operate at an MDR of 10.6 per cent.

wrongly rejects, it is these examples that we hope to recover by
combining classifiers.

We tried only a few of the simplest combination strategies. First,
we simply classified a detection based on the majority vote of the
three classifiers. Secondly, we assigned each detection a hypothesis
that was the mean of the hypothesis values output by each classifier.
This produced a new distribution of mean hypotheses, where we
again selected the decision boundary to produce the FoM. Finally
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Figure 8. Hypothesis distribution for the optimal RF classifier applied to
the test set.

Neural Network

Random Forest

Support Vector Machine
Figure 9. Venn diagram showing the relationship between the missed de-

tections for each classifier. There are 1619 positive examples in the test
set.

Table 3. Results of combining classifiers.

Method FPR MDR
Majority vote 0.02 0.06
Mean hypotheses 0.01 0.12
Hypotheses as features 0.01 0.12

we trained an SVM using the three hypotheses for each detection
as the features representing that detection. In the end, none of these
methods outperformed the RF classifier, though the performance
was comparable (see Table 3).

This result is unsurprising given that the classifiers are highly
correlated and there is no guarantee that these methods will outper-
form the best individual classifier (Fumera & Roli 2005). The RF
is in itself an ensemble of classifiers (the individual decision trees)

MNRAS 449, 451-466 (2015)
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Figure 10. The relative importance of each pixel to the classification for
the RF. The contributions of each feature are normalized such that they sum
to 1.

and may already incorporate much of the gain in performance we
can expect from these simple methods.

5.2 Relative feature importance

RFs provide a built-in method to estimate the relative importance
of each feature to the classification (Breiman 2001). By inspecting
the ‘depth’ at which each feature is used as a decision node, we can
estimate the relative importance of that feature, as those features
used closer to the top of the tree will contribute to the prediction of
a larger fraction of the training examples. The fraction of samples
for which we expect a feature to contribute to the classification can
be used to gauge its relative importance.

Fig. 10 shows the relative importance of each pixel determined
from the training set. The relative importance metric is normalized
such that it sums to 1. The most important features have the highest
values and as would be expected are located in the centre of the
image. The pixels on the edges of the images are thought to be
important for identifying many of the bogus examples, where the
object is not centred in the substamp and often lies at the edge. For
reference if features were equally important, they would each have
a relative importance of 1/400 = 0.0025.

Fig. 10 may suggest some redundancy in the features bounding
the central pixels. It is expected that omitting these features would
have little effect on the performance of our classifier as RFs are
thought to be unaffected by the inclusion of noise variables in the
feature vector (Biau 2010). In contrast, Brink et al. (2013) find
that the MDR for their RF classifier improves by ~4 per cent by
omitting noisy features using a backward feature selection method.
The effect of feature selection is an interesting area for future work
and attempts at optimization.

5.3 Label contamination

We took care to eliminate label contamination in Section 3.1, by
visually checking and manually labelling each training example.
None the less we expect that there remain some examples with in-
correct labels. In this section, we employ similar methods to those in
Brink et al. (2013) to investigate the effect that label contamination
has on our ability to train and test the optimal RF model.
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Figure 11. The effect of randomly flipping labels. As we increase the
fraction of the images for which we flip the label, i.e. as we introduce
more label contamination, the performance of the classifier trained on the
contaminated training set and measured on the untouched test set (blue line)
decreases as expected. Introducing contamination into the test set has a much
more pronounced effect on the measured performance even at low fractions
(green line).

First, we investigate the effect of adding label contamination
to the training set. We add contamination by randomly selecting a
subset of the detections from the training set and flipping their labels.
Those labelled as real are now labelled as bogus and vice versa. In
Fig. 11, we plot the effect of randomly flipping labels in the training
set while leaving the original labels in the test set untouched. The
measured MDR appears fairly unaffected up to around 6 per cent
contamination. The approach of Brink et al. (2013) is robust to
around 10 per cent suggesting our method may be more susceptible
to incorrectly labelled training data.

Next, we flip labels in the test set, while using the original training
set labels as they are. Given that the RF has been trained with
correctly labelled data, for the most part we expect it to provide the
correct labels for the images in the test set. However, the flipped
labels affect our ability to accurately measure the FoM. Although
the classifier makes sensible predictions, when we compare these
predictions to the flipped labels the otherwise correct predictions
are now evaluated as false positives or missed detections. Fig. 11
shows how the FoM is affected as we increase the fraction of flipped
labels, we see that even at low proportions labelling noise in the test
set can have a significant effect.

5.4 Classification as a function of signal to noise

To investigate the classifier performance as a function of S/N, we
also follow a similar analysis to Brink et al. (2013). We plot the dis-
tribution of magnitudes for each example in the test set labelled as
real in Fig. 12. We divide the examples into 11 bins, each spanning
1 mag in the range 13-24 mag. We then use the classifier to make
a prediction for the examples in each bin and calculate the fraction
of examples classified as bogus which we take as an estimate of the
classifier performance for objects at that level of S/N. For objects
with magnitudes 220 there is an ~6 per cent chance of missing real
detections. Counterintuitively, the detection performance deterio-
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Figure 12. Histogram of magnitudes for the test set examples labelled
as real. We also show the MDR as a function of S/N which increases
dramatically for sources brighter than magnitude 20.

rates for higher S/N objects. The number of examples of these cases
are low as typically these objects result in artefacts from saturation
and subsequent masking or unclean subtractions. However, this can
also be understood as an effect of our feature representation, where
we are learning classifications based on the relative intensity of
pixels across the substamp. The tendency to misclassify such detec-
tions could stem from a combination of the large relative intensity
differences between pixels in these substamps that often charac-
terize artefacts and the low numbers of high S/N images of real
transients. This explanation is further supported by both the ANN
and SVM, which also misclassify these objects, suggesting that the
issue is with the data and not a consequence of the realization of
the RF. In the next section, we try to identify any relationships in
the missed detections.

5.5 Missed detections

We inspected the 172 missed detections (see Fig. 13) looking for
similarities that may explain why they were rejected. We found that
these missed detections are associated with 112 individual tran-
sients. Although we took care to limit label contamination during
the construction of the training set, we identified some examples
of obvious bogus detections mislabelled as real that account for a
small fraction (~1 per cent) of the missed detections.

We also find about 29 per cent of the missed detections appear to
be a result of faint galaxy convolution problems (see Section 2.1).
These artefacts are difficult to identify by eye and as a result have
been incorrectly labelled as real detections significantly contributing
to the label contamination of the test set.

In Section 5.4, we discussed the high MDRs for bright sources.
In Fig. 14, we plot the hypothesis values for all detections included
in the histogram of Fig. 12 (i.e. all test set detections that have been
visually classified as real) against their magnitude reported by IPP.
A feature of the plot that stands out is the cluster of sources with
magnitudes brighter than 16 and hypotheses less than 0.2. Magnier
et al. (2013) report that for the PS1 37 survey, saturation occurs
at ~13.5 for 8pr1, fpis ipl, ~13.0 for Zp1 and ~12.0 in ypi1- We
were concerned that these sources could be saturated; however, to
conclusively determine this the individual images that are combined
to make a nightly stack would need to be examined. Instead, we
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Figure 13. The 172 detections labelled as real but classified as bogus by the RF. Detections are grouped according to the discussion in Section 5.5. The

hypotheses for the detections are shown as the inset numbers.
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Figure 14. Plot showing the hypotheses of the real examples in the test
set against the magnitude measured by IPP. The shaded region shows the
magnitude cut above which we cannot be certain the nightly stacks do not
contain saturated images.

scaled the magnitudes reported by Magnier et al. (2013) for PS1
37 exposures by the exposure times for the individual images that
make up a nightly stack and set a magnitude limit of 16 mag. Objects
brighter than this limit may have saturated cores in some exposures

MNRAS 449, 451-466 (2015)

and cannot safely be labelled as real. Some of these sources on
close inspection also show signs of the unclean subtractions we
highlighted in Section 2.1.

The detections brighter than 16 mag in Fig. 14 with hypotheses
above (0.2 are all associated with a single confirmed SN, SN 2014bc
(PS1-14xz; Smartt et al. 2014). SN 2014bc is a nearby (7.6 Mpc)
Type-1IP located in the bright host galaxy NGC4258 (Messier 106).
The transient lies close to the core of the host and as a consequence
the host has been poorly subtracted in the same location in all the
substamps. Detections of this object appear in both the training
and test set and although we ensured detections from the same
night must appear in the same set, the slowly evolving plateau has
resulted in detections with similar S/N and the same pattern of
poor subtraction appearing in both. It is therefore to be suspected
that test set detections associated with this SN would have been
rejected along with the other sources brighter than 16 mag had
similar detections not been included in the training set. This raises
the issue of potentially missing the brightest transients which are
often of interest and the cheapest to classify spectroscopically, we
return to this in Section 6.

The high MDRs in the magnitude range 1620 still remain unex-
plained. To address this in Fig. 15, we plot the number of examples
of real transients in each of the magnitude bins used in Section 5.4
for both the training and test sets. The plot clearly shows the deficit
in training examples at magnitudes brighter than 20 and lead us
to conclude that we lack enough training examples of high S/N
transients to allow the classifier to learn a model that generalizes
well in this regime. In Fig. 15, we overlay the relative size of the
test set compared with the training set in each bin. We selected the
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Figure 15. The magnitude distributions of the real examples in the training
and test sets. The numbers on each bin show the total number of images
in the training set. We also show the relative numbers of test set examples
in each bin (blue line). The shaded region again shows the magnitude cut
defined in Section 5.5.

test set by randomly sampling 25 per cent of the data available for
training. The small fractions of test examples available between 16
and 18 mag combined with the low numbers in the range 1620
mag severely impact our ability to accurately measure the MDR in
this range.

Aside from the issues associated with high S/N, there are a few
other SNe with detections that show similar host galaxy subtraction
problems to SN 2014bc. Some of these are true bogus detections
which we show in Fig. 13. Approximately 9 per cent of the missed
detections are bogus detections around poor host subtractions. We
include detections of SN 2014bc with this group in Fig. 13 though
these detections around 15th magnitude could equally have been
included with the bright sources.

Among the missed detections, we also found substamps where
entire rows or columns along an edge of a substamp had been
masked. In the second panel of Fig. 3, we show an example where the
bottom two rows of pixels have been masked. These are examples
of the sky cell duplicates we describe in Section 2.1. We were
concerned that the classifier was rejecting these detections based
on the masking. To see if this was the case, we identified all the
examples of sky cell overlap among the real test set detections,
and found 20. As we ensured that detections from the same night
must be in the same set (training or test set), the equivalent full
20 x 20 pixel substamps were also in the test set. We compared
the performance on the full pixel substamp with that of the partially
masked substamp and found that there is only one case where the
masked substamp was rejected while the full pixel substamp was
kept. In this instance, a significant proportion of the substamp was
masked (seven columns) with the edge lying close to the PSF. The
majority of the remaining substamp pairs were both assigned the
same classification. There are however six pairs where the masked
substamp was correctly classified as real, but the full pixel substamp
was rejected, showing that the classifier does not tend to reject
detections with sky cell masking simply due to the masked regions.

The reason for rejecting one detection from the pair over the other
is unclear as both substamps are constructed from the same data.
The six pairs for which the full pixel substamp was labelled bogus,
but the masked substamp was labelled real are all associated with
a single transient and may not apply to other sky cell pairs. For
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these substamp pairs, we found that the centroids always differed
by 1 pixel and were offset in the same direction. We tried shifting
the centre of the stamps to the same pixel, but found that this had
little impact on the hypothesis. In all cases, the flux-conserving
warping results in equivalent pixels containing different counts,
though the difference is typically small <10 percent. Given the
small number of cases where the detections of a sky cell pair are
assigned to different classes (seven in total) and that these detections
are associated with only two transients (six associated with a single
transient where the full pixel substamp is rejected and one associated
with a different transient where the masked substamp is rejected),
it is difficult to explain this behaviour, though one explanation may
be the small differences in pixel intensity values perhaps combined
with the different centroids.

The nuances of difference imaging make it difficult to determine
the ground truth label for each detection. Humans often require ad-
ditional information beyond that contained in the single difference
image e.g. position relative to the host, or the number of bad/good
pixels visible in the input image. The investigations above suggest
that the classifier is identifying subtle relationships and correctly
identifying that many of the ‘missed detections’ are dubiously
labelled as real. We estimate that 45 percent (~5 per cent bright
sources; ~29 per cent convolution problems; ~9 per cent poor host
subtractions; ~1 percent obvious mislabelled artefacts) or about
77 of the missed detections are not of high enough quality to be
confidently labelled as real detections. Therefore, the RF classifier
is not strictly getting them wrong. The high proportions of these
cases among the missed detections does not hold true for the entire
sample of real detections in the test set, where for example faint
galaxy convolution problems are crudely estimated to account for
no more than 7 per cent. Removing such detections from our test set
results in an MDR around 6.2 per cent. The MDR of our classifier is
therefore in the range 6.2—10.6 per cent for an FPR of 1 per cent but
most likely towards the lower end of this range. The remaining 95
detections are true missed detections and appear to be mislabelled
by the classifier due to high S/N as discussed above, poor seeing
conditions and very low S/N detections near the detection limit.

5.6 Medium deep confirmed SNe

In order to demonstrate how we might expect the classifier to per-
form on a live data stream, we first use the classifier to make pre-
dictions for the’ PS1-13avb for which we held out all associated
detections from both the test and training set. This object has been
spectroscopically classified as a Type Ib SN and has a well sam-
pled light curve from about —18 d pre-maximum to around 106 d
post-maximum, including exposures in all five filters ranging in
magnitude from around 23 to 20 mag (see Fig. 16 top panel). We
selected this object for its high-quality light curve and magnitude
range which represents the majority of objects discovered in the
PS1 MDS. In the bottom panel of Fig. 16, we show the hypothesis
for each epoch of this target. The plot shows that the hypothesis is
consistently above the decision boundary of 0.539 (selected in Sec-
tion 4.4.2) with the exception of the detection from 56480.406 MJD
which shows the transient at a magnitude of gp; = 23.12 + 0.21
approaching the detection limit in this filter. The detection is dis-
played as an inset in Fig. 16 with its hypothesis of 0.506, showing
the low S/N and deviation from a PSF-like morphology.

9 supernova
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Figure 16. Top panel: PS1 light curve of the Type Ib SN PS1-13avb. Bottom
panel: the hypothesis for each epoch. The dashed line shows the decision
boundary (0.539) below which the classifier predicts an image as bogus.
Inset: the only missed detection for this SN which shows low S/N.

5.7 Early detection

One of the major aims of recent SN searches has been to try to detect
the transient as soon after explosion as possible in order to trigger
rapid follow-up to spectroscopically study regions of the transients
evolution that remain relatively unexplored (Cao et al. 2013; Gal-
Yam et al. 2014). To this end, we carry out a simple test by using
the classifier to make predictions for the first detections of all 53
classified SNe in our data base. Again we held these detections out
from the training and test sets. In Table 4, we list the 53 SNe and
the details of the first detections along with the hypothesis for each
detection. The classifier correctly predicts all detections as real and
had it been running on a live data stream would have promoted all
objects to humans for follow-up.

6 SUMMARY OF RESULTS AND
CONCLUSIONS

In this work, we have constructed a data set of detections from the
PS1 MDS. We used this data set to train an RF classifier to reject
bogus detections of transients before they are presented to humans
as potential targets for follow-up. As the feature representation of
these detections, we used the pixel intensity values of a 20 x 20 pixel
substamp centred on the detection. This choice is independent of
the observing strategy and removes the need for careful feature
design and selection that requires specific domain knowledge. The
choice of features also make this method applicable to any survey
performing difference imaging and requires no information from
either the template image or nightly stack. Using the FoM as defined
in Brink et al. (2013), we selected the decision boundary such that
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objects classified as real should be 99 per cent pure, which resulted
in a best estimate of an MDR of 6.2 percent (i.e. 93.8 per cent
complete) and can compete with previous work in this area. We
further tested the classifier by applying it to the light curve of a
Type-Ib SN and found only one missed detection out of 74. The
missed detection had low S/N. In addition, to assess the classifiers
performance for early detection, we used the classifier to make
predictions for the first detections of 53 spectroscopically confirmed
SNe in our data base and found none would have been rejected.

We discovered our classifier struggles to provide accurate clas-
sifications for the brightest sources (<19 mag). Many of these are
associated with bright variable stars and have ringing patterns due
to the kernel size definition, which leads to labelling difficulties.
Some are also close to the saturation limit which may cause the
algorithms to misidentify real sources as bogus. The mathematical
problem in detecting bright variable stars in difference images is
clearly quite distinct from finding low flux and moderate flux level
transients in, or near extended galaxies. Furthermore, the scientific
goal in characterizing variability of stellar sources is typically based
on total flux measurements whereas finding explosive transients re-
quires the resolved and unresolved galaxies to be subtracted. Our
methods are tailored towards the latter, and can certainly not be
blindly applied to uncover complete populations of variable stars or
variable AGNs. With a goal of discovering extragalactic transients,
one is content to ignore stellar variables in a data stream, although
we show here that the algorithms can sometimes misclassify bright
and high S/N explosive transients.

We also found the MDR is consistently higher for sources brighter
than 20 mag which we attribute to the lack of training data in this
range. We would expect that providing more training examples
that are representative of these objects would reduce the MDR
for brighter sources. In this paper, we have only used a sample
of the data from the PS1 MDS, but we have access to the full
data base of MDS transients, which could be used to provide more
training data. In addition, we also have data from PS1 37 difference
imaging which could also be used to boost training numbers and
build a classifier that could perform real-bogus classification for
both surveys. In our analysis, we have not considered the case of
asteroids as these are typically removed during the construction of
the nightly stacks in the MDS. Including the PS1 37 data, where
differencing is performed on individual exposures, would allow us
to test the performance of our method on asteroids. It may also
be more beneficial to apply this approach at the source extraction
stage. By working directly on the pixel data, the classifier could
potentially learn which sources to extract and which to discard
from a difference image before any further processing of a potential
detection is performed.

The dependence of any machine learning approach to real-bogus
classification on large amounts of training data presents a serious
problem for any new survey. While many sources of processing arte-
facts are common across surveys, differing pixel scales and seeing
conditions prevent the use of a classifier trained on one survey being
directly applied to another. A solution would be to build a training
set based on hand labelled commissioning data and periodically re-
train the classifier as new data become available. Alternatively, an
initial classifier trained on the limited data available early in a sur-
vey could be improved on by employing online learning, where the
classifier is automatically updated as new labelled data are gathered
(Saffari et al. 2009; Shalev-Shwartz 2011).

Future work will focus on combining the remaining PS1 data
available into a single training set that will hopefully address
the S/N issue. Other areas of research could include the use of
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Table 4. First detections of the 53 spectroscopically confirmed PS1 SNe ordered by hypothesis. (Due to
sky cells some SNe appear twice.)

Name Classification  First detection (MJD) ~ Magnitude  Filter =~ Hypothesis
PS1-13duq Ia 56588.381 21.64 ip| 0.989
PS1-13bzp Ia 56478.276 21.33 gpr1 0.98
PS1-13bzp Ia 56478.276 21.30 gpi 0.975
PS1-13abg 1I-P 56383.336 21.47 Zp1 0.971
PS1-13bqg Ia 56443.287 20.90 gri 0.968
PS1-13abg 1I-P 56383.336 21.55 Zp1 0.963
PS1-14il IIn 56676.554 21.36 ZpI 0.959
PS1-13ve Ia 56351.476 20.67 Zp1 0.958
PS1-13abw Ic 56383.438 21.23 Zp1 0.958
PS1-14ky I 56681.499 21.60 Zp1 0.957
PS1-13ur Ia 56351.525 20.32 ZpI 0.955
PS1-13eae I 56604.598 19.82 yp1 0.954
PS1-13alz 1I-P 56399.282 20.43 ip1 0.952
PS1-12cnr Ia 56283.340 20.33 Zp1 0.948
PS1-13can Ia 56477.567 22.04 Zp1 0.946
PS1-13cws Ia 56549.460 21.48 Zp1 0.943
PS1-13ge Ia 56328.612 21.49 8p1 0.94
PS1-12cho Ia 56262.469 21.07 Zp1 0.933
PS1-12cey I 56268.294 22.06 8p1 0.931
PS1-13bok I 56424.560 22.35 rp1 0.926
PS1-13djz Ic 56554.585 20.74 Zp1 0.923
PS1-13a Ia 56289.280 21.20 Zp1 0.919
PS1-13bit Ia 56420.548 22.69 ip| 0918
PS1-13bgb Ia 56443.287 22.32 gri 0.918
PS1-13djj Ia 56563.576 20.72 8p1 0.916
PS1-12bza II-p 56262.469 21.12 Zp1 0.914
PS1-13brf Ia 56443.324 22.68 rp1 0.91
PS1-13hp II-p 56325.545 21.40 gri 0.907
PS1-13adg Ia 56384.515 21.71 rp1 0.902
PS1-13awf I 56417.315 22.47 ip1 0.899
PS1-13atm 1I-P 56410.298 22.25 Zp1 0.898
PS1-13cjb I 56501.436 22.63 gri 0.896
PS1-12cho Ia 56262.469 21.08 Zp1 0.884
PS1-13cai Ia 56477.567 21.99 Zp1 0.882
PS1-13bni 1I-P 56420.548 23.07 ip| 0.873
PS1-13bog Ia 56417.341 22.57 ip| 0.867
PS1-12chw Ia 56262.313 21.21 yp1 0.857
PS1-13bqv Ia 56442.486 21.64 Zp1 0.849
PS1-13djs Ia 56562.587 21.44 ZP1 0.84
PS1-13aai/SN 2013au Ia 56370.421 19.29 Zp1 0.833
PS1-13cuc/SN 2013go Ia 56536.587 19.03 Zp1 0.814
PS1-13hs I 56328.515 21.97 gri 0.801
PS1-13baf 1I-P 56414.521 22.54 ip| 0.801
PS1-13avb Ib 56414.521 21.75 ip| 0.796
PS1-13ayn Ia 56416.449 22.01 rp1 0.77
PS1-13aai/SN 2013au Ia 56370.421 19.36 Zp1 0.735
PS1-13fo/SN 2013X Ia 56314.625 18.04 yp1 0.713
PS1-13bus Ia 56462.440 2291 ip| 0.708
PS1-13brw 1I-P 56436.325 20.71 yp1 0.707
PS1-13hi IIn 56324.604 18.50 Zp1 0.704
PS1-13bve Ia 56469.349 21.90 Zp1 0.698
PS1-13bzk Ia 56468.571 21.38 ypi 0.662
PS1-13abf Ia 56380.368 20.21 ypi 0.642
PS1-13arv Ia 56409.239 20.98 ypi 0.638
PS1-13wr 1I-P 56349.602 20.39 yp1 0.637
PS1-14xz/SN 2014bc 1I-P 56399.380 18.25 ip| 0.623
PS1-13wr 1I-P 56349.602 20.40 ypi 0.61
PS1-13buf Ia 56461.299 22.60 ZpI 0.577
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semisupervised feature learning (Raina et al. 2007) and deep learn-
ing (Coates et al. 2013) that retain all the advantages of our current
approach at the expense of being more computationally demanding.
However, the added representational power of larger ANNs and the
possibility of applying the unsupervised features learnt from one
survey to a variety of other surveys could mean this is a promising
domain to explore.

An efficient real-bogus classifier is only one step towards rapid
discovery and classification of transients. With next generation sur-
veys the stream of transients will need to be prioritised based on
scientific goals. Providing a contextual classification (Bloom et al.
2012; Djorgovski et al. 2012) of the transients detected would al-
low researchers to select the most promising candidates for their
research goals and will also be the focus of future work.
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