Available online at www.sciencedirect.com

ScienceDirect

25
R Procedia CIRP 11 (2013) 363 — 366

www.elsevier.com/locate/procedia
2" International Through-life Engineering Services Conference

Creating a Self-Configuring Finite State Machine out of Memory Look-Up
Tables

Philipp Schiefer**, Richard McWilliam, Alan Purvis

“Durham University, South Road, Durham, DHI 3LE, United Kingdom

* Corresponding Philipp Schiefer. Tel.: +44 191 334 2418; fax: +44 191 334 2408. E-mail address: philipp.schiefer@durham.ac.uk

Abstract

A finite state machine (FSM) is one of the most used digital logic applications in today’s electrical systems. An FSM can be implemented in
electrical systems based on programmable logic devices (PLD) or combinatorial logic platforms. Both platforms for a FSM contain advantages
and restrictions for the hardware and software design. In regards of coding, FSM can be coded in alternatives styles and programming
languages. In this paper we introduce the concept of a self-configuring FSM based on coding data as memory look-up tables. The resulting
FSM is then able to self-configure the combinatorial logic of this FSM required to perform the compulsory state sequence. The primary benefit
of using memory based look-up table (LUT) FSM is that well established data error correction methods can be applied to protect the FSM
behavior, even in the event of single error events (SEE). A high level hardware design of this FSM will be presented in comparison to a PLD

FSM implementation.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the International Scientific Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair — Ashutosh Tiwari

Finite State machine; Memory Look-Up Tables

1. Introduction

In today’s digital environment finite state machines can be
found in almost all digital systems due to the fixed way of
working at only one single active state or instruction at a time.
The transition from one state to another state of a FSM is
controlled by input stimulus and stored information. The basic
building blocks of an FSM contain decision making logic and
memory [1]. This concept of only having one active state at a
time makes is possible to use FSMs to control a width
spectrum of every day application such as vending machines,
turn crosses, voice systems or safety critical systems in
automobiles [2]. In this paper a soda vending machine
behavior is going to be used as an example FSM. The
implementation of an FSM can be done within a
programmable logic device (PLD) or combinatorial logic
platforms. The design implementation depends on the actual
designer of the system. If an FSM is going to be programmed

with any type of description language two solutions in the
same language will not look the same. The coding of this
system will follow one of the three commonly used methods:
combined single process (CSP), state separated combinatorial
outputs (SCO), and state separated registered outputs (SRO)
[3]. PLD based implementation can be done with any
microcontroller system platform or in an FPGA based system.
FPGA based platforms have the advantage of having a
combination of combinatorial logic and memory facility
within the chip [4-5]. In this paper the focus of FSM
implementation will be done on a PLD and combinatorial
logic based platform. FPGAs can be provided with ready-to-
use library implementations of FSMs that are part of the
development software tools [3-4]. An FPGA based solution
offers limited possibilities to improve or alter the given design
and this is the reason why it will not part of this investigation.
In this paper a solution for showing an approach of creating a
unique hardware design with minimal controlling logic and

2212-8271 © 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license,

Selection and peer-review under responsibility of the International Scientific Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair — Ashutosh Tiwari

doi:10.1016/j.procir.2013.07.030

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

364 Philipp Schiefer et al. / Procedia CIRP 11 (2013) 363 — 366

memory LUT will be presented. Comparison between the
memory usage and execution times are investigated and the
execution time will be used to evaluate the system
performance.

2. Different coding styles for FSMs

For coding an FSM with the help of a high Ilevel
programming language there are three methods commonly
used to do so: CSP, SCO, and SRO. Variation of this three
coding methods like One-Hot or Gray encoding are in use but
associated with specific hardware requirements for FPGAs
HDL implementation [3]. The CSP coding method uses a
single process for controlling both the state transitions and the
output of the FSM. These outputs of the FSM are stored in a
register. Due to this storing of the output, a FSM structure
cannot be easily synthesized by software. A block diagram of
a CSP is illustrated in Figure 1. The SCO coding uses two
processes instead of only one used in the CSP style and the
outputs are generated directly out of combinatorial logic. No
output register gets used in the coding method. A block
diagram can be seen in Figure 2. The SRO coding method
uses a two process method and uses an output register. The
output of the output signal will be done one stage later than it
had been inferred out of the output combinatorial logic. A
block diagram of this coding method can be seen in Figure 3.

IsM
Output

Next State
Combinatorial
Logic

FSM
Input

Fig. 2 Coding style state separated combinatorial outputs (SCO)[3]

Outpat
Combinatorial
Logic

o Combinatorial JEmmp] ,
Logic

Qutput ESM
:> Register ¢Onrpnt

Fig. 3 Coding style state separated registered outputs (SRO)[3]

The goal of this research is to create a FSM design which uses
as little as possible controlling combinatorial logic and
memory LUTs. It became apparent that the above three
coding styles do not generate minimal combinatorial logic
overheads. Reduction in this area of logic can be gained with
the coding the data stored in the state memory. By including a
control bit within the memory data the input and output
combinatorial logic can be altered at run-time and logic
overhead can be reduced. With this memory data structure the
coding style for the FSM can be altered to the block diagram
structure shown in Figure 4.

ESM
Output

State
Pointer

pu
m— Combinatorial

FSM
Input

Fig. 4 Memory based LUT coding style

The block diagram shown in Figure 4 discloses another
difference between the three other coding styles. Which is a
state memory pointer used to access the required state
transition stored within the memory LUT. The information of
this state pointer can be altered by the FSM inputs and state
transitions and this is how the memory stored state transition
gets controlled if required.

3. Vending machine implementation

With the example of a soda vending machine FSM
implementation the proposed coding style proposed in Figure
4 will be implemented to show the feasibility and the
minimum controlling combinatorial logic design. The basic
state diagram of the soda vending machine can be seen in
Figure 5.

O

Fig. 5 Basic state diagram of soda vending machine

Philipp Schiefer et al. / Procedia CIRP 11 (2013) 363 — 366

The function of the machine is a simple task-:. after the
correct amount of 30 cents has been tossed into the machine a
can of soda is getting ejected. The following denominations in
coins are accepted by the machine 5 (D), 10 (N), and 25 (Q)
cent coins. The machine accepts any arrangement of these
three coins denomination and even handles overpaying. In this
case the machine has to perform two tasks: supplying a can of
soda and paying out the overpaid amount.

The state diagram for the soda vending machine presented
in Figure 5 shows 17 inputs, 10 outputs, and 2 fixed
dependent transition states. These different transition states
can be codes and mapped into 29 bytes of memory LUTs. The
information in this memory is going to be the same to show
the overhead required for implementation of this FSM on
these two platforms.

3.1. PLD based FSM implementation

For the implementation on a PLD platform an 8051
microcontroller was chosen because it has on-chip input and
output capabilities. For coding the FSM the assembler
language has been chosen because of the direct link to the
hardware and minimal overhead in the programming memory
requirements. The coding style was consistent with the coding
style presented in Figure 4. From the instruction set of the
8051 microcontroller only the following direct commands
were used: MOV, ADD, AND, XOR, relative jump at zero,
and jump. The assembler implementation of this FSM uses
the following instructions required memory size: 22 bytes for
AND, 6 bytes for XOR, 6 bytes for ADD, 27 bytes for relative
jumps, and 33 bytes for jumps. The total byte count for the
logic memory is 94 bytes. This is a ratio of 3.2 times the
memory of the state memory count.

3.2. Combinatorial logic based FSM implementation

The combinatorial logic based FSM has been implemented
according to Figure 6. This design uses a single memory
address pointer for the next state transition. As a result, the
state transition memory requirement is one byte. The
combinatorial logic based FSM uses the same memory LUT
size and structure as the PLD design. This is a common
functional block equal for both designs. The controlling logic
of the combinatorial logic FSM design contains an input
signal reducer and output signal expander. Additional logic
gates are needed to determine the signal adding to the address
pointer data and logic for output redirection.

MEMORY

1)

ADDR

LOGIC ouT

|

Fig. 6 Basic block diagram of combinatorial logic besed FSM design

4. Results

For storing the different state transition information a
memory based LUT of 29 bytes has been used for both
example implementations. For the PLD the memory
requirements of storing the assembler program has been 94
bytes and for the combinatorial logic design only 1 byte. The
comparison of the memory ratio is for the PLD design 3.2 and
for the combinatorial design 0.03. This indicates that the
combinatorial logic design has a better memory ratio. A
comparison of these two designs will show the faster system:

Table 1. Comparison of FSM implementation execution time

Coins applied PLD based Combinatorial
design logic based
design
5*5 cent & 25 cent 339 cycles 18 cycles
6*5 cent 305 cycles 14 cycles
3*10 cent 161 cycles 8 cycles
5 cent & 25 cent 113 cycles 6 cycles

The comparison of the performance based on the cycle
count is possible due to the fact that a certain programming
flow in the assembler code results in a fixed cycle count.

5. Conclusion

The design of the combinatorial logic design using a
memory based LUT shows the best results in performance and
memory ratio. Another advantage of this design is the reduced
use of logic circuits in comparison to a microcontroller. This
design solution reduces the logic circuit overhead
considerable which has an impact on power consumption and
logic element reliability. Due to the simple combinatorial
logic block a solution for a fault tolerant design could be part
of a future work.

365

366 Philipp Schiefer et al. / Procedia CIRP 11 (2013) 363 — 366

Acknowledgements

This work is supported by the EPSRC Centre in Through-

life Engineering Services.
References

[1]. Senhadji-Navarro, R., I. Garcia-Vargas, and J.L. Guisado. Performance
evaluation of RAM-based implementation of Finite State Machines in
FPGAs. in Electronics, Circuits and Systems (ICECS), 2012 19th IEEE
International Conference on. 2012.

[2]. Garcia-Vargas, 1., et al. ROM-Based Finite State Machine
Implementation in Low Cost FPGAs. in Industrial Electronics, 2007. ISIE
2007. IEEE International Symposium on. 2007.

[3].Rafla, N.I. and B.L. Davis. A Study of Finite State Machine Coding
Styles for Implementation in FPGAs. in Circuits and Systems, 2006.
MWSCAS '06. 49th IEEE International Midwest Symposium on. 2006.

[4]. Tiwari, A. and K.A. Tomko, Saving Power by Mapping Finite-State
Machines into Embedded Memory Blocks in FPGAs, in Proceedings of
the conference on Design, automation and test in Europe - Volume 2.
2004, IEEE Computer Society. p. 20916.

[5].Koster, M. and J. Teich. (Self-)reconfigurable finite state machines:
theory and implementation. in Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings. 2002.

