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ABSTRACT: Radiosonde data are valuable to the research community because they provide 8 

observations for multiple decades and can be used to validate model output. However 9 

radiosonde data often suffer from quality issues, which has undermined their credibility. 10 

Therefore, corrections for biases and changepoints are needed to remedy the situation. 11 

Homogenization of monthly radiosonde specific humidity (q) from the 1970s to the present has 12 

been performed on selected stations over the Southwest Pacific (SWP) at three pressure levels 13 

(i.e., 850, 700 and 500 hPa). A three-step procedure involving a) adjustments for two sampling 14 

biases, b) detecting secular changepoints (i.e., discontinuities) using both statistical techniques 15 

and metadata validation, and c) an innovative break size estimate approach, has been 16 

implemented to achieve this aim. In the last step, a discontinuity-free pseudo-q is constructed 17 

from saturated specific humidity qs which itself is derived from an already homogenized 18 

temperature (T) time series. This pseudo-q serves as a reference that not only distinguishes 19 

artificial from natural changepoints but also helps estimate the magnitudes of the discontinuity.  20 

On the decadal time scale, the adjusted q (qadj) exhibits spatially more consistent 21 

moistening in the lower atmosphereat the 850 hPa level over most of the region and a contrast 22 

at 500 hPa between the moistening in the tropics and a drying in the subtropical South Pacific. 23 

Mean regional trend estimates are ~ 1.8% (850 hPa), -0.2% (700 hPa) and 1.3% (500 hPa) per 24 
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 2 

decade. A climatological comparison to with the three latest reanalysis products – CFSR, ERA-25 

Interim and MERRA, suggests the reanalyses have significant negative biases over Southeast 26 

Asia (SEA) at all three levels. Over Australia the biases are negative at 850 hPa while positive 27 

at 500 hPa. The reanalysis products tend to beare more similar amongst themselves in the 28 

estimates of q,  as compared to the than the raw radiosonde measurements of q and qadj. The 29 

homogenized radiosonde q, when assimilated into reanalysis, is likely to lead to a more realistic 30 

model of the hydrological cycle. 31 

 32 

KEYWORDS: homogenization; radiosonde; specific humidity; changepoint detection; trends; 33 
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1. Introduction 35 

Atmospheric moisture constitutes only a tiny fraction (~0.001%) of the total global water, but 36 

this says nothing about its paramount role in regulating the Earth’s climate via modulation of 37 

energy and heat budgets (Trenberth and Stepaniak, 2003). Annually, some 40,000 km
3
 of water is 38 

transported from ocean to land in the form of water vapour, providing water resources for a range 39 

of human activities. Atmospheric moisture is a major indicator of the status of the climate system 40 

as global warming has the potential to increase atmospheric humidity, because of the temperature 41 

satuaration vapour pressure relationship association as expressed by the Clausius-Clapeyron 42 

relationship (‘CC’) has the potential to increase atmospheric humidity. Furthermore, water vapour 43 

is a potent Greenhouse Gas  (GHG) with  the largest positive feedback on temperature (IPCC, 44 

2007); the radiative effect of water vapour is, with an effect comparable to the radiative initial 45 

forcing of carbon dioxide increases (Trenberth et al., 2007). From a weather forecast point of 46 

view, it has been shown that assimilating observed humidity into numerical models helps improve 47 

forecast skills for wind and temperature (Andersson et al., 2007). 48 

Despite the critical role that atmospheric moisture plays in the climate system, at a range of 49 

time and space scales, interest in assessing water vapour concentrations has only been renewed in 50 

the last decade or so, far behind the efforts devoted toinvested in quantifying temperature changes 51 

(e.g., Free et al., 2004; Haimberger, 2007; McCarthy et al., 2008; Menne and Williams, 2009; 52 

Sherwood et al., 2008), in part because well-calibrated observations are scarerare (Trenberth et 53 

al., 2005). This, along with data quality and scarcity issues in related to precipitation, evaporation 54 

and wind fields has led to considerable  uncertainties imbalance in the observed atmospheric 55 

moisture budget (Lenters et al., 2000; Stickler and Bronnimann, 2011; Yeh and Famiglietti, 56 

2008).  57 
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Climate variability over the SWP is primarily modulated by the monsoon system, modes of 58 

large-scale circulation and sea surface temperature (SST). In particular, the El Nino-Southern 59 

Oscillation exerts the greatest influence on global and especially low latitude interannual climate 60 

variability (Cai, van Rensch et al. 2010, Jiang, Griffiths et al. 2013); the Pacific Decadal 61 

Oscillation, a long-lived ENSO-like oscillation in the Pacific, has been linked to shifts in the 62 

climate regime in many parts of the world (Salinger and Mullan 1999, Mantua and Hare 2002); 63 

the monsoon system in concert with the Indian Ocean Dipole affects climate over southeast Asia 64 

and parts of Australia (Ummenhofer, Sen Gupta et al. 2011); the Southern Annular Mode (SAM) 65 

affects climate of the Southern Hemisphere extratropics (Rao, Do Carmo et al. 2003, 66 

Ummenhofer, Sen Gupta et al. 2009); and SST modulates all these circulation features via its 67 

influence on important hydro-climate fields such as surface wind, specific humidity and sea level 68 

pressure (Mullan 1998). Numerous studies have hinted at possible trends in circulation modes and 69 

SST. For example, Fogt, Perlwitz et al. (2009) and Marshall (2003) found a positive trend in the 70 

SAM for DJF and MAM. Given the significance of the circulation features in explaining climate 71 

variability, the reported trends will have far-reaching consequences on the enviroment and human 72 

society.    73 

Amongst the various records of atmospheric moisture, observations from radiosondes 74 

represent the only historical data that span more than 100 years. These are considered the long 75 

termlong-term baseline against which other sources of data should be compared with. In addition, 76 

radiosonde data are essential inputs into climate reanalyses. Multidecadal climate variations in 77 

reanalyses can only be adequately resolved by assimilating such data (Karl et al., 1995). 78 

Notwithstanding their potential for shedding light on atmospheric moisture processes, radiosonde 79 

humidity observations, traditionally used for operational weather forecasts provide present a 80 

number of challenges for developing climatologies of atmospheric moisture. This is because 81 
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radiosonde records suffer from many discontinuities owing to often undocumented changes in 82 

instrument, sampling and observation practices (Gaffen et al., 1991; Ross and Elliott, 1996; 83 

Wade, 1994). Although a complete listing of the causes of inhomogeneities is infeasible, some of 84 

the common ones include: (i) sensor wetting or icing, (ii) solar radiation heating in daytime 85 

measurements, (iii) slow response time under cold conditions, and (iv) non-zero ground check 86 

value to show the scope of the problem (Miloshevich et al., 2009; Smit et al., 2013). It appears 87 

that such issues have hindered the use of radiosonde humidity data in climate research compared 88 

to the seemingly more reliable and readily available data sources.  89 

Studies that have adjusted radiosonde discontinuities tend to report a spatially more consistent 90 

pattern of upward trends in tropospheric moisture content. McCarthy et al. (2009) examined the 91 

homogeneity of monthly temperature (T), specific humidity (q) and relative humidity (RH) in the 92 

Northern Hemisphere. They used a multi-step procedure, including assessment of the sensitivity 93 

of humidity replacement values and instrument-specific adjustments. Durre et al. (2009) analyzed 94 

trends in homogenized surface-to-500-hPa precipitable water (PW) at approximately 300 stations 95 

for the period 1973-2006. They found that the Northern Hemisphere as a whole experienced 96 

tropospheric moistening at about 0.45 mm per decade with statistical significance. The rate of 97 

moistening reached 1.94 mm per decade in the western tropical Pacific. Dai et al. (2011) were the 98 

first to perform homogenization on daily radiosonde humidity observations at the global scale. 99 

Using the archived humidity variable dewpoint depression (DPD), they quantile-matched 100 

histograms of segments of inhomogeneous data to that of the latest segment measured by modern 101 

hygrometers, assuming DPD distributions are comparable throughout the record lengths of the 102 

record. The adjusted DPD implies small changes in RH during 1973-2008.  103 

With regard to the homogenization procedure, the studies from McCarthy et al. (2009) and 104 

Durre et al. (2009) made use of reference series that are constructed from selected neighbouring 105 
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stations, while the study from of Dai et al. (2011) relies purely upon statistical techniques such as 106 

a variant of the Kolmogorov-Smironov test for changes in distributions and the penalized 107 

maximal F test for mean shifts in the occurrence frequency for discretized DPD. Regionally, 108 

Agustí-Panareda et al. (2009) showed how radiosonde humidity bias correction in the West 109 

African region can improve short-term NWP numerical weather predictionforecast. Zhao et al. 110 

(2012) assessed long-term trends in q, PW and RH over China, all of which were derived from 111 

homogenized radiosonde T (Haimberger et al., 2008) and DPD (Dai et al., 2011) data. On average, 112 

the effects of the various correction procedures act to eliminate wet biases common in early 113 

records, leading to stronger upwards trends in specific humidty (cf. Agustí-Panareda et al. (2009) 114 

where the three investigated sonde types have dry biases). In contrast, RH trends remain close to 115 

zero, largely owing to the strong coupling in the variations between temperature and moisture 116 

content.  117 

Despite having a much shorter time span, satellite observations provide critical information 118 

over global oceans that are complementary to the usually land-based radiosonde stations. Positive 119 

trends in atmospheric moisture shown in the short SSM/I record over oceans have been attributed 120 

to be of anthropogenic origins (Santer et al., 2007). Using the 10-year long merged GOME and 121 

SCIAMACHY dataset, Mieruch et al. (2008) found that trends are regionally specific, but the 122 

global average is positive. Independent satellite observations for the ice-free ocean regions yield 123 

total column water vapour trend estimates that are in good agreement with each other (Mieruch et 124 

al., 2014). Noteworthy though for satellite observations are the issues of questionable data quality 125 

under cloudy conditions and crude vertical resolution.  126 

With regard to reanalysis products, the issue of assimilating multiple data sources which 127 

introduce numerious discontinuities in the final outputs has been treated with insufficient effort 128 

(Uppala et al., 2005). When this is coupled with uncertainties in model physics, significant 129 
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identifiable problems in reanalyses emerge (e.g., Bengtsson et al., 2004). Having analyzed the 130 

homogeneity of 2m air temperature of the Twentieth Century Reanalysis, Ferguson and Villarini 131 

(2014) found that globally only ~ 40% of the grid points are free from non-climate shifts. Over the 132 

30-60° S latitudinal band, the figure lowers to an astonishing ~ 5%. In a study that analyzes the 133 

contribution of urbanization to local warming, Wang, Yan et al. (2013) found that reanalysis 134 

products cannot fully reproduce multidecadal variability in the temperature time series present in 135 

station data. Trenberth et al. (2005), Chen et al. (2008) and Carvalho and Jones (2013) all report 136 

large discrepancies in tropospheric humidity trends between their choices of reanalysis products, 137 

recommending great care be taken when using reanalyses for variability and trend studies.  138 

In light of the shortcomings in satellite observations and reanalyses, and the success of recent 139 

radiosonde data quality control initiatives (Durre et al., 2006), it seems that further improvement 140 

in the quality of radiosonde humidity observations is crucial. In this paper, we present a 141 

homogenized monthly radiosonde based q dataset for the Southw West Pacific (SWP) region and 142 

use this to develop a climatology of q and assess trends in this atmospheric moisture variable. We 143 

also make comparisons of climatology and trends with three reanalysis products. No attempt is 144 

made to offer an explanation for any observed trends in atmospheric moisture as we consider this 145 

beyond the scope of this paper. The paper complements those with an exclusive Northern 146 

Hemisphere focus (Durre et al., 2009; McCarthy et al., 2009) and can be compared with the 147 

results from Dai et al. (2011) where a very different homogenization philosophy was adopted 148 

(This this was not carried out because the data have not been made publicly available). Section 2 149 

introduces the major input datasets. Details of the homogenization procedure are given in section 150 

3. Results are presented in section 4, followed by a discussion in section 5. and cConclusions are 151 

drawn in section 56.  152 

 153 
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2. Data 154 

2.1. Quality controlled radiosonde archive 155 

Sub-daily radiosonde data over the period from the 1970s to present containing T and DPD for 156 

the surface, and mandatory as well as significant pressure levels from the Integrated Global 157 

Radiosonde Archive (IGRA; Durre et al., 2006) over the period 1970s-the present are the core 158 

inputs to this study. The IGRA archive provides quality assured data that have gone through a) 159 

fundamental sanity checks to ensure observations are plausible and do not contain level 160 

duplication, b) checks on surface elevation, c) internal consistency checks, d) checks for the 161 

repetition of values in time and in the vertical, e) climatological checks, f) additional checks on 162 

temperature and g) checks for data completeness.  163 

Also provided are station metadata which document secular changes (Sources sources of 164 

metadata are originally from Gaffen (1993), among others). Albeit not complete, this feature of 165 

the archive enables better separation of non-climatic from climatic changepoints. Despite the 166 

rigorous checks applied, some errors remain in IGRA. These are quite noticeable in the daily time 167 

series of log-q such as that shown in Figure 1. 168 

Sonde data measured at the mandatory levels for the lower to middle troposphere were 169 

considered initially, but due to a lack of data, the 1000 and 925 hPa levels were discarded. Above 170 

the 500 hPa level, the atmosphere is virtually devoid of water. Therefore only the 850, 700 and 171 

500 hPa levels were retained for homogenization. The raw hourly data were firstly converted from 172 

UTC to local time, and then averaged into daily daytime (between 0900 and 2000) and nighttime 173 

(between 2100 and 0800) means. Secondly, standard equations were used to compute q from 174 

pressure, T and DPD. Thirdly, Tukey’s biweight robust mean estimator, which is resistant to the 175 

influence of outliers and is more efficient in estimating sampling variability (Lanzante, 1996), was 176 
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used to compute the monthly means of T and q given that there are at least 14 days of 177 

observations in each variable within a month.  178 

A total of 42 stations that are located within the 95°° E-225°° E and 15°° N-70°° S region were 179 

selected (Figure 2). Among them, 33 stations have a minimum record of 25 years and no more 180 

than 15% missing observations (Class A in Figure 2) while the other 9, having on average 27% 181 

missing observations failed to meet these criteria but are still included (Class B in Figure 2). We 182 

stress that this decision is necessary, because the very limited radiosonde data in the SWP deems 183 

any available data valuable failed to meet these criteria but are still included for a more even 184 

geographical coverage. Eighteen stations have both daytime and nighttime launches, 15/9 have 185 

only daytime/nighttime launches.  186 

 187 

2.2. Homogenized radiosonde temperature data 188 

The homogenization procedure relies on the use of homogeneous station qs and hence T time 189 

series (see section 3.3). We found that tThe Radiosonde Observation Correction Using Reanalyses 190 

(RAOBCORE) is among the most suitable dataset for this purpose developed and frequently 191 

updated by Haimberger and his team (Haimberger, 2007; Haimberger et al., 2012) is deemed 192 

suitable for this purpose. Not only is it spatiotemporally more homogeneous, but more 193 

importantly, it is based on the same source data – IGRA. Version 1.5.1 of the RAOBCORE data 194 

for the 42 stations is used here. Over the years RAOBCORE has been through a series of 195 

algorithm and methodological improvements, and intercomparison with other sources of data has 196 

confirmed its general quality (Haimberger, Tavolato et al. 2008). Despite known unresolved 197 

discontinuities in the final products, such as unrealistic upper tropospheric T trends over the 198 

former Soviet Union and a few remote stations (Haimberger, Tavolato et al. 2012), most likely in 199 

the earlier part of the record, we still have faith in RAOBCORE because a) low-level tropospheric 200 
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T data (the focus of the study) are not particularly inhomogeneous compared with the scarcer and 201 

more instrument-sensitive upper tropospheric T data, and 2) the uncorrected T inhomogeneities 202 

should have a random structure which is unlikely to lead to systematic problems in pseudo-q and 203 

thus the broader homogenization procedure. The only caveat is that trend estimates for qadj are 204 

likely to be conservative, meaning that the downward tendeancies sometimes present in the 205 

radiosonde data are not completely adjusted, leaving what would otherwise be more positve trends 206 

flatter.  207 

RAOBCORE data consist of 16 pressure levels for 00UTC and 12UTC. They are available as 208 

gridded files with 10°×5° resolution for the period 1958-2011, or as station files with time span 209 

depending on the length of the individual station data but generally covering the early 1970s to the 210 

present. RAOBCORE uses the IGRA radiosonde data as inputs, which is the same as the current 211 

study. Not only is it spatiotemporally more homogeneous, but more importantly, it is based on the 212 

same source data – IGRA. Version 1.5.1 of the RAOBCORE data for the 42 stations is used here.  213 

 214 

2.3. Reanalysis products 215 

Humidity fields from the three third-generation global reanalysis products have been analyzed 216 

in terms of differences in climatology and trends with respect to qadj. ERA-Interim (‘ERAI’ 217 

hereafter), developed by the European Centre for Medium-Range Weather Forecasts (ECMWF), 218 

features a number of improvements compared to its predecessor ERA-40. These include a 4-219 

dimensional variational analysis, finer spatial resolution of approximately 80 km on 60 vertical 220 

levels from the surface up to 0.1 hPa, and a better representation of low frequency variability (Dee 221 

et al., 2011). The NCEP climate forecast system reanalysis (CFSR) was produced to replace the 222 

previous National Centers for Environmental Prediction/National Center for Atmospheric 223 

Research (NCEP/NCAR) reanalyses. Its key strengths include the very fine horizontal resolution 224 
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of ~ 38 km and vertical resolution of 64 levels, advanced assimilation schemes and assimilating 225 

satellite radiances instead of retrievals (Saha et al., 2010). Modern-era Retrosphective Analysis 226 

for Research and Applications (MERRA) from NASA’s Global Modeling and Assimilation 227 

Office is on the 0.5° × 0.667° grid with the highest vertical resolution of 72 levels. It was 228 

undertaken with a special focus on the representation of the hydrological cycle. Due to the use of 229 

the GEOGS-5 data assimillation system that implements Incremental Analysis Updates that 230 

gradually adjusts the model state toward the observed state, unrealistic spin down in the 231 

hydrological cycle is reduced. So far it is the only reanalysis product with closed energy and water 232 

budgets (Rienecker et al., 2011). Monthly means of q of ERAI, CFSR and MERRA were 233 

downloaded for the period 1979-present.  234 

 235 

3. Homogenization procedure 236 

A generic homogenization procedure usually involves four steps (WCDMP, 2003). Firstly 237 

screening is carried out to eliminate physically impossible values. This is followed by the 238 

construction of reference series from neighbouring stations (step 2), and identification of 239 

discontinuities in the difference or ratio series between the candidate and the reference using 240 

mainly statistical techniques (step 3). The rationale for a reference series is that it helps to 241 

distinguish natural fluctuations from spurious signals (Gaffen et al., 2000). Ideally, reference 242 

series should experience similar climatic conditions to the candidate time series under 243 

investigation (i.e., the candidate series) but include no artificial biases (WCDMP, 2003). Where 244 

station metadata are available, they are often incorporated in the changepoint identification 245 

because they provide crucial information on the dates of secular changes and hence prevent the 246 

climate record from contamination of non-climatic signals. The procedure ends with adjustments 247 

of segment means to that of the latest homogeneous segment (step 4).  248 
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.The homogenization procedure used herein is analogous to the generic homogenization 249 

procedure but only differs in minor details. Generally a homogenization procedure involves four 250 

steps (Figure 3). Firstly screening is carried out to eliminate physically impossile values. 251 

Secondly, changepoint identification using statistical techniques is performed, sometimes 252 

accompanied by metadata analysis that can provide crucial information on the dates of secular 253 

changes and hence prevent the climate record from contamination by non-climatic signals. Step 254 

three is the construction of reference series from neighbouring stations. Ideally, reference series 255 

should experience similar climatic conditions to the time series under investigation (i.e., the 256 

candidate series) but include no artificial biases (WCDMP, 2003). The difference or ratio between 257 

the candidate and the reference series is then analyzed for discontinuities. This step is essential as 258 

omitting it prevents distinguishing natural fluctuations from spurious signals (Gaffen et al., 2000). 259 

The procedure ends with adjustments of segment means to that of the latest homogeneous 260 

segment.  261 

Since the IGRA provides pre-processed data, the first step is skipped, being instead replaced 262 

by corrections for two well known sampling issues in radiosonde humidity records (see section 263 

3.1). Furthermore, as the third step, a new method of creating a reference time series that makes 264 

use of available homogenized radiosonde T data is introduced, for there is a sparse radiosonde 265 

network in the SWP due to the absence of nearby stations and possibly identical timing of 266 

changepoints within countries (see section 3.3). It is worth mentioning that it is not our intention 267 

to make instrument-specific corrections which are likely to be time, level and geographyically 268 

dependent (see Ciesielski et al. (2009), for example). Rather we make recourse to the performance 269 

of the changepoint detection method to fix these. The specifics of the current procedure have been 270 

refined multiple times so as to make it objective, automatic and applicable to incoming 271 
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inhomogeneous radiosonde humidity data in the future (provided a pseudo-q reference series can 272 

be created).   273 

 274 

3.1. Corrections for sampling biases 275 

There are two biases – under representative sampling under dry or cold conditions – that have 276 

plagued radiosonde humidity records (McCarthy et al., 2009). Between 1973 and 1993, many 277 

U.S. stations and some stations in the study region adopted the practice of recording RH less than 278 

20% as 19%, or DPD as 30° C (Ross and Elliott, 1996). The implication of having no dry 279 

observations results in an apparent drying trend up until the practice was terminated. An example 280 

for the 700 hPa level nighttime observations at Brisbane is shown in Figure 43. The abnormally 281 

high DPD=30° C occurrence during 1983-1998 indicates the prevalence of the practice in the 282 

region. Figure 5 4 maps the spatial extent of this practice. All stations in Australia, a few island 283 

stations in the Pacific and one station in the Antarctic adopted the practice. It is unclear whether 284 

the three stations located at Tahiti, Rapa (French Polynesia) and Noumea (New Caledonia) 285 

adopted this approachpractice.  286 

To account for the this missing dry observation sampling issuebias, for each pre-1995 287 

DPD=30° C occurrence, we replaced each pre-1995 DPD=30° C occurrenceit with the median of 288 

a pool of 200 randomly sampled post-1995 DPDs that are greater than 30° C, allowing 289 

conservative variations in the replaced DPDs to be generated. However, extreme dry events 290 

cannot be recovered. In comparison with the before correction distribution, a shift of the centre 291 

toward lower values and a higher density of the very low q is observed, conforming to the 292 

expected distribution of a more homogeneous record.  293 

Low humidity events are considered unreliable under cold conditions and hence are 294 

preferentially rejected in standard quality control procedures (McCarthy et al., 2009). For 295 
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example, early hygristors using that use goldbeater’s skin and films of lithium chloride, and 296 

carbon hygristors, perform poorly at tempertures below -20° C and carbon hygristors below -40° 297 

C, respectively (Smit et al., 2013). Furthermore, DPD was reported as missing when temperatures 298 

were below -40° C (Ross and Elliott, 1996). Metadata show that a large number of the stations 299 

have adopted this practice (Figure 65), although only the two Antarctic stations have recorded 300 

very low temperatures. Both issues have led to a warm sampling bias in the early part of the 301 

record.  302 

To minimize the effects of missing cold observations, we used an approach similar to that in 303 

McCarthy et al. (2009), that is, firstly, to reject daily humidity reports when more than 5% of T<-304 

40°° C occurs in a given month, and secondly, to regress the natural logarithm of monthly q 305 

against monthly T using the post-1995 data then apply the slope coefficients to estimate missing q 306 

for the pre-1995 period.  307 

 308 

3.2. Changepoint detection 309 

The Wild Binary Segmentation (‘WBS’) algorithm developed by Fryzlewicz (2014) was used 310 

for the search of multiple candidate changepoints. WBS is an improvement overbased on the 311 

standard Binary Segmentation (BS) method where changepoints are searched recursively on 312 

shorter and shorter and evenly split segments until a certain criterion is reached. Due to its low 313 

computation cost and conceptual simplicity, BS is arguably the most commonly used changepoint 314 

detection algorithm (Killick, Fearnhead et al. 2012). One advantage of WBS over BS is that a 315 

local rather than global cumulative-sum statistic (‘CUSUM’) is computed as a result of having 316 

random subsamples. In this way, the issue of the global CUSUM being unsuitable for certain 317 

multiple changepoints characteristics can be overcome. In addition, WBS is capable of finding 318 
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closely spaced changepoints. Readers may refer to Fryzlewicz (2014) for a thorough discussion on 319 

the computational, methodological and theoretical aspects of WBS. Fryzlewicz (2014) 320 

In short, the sequential steps in the search are listed below: 321 

1) Remove seasonality in q; 322 

2) Use the WBS function to obtain candidate changepoints;  323 

3) Categorize the candidate changepoints as ‘documented artificial changepoints’ if they 324 

occur within a short timeframe of those documented in metadata; 325 

4) As an interim measure, if all three information criteria (i.e., ‘strengthened Schwarz 326 

Information Criterion’, ‘Bayes Information Criterion’ and ‘modified Bayes Information 327 

Criterion’) implemented in the WBS package function agree on the changepoints, they are 328 

marked as ‘undocumented changepoints’ which can either be artificial or natural. For the 329 

sake of simplicity, the rest of the candidate changepoints are seen as false positives or 330 

secondary changepoints that entail minor level shifts; 331 

5) Both the changepoints determined from steps 3 and 4 will form segments of series that are 332 

subject to level adjustments (see section 3.3). 333 

Note that natural changepoints if any will be detected at this stage, but will not be adjusted as a 334 

result of the next step.  335 

 336 

3.3. Creation of reference time series and break size estimates 337 

Depending on the distributions of q, different linear regression models between qs and properly 338 

transformed q over the post-2005 discontinuity-free segments are fitted. They are q~qs for 339 

normally distributed q, q
1/2

~qs for right-skewed q, and q
2
~qs for left-skewed q. The two 340 

transformations have been shown to enhance the normality of data in practice.  The coefficients 341 
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from these regressions are then used to back construct so called ‘pseudo-q’ in time. The pseudo-q 342 

series serves as a reference.  343 

The regressions are successful in most cases cases as indicated by the strong and positive 344 

linearity of the relationships. The mean adjusted R
2
 is 0.5, and the mean correlation coefficients 345 

for the positive and negative relationships are 0.73 and -0.63, respectively. One example of the 346 

diagnostics of the fit is given in (Figure 76). Where no linear relationships can be established, 347 

level adjustments are carried out without using reference time series on the more certain 348 

documented artificial changepoints. We follow WCDMP’s (2003) recommendation to adjust 349 

the data to match the conditions of its most recent homogeneous section. Specifically, this is done 350 

by calculating separate means for the difference (q minus pseudo-q) series for the segments 351 

defined by the changepoints. Subsequently, the obtained means are compared by calculating their 352 

difference and the obtained adjustment value is added to the inhomogeneous part. Noteworthy are 353 

the existence of inverse relationships seen mainly at the 700 and the 500 hPa levels for areas over 354 

the western tropical Pacific. Indeed, Ross et al. (2002) found that the observed positive/negative 355 

q~T correlations at the lower/middle troposphere over the Pacific region suggests displacement of 356 

convection to other parts of the tropics hence regionally enhanced subsidence. In the free 357 

troposphere, enhanced subsidence favours stronger adiabatic warming and drying, and 358 

subsequently higher temperature observations. The lack of convection on the other hand results in 359 

lower humidity observations.  360 

 361 

4. Results 362 

4.1. Homogenization 363 

Results of changepoint detection for one station are illustrated in Figure 87. At the 850 hPa 364 

level, three changepoints that have been documented in metadata are suggested by the WBS 365 
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algorithm. The nature of these change points would be indeterminable without the metadata. At 366 

the other two pressure levels, the induced level shifts of the change points are too small to be 367 

picked up by the algorithm and hence are left intact. Through visual inspection and the assistance 368 

of metadata analysis, we feelit appears that the homogenization procedure is reasonably 369 

successful. On average, the 850, 700 and 500 hPa series have 4.9, 2.6 and 3.1 changepoints, 370 

respectively. 371 

 372 

4.2. Climatology 373 

The climatology of qadj over the period 1970s-present has a number of features that conform to 374 

the general understanding of the spatial pattern of atmospheric moisture (Figure 98). Firstly, 375 

higher moisture content is higher at low latitudes or altitudes confirms that temperature is the 376 

first-order control on the spatial configurations of moisture content, given that water is not 377 

limited, as a result of decreasing temperature poleward and upward. Secondly, it is moister over 378 

the maritime continent and the ocean than over the major land mass of Australia and the 379 

Antarctic. These two features reiterate the importance of energy and water availabilty as primary 380 

controls on atmospheric moisture content.  381 

Climatological differences between the three reanalysis products and qadj are calculated in 382 

order to evaluate the spatial and vertical discrepancies. Here a bilinear interpolation of reanalysis 383 

q to the station coordinates is implemented for fair comparison. Figure 10 9 shows that reanalysis 384 

q at the 850 hPa and the 700 hPa levels have widespread dry biases especially over the equator. 385 

These biases exhibit a latitudinal gradient, approaching zero at the southernmost stations. At the 386 

500 hPa level, the biases are positive over Australia and negative over SEA, indicating a possible 387 

overestimation of convective stability over Australia and an underestimate of moisture content 388 

over SEA. Having the largest negative climatological bias of 2.6g/kg (bottom left plot in Figure 389 
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9), MERRA is least agreeable similar to qadj and slightly drier than CFSR and ERAI at the 850 390 

hPa level. This is in contrast to the near-surface profiles of marine q in Kent et al. (2014) for 391 

ERAI and MERRA where they show global averages of q2 and q10 rose fasterare higher in 392 

MERRA relative to ERAI over the period 1989-2007. If both statements are true, it would suggest 393 

the vertical structure depicted in MERRA or ERAI is problematic.  394 

Figure 101 shows seasonal cycles of q over the parts of SEA and Australia that are covered by 395 

a relatively dense radiosonde network and from the equivalent reanalysis grid cells for the period 396 

1979-present. The seasonal cycles are remarkably alike, but the absolute bias is substantial. The 397 

most extreme bias is between qadj and MERRA for SEA at the 850 hPa level reaching an average 398 

of 4 g/kg. Over SEA the bias appears to be relatively constant regardless of season. For Australia, 399 

the bias is noticeable at the 850 hPa level. At the 700 hPa level the bias becomes negligible during 400 

austral winter, and a subdued annual cycle of all reanalysis products is seen. At the 500 hPa level, 401 

the bias reverses in sign. Also note that the biases are present even compared with the raw 402 

radiosonde q suggesting they are not due to the homogenization procedure.It is worth pointing out 403 

that even the homogenized q fails to narrow the gaps with the reanalysis q. Why the reanalysis 404 

products exhibit such large deviations from the observations in SEA deserves more attention.  405 

Of interest is what accounts for the large differences seen for the two regions. One possibility 406 

hinted at in a previous study is the change in observing system from time to time (Bosilovich et 407 

al., 2011). Given this, the datasets for the two regions were split into three periods as follows: a) 408 

before the launching of SSM/I (prior to 1987), b) the period when SSM/I has been assimilated 409 

(1987-1997), and c) the period when AMSU-A has also been assimilated (1998-2010). As the 410 

differences remain almost invariant for the three periods, the observing systems do not seem to be 411 

the main cause of the differences (not shown).  412 

 413 



 19 

4.3. Decadal trends 414 

Linear trends over the period 1970s-present for the before and after correction series are 415 

displayed in Figures 12 11 (daytime) and 13 12 (nighttime). Overall the corrections result in 416 

statistically significant and more spatially consistent trends in an increase in atmospheric moisture 417 

for the 850 hPa level and reversal of trends from negative to neutral or positive for the 700 hPa 418 

and the 500 hPa levels. Stations that show long termlong-term drying seem to be located in the 419 

vicinity of the descending limb branch of the Hadley Cell. To what extent this relates to changes 420 

in large scale atmospheric circulation is worth exploring. Willett et al. (2010) study decadal 421 

changes in surface specific humidity. They believe that although there is evident drying over the 422 

arid areas in the extratropical Southern Hemisphere, it is not entirely attributable to temperature 423 

because the Clausius-ClapeyronCC relationship is small and negative (but not significant) in this 424 

region. This conclusion implies that atmopsheric circulation which manifests itself as horizontal 425 

and vertical moisture transport may be a vital part in explaining the drying.  426 

SEA appears to have experienced moistening at the 5% significance level at the majority of the 427 

stations throughout the lower to middle troposphere. Regarding trend estimates by level, Figure 428 

14 13 shows that the spread of trend increases from the lower to the upper levels. Plausible 429 

reasons for this are discussed in section 5.  430 

Figure 15 14 shows differences in trend estimates between the reanalysis products and 431 

radiosondes. Consensus amongst reanalyses is weak at the 850 hPa level. At a number of stations, 432 

they do not even agree in the sign of change. While differences in trend estimates are generally 433 

negative for ERAI and CFSR, they are positive for MERRA. In other words, in comparison with 434 

qadj, ERAI and CFSR are characterized by either negative or weaker positive long termlong-term 435 

trends. In contrast, MERRA has steeper positive or less negative trends. From a regional 436 
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perspective, the reanalysis mean trend differences compared to the baseline qadj amount to no 437 

more than 0.1g/kg/10-yr, but the range of trend discrepancies can be as large as +/- 0.7g/kg/10-yr.  438 

 439 

5. Discussion and conclusions 440 

Homogenization of observational data is a challenging task but is necessary because it is an 441 

integral element in long termlong-term climate monitoring, and it provides valuable validation for 442 

other sources of information such as reanalysis products. Many known deficiencies in reanalyses 443 

could have errors originating from poorly bias-adjusted observations, among other things. 444 

Therefore homogeneous time series of atmospheric moisture, in this case q, used as input to 445 

reanalysis projects products should better reconcile inter-narrow the gaps in inter-reanalysis 446 

inconsistenciesy and result in betterimproved agreement with observations. To the best of our 447 

knowledge, homogenized radiosonde temperature records (but not humidity) have started to be 448 

assimilated in reanalyses (e.g., ERAI and MERRA; Andrae et al., 2004; Dee et al., 2011; 449 

Haimberger et al., 2008). This is a welcomingeed step, and should pave the waywe expect to see  450 

the same thing happening to radiosonde humidity observations for assessment of atmospheric 451 

humidity fields in reanalyses in the near future.because of the importance of this atmospheric 452 

physcial property for understanding climate system processes.  453 

The motivation for conducting homogenization of radiosonde q observations over the SWP 454 

lies in the lack of studies in this region, and hence generally lack of data for constraining models. 455 

It is worth emphasizing that however prudent we may have been in producing adjusting the data 456 

set on which this paper is based, some remaining inhomogeneities are likely to remaininevitable 457 

because knowledge regarding observational errors in radiosonde-based humidity measurements is 458 

limited (e.g., other sampling biases might have been present but unknown to us at this time). It 459 

should also be acknowledged that errors are likely to be introduced as each step in the 460 
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homogenization process makes assumptions about the configurations of the time series. For 461 

example, gradual drift in time series values cannot be easily detected, which introduces 462 

uncertainties in trend estimates. Indeed, none of the existing homogenization procedures that we 463 

are aware of deals with this problem. Moreover, although advanced statistical techniques could be 464 

applied to the homogenization problem their utility may be somewhat limited given an in-depth 465 

understanding of the characteristics of the series under investigation is required a priori. 466 

Notwithstanding these caveats, after closely scrutinizing all the time series produced in this 467 

analysisthe use of an objective changepoint detection technique, supplementary information to 468 

classify identifed changepoints, and reference series we feel confident thathas given us some 469 

confidence that the procedure has done a reasonable job in producing more reliable tropospheric q 470 

estimatesthe most outstanding changepoints have been identified by the WBS algorithm.  471 

A unique feature of our analysis is the use of qs which has has been derived from previously 472 

homogenized RAOBCORE T station data as predictors of q. Pseudo-q time series for individual 473 

stations and levels have been constructed and used as references to for the candidate q time series. 474 

In this way, we have been able to diagnose whether a particular candidate changepoint identified 475 

in the previous step is natural or artificial. Fitting a linear model between q (and its two 476 

transformations) and qs as shown in Figure 7 is in most many cases justified.  477 

When non-linearity or no notable linear pattern is present, more conservative adjustments, that 478 

is, changepoints that have been documented in metadata, have been carried out. This decision 479 

prioritizes the preservation of climate shifts at the expense of leaving some changepoints in the 480 

time series uncorrected. In contrast, adjusting for all candidate changepoints would lead to the 481 

undesirable effects of filtering out natural variability along with non-climate signals. The 482 

overwhelming consequence of this is to remove trends that we want to detect.result in excessive 483 

smoothing of natural fluctuations, which should be done only if the reason behind the choice is 484 
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compelling. Should there be inhomogeneities remaining in T or no associations between q and qs, 485 

the accuracy of the labelling of the detected changepoints (natural or artificial) is compromised. 486 

As such, one should be cautious in interpreting values at individual stations.  487 

The most intriguing result is perhaps the climatological biases of the reanalyses q. Not only are 488 

they present for different segments of the entire time period, but also systematically lower over 489 

the three pressure levels for the two regions considered herein The fact that 1) they are present for 490 

different segments of the entire time period, 2) systematically lower over the three pressure levels 491 

for the two regions considered herein (except for the 500 hPa level over SEAAustralia)., In 492 

addition, the facts that3) there is a near completethe radiosonde q record over SEA contains little 493 

missing data (hence no interpolation), and that 4) the well-known difficulties of modeling deep 494 

convection over the equatorial warm pool has been a well-known difficulty (Ricciardulli and 495 

Sardeshmukh, 2002) would imply issues in the reanalysis assimilation schemes such as 496 

eliminating or assigning small weighting to observations. Unfortunately, the ways in which 497 

radiosonde q was handled are not comprehensively documented in either CFSR or MERRA. 498 

ERAI excluded radiosonde q in extreme cold conditions and assimilated the rest without bias 499 

correction (Dee et al., 2011). Therefore the speculation regarding the way in which observations 500 

have been handled in reanalyses remains to be verified by future studies.  501 

The large humidity differences seen between the reanalyses and observations in the two 502 

regions have also been found in the near-surface marine context. A recent study by Kent et al. 503 

(2014) compared the quality of eight global marine surface q datasets including in situ 504 

observations, reanalyses and blended datasets. Although they show good agreement in the 505 

interannual variations and seasonal cycles, estimates of the mean values are substantially 506 

different, reaching a similar magnitude as in our study. Jin et al. (2015) show that near-surface q 507 

has the largest inter-dataset differences in regions with high absolute humidity. Results from these 508 
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studies and those from the current study cast doubt on the legitimacy of reanalysis-based studies 509 

of atmospheric moisture related analyses over the equatorial western Pacifc.  510 

Specific humidity at 500 hPa possesses a wide range of percentage trend estimates (Figure 511 

1413). Given the strong coupling between temperature and humidity, it is logical to ask if the 512 

spatial spread of trend is also seen in temperature. However we cannot draw any conclusion from 513 

existing studies because virtually all of them focus on spatially-averaged temperature estimates. 514 

Another possible explanation is that episodic intrusions of dry air from the stratosphere may have 515 

impacted the humidity trend at 500 hPa. As those intrusions may preferentially affect some 516 

regions more than others, the large humidity trend differences in space may be physically 517 

grounded (G. Bodeker, personal communication, March 23, 2016). Finally the spatial changes in 518 

trends could be due to This can have two interpretations, one is that the trends are less spatially 519 

uniform at the upper levels. More likely however, this is due to the poorer data quality and larger 520 

data gaps at this level, rendering a much broader range of trend estimates. This explanation would 521 

imply that even though the between-dataset trend differences for the 500 level are small (Figure 522 

1514), they are less reliable.  523 

 524 

6. Conclusions 525 

In summary, this study presents a new homogenized radiosonde q dataset for the SWP region 526 

where high-quality observations are lacking. We have implemented a procedure whch has a been 527 

succesfulreasonable performance at in identifying artificial changepoints and removing the 528 

corresponding shifts in moisture values. This has allowed some important characteristics of q to 529 

be recovered, providing much more credible long-term tropospheric humidity records. We believe 530 

that the homogenized radiosonde q, when assimilated into reanalysis, is likely to lead to a more 531 

realistic model of the hydrological cycle.  532 
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The main findings are: 1) the adjusted q observations have shown more consistent moistening 533 

trends in the lower atmosphereat 850 hPa over most of the region and a contrast at 500 hPa 534 

between the moistening in the tropics and a drying in the subtropical Southern Pacific; 2) the 535 

mean regional trend estimates from the adjusted q are 1.8%, -0.2% and 1.3% per decade for the 536 

850, 700 and 500 hPa levels, with the spread increasing from lower to upper levels, 3) compared 537 

with the adjusted radiosonde q, ERAI, CFSR and MERRA have negative biases over SEA at all 538 

three levels. Over Australia the biases are negative at 850 hPa while positive at 500 hPa with 539 

MERRA being least close to the adjusted radiosonde q. The magnitude of the bias is substantial 540 

over SEA for reasons unknown at present.  541 

Future homogenization efforts should focus on understanding the characteristics of the 542 

inhomogeneous data records as inhomogeneities come in many forms and affect the statistical 543 

properties of the data in various ways. Movereover, wiser good monitoring practices such as 544 

documenting operating procedures, instruments and other information pertinent to data 545 

interpretation should be encouraged so that climate scientists can capitalize on the rich 546 

information to and make sound conclusions concerning regarding climate variability and change 547 

accurate.  548 
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Figure 1 Time series of log-transformed daytime specific humidity at Brisbane at the 700 hPa level. 
Date of instrumental change as documented in the metadata is marked by the solid red line. 

 

 



Figure 2 Stations in the Southwest Pacific. Stations that have more complete data are plotted as dark 
blue circles as opposed to those with light blue circles which have large gaps and/or shorter records. 

 

 

Figure 3 Monthly frequency of the occurrence of DPD=30° C at Brisbane at the 700 hPa level. 



 

Figure 4 Map showing stations that had the practice (filled circles), did not have the practice (cross) of 
recording high DPD (or low RH) as 30° C. There are three stations (filled triangles) whereby the 
adoption of the practice cannot be determined under currently available information.  

 



 

Figure 5 Map showing stations that adopted (filled circle) and did not adopt (cross) the data cutoff 
practice as documented in station metadata. 

 

 

Figure 6 Scatterplot showing the relationship between qs and q (left), and normal Q-Q plot of 
theoretical versus sample quantiles (right) for station 91765 at the 850 hPa level (lat: 14.33° S; lon: 
170.72° W). 



 

Figure 7 Daytime monthly q at three levels (top: 850 hPa; middle: 700 hPa; bottom: 500 hPa) and 
positions of changepoints for station Butterworth (lat: 5.47° N; lon: 100.38° E). Filled and hollow 
triangles denote dates of documented changepoints with high and low certainty, respectively. Solid 
red lines indicate that the candidate changepoints match those documented by metadata. Brown 
dashed lines indicate the candidate changepoints are agreed by all three information criteria, and the 
golden dashed lines indicate agreement by two information criteria only. 



 

Figure 8 Climatology of qadj (g/kg) from radiosondes at three pressure levels. 



 

 

Figure 9 Mean climatological differences between CFSR (top), ERAI (middle), MERRA (bottom) and qadj. 



 

 

Figure 10 Seasonal cycle of q over Australia (left) and Southeast Asia (right). 

 



 

Figure 11 Long-term linear trends in monthly daytime q (g/kg/10-yr) for the before (top panel) and 
after (bottom panel) adjustment data. Filled circles indicate that the trends are statistically significant 
at the 5% level. Open circles indicate the trends are not significant.  

 



 

Figure 12 Same as Figure 11 except for nighttime data. 

 



 

Figure 13 Trend estimates for the radiosonde data in percentage change per decade. The bars indicate 
the means (dots in the centre) and the standard errors (ends of the bars) of the trend estimate. Intervals 
coloured in blue and red are for the before and after correction estimates, respectively.  

 



 

Figure 14 Differences in decadal trend estimates between CFSR (top), ERAI (middle), MERRA (bottom) and qadj.  
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