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Thermally-nucleated self-assembly of water and
alcohol into stable structures at hydrophobic
interfaces
Kislon Voı̈tchovsky1, Daniele Giofrè2, Juan José Segura2, Francesco Stellacci2,3 & Michele Ceriotti2

At the interface with solids, the mobility of liquid molecules tends to be reduced compared

with bulk, often resulting in increased local order due to interactions with the surface of the

solid. At room temperature, liquids such as water and methanol can form solvation structures,

but the molecules remain highly mobile, thus preventing the formation of long-lived

supramolecular assemblies. Here we show that mixtures of water with methanol can form a

novel type of interfaces with hydrophobic solids. Combining in-situ atomic force microscopy

and multiscale molecular dynamics simulations, we identify solid-like two-dimensional

interfacial structures that nucleate thermally, and are held together by an extended network

of hydrogen bonds. On graphite, nucleation occurs above B35 �C, resulting in robust,

multilayered nanoscopic patterns. Our findings could have an impact on many fields where

water-alcohol mixtures play an important role such as fuel cells, chemical synthesis,

self-assembly, catalysis and surface treatments.
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A
t the interface with solids, liquid molecules usually exhibit
important differences in their behaviour when compared
with bulk liquid at equilibrium. Their interaction with the

solid, together with reduced configurational entropy, often
results in a loss of molecular mobility1,2, and depending on
the system, local ordering3,4. Confinement or cooling can promote
supramolecular order at the interface. Water, for example, was
shown to form entirely new two-dimensional (2D) phases when
sandwiched between graphene sheets5,6 or on metal surface1,2,7 at
low temperature3,4,8. In ambient conditions and in the absence of
confinement, water molecules tend to remain liquid at the interface
with most immersed solids at room temperature. Their mobility,
even if reduced, does not allow for the formation of ice-like
arrangement with a stable, long-lived organized network of
hydrogen bonds5,6,9. The same holds for short alcohols such as
ethanol or methanol, whose hydrophobic moiety is too small to
enable van der Waals-based interfacial self-assembly9. Solutions
containing both water and alcohol tend to create a glassy, alcohol-
rich layer at hydrophobic interfaces10,11, but stable molecular
arrangements have only been observed at low temperatures12, and
little is known about their behaviour at room temperature. Part of
the difficulty comes from the fact that although water and alcohol
form a stable bulk solution at all concentrations, the liquid is far
from homogeneous at the molecular level13–15.

Over the last decade, a combination of experimental13–15 and
theoretical16,17 studies have established that both solvents tend to
form segregated clusters or molecular chains with alternating
water and alcohol molecules that percolate through the liquid.
These structures are highly dynamical and the liquid molecules
constantly rearrange, but some preferred molecular arrangements
can be found such as clusters, chains or even rings, depending on
the concentration of alcohol in the water13,15–17. Although
transient, these structures consistently reduce the entropy of
mixing of the solution when compared with an ideal, perfectly
homogenous mixture13. The influence of this nanoscale order on
the behaviour and molecular organization at interfaces with solids
is not known.

Here we examine the molecular organization adopted by
solutions of water and simple alcohols such as methanol and
ethanol at the interfaces with highly ordered pyrolytic graphite
(HOPG). Using in-situ atomic force microscopy (AFM) in liquid
with temperature control, we image the molecular arrangement at
the interface with sub-nanometre resolution. The AFM results are
complemented by density functional theory (DFT) and molecular
dynamics (MD) simulations of the HOPG/water–methanol
interface. The results show that water and alcohol molecules
can form stable, solid-like 2D layered assemblies that include both
types of molecules at the interface with immersed hydrophobic
solids. The structures remain stable at room temperature,
pointing to the collective effect of an extended H-bond network.
This is significant because layering of long alcohol molecules at
interfaces is usually based on van der Waals interactions18,19,
which are not strong enough to drive the self-assembly of short
alcohols such as methanol or ethanol at the interface with
immersed solids at room temperature.

Results
High-resolution atomic force microscopy. Experimentally, it is
possible to visualize solid–liquid interfaces locally, in-situ, and
with molecular resolution using amplitude modulation (AM)
AFM. Typical molecular structures formed by water and
alcohol at the surface of HOPG are visible in Fig. 1. In a
ternary mixture of water, methanol (MeOH) and ethanol
(EtOH) the interface appeared covered by a regular array of
longitudinal rows (white arrow in Fig. 1a) running in parallel.

For each row, parallel and perpendicular substructure can be
observed: several sub-rows are running in parallel, showing a
clear contrast in topography. Finer details can be observed
perpendicularly to the rows (dotted white lines in Fig. 1a), with
a periodicity of 6.1±0.2 Å (Fig. 1b).

To simplify the system and help determination of the
molecular arrangement at the interface, we explored in depth
the interface formed by HOPG and binary mixtures of water and
MeOH. The concentration XMeOH of MeOH in the water
influences the type of structure obtained. For most concentrations
studied (0.1rXMeOHr0.7), the interface developed a regular
array of longitudinal rows similar to that observed in the ternary
mixture, and with a spacing of 58±2 Å between rows (white
arrow Fig. 1c). The direction of the rows is epitaxially determined
by the underlying HOPG lattice (Supplementary Figs 1 and 2)
and they typically form domains spanning tens of micrometres,
with different domains oriented at 120� with respect to each other
(Supplementary Fig. 1). As in the case of the ternary mixture,
substructure can be observed for each row with several sub-rows
running in parallel. Although less clear, finer details can be also
perceived perpendicularly to the rows (dotted white lines, inset in
Fig. 1c). With a periodicity of 5.9±0.6 Å (Fourier analysis,
Supplementary Fig. 2), these features are too large for the HOPG
itself and can be assigned to the self-assembly of the liquid
molecules perpendicular to the direction of the main rows (along
the dotted lines in Fig. 1a,c). The alignment is confirmed by
contact-mode imaging that reveals the HOPG atomic lattice
underneath the structures (Supplementary Fig. 3).

At lower MeOH concentration (XMeOHr0.1), complex 2D
assemblies form, together with unstructured regions of the
interface (Fig. 1b). Rows can also be seen occasionally, but far
less frequently than at higher alcohol concentration, and only
covering a small fraction of the interface. The 2D structures exhibit
local periodicity but with a unit cell typically spanning several
nanometres. Working in pure water did not yield any structure or
periodic features (Supplementary Fig. 4), but exposure of the water
to MeOH vapour during imaging (not directly in contact with the
imaging water) eventually created small structured domains, some
of which exhibiting rows (Supplementary Fig. 5). Similarly,
working in pure MeOH vapour, in a sealed environment previously
dried with pure nitrogen revealed no interfacial structures (o5%
humidity, Supplementary Fig. 4).

Once formed, the structures were remarkably stable over a
broad range of temperatures. Swapping MeOH for EtOH did not
create any ordered 2D structure for a 1:1 concentration, despite
the verified presence of a stable molecular layer on the surface
(Supplementary Fig. 6), consistently with previous studies11.

The dependence of the different interfacial structures observed
on the MeOH concentration, the need for both water and MeOH,
and the absence of ordered structures in EtOH at similar
concentration all indicate that the structures are specific
molecular assemblies that incorporate both water and MeOH
molecules. Epitaxial effects from the HOPG are also important as
evidenced by the symmetry of the structures.

Atomistic and molecular dynamics simulations. To elucidate
the precise molecular organization of the structures and gain
insights into the system’s formation, we conducted atomistic
computer simulations. The size and time scales involved in the
nucleation process make it impossible to treat explicitly the
electronic structure of the problem. Instead, we opted for a
multi-scale approach, in which we first parameterized empirical
interactions based on ab initio, DFT calculations, which were
then followed by classical molecular mechanics simulations on a
much larger scale.
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We performed simulations using a super-cell geometry
comprising eight graphite layers aligned along the xy plane and
separated by the MeOH-water mixture. The simulation cell
included about 40,000 atoms (Fig. 2a). Simulations were
performed for five different XMeOH compositions, and at constant
temperature and pressure, leaving only the z direction free to
fluctuate.

We consistently observed the formation of a strongly
structured surface layer, with preferential segregation of MeOH
molecules in the first layer above the surface (Fig. 2b). The results
are qualitatively similar for all XMeOH (Supplementary Fig. 7) and
we hence only discuss here the case of XMeOH¼ 0.5. The DFT
simulation conducted on a smaller box (see Methods) produced a
density profile in good agreement with the empirical force field
results, validating our simulation strategy. We note that the
higher fraction of MeOH molecules observed here for all XMeOH

at the interface is comparable to experimental results at
the water–vacuum interface20, suggesting that the surface
segregation is a general feature of water-MeOH mixtures at
hydrophobic interfaces.

The dynamics of the first surface layer is extremely slow, with a
residence time for single MeOH molecules exceeding several tens
of nanoseconds (Fig. 2c). This dynamics is hence inaccessible to
direct first-principles simulations. A MD simulation run of 100 ns
did not capture the formation of any long-lived stable structure at
the interface. However, this does not necessarily indicate a
deficiency of the model, but rather provides an indication of the
long time scale involved in the dynamics of this system and is
consistent with the activated nature of the process by which the
experimentally observed 2D pattern is formed. We also note that
the affinity shown by MeOH for the disordered interface layer at
all concentrations might only reflect the initial stage of formation
of the structures which may subsequently differ in their final,
well-defined stoichiometry.

Although simulations cannot directly capture the formation of
the ordered pattern, they can provide important clues about its
dynamics and periodicity. First, the potential of mean force for a
water and MeOH molecules relative to the underlying HOPG
lattice shows corrugations that are very small (Fig. 2d). The
presence of weak interactions with the substrate is consistent with
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Figure 1 | High-resolution AM-AFM imaging of the HOPG–liquid interface. (a) Regular array of longitudinal rows (white arrow) obtained in a 1:1 water-

MeOH mixture spiked with o1% EtOH. Each row is composed of several B5 Å wide sub-rows running in parallel, and epitaxially following the underlying

HOPG lattice (Supplementary Fig. 3). Finer structure with 6.1±0.2 Å periodicity can also be seen perpendicular to the rows (dotted white lines), as

evidenced by the green profile in (b) where the periodicity is highlighted. (c) A similar row-like structure is visible in a 1:1 water-MeOH solution without any

EtOH. The inter-row distance (white arrow) is 58±2 Å. Magnification over a set of row (inset) shows a 5.9±0.6 periodicity perpendicular to the rows

(dotted white lines), but less marked than in (a). A profile taken along the row (blue in b) confirms the finer structure although with an amplitude B4 times

less marked than for (a). The clearer resolution with EtOH may be due to the slightly larger periodicity making the difference close to the resolution limit for

this system. The structures could be observed with different cantilevers and types of AFM. At low (B5%) MeOH concentration (d), other 2D structures

can be observed forming islands (white arrow) in an otherwise unstructured interface (purple arrow). These structures require a higher temperature to

nucleate. Magnification over these assemblies (inset) shows a network of protrusions organized in alternated rows. Along a row, the distance between the

smaller protrusions is B5.5 Å and between the larger protrusions is B11 Å. The distance between adjacent rows is B6.3 Å. The assemblies tend to exhibit

a high degree of polymorphism at the molecular level (Supplementary Fig. 2). The scale bars are 20 Å (a), 100 Å (c,d), 30 Å (c,d, inset). The purple colour

scale bar represents topographic variations of 8 Å (a), 8 Å (c), 5 Å (c, inset), 12 Å (d), and 7 Å (d, inset). The blue scale bar represent a phase variation of

15� (a), 12� (c), 10� (c, inset), 13� (d), and 16� (d, inset). The temperature is 36±3 �C (a–c) and 60±0.1 �C (d).
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the experimental observations, in particular the partial alignment
of the rows’ substructure with the underlying HOPG lattice
(Fig. 1a). Second, a remarkable degree of local conformational
ordering is visible. The in-plane oxygen–oxygen distribution
function around a given MeOH molecule demonstrates a strong
topological correlation (Fig. 2e)—the nearest neighbour of a
MeOH molecule tends to be a water molecule and vice versa,
while the second neighbour tends to be a molecule of the same
species. Wires composed of hydrogen-bonded alternating MeOH
and water molecules are present in the bulk solution13–16

(Supplementary Fig. 8), but much more pronounced at the
HOPG surface.

To identify stable 2D monolayer structures at the interface, we
used replica exchange simulations coupled with geometry optimiza-
tion at regular intervals (see Methods). By considering even the
smaller simulation cells—four MeOH and four water molecules—
hundreds of thousands of local energy minima were generated, a
clear sign of the glassiness of potential energy landscape. This large
number of inequivalent structures rendered systematic classification
difficult and we used a non-linear dimensionality reduction
technique21 to automatically cluster similar 2D structures together.
This approach allowed us to identify a specific group of structures
exhibiting consistently lower energies (Fig. 3a), all based on a
characteristic square motif formed by two water and two MeOH
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Figure 2 | MD simulations of the water-MeOH mixture at the interface with HOPG. The simulations were performed to explicitly model mixtures of

different concentrations on the surface of graphite. (a) A snapshot of the (50� 50� 150 Å) simulation supercell, using a slab geometry with periodic

boundary conditions. (b) The density profile along z for a 1:1 water:MeOH mixture shows strongly structured water and MeOH layers between 1 and 5 Å. The

distributions obtained with an empirical force field are in good agreement with reference ab initio calculations on a smaller supercell (Supplementary Fig. 6).

(c) The relaxation time for molecules in the first layer above the surface is in the order of several tens of nanoseconds. (d) The spatial distribution of MeOH is

consistent with a corrugated potential of mean force (PMF) in the xy plane, commensurate to the graphite lattice. This in-plane corrugation is however much

weaker than the potential of mean force along z (in b). (e) In-plane oxygen–oxygen distribution function around a reference MeOH molecule for water (left)

and MeOH (right). The reference MeOH molecule is centred with its OH bond aligned along the vertical axis. Water shows an increased propensity for being

in the first coordination shell while MeOH sits mainly in the second coordination shell. White dots correspond to the underlying graphite lattice. We note a

small mismatch between the characteristic length scale of the water-MeOH H-bond network and the periodicity of the HOPG surface.
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molecules (Fig. 3b,c). This molecular unit can combine in two
ways—either sharing a side, thereby forming one-dimensional
ribbons (Fig. 3b), or sharing corners (Fig. 3c).

The row structures observed experimentally can be explained
as a combination of ribbon segments oriented perpendicular to
the main rows (in Fig. 1a) and corner-sharing defects that make it
possible to relieve the mismatch between the graphite lattice and
the self-assembled layer. The main rows are due to a Moiré
pattern that originates from a mismatch between the periodicity
of the molecular arrangement along a ribbon (5.20 Å) and that of
the underlying graphite substrate (2.46 Å). The resulting Moiré
periodicity (B45 Å, Fig. 3d) is comparable to that of the row
spacing observed by AFM, and consistent with the substructure
running parallel to each row. The substructure appearing
perpendicular to each row in the AFM images can be interpreted
as single ribbons. Simulations also predict different molecular
arrangements with similar energies (Fig. 3a) due to the presence
of motifs forming basic ‘building blocks’. This is consistent
with the experimental observation of multiple regular 2D
structures (Fig. 1b) often with a high degree of polymorphism
(Supplementary Fig. 2).

While there is a remarkable consistency between simulations
and experiments, the comparison remains mostly qualitative. On
the one hand, the periodicity of the Moiré pattern is very sensitive
to the length scale of the ribbons: reducing by 1% the size of the
square repeat unit would suffice to obtain perfect agreement with
the experimentally-observed spacing of the rows. On the other
hand, the simulation of the monolayer is at constant coverage and
neglects interactions with the bulk liquid, which leads to
significant over-estimation of the spacing of ribbons in the
perpendicular direction.

A search for stable 3D or multi-layered structures by simulations
did not yield clear insight due to the large number of possible
conformations. Nonetheless, introducing the bulk solution over
some of the lowest-energy monolayer structures did not alter their
stability for several tens of nanoseconds at 280 K (effectively 30 K
above the melting temperature of the water model).

A thermally nucleated process. The slow interfacial dynamics
observed in simulations hints at a nucleation-based process that

may be observable by AFM whose time resolution is typically in
the millisecond to second domain. Experimentally, the interfacial
structures were seen to form through thermally-activated
nucleation and subsequent growth. An example of such growth is
presented in Fig. 4a–d at 40 �C. For MeOH concentrations
0.1rXMeOHr0.7 we found a nucleation temperature
Tn¼ 35±5 �C, determined as the lowest temperature where
nucleation could be observed in a matter of minutes. Higher
temperatures accelerated the process, while at lower temperatures
no nucleation was observed over hours.

During growth (XMeOHZ0.1), the whole surface becomes first
covered with row-like structures that nucleate from small islands
(Supplementary Fig. 10). The ordered layer can subsequently
develop over multiple levels if the temperature is high enough
(Fig. 4e). The higher levels often exhibit gaps and holes with edges
parallel and perpendicular to the rows, consistent with the sub-
structure presented in Fig. 1a and with the model proposed from
the simulations (Fig. 3d). To create 42 layers, it was necessary to
heat the solution above 45 �C. For XMeOH r0.1 temperatures
higher than 35 �C were needed to start the nucleation process. At
high temperatures (70 �C), the second layer could occasionally be
seen growing on the 2D lattice domains, but this layer could be
easily removed by the tip (not shown). All structures shown here
were fully stable once formed, and remained unaltered when the
sample was subsequently cooled down.

Discussion
The experimental results and the simulations provide a consistent
picture of the interface between the HOPG and the solution: the
presence of a hydrophobic surface creates layering of MeOH
molecules near the interface, with a strong topological but short-
ranged order. At lower temperatures, the interfacial liquid is
glassy and the lateral organization of molecules is mostly
amorphous. Increasing the temperature allows the system to
overcome the layer’s glassiness and a 2D self-assembly of water
and MeOH spontaneously nucleates above a system-specific
temperature Tn. The cohesion of the structures is ensured by an
extended 2D hydrogen bond network that alternates water and
MeOH molecules. This interplay between a frustrated interfacial
H-bond network and the structure of the solid surface gives rise
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Figure 3 | Catalogue of stable 2D structures for a 1:1 MeOH:water monolayer. Each structure was obtained by replica-exchange simulations (a). Each dot

represents a particular structure whose stability (energy) is colour-coded. Six representative structures (i–vi) are presented (in inset (a) and in (d)). Most

structures share a recurring water-MeOH ‘square’ motif (b) forming ribbons. The same motif exists with a corner-sharing arrangement (c), inducing

defects in the ribbon structure (d) that relieve the mismatch between the periodicity of the ribbon (5.20 Å, purple bar) and that of HOPG underneath

(2.46 Å, blue bar). This mismatch induces Moiré patterns with a lengthscale of B45 Å (white bar). The yellow-purple ribbon in (d) illustrates the degree of

mismatch using the colour scale of AFM topographic images. The distance between adjacent ribbons is typically 8.2 Å (red bar).
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to the different patterns observed, depending on the composition
of the liquid. Due to the formation of Moiré patterns with HOPG,
it is difficult to accurately derive a thickness value for the
structured interfacial layer. However, we occasionally observed a
second layer developing atop the first layer at higher tempera-
tures, with in one case up to three layers present at 55 �C
(Supplementary Fig. 11). The second and third layers were
incomplete and with many gaps, providing the opportunity to
quantify the layers thickness. We measured a value of B2.9 Å in
all cases, consistent with the proposed molecular model
(Supplementary Fig. 11b–c).

We would like to emphasize the fact that the stable structures
presented in this paper are fundamentally different in nature than
those formed by longer alcohol molecules such as dodecanol at
hydrophobic interfaces, when in contact with the liquid at room
temperature19. If the alkyl chain of the alcohol molecules is
sufficiently long, van der Waals interaction between adjacent alkyl
chains and with the hydrophobic graphite is sufficient to
spontaneously form self-assembled monolayers at the graphite–
liquid interface19. The shorter the chain, the lower the
temperature required for a monolayer to form, with pentanol
layers melting already around 200 K (� 73 �C) on graphite19. Van

der Waals-stabilized MeOH or EtOH layers would therefore not
be possible inside the liquid at room temperature; water, EtOH and
MeOH can form layers on graphite but below 200 K (ref. 9).
Long-lived stable interfacial structures were only observed under
confinement5,6,22, or at low temperature12,23. Our results show that
by incorporating both water and alcohol in the interfacial
structures, it is possible to create an H-bond dominated assembly
that is considerably more robust than those relying on van der
Waals interactions, and that thrives above 300 K. This is illustrated
by the successful use of the interfacial structures as template for
directed ionic self-assembly under an external electrical potential
(Supplementary Figs 12 and 13).

We note that in vacuum, alcohol monolayers on graphite tend to
melt at higher temperatures than in liquid, for example around
260 K for pentanol24. A ‘confinement’ of interfacial MeOH between
the graphite and the bulk water could, in principle, help explain the
observed structures and increased melting temperature. However,
since both water and MeOH are present in the structures, this
interpretation would be limited to the thermodynamics driving the
self-assembly, not the resulting structures.

AFM results show that the solid-like interfacial layer is formed
by thermal nucleation. In the presence of an ordered substrate

a b c d

e f

g

Figure 4 | Thermally-activated formation of organized water-MeOH structures. All images are phase images, displayed in the topography colour scale

only in this figure for better contrast. The full set of data is available in Supplementary Fig. 9. The growth of row domains can be followed in real time (a–d).

The temperature is 40±0.1 �C (measured in the metal piece supporting the HOPG) and the time between consecutive frames is 36 s. The edge of the

growing domain is delineated in white and indicated with a black arrow. Once the surface is fully covered with rows (blue arrow in e), the second layer of

rows (white arrow) can form on top of the first layer. Its thickness is about 2.9 Å (Supplementary Fig. 11). The process is enhanced by increasing

temperature (here 45±0.1 �C). At low MeOH concentration (here 5%) (f) higher temperatures are required to nucleate stable interfacial structures, which

do not cover the whole HOPG surface (purple arrow). Higher magnification (g) reveals the coexistence of rows (blue arrow) and 2D structures such as

those shown in Fig. 2d (purple arrow). The temperature is 60±0.1 �C in (f) and (g). The scale bars are 50 nm (a–e), 100 nm (f) and 20 nm (g).
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such as HOPG, the regular arrangement of the water and alcohol
molecules at the interface can form a Moiré pattern, a
phenomenon well-known for self-assembled monolayers on
HOPG (ref. 25). Depending on the composition of the bulk
solution, different 2D molecular arrangement can be observed at
the interface. The most common assembly (0.1rXMeOHr0.7)
nucleates around B35 �C, and subsequently grows to cover the
whole interface (Fig. 1c, Supplementary Fig. 1). The simulations
show that the observed 2D arrangements are predominately
formed by water-MeOH molecular wires lying flat and parallel on
the surface and stabilized through collective effects. Working at
lower MeOH concentration forms different patterns that do not
cover the whole interface and exhibit a high degree of
heterogeneity at the nanoscale (Supplementary Fig. 2e–f). Higher
nucleation temperatures are also required, suggesting that low
alcohol concentration favours assemblies corresponding to local
energy minima (Fig. 3a) rather than the more stable row-like
structure. The high degree of polymorphism in the molecular
arrangement could also explain the difficulty for nucleated
domains to grow over large areas.

Simulations show that the interaction potential between the
liquid and the HOPG surface is relatively weak, and the existence
of recurrent molecular motifs suggests that this type of molecular
assembly is not specific to HOPG or to MeOH, but can in
principle occur at any hydrophobic interface and with different
alcohols.

We note that the row-like structures reported here bear some
resemblance with recent reports of longitudinal nanobubbles
forming at the surface of HOPG in pure water, allegedly from
dissolved gas molecules26,27. Nanobubbles can be excluded here
considering the scale of the smallest features observed. Any
bubble that size would experience considerable Laplace pressure
and rapidly coalesce into larger bubbles26,28,29. Additionally,
thorough degasing of the water-alcohol mixture had no
noticeable effect on the structure and their formation.

In conclusion, we show that solutions containing mixtures of
water and simple alcohols can form stable, solid-like 2D
molecular assemblies at hydrophobic interfaces. The low mixing
entropy of the solution13 favours molecular arrangement that
alternate alcohol and water molecules, allowing the formation of
transient supramolecular assemblies in the bulk liquid. At the
interface with hydrophobic solids, these transient molecular
assemblies can nucleate stable structures whose integrity are
maintained by an extended network of hydrogen bonds. The
structures reported here are different from the well-known
molecular assemblies formed by surfactant or alkanes on HOPG
where the force driving the self-assembly is the van der Waals
interaction between long carbon chains and the HOPG’s surface.
In the case of surfactants, the molecules are arranged into
hemimicelles that follow the HOPG lattice30, while alkanes tend
to lie flat on the surface31 or as monolayers19, with predictable
molecular arrangement. Here neither water nor alcohol single
molecules remain permanently adsorbed at the interface between
the liquid and graphite at room temperature, but a collective
effect is necessary. This is in contrast to previous reports of
hydrogen-bonded molecular arrangement at interfaces that
involved relatively large molecules able to adsorb permanently
on the surface32.

We expect that the existence of stable water-alcohol assemblies
at hydrophobic interfaces will have important consequences for a
wide range of interfacial processes where mixtures involving
water and alcohol play a central role, for example in
electrochemical processes33, graphene-based technology
including alcohol fuel cells and catalysis34, food processing35,
health science36, chemical synthesis37, controlled molecular self-
assembly38 and surface treatment39.

Methods
Sample preparation. The liquid mixtures were prepared using HPLC-grade
alcohols (purity 499.9%) (Sigma-Aldrich, Dorset, UK) and ultrapure water
(18.2 MO, Merck-Millipore, Watford, UK). In a typical experiment, water and
alcohol were mixed with the desired proportions in a 20 ml glass vial. The vial was
first thoroughly cleaned with the alcohol of interest and subsequently with
ultrapure water and dried under a flow of nitrogen. The mixture was then degassed
by sonication for 5 min. The degasing step was conducted to limit the formation of
bubbles on the graphite surface26,27,29, but omitting the step did not lead to
significantly different results. The substrate (HOPG, SPI supplies, West Chester,
PA) was glued with epoxy resin (Araldite, RS components, UK) onto a stainless
steel disc (SPI supplies) and allowed to cure for 24 h. The HOPG was pressed
against the metal disc to obtain a satisfactory thermal contact. The HOPG was then
mounted on a hot plate and allowed to heat (4100 �C) for several minutes to
evaporate possible traces of solvent on the graphite. Before each experiment, the
HOPG surface was cleaved several times. A drop (100 ml) of liquid was deposited
on the freshly cleaved surface, and the sample immediately placed into the AFM’s
imaging cell. The imaging cell was then promptly sealed to limit evaporation
(Cypher). Such a degree of control was not possible with the Multimode AFM.

To ensure reliability of the results, experiments were reproduced in different
laboratories, using solvents from different production batches and water
purification systems.

Atomic force microscopy. All atomic force microscopy results (except Fig 1a and
Supplementary Figs 11 and 12) were obtained on a commercial Cypher ES system
(Asylum Research/Oxford Instruments, Santa Barbara, CA) equipped with
photothermal excitation and operated with the tip/sample fully immersed in liquid.
The cantilevers (Arrow UHF-AUD, Nanoworld, Neuchatel, Switzerland and
Olympus RC800 PSA, Olympus, Tokyo, Japan) were calibrated using their thermal
spectra (kB2–3 N m� 1 and kB0.7 N m� 1, respectively). The liquid cell was
thoroughly cleaned in the imaging solution before each experiment and the
graphite substrate freshly cleaved. To achieve reproducible results, it was necessary
to avoid any diffraction of the laser used to detect the motion of the AFM cantilever
over the sample (Supplementary Fig. 14). This laser being in the infrared, it can
locally heat the graphite and induce nucleation. No nucleation could be observed
over several hours of scanning, while the sample/liquid temperature was kept below
35 �C (5–35 �C). As soon as Tn was reached, small domains appeared within
minutes and started to grow with a rate depending on temperature. The AFM was
operated in amplitude modulation with working amplitudes A between 0.5 and
1 nm and a setpoint ratio A/A040.7, where A0 is the free vibration amplitude of the
tip away from the interface. In these conditions the phase lag j between the driving
vibration and that of the tip is sensitive to the behaviour of the liquid expelled by
the vibrating tip40,41. The imaging is dominated by the molecular arrangement of
the liquid at the interface with the solid with the imaging phase particularly
sensitive to variations in the molecular orientation and exposed chemical groups of
the adsorbed liquid42,43. The resolution is enhanced by short-range solvation
forces44–47 and high-resolution images could routinely be achieved. The nucleation
of interfacial structures was controlled using an in-built heating/cooling system
with an experimental accuracy better than ±0.1 �C. The temperature measured is
that of the metal part supporting the HOPG substrate. Not only temperature, but
also heating/cooling rates are measured so as to ensure thermal equilibrium is
reached. Generally, the sealed environment of the imaging cell allowed for
stable imaging at higher temperature (440 �C) for hours. Using this setup, the
nucleation process described in Fig. 4 was fully reproducible. Experiments in
pure MeOH are challenging given the solvent’s high vapour pressure, which
induced poor thermal stability. We therefore conducted experiments in saturated
MeOH vapour using a sealed cell previously dehydrated with pure nitrogen
(Supplementary Fig. 4).

A small part of the results presented (Fig. 1a and Supplementary Figs 12 and 13)
were obtained with a Multimode IIIA system (Digital Instruments, now Brucker,
Santa Barbara, CA), and a different batch of chemicals to ensure reliability of the
results. The same imaging conditions were used as with the Cypher, but without
thermal control. The interfacial structures formed after various time intervals,
probably depending on the alignment of the laser on the cantilever. An external DC
power generator (TTi instruments, Hutingdon, UK) was used for the electrical
measurement presented in Supplementary Figs 12 and 13. A contact was made
with the HOPG using silver paint and its quality was checked with an ohmmeter
(resistanceo5O). The counter electrode consisted of a copper wire looping around
the cantilever. Since the purpose of this measurement was only to serve as proof of
principle, no reference electrode was used.

Ab initio simulations. To (partially) bridge the gap between experimental and
computationally accessible time scales, we have adopted a multi-scale strategy in
which we combined empirical forcefield simulations with validation by ab initio
electronic structure calculations based on DFT. We performed all ab initio simu-
lations using the Quickstep module of the CP2K electronic structure package48. We
used the BLYP functional49,50, combined with a pseudo-potential formalism51,
expanded the valence Kohn–Sham orbitals in a DZV atomic basis set, and used a
plane-wave cutoff of 300 eV to represent the density. Dispersion corrections were
included with a semi-empirical term based on the D3 framework52. Within this
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setting, we ran ab initio molecular dynamics (AIMD) trajectories for water,
MeOH and a 1:1 water-MeOH solution on top of a graphite slab, using i-PI as the
dynamics driver53, using a time step of 1.0 fs and enforcing constant-temperature
sampling at 300 K in the NVT ensemble using a stochastic velocity rescaling
thermostat54 with a relaxation time of 20 fs. Each simulation was ran for about
100 ps, including 10 ps that were discarded for equilibration, and included four
graphite layers, with 32 atoms each, and 30 molecules.

Empirical force-field simulations. We described interactions between water and
MeOH molecules using standard potentials55–57, and used a Tersoff-kind potential
to describe interactions within graphite planes, supplemented with a Lennard–
Jones potential to model dispersion interactions between planes58,59. The
interaction between molecules and the graphite were obtained by fitting a modified
Lennard–Jones formula, where we used the standard r� 6 attractive term, and left
the exponent for short-range repulsion as a fit parameter a, together with the usual
energy and range parameters e and r, as shown in equation 1:

V r½ � ¼ 4e
s
r

� �a
� s

r

� �6
� �

ð1Þ

To describe both the position and the orientation of the molecules relative to the
surface, we included four separate terms: between the O and H of water and the C
atoms of graphite, and between the O and C atoms of MeOH and the C atoms of
graphite.

Parameters were estimated by fitting the adsorption energies, DEads, of 1,200
different geometries of a single water and a MeOH molecule adsorbed on graphite,
computed with the same ab initio set-up described above. The relative RMS error is
given by equation 2:

w2¼
X

n

1�
DEabi

ads;n

DEeff
ads;n

 !2

ð2Þ

w2 is summed over all n configurations and was minimized down to o10� 4 using
the Nelder–Mead Simplex algorithm, which we implemented in i-PI (refs 53,60).
The best-fit parameters are reported in Table 1.

Using this semi-empirical framework, we have used the MD package LAMMPS
(ref. 61) to perform about 100 ns of rigid-molecules62 MD trajectories with a time
step of 2.0 fs in the NpT-ensemble at 300 K and 1 bar, using a Nose–Hoover
thermostat63 with a relaxation time of 200 fs for the temperature and 2 ps for the
pressure.

Monolayer structure prediction and sketch-map. Monolayer minimum-energy
configurations were generated by performing 5 ns of parallel tempering64 (PT) MD,
using replicas distributed between 150 K and 450 K and different sizes supercell (for
example 4� 4, 4� 16, 8� 8, 16� 4 and 16� 16 orthorhombic cell of graphite,
with four layers along the z direction), using a full coverage of the surface at 1:1
concentration (4þ 4 molecules for the 4� 4 box, and larger numbers of molecules
for larger boxes). We stored a snapshot from all replicas every 50 ps of simulation,
and performed a conjugate gradient optimization of the monolayer energy. These
optimized structures were then processed to generate the sketch-map
representation reported in Fig. 3.

Distances between different structures were computed using a REMatch-SOAP
kernel65, with a cutoff of 5 Å, using as environment centres only the O atoms, and
using a regularization parameter of 0.01. On the basis of kernel distance we first
selected 200 landmarks using a farthest point sampling strategy, and optimized a
sketch-map21,66,67 with the parameters s¼ 0.4, A¼ 12, a¼ 2, B¼ b¼ 12. We then
projected the remaining configurations using an out-of-sample embedding
procedure.

Proximity on the map corresponds to structural similarity of the monolayer
structures. Such an intuitive representation allowed us to identify the building
blocks and assembly rules for the hydrogen-bond network of a monolayer, and the
relation with the underlying HOPG lattice.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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