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ABSTRACT
We investigate the spatial clustering of dark matter haloes, collapsing from 1σ–4σ fluctuations,
in the redshift range 0–5 using N-body simulations. The halo bias of high redshift haloes
(z ≥ 2) is found to be strongly nonlinear and scale dependent on quasi-linear scales that
are larger than their virial radii (0.5–10 Mpc h−1). However, at lower redshifts, the scale
dependence of nonlinear bias is weaker and is of the order of a few per cent on quasi-linear
scales at z ∼ 0. We find that the redshift evolution of the scale-dependent bias of dark matter
haloes can be expressed as a function of four physical parameters: the peak height of haloes,
the nonlinear matter correlation function at the scale of interest, an effective power-law index
of the rms linear density fluctuations and the matter density of the universe at the given
redshift. This suggests that the scale dependence of halo bias is not a universal function of
the dark matter power spectrum, which is commonly assumed. We provide a fitting function
for the scale-dependent halo bias as a function of these four parameters. Our fit reproduces
the simulation results to an accuracy of better than 4 per cent over the redshift range 0 ≤ z

≤ 5. We also extend our model by expressing the nonlinear bias as a function of the linear
matter correlation function. It is important to incorporate our results into the clustering models
of dark matter haloes at any redshift, including those hosting early generations of stars and
galaxies before reionization.

Key words: galaxies: haloes – galaxies: statistics – cosmology: theory – large-scale structure
of Universe.

1 IN T RO D U C T I O N

The spatial distribution of luminous galaxies is a valuable resource
for probing cosmology and the physics of galaxy formation. The
clustering of the galaxy distribution is shaped by the clustering of
the dark matter haloes which host them. The clustering of dark
matter haloes can be quantified using the halo bias which de-
scribes how dark matter haloes trace the dark matter (Kaiser 1984;
Bardeen et al. 1986; Bond et al. 1991). Conventional models as-
sume that the halo bias is related to the underlying dark matter
density field in a nonlinear and deterministic fashion (Fry & Gaz-
tanaga 1993). Mo & White (1996) showed that, on large scales,
the halo bias can be approximated as a scale-independent func-
tion of the mass of the haloes. In particular, they showed that the
clustering of dark matter haloes is proportional to that of the dark
matter with the constant of proportionality being called the lin-
ear halo bias. The approximation for the clustering of haloes using
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scale-independent, linear bias is expected to be valid on scales larger
than the virial radii of haloes where dark matter halo substructure is
not important.

However, the simple picture of a scale-independent halo bias has
been shown to be inaccurate and various nonlinear and non-local
processes result in some degree of scale dependence (Matsubara
1999; Angulo et al. 2005; Cole et al. 2005; Seo & Eisenstein 2005;
Huff et al. 2007; Smith, Scoccimarro & Sheth 2007; Angulo, Baugh
& Lacey 2008; McDonald & Roy 2009; Desjacques et al. 2010;
Musso, Paranjape & Sheth 2013; Paranjape et al. 2013). Incorpo-
rating such a scale dependence of halo bias into theoretical models
could be crucial for interpreting the clustering of galaxies. While
several studies have focused on the scale dependence of the bias on
very large scales, its scale dependence on scales larger than the typ-
ical virial radii of dark matter haloes is equally interesting. These
scales, corresponding to comoving length-scales of 0.1 to a few
megaparsecs, are smaller than scales where the matter distribution
is still linear and therefore are referred to as quasi-linear scales. The
scale dependence of halo bias on these scales arises mainly due to
the nonlinear growth of matter fluctuations (Smith et al. 2007) and
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is difficult to estimate using perturbative approaches because of the
nonlinearity of matter density field (Reed et al. 2009).

There have been studies in the literature of deviations from the
linear bias approximation on quasi-linear scales using analytic tech-
niques (Scannapieco & Barkana 2002; Iliev et al. 2003; Scannapieco
& Thacker 2005) as well as N-body simulations (Hamana et al.
2001; Diaferio et al. 2003; Cen et al. 2004; Gao et al. 2005b; Tinker
et al. 2005; Angulo et al. 2008; Reed et al. 2009; van den Bosch
et al. 2013). In particular, these studies focused on the clustering
of dark matter haloes either in the local universe (e.g. Tinker et al.
2005) or at very high redshifts before the reionization of the inter-
galactic medium (Reed et al. 2009). In general these studies showed
that the halo bias is nonlinear and scale dependent on quasi-linear
scales, but the scale dependence weakens on large scales. Specifi-
cally, Reed et al. (2009) find a strong scale dependence of halo bias
on quasi-linear scales for rare dark matter haloes at high redshift,
with the scale dependence increasing with the rarity of the halo.

The motivation of this paper is to study the clustering of dark
matter haloes with a specific focus on the scale dependence of halo
bias on quasi-linear scales. In particular, we will focus on the red-
shift range 0–5 where, to our knowledge, no such previous studies
have been carried out. This will help to gauge the amplitude, scale
dependence and evolution of the bias of dark matter haloes for 0 ≤
z ≤ 5 and hence bridge the gap between other studies which focus
on the epochs before reionization. We will address this issue using
N-body simulations to measure the dark matter and halo correlation
functions in the real space. These measurements will be used to
calibrate the nature and evolution of the nonlinear halo bias in the
redshift range 0–5 over a range of length-scales. In particular, we
find that the bias of dark matter haloes is nonlinear and scale depen-
dent on quasi-linear scales. Furthermore, it is not possible to express
this scale dependence in terms of the usual parameterizations and
therefore one has to invoke additional parameters.

The organization of this paper is as follows. In Section 2, we
compare the halo bias of rare high redshift dark matter haloes com-
puted from analytic models and simulations. In Section 3, using
simulations, we probe the scale dependence and redshift evolution
of the nonlinear bias of rare haloes in the redshift range 0–5 and
obtain a fitting function to describe these effects. We conclude with
a brief discussion of our results and their implications in the final
section.

2 C L U S T E R I N G O F R A R E DA R K M AT T E R
H A L O E S AT H I G H Z

In this section, we investigate whether the linear bias model for
halo clustering gives a good description of the clustering of high-z
dark matter haloes on quasi-linear scales. For this we first describe
the linear bias model for halo clustering in Section 2.1. In Section
2.2, we introduce the N-body simulations used in our study. The
clustering of dark matter haloes estimated from these simulations is
then compared with the clustering prediction using the linear bias
model.

2.1 The linear bias model for halo clustering

In the linear bias approximation, the cross-correlation between
haloes of mass M′ and M′′ is given by

ξhh(r|M ′,M ′′, z) = b(M ′, z)b(M ′′, z)ξmm(r, z), (1)

where ξmm(r, z) is the nonlinear two-point correlation func-
tion of matter density contrast at redshift z and b(M, z) is the

scale-independent linear bias of haloes of mass M at this redshift.
Equation (1) is valid on large scales, where density perturbations
grow linearly with redshift (Cooray & Sheth 2002). The two-point
matter correlation function is obtained by Fourier transforming the
nonlinear matter power spectrum, P(k, z) (Smith et al. 2003)

ξmm(r, z) =
∫ ∞

0

dk

2π2
k2 P (k, z)

sin(kr)

kr
. (2)

It is well known that the scale-independent halo bias can be ex-
pressed as a function of the ‘peak height’, ν(M, z) = δc/σ (M, z),
of dark matter haloes (Mo & White 1996; Sheth & Tormen 1999;
Sheth, Mo & Tormen 2001; Cooray & Sheth 2002; Tinker et al.
2010). The peak height is a measure of the rarity of haloes (Sheth
et al. 2001) with rarer haloes having larger ν(M, z). Here, δc =
1.686 is the critical density for halo collapse and σ (M, z) is the rms
linear density fluctuation on a mass scale M

σ 2(M, z) = σ 2(R, z) =
∫ ∞

0

dk

2π2
k2P lin(k, z)W 2(k, R), (3)

where R is the comoving radius of a sphere containing mass M, W
(k, R) is the Fourier transformation of the top hat window function
and Plin(k, z) is the linear matter power spectrum.

In particular, for linear halo bias, we use the fitting function of
Tinker et al. (2010) which was calibrated against N-body simula-
tions and is given by,

b(M, z) = b(ν(M, z)) = 1 − A
νa

νa + δa
c

+ Bνb + Cνc. (4)

Tinker et al. (2010) estimate the free parameters of equation (4) to
be A = 1.0, a = 0.132, B = 0.183, b = 1.5, C = 0.265 and c =
2.4. The halo bias given by equation (4) increases with increasing
ν(M, z).

We assume that dark matter haloes which can host galaxies
have a spherical overdensity � = 200 times the average density
of universe.1 Then, the virial radius r200 of a halo of mass M is
M = (4/3)πr3

200ρc�. Under the above assumptions the halo corre-
lation function is

1 + ξhh(r|M ′, M ′′, z) = [
1 + b(M ′, z)b(M ′′, z)ξmm(r)

]
× 	[r − rmin(M ′, M ′′)], (5)

where the function 	[r − rmin(M′, M′′)] incorporates halo exclusion
to ensure that ξ hh(r|M′, M′′, z) = −1 for rmin = max[r200(M′),
r200(M′′)].

The two-point correlation function of dark matter haloes in a
mass bin M′ ≤ M ≤ M′′ is given by

1 + ξhh(r|[M ′, M ′′], z) = 1

n2([M ′,M ′′], z)

∫ M ′′

M ′
dM1

∫ M ′′

M ′
dM2

× n(M ′)n(M ′′) [1 + ξhh(r|M1, M2, z)] ,

(6)

where n([M ′,M ′′], z) = ∫ M ′′
M ′ dMn(M, z) is the total number den-

sity of haloes in the mass bin [M′, M′′]. For the halo mass function,
n(M, z), we use the fitting function of Jenkins et al. (2001) which is
in excellent agreement with the mass functions obtained from the
simulations used in our study. equation (6) is a reasonable approx-
imation for the usual two-halo term for halo clustering on scales

1 Tinker et al. (2010) calibrate their fitting function for the large scale bias
as a function of �. Here, the quoted parameter values are for haloes with
� = 200.
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larger than the virial radii of dark matter haloes (Cooray & Sheth
2002).

The average bias of haloes with mass between M′ and M′′, on
scales bigger than their virial radii can be written as being scale
independent and is given by

b([M ′,M ′′], z) = 1

n([M ′,M ′′], z)

∫ M ′′

M ′
dMb(M, z)n(M, z). (7)

Using this result for the bias in equation (6), we get

ξhh(r|[M ′, M ′′], z) = b2([M ′, M ′′], z)ξmm(r, z). (8)

In what follows, we will compute the halo correlation functions for
dark matter haloes in mass bins and compare with those measured
from N-body simulations.

2.2 N-body simulations

Our study mainly uses two cosmological dark matter N-body simu-
lations, the MS-W7 simulation (Guo et al. 2013; Pike et al. 2014) and
the Millennium-XXL or MXXL simulation (Angulo et al. 2012).
The MS-W7 simulation uses a cubic computational box of co-
moving length 500 h−1 Mpc with 21603 particles of mass 8.61 ×
108 M�. This is used to probe the clustering of haloes at z = 3,
4 and 5. It adopts a flat 
CDM background cosmology, which is
in agreement with the WMAP7 results (Larson et al. 2011), with
h = 0.704, �b = 0.0455, �c = 0.2265, �ν = 0.0, σ 8 = 0.81 and
ns = 0.967.

The MXXL extends the previous Millennium and Millennium-
II simulations (Springel et al. 2005; Boylan-Kolchin et al. 2009)
and follows the evolution of 67203 dark matter particles inside
a cubic box of length 3000 h−1 Mpc. The particle mass is 8.46 ×
109 M�. This simulation adopts a 
CDM cosmology with the same
cosmological parameters as the previous Millennium simulations.
Accordingly, h = 0.73, �b = 0.045, �c = 0.205, �ν = 0.0, σ 8

= 0.9 and ns = 1.0. The MXXL haloes are used to investigate the
clustering at z = 0, 1, 2 and 3. We also compare the results obtained
using MXXL simulation at z = 3 with those obtained using the
Millennium simulation at the same redshift, which has a box of 500
h−1 Mpc.

In both simulations, groups of more than 20 particles are iden-
tified as dark matter haloes using a friends-of-friends algorithm
[FOF(0.2)] with linking parameter equal to 0.2 of the mean particle
separation (Davis et al. 1985). The halo mass functions from these
simulations are well described by the fitting function of Jenkins
et al. (2001) over a wide range of halo masses and to an accuracy
better than 10 per cent.

The two-point correlation functions of dark matter haloes and
dark matter particles from the simulations are computed by counting
the number of pairs as a function of the separation, r, relative to that
of a random distribution and is given by

ξ sim(r) = Np(r)

N
p
ran(r)

− 1, (9)

where Np(r) is the total number of pairs in the simulation separated
by a distance r to r + δr and Np

ran(r) is the total number of pairs.
As mentioned above, in this paper, we focus on the clustering

of rare dark matter haloes on quasi-linear scales in the redshift
range 0–5. Therefore, we consider only those haloes with a peak
height ν(M, z) > 1. At z ∼ 0, the typical masses of these haloes
range between 1013 and 1015 M� and therefore they correspond to
poor galaxy groups and clusters. On the other hand, for z ≥ 2, the
masses of rare haloes range from 1010 to 1013 M�. As we see later,

the scale dependence of the halo bias due to nonlinear clustering
is much more significant at higher redshifts (z = 2–5) than it is at
lower redshifts. Therefore, we first address the issue of the nonlinear
clustering of high redshift dark matter haloes on quasi-linear scales
and then its evolution in the low redshift universe.

2.3 Comparing simulations and linear bias models

We first show that the clustering strength of high-z, rare dark matter
haloes on quasi-linear scales differs significantly from the predic-
tions of the linear bias model by comparing with the spatial correla-
tion functions estimated from N-body simulations. In the top panels
of Fig. 1, the halo correlation functions estimated from simulations
(ξ sim

hh (M, r, z)) are shown at z = 2–5 for haloes in the mass range 9 ×
1010–1011 h−1 M� (black circles) and 2 × 1012 − 4 × 1012 h−1 M�
(red triangles). We note that, these haloes respectively host typical
Lyman-alpha emitters (LAEs) and Lyman-break galaxies (LBGs)
in the same redshift range (Jose, Srianand & Subramanian 2013a;
Jose et al. 2013b) and are rare haloes, collapsing from 2σ–3σ fluc-
tuations (ν(M, z) ∼ 2–3). On small scales the correlation functions
drop to −1 due to halo exclusion. These scales correspond to the
typical virial radius of haloes in the given mass bin.

Also shown in the top panels of Fig. 1 are the correlation func-
tions, ξ hh(M, r, z), predicted by equation (8) for the same cos-
mological parameters as used in the simulations. The correlation
functions are computed for haloes in the same mass bins used to
estimate ξ sim

hh (M, r, z). Fig. 1 clearly shows that ξ sim
hh (r, z) and ξ hh

(r, z) agree well with each other on large scales (r � 10–15 h−1 Mpc).
However, on quasi-linear scales (r ∼ 0.5–10 h−1 Mpc), ξ sim

hh (r, z)
determined from the simulations shows an excess compared to ξ hh

(r, z) computed using equation (8).
To understand the degree of this deviation more clearly, we have

plotted in the bottom panels of Fig. 1 the ratio of the dark matter
halo correlation functions measured from simulations to that com-
puted from the linear bias model (i.e. ξ sim

hh (r, z)/ξhh(r, z)) for each
mass bin. It is clear from the figure that, on quasi-linear scales, the
predictions of the scale-independent bias model are insufficient to
explain the halo correlation functions measured directly from the
simulations. For example, the massive haloes at the highest redshift
(2 × 1012 ≤ M/M� ≤ 4 × 1012 at z = 5) show clustering in the
simulations that is sometimes larger by a factor as large as ∼ 20 at
1 ≤ r ≤ 2 Mpc h−1, compared to the linear bias model predictions.
On the other hand, at lower redshifts and for less massive haloes
(9 × 1010 ≤ M/M� ≤ 1011 at z = 3), the clustering excess is only
a factor of 2–3 at r ∼ 0.5 Mpc h−1. Furthermore, the deviation be-
tween ξ sim

hh (r, z) and ξ hh(r, z) increases with the redshift and mass of
dark matter haloes. Overall we conclude that the halo bias of high
redshift dark matter haloes is strongly scale dependent on quasi-
linear scales and the scale dependence increases with the rarity of
the haloes.

Earlier studies focused on the nonlinear bias of haloes at the
present epoch (Hamana et al. 2001; Diaferio et al. 2003; Tinker
et al. 2005) or at redshifts before reionization (Reed et al. 2009).
The scale dependence of the nonlinear bias in the fitting functions
provided by Hamana et al. (2001), Diaferio et al. (2003), Tinker
et al. (2005) is too weak to explain the clustering of haloes at the
redshifts, masses and scales of interest here. The fitting function of
Reed et al. (2009) has a stronger scale dependence and describes
the nonlinear clustering of high redshift MS-W7 haloes correctly.
However, as we see later, their results are not consistent with the
bias measured from the MXXL simulation and also at lower red-
shifts (z = 0–2). Therefore, nonlinear clustering of rare haloes on
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Figure 1. Upper panels : the two-point correlation functions of dark matter haloes in the mass range ∼1011 − 5 × 1012 M� at various redshifts as labelled.
The points (triangles and circles) are measured from N-body simulations and the curves (solid and dotted) are analytic predictions using the linear bias
approximation with the same cosmological parameters as used in the simulations. The results at z = 2 are from the MXXL simulation and those at other
redshifts are from the MS-W7 simulation. Bottom panels: the ratio of the correlation functions measured from simulations to those computed analytically.

quasi-linear scales has not been satisfactorily addressed and thus
warrants further investigation.

3 T H E S C A L E - D E P E N D E N T, N O N L I N E A R
H A L O B I A S

3.1 The measured bias

We have shown in the previous section that, on quasi-linear scales,
high-z dark matter haloes collapsing from 2σ–3σ fluctuations clus-
ter more strongly than the predictions of the linear bias model.
Therefore, to understand the clustering of these rare haloes, one has
to invoke a scale-dependent, nonlinear bias. For this, we first define
a nonlinear, scale-dependent halo bias of dark matter haloes at any
redshift as (Scannapieco & Barkana 2002; Reed et al. 2009)

bnl(r,M, z) =
√

ξ sim
hh (r, z)

ξ sim
mm(r, z)

. (10)

Here, ξ sim
mm(r, z) is the nonlinear dark matter correlation function

computed directly from the simulations using equation (9). The
function b(r, M, z) is thus expected to be independent of r on large
scales.

We note that there are alternative definitions of the halo bias
in Fourier space and also as the ratio of the halo-matter cross-
correlation function to the matter correlation function (e.g. Tinker
et al. 2010; Manera & Gaztañaga 2011). The choice of a partic-
ular definition of the halo bias can in principle introduce a scale
dependence in the bias measured from the simulations (Baumann
et al. 2013). This scale dependence introduces a few per cent dif-
ference between the measured bias that is defined by equation (10)
and those defined by other bias definitions (Smith & Marian 2011;
Pollack, Smith & Porciani 2012). This effect is much weaker com-
pared to the strong scale dependence of the halo bias presented in

this work and hence will be neglected. We also note that bnl(r, M,
z), defined by equation (10), encapsulates the scale dependence of
the halo bias due to the nonlinear higher order correlations of the
matter distribution and also due to the scale dependence of the linear
halo bias. Thus, one can directly use bnl(r, M, z) to compute the ξ hh

at any given scale in real space using equation (5) with minimum
ambiguities, which is our primary goal.

In the previous section, we estimated the clustering of haloes in
different mass bins. However, it would be more useful if the nonlin-
ear bias could be calculated from the dark matter power spectrum.
One could then hope to apply our results in more general contexts.
Furthermore, as discussed in the previous section, we first focus on
high redshift haloes. Therefore, we measured the scale-dependent
halo bias [bnl(r, M, z)] of dark matter haloes from the MS-W7,
MXXL and Millennium simulations in bins of peak height, ν(M, z),
in the redshift range 2–5.

First, we briefly discuss the effects of resolution and the halo
exclusion effect on the estimated nonlinear bias by comparing re-
sults obtained using MXXL and Millennium haloes at z = 3. As
discussed before, these simulations have the same set of cosmo-
logical parameters, but different mass resolutions and volumes. In
Fig. 2, we have plotted the nonlinear and scale-dependent bias at
z = 3 for haloes (in a given ν bin) from the MXXL and Millennium
simulations. Also shown by the vertical line, is the length-scale cor-
responding to twice the virial radius of the most massive halo in
each sample.

We first note that in Fig. 2, the scale-dependent bias at z = 3 is
expressed as a function of ξ sim

mm(r, z) at the same redshift. This choice
has been made in several analytic and numerical studies probing
the clustering of dark matter haloes on quasi-linear scales (Hamana
et al. 2001; Scannapieco & Barkana 2002; Diaferio et al. 2003;
Tinker et al. 2005; Reed et al. 2009; van den Bosch et al. 2013).
These studies present the scale-dependent bias, bnl(r, M, z) as a
function of the nonlinear dark matter correlation function, ξ sim

mm(r, z)
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Figure 2. The halo bias b(r, M, z) = √
ξ sim

hh (r, z)/ξ sim
mm(r, z) computed at

z = 3 using Millennium and MXXL haloes in ν(M, z) bins, as indicated by
the label. The thick (blue) and thin (black) lines respectively correspond to
haloes with 2.41 ≥ ν ≥ 2.28 and 3.07 ≥ ν ≥ 2.72. The thick (blue) and thin
(black) vertical lines indicate scales corresponding to twice the virial radius
of the most massive halo in each sample.

at the same redshift. In what follows, we adopt this approach and
express bnl(r, M, z) as a function of ξ sim

mm(r, z). In this approach,
the scale-dependent bias can be thought of as a function of the
nonlinear dark matter power spectrum, since the matter correlation
function is the Fourier transform of the nonlinear dark matter power
spectrum.

It is clear from Fig. 2 that the halo bias estimated from the two
simulations agree well with one another on scales larger than twice
the virial radius of the most massive halo in the sample. However,
on smaller scales, the estimated halo bias is different between the
two simulations. Since both simulations use the same set of cos-
mological parameters, this could be due to the difference in mass
resolution between the simulations. We also note that, on the largest
scales [ξ sim

mm(r, z) < 0.05], the bias is approximately a constant. On
smaller scales, the nonlinear bias increases with decreasing scale
(increasing ξ sim

mm) and reaches a maximum value around the scale
corresponding to twice the virial radius of the most massive halo in
the sample. On smaller scales than this, the halo bias drops to 0. This
suggest that, while probing the clustering of a sample of haloes, the
halo exclusion effect is important on scales smaller than twice the
virial radius of the most massive halo in the sample. Because of
these effects due to the resolution and halo exclusion, our further
discussion and analysis will consider the clustering of a sample of
haloes only on scales larger than twice the virial radius of the most
massive halo in that sample.

We now present our estimates of the nonlinear bias from different
simulations at various redshifts in Fig. 3 as a function of ξ sim

mm(r, z).
The results measured from the MXXL simulation at z = 2 are shown
by solid black lines and at z = 3 are shown using red circles. All
the other curves at z = 3–5 are estimates of bnl(r, M, z) from the
MS-W7 simulation. Each panel corresponds to a different bin of
ν(M, z) (see labels). We again emphasize that bnl(M, r, z) at a given
redshift is plotted against ξ sim

mm(r, z) at the same redshift.

We first note that, on scales corresponding to ξ sim
mm � 0.1, bnl(r, M,

z) measured from the MS-W7 and MXXL simulations agree well
with each other. On smaller scales, the estimated bias is different
for the two simulations. The halo bias measured from the MXXL
simulation drops to zero on larger scales compared to the bias
estimated from the MS-W7 simulation. This is because, for haloes
in a given ν bin, the masses and virial radii of MXXL haloes are
larger than those of MS-W7 haloes.

3.2 A model for the halo bias

As discussed before, bnl(r, M, z) at different redshifts is fairly con-
stant for ξ sim

mm � 0.05. These scales typically correspond to comov-
ing length-scales greater than 10 h−1 Mpc. Thus on such large scales,
the expression for the nonlinear bias reverts back to the usual scale-
independent large scale bias, which is only a function of the peak
height ν alone. Therefore, one can write

bnl(r,M, z) = γ (r,M, z)b(ν), (11)

where b(ν) is the large scale bias. Here the nonlinear bias,
bnl(r, M, z), is written as the product of a scale-dependent function,
γ (r, M, z), and the large scale bias. The scale-dependent function
γ (r, M, z) is thus expected to be close to unity on large scales.

To understand the evolution of the nonlinear bias of rare haloes
with redshift, one has to calibrate the expressions for the large scale
linear bias b(ν) and scale-dependent function γ (r, M, z). In what
follows, we first obtain a fitting function for b(ν) and then constrain
the functional form of γ (r, M, z).

3.3 The large scale bias

To estimate b(ν), we measured the correlation functions of dark
matter haloes in different ν(M, z) bins in the redshift range 0–5.
These ν-bins are given in column 1 of Table 1. Also given in the
table are the average peak height, νav and average mass of haloes,
Mav, in these bins at each redshift. The average peak height is given
by νav = δc/σ av, where σ av is computed as

σ 2
av(z) =

∫
dMn(M, z)σ 2(M, z)∫

dMn(M, z)
. (12)

We define the large scale bias, b(ν), as the average bias of haloes
that are separated by 10 ≤ r ≤ 25 Mpc h−1, i.e.

b(ν) =
√√√√∫ 25

10 drr2ξhh(ν, ξ sim
mm(r))∫ 25

10 drr2ξ sim
mm(r)

. (13)

We then obtain a fitting function for b(ν) by refitting the free pa-
rameters of equation (4) to the b(ν) measured from the simulations
using equation (13). The best-fitting parameters are estimated to
be A = 1.0, a = 0.36, B = −1.156, b = 2.18, C = −0.749 and
c = 2.18, treating all bias values with equal weight.

In Fig. 4, our fit (black solid line) for b(ν) is overplotted with the
symbols measured directly from the simulation at different redshifts.
The data points at z = 0–2 are measured from the MXXL simulation
and those at z = 3–5 are obtained from MS-W7 simulation. It is clear
from Fig. 4 that our fitting function for b(ν) agrees very well with the
measurements from the simulations. In fact, we find that, the overall
agreement between the simulation results and the fitting function is
within 3 per cent. Also shown in Fig. 4 are the fitting functions for
halo bias from Sheth & Tormen (1999) (ST, red dotted curve) and
Tinker et al. (2010) (Tinker, blue dashed curve). One can see from
the figure that when ν(M) � 2, our formula compares well with
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Figure 3. The halo bias b(r,M, z) = √
ξ sim

hh (r, z)/ξ sim
mm(r, z) plotted as a function of ξ sim

mm(r, z) in the redshift range 2–5. Each panel shows the b(r, M, z) of
haloes in ν(M, z) bins, as indicated by the label. The results obtained from the MXXL simulation are shown by the solid black lines (z = 2) and red circles
(z = 3) whereas other curves corresponds to the results from the MS-W7 simulation.

these two fitting functions (particularly with the Tinker formula).
However, for larger values of ν(M), the ST formula predicts lower
bias values and Tinker formula gives slightly larger bias values
compared with our formula for halo bias. Thus for rarer haloes with
ν ≥ 2, our analysis predicts a slightly lower value for the large scale
bias compared to the Tinker formula. However, we also note that
Tinker et al. (2010) use the spherical overdensity (SO) algorithm
(Tinker et al. 2008) to identify haloes, which is different from the
FOF(0.2) algorithm used in this work. Such a difference in the
bias of haloes identified by these two algorithms has already been
noted by Tinker et al. (2008, 2010). Further, the simulations used by
Tinker et al. (2010) span a wider range of cosmological parameters
than used in this work. This could also account for the difference
between the estimated large scale halo bias.

3.4 The scale dependence of halo bias

Having obtained the expression for the large scale (r ≥ 10 Mpc h−1)
bias of rare haloes in the redshift range 0–5, we now wish to calibrate
the scale dependence γ (M, r, z) of b(r, M, z) on quasi-linear scales.
We first concentrate on the expression for γ (M, r, z) of haloes in

the redshift range 2–5. This is because, as we shall see later, γ (M,
r, z) probably has an explicit dependence on the effective matter
density �m(z) of the universe as a function of redshift. We expect to
separate out this dependence by focusing on high redshifts (z ≥ 2)
where �m(z) ≈ 1.

It is clear from Fig. 3 that the scale-dependent, nonlinear bias of
haloes (from the MS-W7 simulation) of a given ν(M, z) as function
of ξ sim

mm(r, z) and at z = 3–5, agree fairly well with each other. In
fact, in this case, the agreement between estimates of b(r, M, z) at
different redshifts is better than 10 per cent on quasi-linear scales
(r ≤ 15 h−1 Mpc). However, Fig. 3 shows that the scale dependence
b(r, M, z) of MXXL haloes for the same ν(M, z) at z = 2 and 3
(which is also expressed as function of ξ sim

mm(r, z)) is quite different
from that of MS-W7 haloes at higher redshift. Thus, γ (M, r, z),
which accounts for the scale dependence of b(r, M, z), cannot be
described as a function of just two variables, ξ sim

mm(r, z) and ν(M, z).
This suggests that the nonlinear bias on quasi-linear scales is not a
simple function of the dark matter power spectrum and any fitting
function should be a function of other parameters.

Such an explicit dependence of the halo bias on parameters
other than the dark matter power spectrum has been discussed in
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Table 1. Column 1: the ν(M, z) bins of haloes used to calibrate the nonlinear bias. Column 2: the corresponding average peak height, νav. Other
columns give the average mass, Mav, of haloes in the sample at the given redshift. If Mav is not given, then the ν(M, z) bin is not used in our analysis.
Columns 3–6 results are for MXXL haloes, columns 7–9 are for MS-W7 haloes whereas column 10 refers to Millennium haloes.

Mav/M�
(νmin, νmax) νav MXXL haloes MS-W7 haloes Millennium haloes

z = 0 z = 1 z = 2 z = 3 z = 3 z = 4 z = 5 z = 3

(3.37, 4.21) 3.77 1.9 × 1015 3.0 × 1014 6.1 × 1013 1.5 × 1013 8.0 × 1012 2.7 × 1012 7.4 × 1011 1.5 × 1013

(3.07, 3.37) 3.22 1.2 × 1015 1.8 × 1014 3.3 × 1013 7.7 × 1012 3.9 × 1012 1.2 × 1012 3.1 × 1011 7.7 × 1012

(2.81, 3.07) 2.93 8.9 × 1014 1.2 × 1014 2.1 × 1013 4.5 × 1012 2.2 × 1012 6.5 × 1011 1.6 × 1011 4.5 × 1012

(2.59, 2.81) 2.70 6.5 × 1014 8.2 × 1013 1.3 × 1013 2.7 × 1012 1.3 × 1012 3.6 × 1011 8.0 × 1010 2.7 × 1012

(2.44, 2.59) 2.52 5.0 × 1014 5.9 × 1013 9.2 × 1012 1.8 × 1012 8.0 × 1011 2.1 × 1011 – 1.8 × 1012

(2.28, 2.41) 2.34 3.7 × 1014 4.2 × 1013 6.0 × 1012 1.1 × 1012 4.8 × 1011 1.2 × 1011 – 1.1 × 1012

(2.19, 2.28) 2.23 3.0 × 1014 3.3 × 1013 4.6 × 1012 – 3.4 × 1011 8.2 × 1010 – 8.0 × 1011

(2.11, 2.19) 2.15 2.6 × 1014 2.7 × 1013 3.6 × 1012 – 2.5 × 1011 5.9 × 1010 – 6.1 × 1011

(2.03, 2.11) 2.07 2.2 × 1014 2.2 × 1013 2.9 × 1012 – 1.9 × 1011 – – 4.7 × 1011

(1.96, 2.03) 2.00 1.9 × 1014 1.8 × 1013 2.3 × 1012 – 1.4 × 1011 – – 3.6 × 1011

(1.87, 1.92) 1.89 1.5 × 1014 1.4 × 1013 1.6 × 1012 – 9.2 × 1010 – – 2.5 × 1011

(1.77, 1.81) 1.79 1.2 × 1014 1.0 × 1013 1.1 × 1012 – 5.8 × 1010 – – 1.6 × 1011

(1.69, 1.72) 1.70 9.2 × 1013 7.5 × 1012 – – – – – 1.1 × 1011

(1.53, 1.56) 1.55 5.8 × 1013 4.2 × 1012 – – – – – 4.9 × 1010

(1.30, 1.32) 1.31 2.5 × 1013 1.5 × 1012 – – – – – –
(1.12, 1.14) 1.13 1.1 × 1013 – – – – – – –

Figure 4. Our fit to equation (4) for the large scale linear halo bias (solid
black curve) along with the simulation measurements (symbols) at various
redshifts. The points for z = 0 and 2 are measured from the MXXL simu-
lation and those at z = 3 and 5 are obtained from the MS-W7 simulation.
The red dotted and blue dashed curves are the fitting functions of the linear
halo bias given by Sheth & Tormen (1999) (ST) and Tinker et al. (2010)
(Tinker), respectively.

several analytical studies (Blanton et al. 1999; Matsubara 1999;
Iliev et al. 2003; Sheth & Tormen 2004; Gao, Springel & White
2005a; Jeong & Komatsu 2009; McDonald & Roy 2009; Lazeyras,
Musso & Desjacques 2016). These studies point out that one may
potentially require an infinite number of parameters to express the
scale-dependent bias. On the other hand, most of the available fits
to the results of N-body simulations present the scale-dependent
halo bias as a universal function of the dark matter power spectrum

(Hamana et al. 2001; Diaferio et al. 2003; Cen et al. 2004; Gao et al.
2005b; Tinker et al. 2005; Reed et al. 2009; Desjacques et al. 2010).
We will now investigate whether the scale dependence of the halo
bias measured from the simulations can be expressed as a function
of additional parameters along with ξ sim

mm(r, z) and ν(M, z).
We find that adding one more parameter can account for all the

simulation results in the redshift range 2–5. That is, γ (M, r, z) at
2 ≤ z ≤ 5 can be expressed, to sufficient accuracy, as function of
three variables, ν(M, z), ξ sim

mm(r, z) and αm(z), an effective power-law
index of σ (M, z). This effective power-law index is defined as

αm(z) = log(1.686)

log[Mnl(z)/Mcol(z)]
, (14)

where the nonlinear mass scale, Mnl(z), and the collapse mass scale,
Mcol(z), at any redshift are masses at which the peak heights are,
respectively, 1.686 and 1. The parameter αm(z) can be thought of
as an effective power-law index of σ (M, z) in the mass range from
the collapse to the nonlinear mass scale (see Appendix A for more
details). The dependence of γ (M, r, z) on αm(z) can be tentatively
understood from Fig. 5, where we have plotted this ratio as a function
of z. The blue triangles at z = 3–5 are obtained for the MS-W7 and
the red circles at lower redshifts are for the MXXL cosmological
parameters. The figure clearly shows that αm(z) is nearly constant
in the redshift range 3 − 5 for the MS-W7 cosmology. However, at
z = 2 where the MXXL cosmology is used, αm(z) is larger. Such
a difference is perhaps related to the departure from the universal
nature of nonlinear bias as a function of ν(M, z) and ξ sim

mm(r, z).
Motivated by this, we further investigated whether γ (M, r, z) can
be expressed as a function of ν(M, z), ξ sim

mm(r, z) and αm(z) and we
find that, it is indeed possible to obtain a good fit for high-σ haloes
(ν > 1). The resulting fitting function is given by

γ (ξ sim
mm, ν, αm)

=
(

1 + K0(1 + k3/αm) log
(

1 + ξ sim
mm

k1
)

νk2

)

×
(

1 + L0(1 + l3/αm) log
(

1 + ξ sim
mm

l1
)

νl2

)
. (15)
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Figure 5. The effective power-law index, αm, (equation (14)) is plotted as
a function of redshift. The blue triangles and red circles correspond to the
values obtained for the MS-W7 and the MXXL cosmology, respectively.

The free parameters are estimated to be K0 = −0.0697, k1 = 1.1682,
k2 = 4.7577, k3 = −0.1561, L0 = 5.1447, l1 = 1.4023, l2 = 0.5823
and l3 = −0.1030. In fitting equation (15), we have used the nonlin-
ear bias estimated from simulations for all ν(M, z) bins in redshift
range z = 2–5 given in Table 1. For fitting γ (ξ sim

mm, ν, αm), we con-
sidered halo correlation functions only on scales larger than twice
the virial radius of the most massive halo in the sample. Moreover,
we have restricted our analysis to r ≤ 30h−1 Mpc.

It is also important to note from Table 1 that the masses of the
haloes used in our analysis range typically from 5 × 1010 to 5 ×
1013h−1 M�. Thus, the high-σ haloes of interest are those expected
to host galaxies in the redshift range 2–5.

The expression for γ (ξ sim
mm, ν) in equation (15) is plotted (solid

line) in Fig. 6 at different redshifts as a function of ξ sim
mm(r) at that

redshift and for different values of ν(M). In Fig. 6, the results
shown at z = 2 are from the MXXL simulation and those at other
redshifts are from the MS-W7 simulation. From Fig. 6, it is clear
that the parametrization of γ (ξ sim

mm, ν, σeff ) using equation (15) fits
the whole range of data measured directly from the simulations very
well. In particular, we note that our fit is consistent with the results
from simulations to within an overall accuracy of 4 per cent. This
suggests that, it is indeed possible to find a fitting function for the
scale dependence of the nonlinear bias in the redshift range 2–5,
through ξ sim

mm, ν and αm.
In Fig. 6, we have also plotted in dotted lines, the fitting function

for γ given by Reed et al. (2009). These authors parametrized the
scale dependence as a function of the large scale bias b(ν) and
σ (r, z) as

γ (b(ν), σ (r, z)) = [1 + 0.03b3(ν)σ 2(r, z)]. (16)

It is clear from Fig. 6 that the Reed et al. (2009) fit compares rea-
sonably well with results from the MXXL and MS-W7 simulations
at z = 3–5, especially at z = 5. However, their formula is not quite
consistent with the MXXL simulation results at z = 2. This is ex-
pected, since the Reed et al. (2009) expression for nonlinear bias
of a halo of mass M at a scale r depends only on the dark matter

power spectrum through the rms linear density fluctuations on the
mass scale M and length-scale r. As noted before, such a simple
dependence cannot accurately account for the scale dependence of
the nonlinear bias seen from simulations.

3.5 The evolution of γ (M, r, z) to low redshifts

Having obtained a fitting function for γ (r, M, z) for high-z haloes
in the entire redshift range 2–5, we now include low-z data to
probe the evolution of the scale dependence of nonlinear bias from
z = 0–5. We note from Table 1 that, at z = 0 and 1, the masses of
the rare dark matter haloes used in our study ranges from 1012 to
1015h−1 M�; correspondingly they host galaxies as well as groups
and clusters.

In Fig. 7, we show γ (r, M, z) estimated from the simulations
(symbols) over the full redshift range. The data at z = 3–5 are
measured from MS-W7 and those at z = 0–2 are from the MXXL
simulation. It is clear from the figure that at lower redshifts (z = 0
and 1) the scale dependence of the nonlinear bias is rather weaker
compared to other redshifts. Such a weak scale dependence of halo
bias on quasi-linear scales at lower redshifts (z = 1) can be found
also in the analytic work of Scannapieco & Barkana (2002). In
particular, at z = 0, the halo bias increases by only ∼10 per cent
on quasi-linear scales even for the most massive and hence rarest
haloes at that redshift.

It turns out that one can obtain a fit for the nonlinear bias which
extends to redshift 0 by adding an additional parameter, �m(z), the
matter density of the universe at a given redshift as follows:

�m(z) = �m(1 + z)3

�m(1 + z)3 + �


. (17)

Thus, the evolution of γ (r, M, z) in the redshift range 0–5 can be
expressed as a function of four variables, �m(z), ν(M, z), ξ sim

mm(r, z)
and αm(z). In particular, we obtained a fitting function for γ (r, M,
z) using the nonlinear bias estimated from simulations for haloes
in bins of ν(M, z) in the redshift range z = 0–5 given in Table 1.
As before, we have used the correlation functions only on scales
larger than twice the virial radius of the biggest halo in the sample
and smaller than 30 Mpc h−1 for the analysis. The resulting fitting
function is given by:

γ (ξ sim
mm, ν, αm, �m(z))

=
(

1 + K0(1 + k3/αm) (�m(z))k4 log
(

1 + ξ sim
mm

k1
)

νk2

)

×
(

1 + L0(1 + l3/αm) (�m(z))l4 log
(

1 + ξ sim
mm

l1
)

νl2

)
. (18)

Here K0 = 0.1699, k1 = 1.194, k2 = 4.311, k3 = −0.0348, k4 =
17.8283, L0 = 2.9138, l1 = 1.3502, l2 = 1.9733, l3 = −0.1029 and
l4 = 3.1731. The fitting function in equation (18) is plotted as solid
lines in Fig. 7 along with data points measured from simulations.
Our fit is in remarkable agreement with data from all the simulations
over the entire range of redshifts from 0 to 5, peak heights and
length-scales. The overall agreement of this fit with the data from
the simulations is found to be better than 4 per cent.

3.6 Halo clustering as a function of the linear matter
correlation function

We have, so far, presented a model for the nonlinear clustering of
dark matter haloes as a function of the nonlinear dark matter cor-
relation function, ξ sim

mm(r, z), measured from the simulations. In this
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Figure 6. The scale dependence of nonlinear bias, γ (ξ sim
mm, ν, αm), measured from N-body simulations, in the redshift range z = 2–5 as a function of ξ sim

mm(r)
for haloes in the ν-bins listed in the legend. Solid lines: the fit for γ (ξ sim

mm, ν, αm) presented in this work. Dotted lines: the fitting function for γ given by Reed
et al. (2009).

section, we model halo clustering as a function of the linear mat-
ter correlation function, ξ lin

mm(r, z). This is well motivated because
ξ lin

mm(r, z) is easier to compute without uncertainties, compared to
the nonlinear matter correlation function. Thus, for all practical
purposes, it will be convenient to express the nonlinear bias as
a function of ξ lin

mm(r, z). The linear matter correlation function is
computed from the linear matter power spectrum Plin(k, z) as

ξ lin
mm(r, z) =

∫ ∞

0

dk

2π2
k2P lin(k, z)

sin(kr)

kr
. (19)

In order to model the nonlinear halo bias as a function of ξ lin
mm(r, z),

we first define bnl(r, M, z) at any given scale as

bnl(r,M, z) =
√

ξ sim
hh (r, z)

ξ lin
mm(r, z)

. (20)

The new definition of bnl(r, M, z) is similar to that given by equation
(10), but uses ξ lin

mm(r, z) instead of ξ sim
mm(r, z). Following Section 3.2,

we then express the nonlinear bias as the product of the scale-
independent large scale bias b(ν) and the scale-dependent function
γ (r, M, z) (see equation 11). A new fitting function is obtained
for the large scale bias by refitting the free parameters of equation
(4) to the large scale bias measured from the simulations. The new
best-fitting parameters are given by A = 1.0, a = 0.223, B = 1.156,
b = 2.167, C = −0.748 and c = 2.167.

As before, we find that, the scale dependence of halo bias γ (r,
M, z) can be expressed as a function of ν, αm, �m(z) and the
linear matter correlation function, ξ lin

mm. The fitting function for γ

is assumed to have the same functional form as in equation (18)
with ξ sim

mm being replaced by ξ lin
mm. The free parameters of equa-

tion (18) are then determined by fitting this equation to the data
measured from all the simulations in the redshift range 0–5. The
new best-fitting parameters of equation (18) are given by K0 =
0.000529, k1 = 1.0686, k2 = 3.4158, k3 =−204.1715, k4 = 26.9453,
L0 = 0.448, l1 = 2.128, l2 = 3.0222, l3 = 0.226 and l4 = 1.691. We
emphasize that the new fit for γ as function of ξ lin

mm agrees very well
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Figure 7. Our fitting function for the scale dependence of the nonlinear bias, γ (ξ sim
mm, ν, αm, �z

m), in the redshift range 0–5 as a function of ξ sim
mm(r) for various

choices of ν (see legend) is shown using solid lines. The N-body simulation from which results were measured along with the redshift is labelled on each panel.

with the simulation data. The overall agreement of this fit with the
data from all the simulations given in Table 1 is found to be better
than 5 per cent.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have revisited the problem of modelling the nonlinear clustering
of rare dark matter haloes, that collapse from 1σ − 3σ fluctuations,
on quasi-linear scales. In particular, we found using high-resolution
N-body simulations that the nonlinear bias of high redshift galactic
dark matter haloes is strongly scale dependent on scales ∼0.5–10
h−1 Mpc. These scales, commonly referred to as quasi-linear scales,
correspond to scales larger than the typical virial radii of dark matter
haloes. Even though we primarily focused on the clustering of dark

matter haloes in the redshift range 0–5, our results are applicable to
higher redshifts, including the cosmic dark ages before the epoch
of reionization.

First, we estimated the correlation functions of dark matter haloes
at z =2–5 from the N-body simulations, in mass bins in the mass
range 1011 − 4 × 1012 M�. These are the typical masses of dark
matter haloes that host LBGs and LAEs in the same redshift range
and correspond to rarer objects collapsing from high σ fluctuations
(Jose et al. 2013b). We then showed that, on quasi-linear scales,
there is a strong discrepancy between the halo correlation functions
computed using the scale-independent, linear halo bias and those
measured directly from simulations. This suggests that the linear
bias approximation is not sufficient to explain the clustering of
high-z, rarer dark matter haloes on quasi-linear scales.
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To quantify the nonlinear bias of dark matter haloes in this red-
shift range, we measured the correlation functions of haloes, from
simulations, in bins of halo peak height, ν(M, z). The nonlinear bias
is defined as the square root of the ratio of halo and dark matter
correlation functions (see equation 10). We found that the nonlinear
bias of a halo can be expressed as the product of the usual scale-
independent large scale bias b(M, z) and a scale-dependent function
γ (r, M, z) (equation (11)). We also obtained a fitting function for
b(M, z) which depends only on the peak height, ν(M, z), of dark
matter haloes. This fit compares very well with other formulae for
large scale bias in the literature (Sheth & Tormen 1999; Tinker
et al. 2010), especially for haloes with ν � 2, collapsing from low
σ fluctuations. For rarer haloes with larger values of ν, we obtained
a slightly lower value for the large scale bias compared to the for-
mula given by Tinker et al. (2010). However, as noted before, this
could be due to the difference between the SO and FOF(0.2) halo
finder algorithms respectively used by Tinker et al. (2010) and in our
work. Further, both studies use distinct simulations with different
cosmological parameters for calibrating the bias.

We find that, for z = 2–5, the scale dependence of the nonlinear
bias, γ (r, M, z), for haloes of mass M at any length-scale r depends
on three parameters, the peak height, ν(M, z), of haloes at mass M,
the dark matter correlation function (ξ sim

mm(r, z)) at that length-scale
and αm, an effective power-law index of σ (M) at that redshift. We
obtained a fitting function that describes the scale dependence of
γ (r, M, z) as a function of these parameters in the same redshift
range. Our fit agrees with the simulation results within an accuracy
of 4 per cent.

The scale dependence of nonlinear bias at a scale r is usually
parametrized in real space using ξ sim

mm(r, z) (Tinker et al. 2005) or
the rms linear overdensity in uniformly overdense spheres of radius
r, σ (r, z) (Hamana et al. 2001; Diaferio et al. 2003; Reed et al.
2009). Both σ (r, z) and ξ sim

mm(r, z) can be expressed as functions of
the dark matter power spectrum. However, we find that the scale
dependence of the bias, as quantified in terms of γ (r, M, z), is
not described by such parametrizations, but rather depends on the
quantity αm(z). But, to compute αm(z), one requires only the linear
dark matter power spectrum. Therefore, it can be argued that at high
redshifts (z ≥ 2) the nonlinear bias is a universal function of the
dark matter power spectrum.

We extended our analysis by probing the nonlinear bias of low
redshift, rarer dark matter haloes on quasi-linear scales, using
MXXL haloes at z = 0 and 1. Interestingly at lower redshifts, espe-
cially at z ∼ 0, the scale dependence of nonlinear bias is weaker than
at high redshifts and is within 10–20 per cent of the large scale bias
measured from simulations at any scale. We propose a fitting func-
tion for the nonlinear bias as a function of the matter density of the
universe at a given redshift [�m(z)] along with ν(M, z), ξ sim

mm(r, z)
and αm(z). Remarkably, this fitting function, calibrated using the
MS-W7 and MXXL simulations, captures the redshift evolution of
nonlinear bias for a wide range of halo masses and length-scales
within an overall accuracy of 4 per cent.

The dependence of γ (r, M, z) on �m(z) at low redshifts breaks
the universality of the nonlinear bias with respect to the linear
matter fluctuation field. Thus the observed large scale bias of any
galaxy population, which depends only on the dark matter power
spectrum through ν(M, z), will not uniquely determine the scale
dependence of the bias. This may provide an opportunity to use the
scale dependence of halo bias as a valuable tool to probe cosmology,
particularly the matter density of the universe.

We have also extended our analysis by expressing the nonlinear
bias as a function of the linear matter correlation function, ξ lin

mm(r, z).

Here also the nonlinear bias is expressed as the product of the
scale-independent large scale bias, b(M, z), and the scale-dependent
function, γ (r, M, z). We first obtained a fitting function for the large
scale bias as a function of ν(M, z). A fitting function for γ (r, M, z)
is then obtained as a function of linear matter correlation function,
ξ lin

mm(r, z), along with ν(M, z), αm(z) and �m(z). The new fit for γ

agrees with the data from the simulations within an accuracy better
than 5 per cent. We emphasize that this model parameterizes the
clustering of dark matter haloes as a function of ξ lin

mm(r, z) instead
of the nonlinear matter correlation function. Such a model could be
quite useful for practical purposes as it is easier to compute ξ lin

mm(r, z)
analytically without uncertainties compared to the nonlinear matter
correlation function.

In general, the halo bias of high redshift, rare dark matter haloes is
significantly nonlinear and scale dependent on quasi-linear scales.
On the other hand, at z = 0, this scale dependence is quite weak
and seems to be dependent on the matter density of the universe.
The nonlinear bias is expected to have interesting implications on
observations of the high redshift universe. For example, the halo
occupation distribution modelling of LBG clustering at high-z (z ≥
3) usually assumes a linear halo bias (Hamana et al. 2004, 2006;
Hildebrandt et al. 2009; Lee et al. 2009; Jose et al. 2013b). However,
at these redshifts, the typical LBGs collapse from 2σ–3σ fluctua-
tions. Hence, one has to incorporate the nonlinear bias to improve
the clustering predictions of LBGs on quasi-linear scales. Thus the
nonlinear bias could change the predicted shape of the two-point
correlations functions of high redshift LBGs and also LAEs, quasars
and even the redshifted 21 cm signals from the pre-reionization. It
would be interesting to explore the implications of the nonlinear
and scale-dependent bias in the high-z universe. To do this, one
may need to incorporate the effects of baryons on the clustering
of galaxies through the physics of galaxy formation and also of
assembly bias. This is left for future work.
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APPENDI X A : THE EFFECTI VE POW ER-LAW
I N D E X O F σ (M)

For any mass scale M, the variance of smoothed density contrast
σ 2(M) ∝ k3

MP (kM )σ 2
8 k

3+neff
M (Peebles 1980). Here neff is the effec-

tive spectral index, which is ∼− 2 on galactic scales and −1 on
cluster scales. We also have k−1

M ∼ M1/3. Thus we get

σ (M) ∝ M
−(3+neff )

6 ∝ M−α. (A1)

Given the nonlinear mass, Mnl, and collapse mass, Mcol, corresponds
to the mass scales where σ (M) is respectively 1 and 1.686, it is
possible to define an effective power-law index αm as

σ (Mcol)

σ (Mnl)
= 1.686 =

(
Mcol

Mnl

)−αm

(A2)

Thus we have

αm = log(1.686)

log(Mnl/Mcol)
= 0.2269

[
log

Mnl

Mcol

]−1

. (A3)
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