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ABSTRACT
An important factor which affects performance of solar adaptive optics (AO) systems is the
accuracy of tracking an extended object in the wavefront sensor. The accuracy of a centre-of-
mass approach to image shift measurement depends on the parameters applied in thresholding
the recorded image; however, there exists no analytical prediction for these parameters for
extended objects. Motivated by this we present a new method for exploring the parameter
space of image shift measurement algorithms, and apply this to optimize the parameters of the
algorithm. Using a thresholded, windowed centre of mass, we are able to improve centroid
accuracy compared to the typical parabolic fitting approach by a factor of 3 in a signal-to-noise
regime typical for solar AO. Exploration of the parameters occurs after initial image cross-
correlation with a reference image, so does not require regeneration of correlation images.
The results presented employ methods which can be used in real-time to estimate the error
on centroids, allowing the system to use real data to optimize parameters, without needing to
enter a separate calibration mode. This method can also be applied outside of solar AO to any
field which requires the tracking of an extended object.

Key words: atmospheric effects – instrumentation: adaptive optics – methods: data analysis –
techniques: image processing – sun: granulation.

1 IN T RO D U C T I O N

Tracking extended objects from image sequences in the presence
of noise is required in many different fields. Within astronomy it
is used in adaptive optics (AO), both for granular images of the
Sun during the day (Michau, Rousset & Fontanella 1993; Rimmele
& Radickb 1998; Scharmer et al. 2003), and elongated laser guide
stars at night (Thomas et al. 2008). Image shift measurement is also
used in other fields, for tracking biological samples (Hand et al.
2009), and video motion tracking applications.

In solar AO, Shack–Hartmann wavefront sensors (Shack & Platt
1971) with large fields of view are typically employed. The cameras
used in these sensors have large full well depths, as the instruments
are photon-noise limited. In this work, we investigate tracking ex-
tended objects using data acquired from the Swedish Solar Tele-
scope online gallery (Scharmer et al. 1999) as our wavefront sensor
images (Fig. 1), which have an rms contrast of 10 per cent. We as-
sume a photon-noise-limited camera with a signal defined as the
peak intensity above the background, and a noise level defined by
the photon noise. For camera pixels with a typical full well depth of
40 000 electrons; the signal would be 4000 electrons, with photon
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noise from 40 000 electrons, giving a signal-to-noise ratio (SNR)
of 20.

Shift measurements of extended objects in solar AO are calculated
in a two-step process (Michau et al. 2006). Initially, an integer
shift measurement is performed by locating the peak of a cross-
correlation of the image with a reference image (Miura et al. 2009).
Secondly, the sub-pixel shift is estimated. The determination of the
peak location to sub-pixel accuracy limits the accuracy to which the
shift measurement can be performed.

We concern ourselves with how to best estimate the peak loca-
tion to a sub-pixel accuracy for an arbitrarily shaped correlation
function derived from cross correlating the object with a reference
image. For point sources and the resultant Airy functions, there
are analytical methods to determine optimal parameters for peak
location at a given signal to noise ratio (SNR) (Pan, Yang & Liu
2008). However, no such analytical treatment exists for images of
arbitrary content, such as the results of a correlating wavefront
sensor. Motivated by this we developed a method to optimize the
parameters for a windowed, thresholded, centre-of-mass measure-
ment for a given SNR. We compare this technique with an an-
alytic 2D parabolic fit to the central 3 × 3 pixel region around
the correlation peak, as described in Löfdahl (2010). This method
was chosen as a comparison as its performance is similar to the
2D quadratic interpolation method, and significantly better than
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Figure 1. Image of solar granulation used as the input image in the simu-
lations. The full image is 75 arcsec × 75 arcsec. Small regions of the image
are taken and then shifted with respect to each other to artificially generate
shifts similar to the effect of turbulence of the atmosphere. One such region
is shown to the right of the full image. It has been re-sampled to the res-
olution used in the simulations, 0.4 arcsec pixel−1. Data obtained from the
Swedish Solar Telescope online gallery (Carlsson et al. 2003).

the 1D techniques (Löfdahl 2010) and Gaussian fitting algorithms
(Waldmann 2007).

2 C O R R E L AT I O N I M AG E G E N E R AT I O N

Simulations for this paper were run on images containing solar
granulation of a size, field of view and contrast typical for solar
AO, taken from the large image shown in Fig. 1 (Scharmer et al.
1999). The image was shifted and binned in order to generate im-
ages containing sub-pixel shifts using the Python language, and
numpy routines (Van der walt, Colbert & Gaël 2011). The solar
granulation case used here is an example to demonstrate the use of
the centroiding technique, though in general it should be applicable
to any extended image.

Most of the computational load in centroiding extended objects
lies in cross-correlating images. By varying parameters applied to
centroiding the correlation images, the same correlation image can
be used.

Regions of 240 × 240 pixels were taken from Fig. 1, correspond-
ing to a 9.6 arcsec2 field of view. Integer shifts were performed on
the full resolution image, with a Gaussian distribution of mean 0
and standard deviation of 1 pixel, then the resultant images were
binned by a factor of 10 and had shot noise applied, creating typi-
cal sub-aperture images of 24 × 24 pixels, making fully described
shifted images down to 0.1 pixels. These values were chosen to
be indicative of residuals in a closed loop AO system. The im-
ages, along with the known applied shifts were used to compare
the windowed 2D parabolic fit (Löfdahl 2010) and the windowed,
thresholded centre-of-mass methods.

3 PE A K LO C ATI O N O N A C O R R E L AT I O N
IMAG E

3.1 Windowed parabolic fit

A small 3 × 3 region around the peak of the correlation image can
be fitted by a 2D parabola, as described in Löfdahl (2010). The
parabola takes the form

f (x, y) = a1 + a2x + a3x
2 + a4y + a5y

2 + a6xy, (1)

where the location of the minima, in x and y, respectively, are given
analytically by

xmin = imin + (2a2a5 − a4a6)/(a2
6 − 4a3a5) (2)

ymin = jmin + (2a3a4 − a2a6)/
(
a2

6 − 4a3a5

)
, (3)

where imin and jmin are the integer positions of the peak of the
correlation in x and y, respectively, and the solution to a least-
squares fit can be found analytically

a2 = (〈s1,j 〉j − 〈s−1,j 〉j )/2

a3 = (〈s1,j 〉j − 2〈s−1,j 〉j + 〈s−1,j 〉j )/2

a4 = (〈si,1〉i − 〈si,−1〉i)/2

a5 = (〈si,1〉i − 2〈si,0〉i + 〈si,−1〉i)/2

a6 = (s1,1 − s−1,1 − s1,−1 + s−1,−1)/4, (4)

where s describes the 3 × 3 windowed region around the correlation
peak, si, j describes the ith and jth element of s, and i,j can take values
from −1 to 1 around the centre of the peak (located at s0, 0).

In high SNR the limiting error in this technique arises from the
biased sampling of the core of the correlation peak, illustrated in
Fig. 2. The sampling of the correlation peak results in a systematic

Figure 2. Measured image shift plotted against the actual shift applied to
images. The negative y shifts are plotted in panel (a) to make them easier
to distinguish. There is a ‘wobble’ apparent in the two lines, which is more
clearly visible as a systematic effect in panel (b), where the residuals are
plotted and take a ‘sawtooth’ like pattern. This aliasing effect arises from
undersampling the correlation peak.
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Figure 3. An illustrative 1D cut through a correlation peak, with the region
used by the parabolic fit highlighted in red. Using only 3 pixels around the
correlation peak, the shift estimate can be unavoidably biased away from
the true location of the peak. While panel (a) shows the ideal case for using
this method, there are some cases where the shift differs from the measured
position due to the limited size of the region used, as demonstrated in panel
(b). This is shown by the arrows above the plots, the green arrow indicates
where the parabolic centroid estimates the correlation peak, while the blue
arrow shows the true location of the peak.

rounding effect which biases the shift estimates towards integer
values. The cause of this error is apparent in Fig. 3. Here, we see the
regions windowed for use in the centroid highlighted in red. This is
a good mask for Fig. 3(a); however, centring on the brightest pixel
in Fig. 3(b) shows that the peak is being under sampled, and not
taking into account the full shape of the peak, giving an incorrect
estimate of the peak location.

3.2 Windowed, adaptive thresholding centre of mass

The simplest way to avoid undersampling the correlation peak is
to use a larger window; however, this allows more noise into the
shift estimate. The noise can be removed to some extent by using a
threshold to reject contributions from parts of the signal, of a similar
strength as the noise. For a given autocorrelation shape and noise

level, there will be an optimal window size and threshold value,
which gives the best estimate of the image shift.

Our proposed method is a two-step process. Initially, a window
is placed around the correlation peak, then a thresholded centre
of mass is taken of the windowed region. The size of the window
function and the threshold value are variable for each set of images.
The threshold value is taken as a fraction of the relative peak in-
tensity (max–min of the whole correlation image). Re-normalizing
intensity for every image is sympathetic to the shape and size of the
correlation peak, and ensures that proportionally the same amount
of the core of the peak is used in every measurement of the image
shift, reducing bias effects.

The correlation image initially has a threshold applied, where
pixels are rejected if their intensity falls below the threshold level,
defined by

Ithresh < (Imax − Imin) × pct, (5)

where Ithresh is the threshold intensity, Imax is the maximum in-
tensity in the correlation image, Imin is the minimum intensity of
the correlation image and pct is the fractional threshold value. The
thresholded correlation image then is masked to the chosen window
size and is background subtracted, where the background value is
the threshold intensity. The centroid estimate of image i, using a
reference image r, can be described as a vector Ri,r :

Ri,r =
[

x0

y0

]
, (6)

where x0 and y0 are the x and y components of the centroid estimate
Ri,r . Ri,r is calculated using

Ri,r = 1

I

ymax∑
y=1

xmax∑
x=1

Ix,y Ri,r
x,y , (7)

where I is the total intensity of the correlation image, Ix, y is the
intensity of pixel x, y in the correlation image with the threshold
applied and Ri,r

x,y is the vector position of [x, y] in the correlation
image.

The size of the window is a relatively small parameter space to
explore, going from a single pixel around the core (corresponding
to an integer shift measurement), to the wings of the correlation
peak succumbing to background noise. If any larger boxes are used,
a drop off in performance is seen as more noise is included in the
centroid estimate, without any extra useful information being added.
The outer threshold for this parameter needs to be set arbitrarily.
If too small a window is used, a similar effect to the windowed
parabolic fit is seen, in that the measurements are biased towards
integer shifts. The optimum window size is chosen as a trade-off
between including as much of the correlation peak as possible, but
also minimizing the number of pixels which only contribute noise
to the measurement.

The centroid threshold value is normalized such that a value of 1
uses only pixels with the maximum flux and a threshold of 0 uses all
available pixels. This parameter behaves similarly to the window
size, in that using more pixels increases the noise contribution,
reducing the accuracy of the shift estimate. Using high thresholds
gives rise to a bias towards integer shift measurements, similar to
that seen in the parabolic fit. The optimum threshold value lies
somewhere between these two regimes, and is liable to change
depending on the window size. This means the whole parameter
space needs to be explored for all window sizes to identify the
best combination of parameters for the centroids. We optimize the
threshold and window size for a set of images, which all use a
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common reference image. The parameters then only need to be
updated when the reference image is changed to take into account
slow changing effects, such as the evolving granulation pattern on
the solar surface.

The optimum set of parameters will depend on a number of
different obvious factors, including the image shape, the shape of the
resulting correlation function and the SNR of the images, assuming
an arbitrary unknown correlation shape. There is no obvious analytic
way to determine the best parameters for a given set of images, or
circumstances, hence we explore the parameter space to find the
optimal solution. However once the optimum set of parameters is
found for a given object, at a set SNR level, then it should be constant
until one of these factors changes. In solar AO the regions used for
wavefront sensing are constantly evolving, causing the reference
image used to be updated on a frame by frame basis. This also
means that over time the optimum parameters are subject to change
and need to be updated. As the parameters chosen are based on
normalized intensity, they are insensitive to changes in flux for a
given SNR, such as scintillation effects.

3.3 Error estimation

Given a set of shifted images of matching content and SNR, it
is possible to make multiple independent estimates of the image
shift. By comparing the spread of the shift estimates we can get
an estimate of the error on the shift measurement. Using different
reference images allows us to estimate the shift in the image multiple
times; we can then use the standard deviation of the shift estimates
as an indicator of the error on the shift estimate. As this is a statistical
process, the estimated error will not be accurate for the shift estimate
of a single image in the set. However when averaged over the set of
images, we can estimate the magnitude of the shift error on the set.

This set of images may be drawn from a single temporal wave-
front sensor frame in AO, guaranteeing spatial similarity of the
images. Alternatively the set could be drawn from a time sequence
in correlation video tracking. Care must be taken that the object does
not change its spatial characteristics significantly over the duration
of the set.

We use multiple different reference images, e.g. using the first 10
sub-aperture images in the wavefront sensor frame, and use each
of them as a reference to estimate image shifts. The global tip/tilt
terms are then removed to compensate for the systematic error in
shift estimation, due to the unknown shift applied to the reference
image. This is a common practice in AO systems to negate effects
like wind shake from measurements. The subtraction of the global
tip/tilt term can be described with

Rr
t/t = Rr − 〈Rr〉r , (8)

for a given reference image, where Rr
t/t is the centre-of-mass es-

timate of a set of images with tip/tilt removed, and 〈Rr〉r is the
averaged tip/tilt term over all of the images using a given reference.
This removes the shift due to each of the reference images, mak-
ing the centroid estimates from different reference images directly
comparable. The standard deviation of the resultant shifts estimate
the error, σRr

t/t
. This method of estimating centroiding errors allows

for the parameter space to be explored on real data, where the actual
shifts are unknown, and not just on simulated data.

4 R ESULTS

The full parameter space was explored in simulation for a range of
threshold values and window sizes applied to the correlation images.

Figure 4. Full parameter space for the box size and threshold value in the
centre-of-mass algorithm. Panel (a) shows the real error associated with
the parameters used in the centre-of-mass technique, and panel (b) gives
the error estimate taken from the standard deviation on centroids using
multiple reference images. The shape of the two plots is similar, indicating
multiple references is a suitable estimator of the error. The white spots on
the plot show where the optimum parameters lie for the respective methods.
The estimated error position does not directly overlap with the location
of the real minima, but it can be seen that the difference in error is minimal.

Fig. 4(a) shows the magnitude of residual errors for different sets of
parameters. Fig. 4(b) shows the standard deviation of the centroid
measurements using 10 different reference images. This has the
same characteristics as the real error values, showing it can be
used to estimate the location of the optimum parameters for the
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Figure 5. Panel (a) shows how the optimum threshold value is affected by
different SNR levels. Panel (b) shows how the window size affects the error
on the centroid estimate for different SNR levels. Above an SNR of 5 the
curves no longer change, staying at their high SNR shapes.

centroiding algorithm. The optimal parameters from each of the
methods are highlighted with a white marker.

In the thresholding axis (x) of Fig. 4 it is possible to see the effects
of aliasing towards the large thresholding values on the right of the
plots. This effect is similar to the aliasing in the parabolic fit, and
in all cases the error approaches that of integer pixel estimation, as
at the largest threshold value only the brightest pixel is considered,
equivalent to an integer pixel shift estimation.

In the window size axis (y) of Fig. 4 the structure is more com-
plicated. Initially the aliasing is apparent for small window sizes,
similar to the parabolic fit. This problem decreases as the window
size increases, until its optimal region. However the performance
begins to degrade again for large windows for low thresholding
values. This happens where the region is so large that as well as
including all of the peak of the correlation, it includes increasing
amount of noise, which is not filtered out by the thresholding.

The centroid optimization was performed on a range of differ-
ent noise levels (using photon noise) to demonstrate how noise
affects the centroid estimates. The parameters dependence on SNR
is demonstrated in Fig. 5, with Fig. 5(a) showing how the threshold
level affects the accuracy of the centroid estimates, and Fig. 5(b)
illustrating how changing the window size affects the accuracy of
the centroid estimates. The estimation was performed on 10 differ-

Figure 6. Panel (a) shows the optimal thresholding value for the different
SNRs of the images used in the centroiding. Initially the thresholding is
high, to remove as much noise as possible from the correlation image, then
the thresholding drops to its optimum value for images which have low
noise. Panel (b) shows the box size for the different SNR levels. This shows
a similar trend, of increasing window size at high SNR, using more pixels
when the noise is reduced. At low SNR the estimated parameters disagree
with the true optimal parameters, but this disagreement decreases at higher
SNR.

ent regions of the granule image, with the errors taken to be the
standard error.

The optimal values for the parameters varied with SNR as can be
seen in Fig. 6. Fig. 6(a) shows the optimal thresholding values for
the various SNR levels, both best performing and the best estimated.
The estimated threshold levels differ from the true value up to an
SNR of 2, where the estimated threshold value is consistent, and in
a region where small variations have little effect on the accuracy of
the shift estimate. This trend is also seen in Fig. 6(b), at low SNR
levels the estimated box size is larger than the actual optimal value,
but at higher SNR levels they agree more.

The optimal parameters for thresholding and window generally
reduce the number of pixels used in the centroid in low SNR
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conditions by using small thresholds and small window sizes to
reduce the amount of noise in the centroid. At higher SNR values
the parameters stabilize for a given set of images to give the most
accurate shift estimate.

Our technique fails in the low SNR regime. This is due to the
different sources of noise in the correlation image, and our sampling
of them. The simplest way to do this is to have the images and their
noise terms separate, as in equation (9):

Im = Imsignal + Imnoise

Ref = Refsignal + Refnoise,
(9)

where Im represents the overall image being centroided, Imsignal

describes the signal in the image and Imnoise describes the noise
associated with the image, in our case shot noise. Ref follows similar
definitions for the reference image. When combined, assuming a
linear regime, the correlation image has four terms:

Corr = Corr[ImsignalRefsignal ] + Corr[ImsignalRefnoise ]

+ Corr[ImnoiseRefsignal ] + Corr[ImnoiseRefnoise ], (10)

where Corr is the total signal in the correlation image, with the
contributing factors all described to the right. If we assume that the
contribution of Corr

[
ImnoiseRefnoise

]
is negligible, then there are two

remaining error terms which affect our estimate of the cen-
troid. However by taking an average over different references
in our estimate of the error, we are in effect averaging out the
Corr

[
ImsignalRefnoise

]
term. This term becomes more dominant at lower

SNR levels, hindering the performance of our technique. There are
other methods of estimating the error of a centroid on an extended
object, such as Saunter (2010), which do not have this problem, but
this requires an oversampling of the correlation peak, something
avoided in AO to reduce data rates and computation time.

The overall performance of the centoriding techniques for the
different SNRs is shown in Fig. 7. For high SNR, the best per-
formance is given by the thresholded, windowed centre-of-mass
measurements, with little difference between the theoretical best
performance and the performance derived from error estimation.
The overall boost in accuracy is three times for the high SNR. For
SNR below 1, the windowed parabolic fit outperforms the thresh-
olded, windowed centre-of-mass method. This could be due to the
crude error estimator implemented here and it may be possible to
improve this using other error estimation techniques (Saunter 2010).
However this still could only bring the performance back to the level
of the 2D parabolic fit at best. Our technique is best suited to high
SNR regimes.

5 C O N C L U S I O N S

We have demonstrated that for tracking extended sources, a method
of error estimation allows different centroiding parameters to be
explored on real data, allowing for the optimum parameters to be
chosen. While this does take extra computation, the correlation im-
ages only needs to be generated once for each reference, minimizing
the increase in computation effort required. Also once the optimum
set of parameters has been found, they should hold as the best
parameters until something in the system changes, i.e. a change
of target, or reference image. The parameters for the centroiding
algorithm should be updated regularly to keep it optimal.

Exploring the parameter space is a parallelizable process, so can
be performed quickly. With the use of SIMD (Furht 2008) and
more advanced optimization algorithms, rather than the brute force

Figure 7. This plot shows the performance of the centre-of-mass algorithms
and the 2D parabolic fit for a range of different SNRs. It can be seen above
an SNR of 1, the windowed, thresholded centre of mass outperforms a 2D
parabolic fit. The 2D parabolic fit tapers off in performance at 0.05 pixel
error, whereas the windowed centre of mass has a much lower performance
threshold. The vertical line on the plot show the expected SNR for a solar
granule image with a contrast of 10 per cent, and a camera with a full well
depth of 40 000 electrons, which represents typical conditions in solar AO.
It can also be seen that the performance from estimating the errors on the
centre of mass is worse than the optimal case, but does still reach close to
peak performance.

method exploring the full parameter space implemented here, the
method should be viable for use in a real-time system.

The method of noise estimation used here is crude, though good
enough for our purposes, and could be used for different parameters
in other techniques, such as Li et al. (2008). There are more efficient
algorithms for estimating noise on centroiding of extended objects,
such as Saunter (2010), which could also be implemented to give
quantitative estimators of centroiding accuracy, as well as being
computationally less intensive than the multiple reference approach.

Overall, for the solar case, with high SNR, the use of an op-
timized, thresholded, windowed centre-of-mass algorithm offers a
factor of 3 improvement in centroiding accuracy over the windowed
parabolic fit. This could be used real-time in solar AO for better
wavefront estimations, and also with post-processing techniques,
such as measuring more accurate atmospheric profiles.

Further investigation should be performed in the low SNR regime,
where both the centre of mass and 2D parabolic fit methods give
poor performance, to see if more accurate centroids can be extracted.
There is also more work to be done in implementing the technique
into a real system which performs centroiding on extended objects,
to see how it affects system performance.
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