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From short-time diffusive to long-time ballistic dynamics: The unusual center-of-mass
motion of quantum bright solitons
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Brownian motion is ballistic on short time scales and diffusive on long time scales. Our theoretical investigations
indicate that one can observe the exact opposite—an “anomalous diffusion process” where initially diffusive
motion becomes ballistic on longer time scales—in an ultracold atomic system with a size comparable to
macromolecules. This system is the center-of-mass motion of a quantum matter-wave bright soliton for which the
dominant source of decoherence is three-particle losses. Our simulations show that such unusual center-of-mass
dynamics should be observable on experimentally accessible time scales.
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I. INTRODUCTION

Bright solitons—waves that do not change their shape—
were discovered in the 19th century in a water canal [1].
Such solitons are good examples of ballistic motion (the
distance from the initial position grows linearly with time),
as the velocity remains constant. Bright solitons can be ex-
perimentally generated from attractively interacting ultracold
atomic gases [2–8]; on the mean-field level, via the Gross-
Pitaevskii equation (GPE), these matter-wave bright solitons
are nonspreading solutions of a nonlinear equation [9–16].
For N ultracold attractively interacting atoms in a (quasi-)
one-dimensional wave guide, quantum matter-wave solitons
[17–24] can be described as a many-particle bound state. This
is the ground state [25–27] of an exactly solvable many-particle
quantum system, the Lieb-Liniger model [28] with attractive
interactions [25]. Already for particle numbers as low as three,
these many-particle bound states share many similarities with
mean-field matter-wave bright solitons [29].

Diffusive motion (for which the rms fluctuations of the posi-
tion grow with the square root of time) of both macromolecules
and small classical particles often occurs through interactions
with the environment: Free Brownian motion [30–36], for
example, exhibits the generic short-time-scale ballistic and
long-time-scale diffusive behavior. While there are models
that, depending on the choice of parameters, behave either
diffusively or ballistically [37], in this paper we show the
surprising result that the dynamics of the rms fluctuations of
the center-of-mass position of quantum bright solitons, under
the influence of decoherence via three-particle losses, behaves
diffusively on short time scales and ballistically on long time
scales.

Deviations from normal diffusion are an ongoing topic of
current research. Anomalous diffusion [38] has been observed
experimentally in colloidal systems [39,40]; research interest
also includes superdiffusive motion [41], which covers a
regime in between diffusion and ballistic transport. Diffusive
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and ballistic transport, and a surprising transition between the
two, are the focus of the current paper.

Diffusive behavior in Bose-Einstein condensates has been
observed in the experiment of Dries et al. [42], and for matter-
wave bright solitons diffusive motion has been predicted in
Ref. [43]. In this context it is important to note that, even
for a perfect vacuum and when shielded from all external
influence, decoherence via three-particle losses will always be
present in an atomic Bose-Einstein condensate. The only way
to significantly decrease this source of decoherence would be
to go to lower densities than is typical for bright solitons as
realized experimentally, e.g., in Refs. [2,3]. Thus, we focus on
three-particle losses, which is for many parameter regimes the
dominant decoherence mechanism (cf. Ref. [44]). For matter-
wave bright solitons made of absolute ground-state atoms such
as 7Li [2], there are no two-particle losses [45]; single-particle
losses can also be discounted if the vacuum is made to be
particularly good (cf. Ref. [46]). It therefore is justified to
focus on decoherence via three-particle losses.

The paper is organized as follows: We first introduce
the physics involved in opening an initially weak trapping
potential in which a bright soliton made from an attractive
Bose-Einstein condensate has been prepared (Sec. II).
We then introduce the decoherence mechanism which is
always present in such a case—atom losses via three-body
recombination (Sec. III A), which is modeled via a stochastic
approach using piecewise deterministic processes [47] in
Sec. III B. Section IV presents the results of our Monte Carlo
simulation with the surprising transition from short-time
diffusive to long-time ballistic behavior, and the paper ends
with a conclusion and outlook (Sec. V).

II. OPENING A WEAK HARMONIC TRAP INTO A
QUASI-ONE-DIMENSIONAL WAVE GUIDE

A. Mean-field description: Stationary density profile

When attractively interacting Bose-Einstein condensates
are used experimentally to generate bright solitons, the bright
soliton is in a (quasi-)one-dimensional wave guide, that is,
tight radial confinement and weak axial confinement [2–7].
Important aspects of such bright solitons can be understood by
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the one-dimensional (1D) GPE [9]
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∂x2
ϕ + mω2x2

2
ϕ + g1D(N − 1)|ϕ|2ϕ, (1)

where m is the mass of the particles and ω the angular
frequency of the harmonic trap; the interaction g1D = 2�ω⊥a

is set by the s-wave scattering length a and the perpendicular
angular trapping frequency, ω⊥ [48]. For attractive interactions
(g1D < 0) and weak harmonic trapping, Eq. (1) has bright-
soliton solutions with single-particle densities n ≡ |ϕ|2 [9]:

n(x) = 1

4ξN {cosh[x/(2ξN )]}2
, (2)

where the soliton length is given by

ξN ≡ �
2

m|g1D|(N − 1)
. (3)

If the sufficiently weak (the soliton length ξN should be
small compared to the axial harmonic oscillator length√

�/(mω) [49]) harmonic trap is then switched off, hardly
any atoms are excited [49]. Thus, for bright solitons described
on the mean-field (GPE) level, there will be no dynamics
observable after opening the trap, whereas we show in the
following section (Sec. II B) that the same is not true for
quantum bright solitons.

B. Quantum many-body description: Expansion of the
center-of-mass wave function

In the absence of a trapping potential in the x direction, the
direction of the wave guide, all physically realistic N -particle
models have to be translationally invariant in the x direction
[using the convention introduced in Eq. (1) as the direction of
the wave guide; y and z directions are harmonically trapped].
Thus, the center-of-mass eigenfunctions in the direction of the
wave guide are plane waves and the center-of-mass dynamics
resembles that of a heavy single particle, with the center-of-
mass dynamics described by the Hamiltonian

Ĥ = − �
2

2Nm

∂2

∂X2
(4)

and the center-of-mass coordinate given by the average of the
positions of all N particles,

X = 1

N

N∑
j=1

xj . (5)

The dynamics of the center of mass of an interacting gas in a
harmonic potential is independent of the interactions, giving
rise to the so-called Kohn mode [50]. Therefore, the initial
center-of-mass wave function is independent of both the inter-
actions and the approximate modeling of these interactions.

Thus, the dynamics of the quantum bright soliton in the ab-
sence of potentials is due to the center-of-mass wave function
of a particle of mass M = Nm [44,51]. As the initial center-
of-mass wave function is Gaussian, its time dependence is [52]

�(X,t) ∝
(

1 + i
�t

2M�X2
0

)−1/2

× exp

(
−X2 − i2�X2

0MV0[X − V0t]/�

4�X2
0

[
1 + i�t/

(
2M�X2

0

)]
)

, (6)

where X is the center-of-mass coordinate (5) and V0 the initial
velocity. This implies an rms width of [52]

�X = �X0

√
1 +

(
�t

2M�X2
0

)2

. (7)

For attractively interacting atoms (g1D < 0), the Lieb-
Liniger(-McGuire) Hamiltonian [25,28] is a very useful
model:

Ĥ = −
N∑

j=1

�
2

2m

∂2

∂x2
j

+
N−1∑
j=1

N∑
n=j+1

g1Dδ(xj − xn), (8)

where xj denotes the position of particle j . For this model,
even the (internal) ground-state wave function is known
analytically. Including the center-of-mass momentum K , the
corresponding eigenfunctions relevant for our dynamics read
(cf. Ref. [27])

�(x1,x2, . . . ,xN ) ∝ eiKX exp

⎛
⎝−m|g1D|

2�2

∑
j<ν

|xj − xν |
⎞
⎠ ;

(9)

the center-of-mass coordinate is given by Eq. (5). If the
center-of-mass wave function is a δ function and the particle
number is N � 1, then the single-particle density can be
shown [26,27] to be equivalent to the mean-field result (2).
Thus, the Lieb-Liniger model is a one-dimensional many-
particle quantum model that can be used to justify the approach
to treat a quantum bright soliton like a mean-field soliton with
additional center-of-mass motion after opening a weak initial
trap. In the limit N → ∞, g1D → 0 such that Ng1D = const,
the initial width of the center-of-mass wave function goes to
zero, �X0 ∝ 1/

√
N .1

C. Single-particle density in the absence of decoherence

Although the center-of-mass wave function (6) spreads
according to Eq. (7), a single measurement of the atomic
density via scattering light off the soliton (cf. Ref. [2]) will still
yield the density profile of the soliton (2), expected both on the
mean-field (GPE) level and on the N -particle quantum level for
vanishing width of the center-of-mass wave function [26,27].
Taking into account harmonic trapping perpendicular to the x

axis, one obtains the density [2]

n(x,y,z) = N

4ξN {cosh [x/(2ξN )]}2

1

λ2
⊥π

exp

(
−y2 + z2

λ2
⊥

)
,

(10)

where λ⊥ ≡ √
�/(mω⊥) is the perpendicular harmonic oscilla-

tor length. In order to experimentally measure the spreading of

1Only for time scales ∝√
N does the width (7) of the center-of-mass

wave function become visible when approaching the limit N → ∞,
g1D → 0 such that Ng1D = const. While such an agreement between
GPE and N -particle quantum physics can be expected for some
ground states [53], this is not necessarily true for many-particle
dynamics [54].
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FIG. 1. (Color online) Schematic display of the center-of-mass
motion of a bright soliton without decoherence. Shown is the
two-dimensional projection of the single-particle density as a function
of both time (measured in seconds) and distance from the origin
(measured in units of the initial soliton width ξN0 ) for N = 3000
Li atoms (using the parameters of Ref. [2]) after opening a weak
initial harmonic trap (λHO = 10ξN0 ) at t = 0. (a) On the GPE
level, the soliton remains stationary; the single-particle density is
given by Eq. (2). (b) On the many-particle quantum level, the
ballistically expanding center-of-mass wave function smears out the
single-particle density.

the center-of-mass density directly, each measurement of the
soliton should only record its center-of-mass position when
calculating the density from the experimental data. Recording
the entire density profile in each measurement yields the
single-particle density, which can also be obtained on a more
formal level as a sum over the positions 	xj of all particles
n(	x) = ∑N

j=1〈δ(	x − 	xj )〉/N .
Figure 1 shows the influence of the center-of-mass position

on the single-particle density of a quantum bright soliton
of 3000 Li atoms (as experimentally investigated at high
velocities in Ref. [2]). The GPE soliton remains stationary
[Fig. 1(a)]; that is, the single-particle density is given by
Eq. (2) for all times. Figure 1(b) displays the same situation
as Fig. 1(a) but for a quantum bright soliton for which the
center-of-mass wave function spreads according to Eq. (7).
Thus, for a quantum bright soliton we have a spreading
single-particle density, although each single measurement
yields the mean-field soliton density [Fig. 1(a)], shifted from
the initial position by some distance.

For each single experiment, measuring the center-of-mass
density of the many-particle configuration can be done with
greater accuracy than the width of the cloud (cf. Ref. [55]).
The expansion of the center-of-mass wave function leads to
the spreading of the single-particle density; in this paper we
consider this spreading in the absence of harmonic trapping
potentials. Recent experiments for homogeneous Bose gases
can be found in Refs. [56,57].

III. DECOHERENCE VIA THREE-PARTICLE LOSSES

A. Three-particle losses

Three-particle losses can be described by a density-
dependent rate equation [45]:

dN

dt
= −K3

∫
d3r n3(x,y,z), (11)

where K3 is determined empirically. Combined with Eq. (10)
and using the soliton length (3) this yields [58]

dN

dt
= − 1

90π2
K3

1

ξ 2
Nλ4

⊥
N3 = − 1

τ3
(N − 1)2N3, (12)

with the N -independent time scale:

τ3 ≡ 90π2

K3

�
4λ4

⊥
m2g2

1D

. (13)

For this equation to be valid at longer time scales (and not
just initially), the single-particle density must remain of the
form (10) as the width of the wave function in the x direction
increases with decreasing particle number. In the following,
we show that this assumption is self-consistent, thus allowing
us to treat atom losses as point processes (referring to points
in time) within our stochastic approach.

For large N , one may approximate Eq. (12) by dN/dt �
−N5/τ3, which can be solved to give

N (t) � N0

(
1 + t

τloss

)−1/4

, (14)

where

τloss ≡ τ3

4N4
0

. (15)

For large initial particle numbers N0 and experimentally
relevant time scales Eq. (15) is a good approximation to the
full time dependence [which will be shown in Fig. 2(a)].

B. Stochastic modeling of decoherence via three-particle losses

If changes to the number of particles in a soliton happen
on slow enough time scales, these changes can be modeled as
being adiabatic. The shape of the soliton is protected [44] (cf.
Ref. [59]) by an energy gap

Egap(N ) ≡ E0(N − 1) − E0(N ) = mg2
1DN (N − 1)

8�2
, (16)

where E0(N ) = −mg2
1DN (N2 − 1)/(24�

2) is the ground-state
energy [25] of a system of N 1D point bosons of mass m

interacting via attractive δ interactions, described by the Lieb-
Liniger Hamiltonian (8).

The energy-time uncertainty yields a characteristic time
scale (cf. Ref. [60]) via Egap(N )τsoliton(N ) ∝ �, where

τsoliton(N ) = �
3

mg2
1D(N − 1)2

. (17)

Changes in particle numbers should happen on time scales
longer than this time for the process to be adiabatic, and for
our approach of treating particle losses as an adiabatic process
to be valid. So far, three-particle losses in experiments have
not been observed to destroy solitons on short time scales [2].
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FIG. 2. (Color online) Influence of decoherence via three-
particle losses on particle number and rms width of the single-particle
density using the parameters described in footnote 2. (a) Number of
particles, N (t), obtained numerically as a function of time (solid
black line) with N (0) = 6000. For 6000 − N (t) as a function of
time, the numerical curve (black dashed line) lies on top of the
analytic curve [yellow (light gray), Eq. (14)]. (b) As soon as particle
losses [modeled via the piecewise deterministic processes described
in Sec. III B using Eqs. (19) and (28)] become important, the rms
width of the single-particle density of a bright soliton [blue (black)
solid line] grows like the square root of time [cf. dashed magenta
(dark gray) line] before becoming ballistic at larger times [∝t ,
green (light gray) line], approaching the width of the center-of-mass
wave function without decoherence (black dashed line) for larger
times.

We can thus model the particle losses as taking place on time
scales longer than the soliton time if the soliton time is smaller
than the time scale t1 � τ3/N

5 on which a single particle is
lost, that is,

τ3

N5τsoliton(N )
> 1. (18)

With N0 = 6000 and the experimental parameters of Ref. [2],2

τ3

τsoliton(N0)
≈ 2 × 1020. (19)

Inequality (18) is fulfilled for the parameters of Ref. [2]
if N � 6000. We can furthermore model the three-particle
losses as taking place instantaneously for our stochastic
implementation [62–64] of particle losses.

2The set of parameters is used as an example to show that
experimentally realistic time scales use the values given in Ref. [2]
for the s-wave scattering length a = −0.21 × 10−9 m, f⊥ = 710 Hz
where ω⊥ = 2πf⊥. For this s-wave scattering length we furthermore
divide the calculated value [61] for the thermal K3 of 3.6 × 10−41 m6/s
by the factor 3! = 6 for Bose-Einstein condensates (and thus also
bright solitons).

For a Schrödinger cat state [65], a quantum superposition
of two “macroscopically” occupied single-particle modes,
|ψNOON〉 ∝ |1〉⊗N + |2〉⊗N ,3 losing three particles leads to a
localization in one of the two modes, |1〉⊗(N−3) or |2〉⊗(N−3).
Quantum bright solitons are in a spatial quantum superposition
given by their center-of-mass wave function; if the center-
of-mass wave function is a δ function, the wave function
can be approximated by a Hartree-product state consisting of
occupying the mean-field (GPE) wave function N times [27].
We thus model the collapse of the wave function into one
of these modes as a starting point to describe the influence
of decoherence via three-particle losses on the center-of-mass
motion of quantum bright solitons.

We can use the Schrödinger equation for a single particle
of mass Nm with Hamiltonian Ĥ = −[�2/(2Nm)]∂2/∂X2 to
describe the quantum-mechanical motion of the center of mass
X of a quantum bright soliton in the absence of decoherence
events [44]. Note that the particle number N remains constant
between loss events.

For the internal degrees of freedom, we can use a Hartree-
product state [9] of bright-soliton solutions of the GPE (1),

ψV0,N (xN ) =
{

eiNmV0x/�−i(μ−Nmv2/2)t/�

2
√

ξN cosh[(x − X0 + V0t)/(2ξN )]

}⊗N

(20)

with μ = g1D(N − 1)/(8ξN ) and xN = {x1,x2, . . . ,xN }. After
the three-particle loss, the internal degrees of freedom are
described by the wave function given by Eq. (20) with N

replaced by N − 3. As we describe below, both the position and
the velocity (via the center-of-mass density) as well as the point
of time for this decoherence [via Eq. (12)] are determined via
random numbers in a Monte Carlo simulation. A characteristic
size for the new center-of-mass wave function is the root-mean-
square width of the soliton (cf. Appendix),

�xsoliton = πξN−3√
3

. (21)

In order to describe the stochastic process, we introduce an
approach via a classical master equation. While at first glance
this approach may seem to be impossible, as between loss
events we have a purely quantum-mechanical expansion of
the center-of-mass wave function, the fact that our system can
indeed be described by a classical model is justified below.
Within our model the stochastic variables are given by the
center-of-mass coordinate X, the corresponding velocity V ,
and the particle number N . Introducing the time-dependent
probability distribution P (X,V,N,t) the stochastic process is
defined by the master equation

∂

∂t
P (X,V,N,t)

= −V
∂

∂X
P (X,V,N,t)

+
∫

dX′
∫

dV ′[WN+3(X,V |X′,V ′)P (X′,V ′,N + 3,t)

−WN (X′,V ′|X,V )P (X,V,N,t)]. (22)

3The tensor product power notation |1〉⊗N describes N particles
occupying the same single-particle mode |1〉.
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The first term on the right-hand side describes the constant
drift of X with velocity V while the second term represents
the instantaneous random jumps induced by three-particle
losses. The process (X,V,N ) is thus a piecewise deterministic
process [47] with transition rates

WN (X′,V ′|X,V )

= �(N )

√
1

2πσ 2
X(N )

exp

(
− (X − X′)2

2σ 2
X(N )

)

×
√

1

2πσ 2
V (N )

exp

(
− (V − V ′)2

2σ 2
V (N )

)
, (23)

where σX(N ) is given by Eq. (21), and

σV (N ) = �/[2m(N − 3)σX(N )].

The total transition rate takes the form

�(N ) ≡
∫

dX′
∫

dV ′WN (X′,V ′|X,V ) = (N − 1)2N3

3τ3
,

(24)

where we have added a factor of 1/3 as three particles are
lost each time. We thus have an exponential waiting time
distribution

F (N,t) = 1 − exp[−�(N )t]. (25)

To summarize, for the stochastic simulation of decoherence
via three-particle losses [64], the ingredients are as follows:

(1) The random variables are

N,X0,V0. (26)

(2) Random numbers for the Monte Carlo process deter-
mine

(a) The time of the next decoherence event via Eq. (12)
by choosing an exponential distribution of loss times (25),
where the factor 1/3 introduced in Eq. (24) is necessary
because three particles are lost in each step: N → N − 3;

(b) The center-of-mass position X0 of the new wave
function via the center-of-mass density in real space;
and

(c) The center-of-mass velocity V0 of the new wave
function via the center-of-mass density in momentum
space.
(3) The center-of-mass wave function corresponding to the

product state (20) is chosen to be a Gaussian

ψc.m. = exp

[
− (X − X0)2

2b2
+ i

(N − 3)mV0

�
X

]
(27)

with a root-mean-square width σX(N ) = b/
√

2 given by
Eq. (21):

σX(N ) = πξN−3√
3

. (28)

In between loss events, the quantum dynamics is known
analytically [Eq. (6)]; rather than solving the Schrödinger
equation it is possible to do this in a more classical approach:

The truncated Wigner approximation4 for the center of mass,
which has been used in Ref. [23] to qualitatively mimic quan-
tum behavior on the mean-field level by introducing classical
noise mimicking the quantum uncertainties in both position
and momentum, is particularly useful here. Both the mean
position and the variance calculated via the truncated Wigner
approximation (TWA) for the center of mass are identical to
the quantum-mechanical result. In order to make both results
identical, Gaussian noise has to be added independently to
both position X0 → X = X0 + δX0 and velocity V0 → V =
V0 + δV0 with 〈δX0〉 = 0 and 〈δV0〉 = 0 and root-mean-square
fluctuations σX(N ) given by Eq. (28) and by the minimal
uncertainty relation

σV (N ) = �

2(N − 3)mσX(N )
(29)

for the velocity.
The mean position x(t) = X0 + V0t is thus identical to

the quantum-mechanical result; the root-mean-square fluctua-
tions �x =

√
(�X0)2 + (�V0)2t2 coincide with the quantum-

mechanical equation (7). Thus, in the absence of both the trap
in the axial direction and the scattering processes investigated
in Ref. [23], the TWA for the center of mass gives exact
results for both the position of the center of mass and the
root-mean-square fluctuations of the center of mass for a
quantum bright soliton.

IV. RESULTS

Figure 2 shows the influence of decoherence via three-
particle losses on the center-of-mass displacement of quantum
bright solitons made out of Li atoms for parameters taken
from the experiment in Ref. [2] (see footnote 2). Three-
particle losses, which could only be prevented by considerably
reducing the density of a bright soliton to values much lower
than used in experiments such as Ref. [2], and are thus a
decoherence mechanism intrinsic to quantum bright solitons,
lead to a transition from short-time diffusive to long-time
ballistic behavior [Fig. 2(b)]. The numerical simulations were
done by using the piecewise deterministic processes [47]
described in Sec. III B, a well-established tool to model
decoherence [62–64].

Figure 3 shows that the transition from short-time diffusive
to long-time ballistic behavior is not dependent on a particular
choice of parameters. While details of the curves can look
different for different parameters, the transition from short-
term diffusive to long-time ballistic behavior is visible in
particular after rescaling the time axis with the characteristic
time scale given by the atom losses [Eq. (14)], thus using the
scaling for which all curves N (t)/N0 would lie on top of each
other. Within this scaling, all curves follow the same

√
t/τloss

scaling for early scaled times, and they each start deviating off
at different times.

4The truncated Wigner approximation [66] describes quantum
systems by averaging over realizations of an appropriate classical
field equation (in this case, the GPE) with initial noise appropriate to
either finite [67] or zero temperatures [13].
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FIG. 3. (Color online) (a) Root-mean-square (rms) width of
center-of-mass displacement as a function of time. (a) The data shown
are for blue (black) solid line, N0 = 6000, τ3/τsoliton = 2 × 1020;
light blue (light gray) dashed line, N0 = 4000, τ3/τsoliton = 1 ×
1020; brown (black) dashed line, N0 = 5000, τ3/τsoliton = 1 × 1019.
(b) Same data sets as in the previous panel but with a time axis
rescaled with the characteristic time from Eq. (15). Both the magenta
(dark gray) straight line, ∝√

t , and the green (light gray) straight line,
∝t , were added as guides to the eye.

This scaling leads to an intuitive explanation of the tran-
sition from short-time diffusive to long-time ballistic motion.
While the atom losses continue in the regime of ballistic motion
[as can be seen by comparing Figs. 2(a) and 2(b)], τloss is the
time scale on which N (t) starts to forget its initial number of
particles. In addition, the center-of-mass motion also picks up
pace for longer time scales. As the GPE becomes valid in the
limit N → ∞, g1D → 0 such that the product Ng1D remains
constant [68], it cannot model an expanding center-of-mass
wave function. Thus, the transition from short-time ballistic
to long-time diffusive behavior cannot be modeled by simply
using standard GPE-theory.

V. CONCLUSION AND OUTLOOK

To conclude, we have introduced a physically motivated
model for the motion of quantum bright solitons which
displays short-time diffusive and long-time ballistic behavior,
contrary to the usual short-time ballistic and long-time diffu-
sive behavior observed, for example, in Brownian motion [34].
Bright solitons are investigated experimentally in various
groups worldwide. As the ballistic expansion for large times
is ∝t/(Nm) [Eq. (7)], the solitons made of thousands of Li
atoms [2] are more suitable to observe this motion of the center
of mass than solitons made of thousands of the more than ten
times heavier Rb atoms [5]. For the ground-state atoms of
Li used, for example, in the ground-breaking experiments in
Refs. [2,3] there are no two-body losses [45]; single-particle
losses can also be discounted if the vacuum is made to be
particularly good (cf. Ref. [46]). Our approach to focus on

decoherence via three-particle losses to model matter-wave
bright solitons in attractive Li-Bose-Einstein condensates thus
is justified.

The present idea to modify the quantum-mechanical motion
by stochastic terms in order to describe instantaneous changes
of the wave function to smaller wave packets has formal
similarities with stochastic collapse models [69]. However,
within our model these random changes describe the decoher-
ence of the center-of-mass wave function which is induced by
three-particle losses; a decoherence mechanism which cannot
be avoided by, e.g., choosing a perfect vacuum: as long as the
density is finite (which always is the case for bright solitons),
three-particle losses will occur as a dominant decoherence
mechanism. It is the decrease of the particle number that
leads to fewer particle losses and, hence, to the observed
transition from diffusive to ballistic motion. This motion is
an effect distinct from both classical [38] and quantum walks
(cf. Refs. [70,71]) as well as anomalous diffusion [38–40]. As
for the classical random walk, our model localizes after each
step, but between steps the motion is given by free expansion
of the center-of-mass wave function which depends on the
(decreasing) number of particles.

This unusual behavior of the center-of-mass motion can
be observed for experimentally realistic parameters; both time
scales and length scales are accessible experimentally. The
data presented in this paper are available [72].
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APPENDIX: SIZE OF CENTER-OF-MASS WAVE
FUNCTION AFTER COLLAPSE

The focus of this paper was to present a physically
motivated model which displays a transition from short-time
diffusive to long-time ballistic behavior. Time scales can easily
be changed by, e.g., choosing a trapping geometry different

FIG. 4. (Color online) Root-mean-square (rms) width of center-
of-mass displacement as a function of time for a model differing
from the choice in the main part of the paper (Figs. 2 and 3). Solid red
(black) curve, N0 = 3000, τ3/τsoliton = 2 × 1015; black dashed curve,
N0 = 4000, τ3/τsoliton = 2 × 1015. Dashed magenta (dark gray) line
∝√

t ; green (light gray) line ∝t . (b) The kinetic energy as a function
of time grows considerably for the two curves of (a) whereas it stays
below the line corresponding to (〈E〉(0) + �E(0))/〈E〉(0) [thick blue
(black) dashed horizontal line] for the curves of Fig. 3.

063616-6



FROM SHORT-TIME DIFFUSIVE TO LONG-TIME . . . PHYSICAL REVIEW A 91, 063616 (2015)

from the parameters used in Ref. [2]. The focus currently
is on a macroscopic theory; for future microscopic theories
some details like the center-of-mass wave function after a
decoherence event via the physically dominating decoherence
mechanism, a three-particle loss event, might differ from the
value chosen here. In order to show that the transition from
diffusive to ballistic behavior would still be observable for
other choices of the width of the center-of-mass wave function,
Fig. 4 displays the behavior for

�Xc.m. = πξN−3√
3(N − 3)

. (A1)

This corresponds to the idealized case that the wave function
collapses to a single product state (20); the root-mean-square

width of the new center-of-mass wave function of the soliton
consisting of N − 3 particles is given by the prediction of the
central limit theorem (cf. Ref. [60]).

Figure 4 shows, that as for the choice in the main part
of the paper, for Eq. (A1) the combined effect of the rate of
particle losses decreasing and becoming more independent of
N (t = 0) [cf. Eq. (14)] and the center-of-mass motion covering
greater distances leads again to a transition from short-time
diffusive to long-time ballistic behavior. However, contrary to
the case discussed in the main part of the paper, the kinetic
energy is considerably increased during the motion. While
the open system discussed in this paper could include such a
mechanism, unless experimental results should oblige one to
introduce such a mechanism, the model presented in the main
part of the paper is the more physical choice.
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