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Abstract A model solution to a proof question on an examination is explored and subjected to a
detailed analysis in terms of Toulmin’s scheme of argumentation. In doing so, the ways in which
the scheme has been variously used in the mathematics education and philosophical literature are
contrasted. The analysis raises a number of issues concerning the scheme as described by Toulmin
and as modified by other authors and suggests ways in which one aspect of the scheme might
be reinterpreted. The final analysis of the proof provides insight into what examiners may be
expecting from their students in terms of the level of explicit argument they consider essential and
the importance played by the focus of the subject matter.

1 The Toulmin scheme and its use in mathematics education

The Toulmin scheme has gained considerable currency in mathematics education research as a way
of analysing arguments. It was developed in the 1950s by Stephen Toulmin (Toulmin, 1958), but
appears to have come to prominence in mathematics education in the 1990s (Krummheuer, 1995).
It has since been used to analyse arguments in primary schools (Evens & Houssart, 2004), secondary
schools (Arzarello & Sabena, 2011), undergraduate degrees (Stephan & Rasmussen, 2002) and even
arguments from postgraduate mathematicians (Inglis, Mejia-Ramos, & Simpson, 2007).

The scheme was designed to analyse arguments across a range of fields. Toulmin suggests these
include arguments delivered in “law courts, professional scientific meetings . . . university seminars
. . . engineering design conferences” (Toulmin, Rieke, & Janik, 1984, p. 16) and consists of six com-
ponents: data (D, the evidence on which the claim is based), qualifier (Q, the degree of confidence in
the claim), conclusions (C, the claim which the arguer is putting forward), rebuttal (R, the circum-
stances in which the claim might not hold), warrant (W, the justification for drawing the conclusion
on the basis of the data) and backing (B, “other assurances, without which the warrants themselves
would posses[sic] neither authority nor currency” (Toulmin, 2003, p. 96).). Toulmin places these
items into a scheme (which he calls an “argument pattern”) as shown in figure 1.
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Fig. 1: Toulmin Scheme

While some have criticised the scheme as poorly defined and, in particular, the difficulty in
precisely defining some of the these components (Weinstein, 1990), the extent to which it has been
used in analysing arguments suggests that it has become a useful tool for researchers.

In undertaking their analyses, many authors adapt Toulmin’s scheme to fit their intentions and
their data. Inglis et al. (2007) note a particular tendency in mathematics education research using
the scheme to omit the qualifier and rebuttal. They suggest that if one has developed what one
intends as a finished formal mathematical argument, these may be redundant for the purposes of
analysis. However, when one is arguing informally then one would expect to make tentative claims
and accept the possibility of the claim being refuted and, therefore, “it is unclear how this omission
can be justified in a conceptual framework aimed at the reconstruction of argumentation which
may lack logically necessary conclusions” (p. 5)

Other authors make different modifications to the scheme: for example, Langsdorf (2011) in-
cludes the possibility of adding a form of backing to the data instead of just to the warrant (seeming
to undermine that the argument structure “Given D then C” makes no claim about whether D is
the case or whether C would hold in the counterfactual situation in which D was not the case).
Prusak, Hershkowitz, and Schwarz (2012) modify the scheme to combine warrant and backing into
the single notion of “reason” contending that the nature of their data, gathered from recording peer
interactions, makes it difficult to distinguish the two.

The problem of distinguishing aspects of Toumin’s argument pattern arises for many authors as
they analyse students’ discussion. However, Toulmin’s scheme was designed to explore the structure
of completed arguments not the process of arguing. He contrasts “trains of reasoning lifted out of
their original human contexts and considered apart from them” with “human interactions through
which such trains of reasoning are formulated, debated, and/or thrashed out” (Toulmin et al., 1984,
pp. 14–15). His scheme was intended only to apply to the former.

Despite this, most literature uses the scheme to analyse the utterances of students in the act
of forming arguments (e.g Krummheuer, 1995; Stephan & Rasmussen, 2002; Inglis et al., 2007;
Moore-Russo, Conner, & Rugg, 2011). Some even go to considerable lengths to extend and adapt
the scheme to fit arguments being formed in the complex situation of a multi-way conversation
(Steele, 2005). Some papers do work with completed arguments (normally those which the re-
searchers have developed with some intentional flaw in them) though they still use the scheme for
analysing students’ statements in the act of arguing rather than for the analysis of the completed
argument (e.g. Alcock & Weber, 2005). A small number do analyse decontextualised and completed
mathematical arguments, but these appear to be exclusively analyses of well known, formal proofs
(e.g. Aberdein, 2005; Pease, Smaill, Colton, & Lee, 2009) and where the analysis is conducted to
provide insight into the philosophical underpinnings of mathematical logic and argumentation.
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Of course, one could contend that the act of arguing involves the expression of putative argu-
ments, during which much can be understood about students’ thinking as their claims, warrants,
qualifiers etc. change in response to thought and debate.

The aims of this paper are to undertake an analysis of a completed mathematical argument,
explore some aspects of the Toulmin’s scheme as described by him and interpreted by other authors,
highlight ways in which the scheme supports the analysis of such arguments and ways in which it
might be modified to better support such analyses. Finally, the findings of the analysis are briefly
outlined in the case of the particular mathematical argument given here, which comes from a model
solution to a university mathematics examination question.

2 A problem and a solution

A typical finished (and supposed correct) argument in mathematics is provided by model solutions to
proof questions in examinations. While other methods (such as oral assessments) play a significant
role in many countries, it is common to evaluate students’ understanding of proof through the
closed book, written examination, (Iannone & Simpson, 2011). In all these forms of assessment, the
production (or reproduction) of a formal proof is an entirely standard feature.

Model solutions to those examination questions can be viewed as communications between
examiners and colleagues. In the case we examine, the solution was also available as an exemplar
for future students, so might also be seen as a communication between the examiner and future
examination candidates about expectations of the nature of a completed argument. Model solutions
are meant to form a clear indication of a minimal response which guarantees maximum marks, in the
sense that a student handing in an answer which fits the model solution directly must be awarded full
marks and any omission in an answer (which followed the model solution’s form of argument) could
result in the loss of marks. Of course, the marker might give full marks for alternative arguments,
but given the semi-public nature of the model solution, the marker would be obliged to consider a
students’ response which followed the model solution accurately to be worthy of full credit.

The examination question chosen for analysis is given in figure 2a and is typical of the genre: a
definition from the course, a couple of familiar results to prove and a less familiar proof.

Let Sn denote the symmetric group on n letters

(i) Define the signature function of a permutation.
If sgn : Sn → {±1} is the signature function,
prove that sgn is a group homomorphism.

(ii) Prove the if τ is a transposition, then
sgn(τ) = −1.

(iii) Prove that if g ∈ Sn has order 15 then
sgn(g) = −1. Find permutations a and b of order
14 in some sufficiently large permutation group
with sgn(a) = +1 and sgn(b) = −1.

(iv) How many elements of S5 have signature equal
to −1?

(a) The question

The signature function on Sn is defined thus: take n
independent variables x1, x2, . . . , xn and set
∆ =

∏
i<j(xi − xj). Now for σ ∈ Sn, we let σ act on

these variables by σ(xi) = xσ(i). Then σ(∆) = ±∆
and we define sgn(σ) to be the sign.

One checks that for σ and τ permutations,
στ(∆) = sgn(στ)∆ by definition, and στ(∆) is also
equal to
σ(τ∆) = σ(sgn(τ)∆) = sgn(τ)σ(∆) = sgn(τ)sgn(σ)∆,
and hence sgn(σ)sgn(τ) = sgn(τ)sgn(σ) = sgn(στ),
meaning that sgn is a group homomorphism.

(b) Model solution to part (i)

Fig. 2: Signature function question and partial solution

In this paper, the focus is on part (i) of the question, and particularly the proof provided in the
model solution for the second item in this part. The question and model solution as presented here
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are intended only as examples typical of the genre, not as ideals and there are certainly simpler
ways of presenting the key concepts than that given in the model solution. However, these are the
questions asked and model solutions provided in a real examination setting.

The model solution for part (i) is given in figure 2b and is reproduced verbatim, including one
item which may be regarded as a small error or typographical slip: the examiner uses parentheses
to indicate the action of the permutations on the polynomial ∆, but at various points neglects this
(writing, for example σ(τ∆) when σ(τ(∆)) would match the usage elsewhere). The layout is also as
given by the examiner: a rather compressed form which is not unexpected given that it is intended
for colleagues to check and for future students to see a minimal, fully accurate solution.

3 A näıve analysis

It is important to note in analysing proofs contained in model solutions that these will normally
be put forward by the examiner as a formal mathematical argument. They therefore fit the criteria
Inglis et al. (2007) have for omitting the qualifier and rebuttal from the Toulmin scheme since, at
most, the qualifier would be ‘necessarily’ and the examiner is arguing on the basis that there could
not be a rebuttal. This paper omits these aspects in the subsequent discussion except when needed.

Consider the part of the examination question addressed here: “If sgn : Sn → {±1} is the
signature function, prove that is a group homomorphism.”. It would appear that the data from
which students are asked to argue is “sgn : Sn → {±1} is the signature function” and the claim
sought is “sgn is a group homomorphism”. A warrant for the claim is surely then the proof contained
in the model solution and, if Aberdein’s (2005) analysis is followed, the backing is “classical logic”.
The Toulmin scheme for this would appear as in figure 3 (with the proof rewritten in a more
readable layout and the parenthesis problem corrected).

There are a number of problems with this naive analysis. Most obviously, the same Toulmin
diagram would be used to analyse every proof: the statement of the theorem splitting across the
data and conclusions, the proof being the warrant and “classical logic” as backing. This would make
the scheme of no practical use in analysing the arguments at the level intended here. However, one
could contend that the scheme in figure 3 provides an analysis of the theorem, not an analysis of
the structure of the argument within the proof, as intended.

4 About Warrants - an alternative analysis

An alternative analysis comes from a suggestion of Weber and Alcock (2005). They argue that one
might conduct a line-by-line study of a proof, seeking where warrants are required to draw any
conclusions stated in the line and identifying what those might be (since, in many cases including
the proof analysed here, warrants are often implicit).

Figure 4 highlights each conclusion drawn which appears to need a warrant and indicates a
suggested warrant for each of these conclusions.

This analysis exposes some interesting items. One is that there is one unstated conclusion drawn.
C7 states sgn(σ)sgn(τ) = sgn(στ), but the warrant it draws on involves the polynomial ∆. To obtain
a full set of conclusions and warrants C7/W7 needs to be replaced with something like:

C7a: sgn(τ)sgn(σ)∆ = sgn(στ)∆.
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sgn is the
signature
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sgn is a group
homomorphism

necessarily

No
rebuttal

For permutations σ and τ :
στ(∆) = sgn(στ)∆ by definition,
στ(∆) is also equal to σ(τ(∆))
and

στ(∆) = σ(sgn(τ)∆)

= sgn(τ)σ(∆)

= sgn(τ)sgn(σ)∆

and hence

sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

= sgn(στ)

meaning that sgn is a group homomorphism.

Classical logic

Fig. 3: A näıve analysis
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For permutations σ and τ :
στ(∆) = sgn(στ)∆ by definition,
στ(∆) is also equal to σ(τ(∆))
and

στ(∆) = σ(sgn(τ)∆)

= sgn(τ)σ(∆)

= sgn(τ)sgn(σ)∆

and hence

sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

= sgn(στ)

meaning that sgn is a group homomorphism.

W1: The definition of sgn.

W4: σ permutes variables in the polynomial ∆, which has
no effect on the multiplier sgn(τ)

W2: σ and τ permute variables in ∆ and so for each
i ∈ {1, . . . , n}, (στ)(Xi) = Xστ(i) = Xσ(τ(i)) = σ(τ(Xi))
from the rules about composition of functions.

W3: The definition of sgn.

W7: στ(∆) = sgn(στ)∆ and στ(∆) = sgn(τ)sgn(σ)∆
and sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

W5: The definition of sgn.

W6: Commutativity of multiplication

W8: sgn(σ)sgn(τ) = sgn(στ).

Fig. 4: The conclusions (C) in the proof with associated suggested warrants (W)
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W7a: στ(∆) = sgn(στ)∆ and στ(∆) = sgn(τ)sgn(σ)∆

C7b: sgn(τ)sgn(σ) = sgn(στ).
W7b: Division by the (non-zero) polynomial ∆ and sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

This shows that not only may many warrants be implicit in the articulation of a proof, but some
conclusions may be as well (an issue discussed later).

The analysis also shows, however, that the exclusive focus on warrants suggested by Weber and
Alcock is inadequate for our purposes. Doing only this can make pieces of the argument appear to
be independent from each other. Being able to explain why each conclusion in a proof has a warrant
is a necessary, but not sufficient condition for understanding the proof. One needs also to explain
how those lines combine and interdepend. In some cases, this is implicit in the pairs of claims and
warrants above. For example, to conclude that for permutations σ and τ and polynomial ∆, (C7a)
sgn(τ)sgn(σ)∆ = sgn(στ)∆ one relies on the warrants established in C1 and C5.

Aberdein (2005) suggests that the structure of an argument might be revealed more clearly by
chaining together data-conclusion pairs in a proof. For example, the scheme in figure 5 (redrawn
from Aberdein, 2005 p. 293) shows two steps in the proof that an irrational raised to an irrational
power can be rational. In this, the conclusion of one step becomes the data of the next. Such a
proposal is also implicit in the analysis by Hoyles and Küchemann (2002) who use chains of Toulmin
schemes to distinguish types of arguments pupils gave to a task about the equivalency of statements
and Krummheuer (1995) also gives examples of chained and combined arguments.

Classical logic
(specifically LEM)

Intuitionist logic
(specifically CD)

(
√

2
√
2 ∈ Q)∨

(
√

2
√
2
/∈ Q)

√
2
√
2
√

2

= 2

Either αβ ∈ Q, where α = β =
√

2

OR αβ ∈ Q, where α =
√

2
√
2
/∈ Q

and β =
√

2

Each case is a construction of a ra-
tional number expressible as αβ , for
irrational α, β.

αβ ∈ Q for
some α, β /∈ QSo, Classically So, Constructively

B1

W1

D1
Q1

C1 (or D2)

W2

B2

Q2

C2

Fig. 5: A chain of sub-arguments

Chaining alone, however, will not suffice for the analysis of the proof here. In the example above,
(C7a) sgn(τ)sgn(σ)∆ = sgn(στ)∆ follows from two conclusions, not just one. In this case (C7a)
requires both (C1) στ(∆) = sgn(στ)∆ and (C5) στ(∆) = sgn(τ)sgn(σ)∆. This suggests that this
section of the argument should be structured as in figure 6.

Comparing the approach taken by Aberdein and that taken by Weber and Alcock even for this
small part of the argument highlights one further issue. In the former, (C1) στ(∆) = sgn(στ)∆ is
both a conclusion and data for a later conclusion while in the latter it is both a conclusion and a
warrant for a conclusion. This suggests there are, at least, two possible analyses of the argument in
terms of the Toulmin scheme one as in figure 6 which accords with the approach taken by Aberdein
and another in figure 7 which is suggested by trying to add structure to the warrants found using
the approach of Weber and Alcock.
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For permutations σ, τ and
polynomial ∆

στ(∆) = sgn(τ)σ(∆) στ(∆) = sgn(τ)sgn(σ)∆

στ(∆) = sgn(στ)∆
sgn(τ)sgn(σ)∆ = sgn(στ)∆

Definition
of sgn

transitivity/
symmetry

of =

definition
of sgn

Fig. 6: Combining sub-arguments as in Aberdein

For permutations σ, τ
and polynomical ∆

στ(∆) = sgn(τ)sgn(σ)∆

στ(∆) = sgn(στ)∆

sgn(τ)sgn(σ)∆ = sgn(στ)∆

Fig. 7: Combining sub-arguments as in Weber and Alcock

Both of these seem appropriate ways of structuring the argument. One could say “I know that
στ(∆) = sgn(στ)∆ and στ(∆) = sgn(τ)sgn(σ)∆, so I can conclude sgn(τ)sgn(σ)∆ = sgn(στ)∆ be-
cause of the properties of equality” (as the right hand portion of figure 6 might be interpreted) or one
could say “Given permutations σ, τ and polynomial ∆, I can conclude sgn(τ)sgn(σ)∆ = sgn(στ)∆
because στ(∆) = sgn(στ)∆ and στ(∆) = sgn(τ)sgn(σ)∆” (as figure 7 might be interpreted).

This seems to suggest, first, that an analysis of an argument using Toulmin’s scheme does not
result in a unique structure. That is, a single written proof (as here) might be interpreted in such a
way as to produce quite different Toulmin diagrams. Second, it suggests that a statement’s status
within an argument as data, conclusion, warrant etc. is not always well defined, supporting the
contention of Weinstein (1990). Of course, this latter point was clear from both Aberdein (2005)
and Hoyles and Küchemann (2002) who allow the same statement to be both data and conclusion;
but in this case, the analysis suggests it might also be a warrant. Given that both approaches
seem valid, the remaining analysis here generally chains data and conclusion rather than nesting
warrants.

There is a further problem with structuring the argument in the proof using the method sug-
gested by Aberdein (2005). The analysis in figure 3 indicates the chain starting with the data “sgn
is the signature function”, run through a chain of conclusions (which are also data for the following
sub-argument) each with a warrant until the final conclusion “sgn is a group homomorphism”.

Figure 8 shows the full argument in chain form (which has been reshaped purely to allow it
to fit the page). The dotted region in the top left highlights the first part of the second major
sub-argument.

It was suggested earlier that the individual arguments identified by following Weber and Alcock
(2005) needed to be joined if the structure of the proof is to be revealed. Conversely, the structure
produced from such an analysis needs to be able to be split into independent arguments. That is,
each data/warrant/conclusion link in the chain must read as potentially an independent argument.
In many cases with figure 8, this is the case: for example, the second part of the second major
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For permutations σ, τ , poly ∆
στ(∆) = σ(τ(∆))

στ(∆) = σ(sgn(τ)∆)

στ(∆) = sgn(τ)σ(∆)

For permutations σ τ
sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

στ(∆) = sgn(τ)sgn(σ)∆ For permutations σ, τ , poly ∆
στ(∆) = sgn(στ)∆

sgn(τ)sgn(σ)∆ = sgn(στ)∆

sgn(τ)sgn(σ) = sgn(στ)

sgn is the
signature
function

sgn is a group
homomorphism

composition of
functions

definition
of sgn

definition
of sgn

definition
of sgn

permutation
action

commutativity
of multiplication

transitivity/
symmetry

of =

definition of
homomorphism division by

non-zero
polynomial

sgn(σ)sgn(τ) = sgn(στ)

transitivity
of =

Fig. 8: A proposed chained analysis

sub-argument can be read as “for permutations σ,τ and polynomial ∆, if στ(∆) = σ(τ(∆)) we can
conclude στ(∆)) = σ(sgn(τ)∆) from the definition of sgn”. This works as an independent argument.
The same is true for the first sub-argument: “If sgn is the signature function we can conclude that
for permutations σ,τ and polynomial ∆, στ(∆) = sgn(στ)∆ from the definition of sgn”.

However, the highlighted portion which is the first part of the second sub-argument would read
“If sgn is the signature function, we can conclude that for permutations σ,τ and polynomial ∆,
στ(∆) = σ(τ(∆)) from the rule about composition of function [in W2 above]”. This does not act
as an independent argument as the conclusions do not depend upon the data.

So, though it is noted later that chaining arguments together is indeed crucial in the analysis of
the proof, it is not sufficient.

Returning to the proof, one can see that it has a very simple proof framework (in the sense of
Selden & Selden, 1995): the majority of the proof is intend to establish W8: sgn(σ)sgn(τ) = sgn(στ)
which shows that sgn is a group homomorphism. This would suggest that the outermost part of
the analysis of the proof should be structured as in figure 9.

For permutations σ, τ
sgn(σ)sgn(τ) = sgn(στ)

sgn is the
signature
function

sgn is a group
homomorphism

Fig. 9: The outer structure of the proof
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However, this leaves unanswered where the remaining argument should go. This brings us to
focus on a part of the Toulmin scheme which has been downplayed thus far: the backing.

5 About Backing

Toulmin descibes the backing of a warrant as “other assurances, without which the warrants them-
selves would posses[sic] neither authority nor currency” (Toulmin, 2003, p. 96) and they are vari-
ously described in the literature as “categorical statements of fact supporting warrants”(Evens &
Houssart, 2004, p. 270) or statements which “explain why the warrant has authority” (Stephan
& Rasmussen, 2002, p. 462) and provide “further evidence” (Inglis et al., 2007, p. 4). However, it
appears that backing is used in different ways by these different authors and, indeed, by Toulmin.

Consider figure 10 which contain two arguments from Toulmin’s work (the first redrawn verbatim
from (Toulmin et al., 1984, p. 126), the second from (Toulmin, 2003, p. 97) in which, note, Toulmin
included no rebuttal). The relationship between “Given the axioms, postulates and definitions of
Euclidean geometry” and “Any regular convex solid has equilateral plane figures as its faces, and
the angles at any vertex will add up to less than 360◦” appears at face value to be very different
from the relationship between“the proportion of Roman Catholic Swedes is less than 2%” and “A
Swede can be taken to be almost certainly not a Roman Catholic”.

Leaving aside the fact that Toulmin omits a condition in the warrant of the first argument (that
the figures must be congruent), the backing appears to determine the field in which the argument
takes place, it does not tell on the correctness of the warrant. On the other hand, the second warrant
does explain why one would be correct to take a Swede to be almost certainly not a Roman Catholic.
It is no wonder that Castaneda (1960) notes the lack of clarity about backing: suggesting Toumin
“leaves the relationship between [backing] and [warrant] in the dark” (p. 284).

Any regular convex solid
has equilateral figures as
its faces and the angles

at any vertex will add up
to 360◦

In the tetrahedron, the
faces joining at each

vertex are three
equilateral triangles, with

angles totalling
3 × 60◦ = 180◦; in the
(8-faced) octahedron, 4

equilateral triangles,
totalling 6 × 60◦ = 240◦;

in the (20-faced)
eicosahedron, 5, totalling

5 × 60◦ = 300◦. In the
cube, they are 3 squares

with angles totalling
3 × 90◦ = 270◦, and in the
(12-faced) dodecahedron,
they are three pentagons,
totalling 3 × 108◦ = 324◦.

No other set of equal
angles at the vertex of a

solid adds up to less than
360◦

There are five
and only five

regular convex
solids.

Given the axioms,
posulates and
definitions of

Euclidean geometry

A Swede can be taken
to be almost certainly
not a Roman Catholic

Petersen is a
Swede

Petersen is not
a Roman
Catholic

The populations of
Roman Catholic

Swedes is less than
2%

With strict
geometrical

necessity

No rebuttals or
exceptions available
within the formal

system of Euclidean
geometry

Almost
certainly

Fig. 10: Toulmin’s use of backings
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Consider a further three arguments in figure 11 (adapted and redrawn from information in Evens
and Houssart (2004, p. 276), Stephan and Rasmussen (2002, p. 465) and Inglis et al. (2007, p. 15)
and showing only the quartet data/conclusion/warrant/backing).

There is a 7 in the
sequence

The
sequence
begins

1, 4, 7, 10, . . .

It will never
contain a

multiple of 3

7 is not a multiple of
3

A linear model suggests
in half the time we get

half the increase

The rabbit
population
increases by
30 in one year

in half a year
it will increase

by 15

This is only a crude
approximation

If n is odd then you lose a
lot of the possible divisors

n is
abundant

n is even

The possible divisors of
an even number run from
1 to n

2 , compared to 1 to
n
3 for an odd number

Fig. 11: Three uses of backing

For the first, Evens and Houssart (2004) give an example of pupils arguing that the sequence
(1, 4, 7, 10, . . .) never contains a multiple of 3 with the warrant that it contains 7 and the backing
that 7 is not a multiple of 3. While the argument is not one mathematicians would accept, it appears
as if the intention is to explain why the warrant applies to an argument about multiples of 3.

The second comes from a paper in which Stephan and Rasmussen (2002) explore arguments
constructed in a course on differential equations. In most cases they note that no backings are
explicitly identifiable in their data and so do not include a detailed discussion of backings in their
analysis. However, they do give this interesting example of a student and instructor constructing an
argument about rate of change. Their warrant involves the use of a linear equation (that they knew
was a poor model) and is accompanied by statements such as “this is a crude approximation”. One
could argue that this statement is backing in support of their warrant: they may be arguing for
the acceptance (temporarily) of the warrant (which would be unacceptable in most cases) as their
purpose at that stage was to draw a conclusion which is a “crude approximation”.

In the third case, Inglis et al. (2007), investigating postgraduate mathematicians arguing about
perfect, abundant and deficient numbers, describe a participant arguing that if n is abundant then
n is even, using the warrant that an odd n will have too few divisors and the backing being that
the range from which divisors can come for odd numbers is smaller than that for even numbers:
the backing appears to play the role of explaining why the warrant might be considered correct.

These three examples suggest three different roles for backing in an argument; or, alternatively,
three different types of backing.

5.1 Type 1: Backing for the warrant’s validity

Another way of thinking about backings is as ways to “provide support for warrants . . . [which]
. . . become relevant when a warrant is challenged” (Verheij, 2005, p. 358). There appear to be three
ways in which one may challenge a warrant. The first is that it does not apply: it is not relevant or is
invalid. For example, suppose someone argued according to the scheme in figure 12. The statement
in the warrant here is true and the form of the argument that is being used is appropriate for
mathematics, but it does not allow one to validly conclude that permutations commute under sgn,
since the warrant does not involve commutativity of composition of permutations.
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For permutations σ, τ
sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

sgn is the
signature
function

Permutations
commute under

sgn

Fig. 12: An invalid warrant

In the first argument outlined in figure 11, from Evens and Houssart (2004), one can see that
the pupils’ backing is an attempt to argue for the relevance of their warrant. They are not trying to
explain why it is correct to state that 7 is in the sequence, nor explain that the form of argument
they are using is appropriate to a mathematics classroom, they are trying to show why it is relevant
to the question of divisibility by 3.

An example of a similar form of backing is given by Arzarello and Sabena (2011) where a pupil
makes a claim to classify three graphs as a function, its derivative and its antiderivatives. She
supports her claim with various observations (such as “where [the] green [graph] has a stationary
point, [the] blue [graph] has zeroes” p. 201) and backs this with a table of calculus theorems which
pertain (such as the derivative at a stationary point is zero). She is not justifying the form of her
argumentation nor explaining the reason her statement is correct. Instead, the theorems support the
warrant by explaining why the link between stationary points in one graph and zeroes in another
is relevant to the relationship between functions and their derivatives.

In the outer structure of our proof analysis (figure 9), the reason why the warrant that for all
permutations σ,τ , sgn(σ)sgn(τ) = sgn(στ) shows that sgn is a group homomorphism is that it
shows sgn fits the definition of a group homomorphism. This form of backing will be called backing
for the warrant’s validity.

5.2 Type 2: Backing for the warrant’s field

A second way of challenging a warrant is to contend that the form of argumentation is not acceptable
in the field. For example, suppose someone argued as in figure 13. The warrant here is true and is
relevant (at least in the sense that it is an example of permutations which commute under sgn) but
it is not acceptable in mathematics to argue that a single example demonstrates a general rule.

sgn((1 2) (2 3)) = sgn((1 3 2))

= 1

sgn((2 3) (1 2)) = sgn((1 2 3))

= 1

sgn is the
signature
function

Permutations
commute under

sgn

Fig. 13: An warrant from the wrong argumentation field

Equally, one could challenge the warrant in first argument outlined in figure 11, from Evens and
Houssart (2004), this way: a single example of an element in the sequence not being divisible by 3 is
not an appropriate form of arguing in mathematics that all elements have this property. One might
instead imagine a pupil who gave a warrant like “7 = 2×3 + 1” and backed it with a statement like
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“they’re all like this”; this backing, one might contend, indicates a generic argument which may be
acceptable in that classroom (though may not be acceptable in others).

In the second argument in figure 11, from Stephan and Rasmussen (2002), the student and
instructor may be warding off a challenge to their warrant by suggesting that the kind of argument
they are producing is a “crude approximation” which should be accepted in these circumstances.
That is, the argument is one which, temporarily at least, is from an appropriate field.

Similarly, in the argument put forward by Aberdein in figure 5, since his intention is to highlight
the forms of argument which are acceptable or not within intuitionistic logic (or, as he puts it, “make
the guilty steps explicit”, p. 292), his backings highlight the logical field in which the warrants are
acceptable.

In the analysis of our proof, the conclusion follows from the data because of the warrant as the
argument is a deduction. This form of backing will be called backing for the warrant’s field.

5.3 Type 3: Backing for the warrant’s correctness

The third way in which a warrant may be challenged would be to contend that it is incorrect,
so backing might provide support for a warrant in showing that the warrant itself is correct. For
example, suppose someone argued according to the scheme in figure 14. The warrant here is relevant
(in the sense that, if it was the case, it would justify drawing the conclusion) and the form of
the argument attempted is appropriate for mathematics (again, being a deduction). However, the
statement in the warrant is not true.

For permutations σ, τ
and polynomial ∆
στ(∆) = τσ(∆)

So sgn(στ) = sgn(τσ)

sgn is the
signature
function

Permutations
commute under

sgn

Fig. 14: An incorrect warrant

In the third argument outlined in figure 11, from Inglis et al. (2007), the mathematician is not
explaining the form of argumentation they are making, nor are they explaining why it is relevant
to drawing the conclusion. What they appear to be doing is explaining why it is that odd numbers
“lose a lot of divisors”. That is, why the warrant may be the case.

Similarly in Toulmin’s second argument in figure 10 the statement “the proportion of Roman
Catholic Swedes is less than 2%” explains why it is the case that “a Swede can be taken to be
almost certainly not a Roman Catholic”.

Forman, Larreamendy-Joerns, Stein, and Brown (1998) describes pupils counting the number
of 1cm2 grid squares covering an irregular plane figure, who were asked to give a result in square
millimetres. They interpret one pupil’s answer in terms of Toulmin’s categories with the data as “17
grid squares”, the conclusion as “170mm”, the warrant as “conversion: 17 × 10” and backing that
“for every one centimetre, there is 10 millimetres” (p. 537). One could argue that the backing is an
attempt to explain why the conversion factor should be multiplication by 10. That is the backing
is an attempt to show that the warrant is correct.

In our analysis of the proof, the reason that it is the case that for all permuations σ,τ ,
sgn(σ)sgn(τ) = sgn(στ) is the remainder of the proof. This form of backing will be called backing
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for the warrant’s correctness.

These three forms of backing support warrants in three different ways: the first ensures that it
applies to this situation, the second that it is an acceptable form of argument in the situation and
the third that it is the case.

Weber and Alcock (2005) claim that “If the warrant of an argumentation is plausible, but not
socially agreed upon by the mathematical community, backing for this warrant is required and the
proof is said to have a ‘gap’ in it.” (p. 37). This seems to conflate two forms of backing: gaps in
proofs should be filled by showing that the warrant used to argue across the gap is correct while
the reliance on a warrant that is not socially agreed on by mathematicians requires a backing about
the form or field of argument used (just as the student and instructor in Stephan and Rasmussen
(2002) backed an argument as a “crude approximation”).

Cobb (2002) gives an interesting example which might be interpreted as a confusion between
backing types. Pupils were undertaking an analysis of the life of different brands of battery given
some data on the time twenty named-brand batteries had lasted. One pupil gave a warrant for her
choice which depended on how many of the ten longest lasting batteries were from a given brand.
When challenged on the argument, the backing that “half of 20 is 10, so that’s how I chose it”
(p. 195) as given.Cobb notes “Crucially, this backing did not refer to the issue under investigation,
that of deciding which of the two sets of batteries lasted longer” (p. 195). One could suggest that the
pupil was backing the correctness of the argument while the challenge was to its validity. Confusion
between types of backing may account for many classroom misunderstandings.

However, when one analyses mathematicians’ proofs, as here, it is likely that the warrant field
is determined: such arguments should be deductive and it is only when one wishes to delve in to
the particular form of logic used (as Aberdein, 2005) that the backing for the warrant field would
be interesting. However, in analysing the arguments used amongst students and in classrooms, all
three types of backing are of interest - the forms of argument permitted in a classroom are clearly
a part of the classroom’s sociomathematical norms (in the sense of Yackel & Cobb, 1996).

6 Final analysis of the proof

In terms, then, of the Toulmin scheme with the added distinction of these three types of backing,
the final analysis of the proof is given in figure 15.

The warrant is valid as it is an instance of the definition of a group homomorphism, it is from
the appropriate field in that it is a deduction and it is correct, which follows from the rest of the
proof. Of course, in this final part, the remainder of the proof contains steps which need warrants of
their own and backings (potentially of all three types) of their own. This is not, however, an infinite
regress of backings supporting warrants’ correctness. Toulmin notes that, in some cases, backings
(interpreted as backings for the correctness of warrants) are axioms.

Even without going down further levels of that (finite) regress, the analysis in figure 15 provides
some useful insight. Most noticeable is that only a small number of the warrants are explicit. In
all there are ten different places in which the analysis notes warrants. In the proof given by the
examiner, only two are made explicit. The warrant for στ(∆) = sgn(στ)∆ is directly referred to
(“by definition”) and, while split by other expressions, the overarching warrant “for permutations
σ and τ , . . . , sgn(σ)sgn(τ) = . . . sgn(στ)” is also clearly expressed. Everywhere else the reader
must infer the warrants.
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στ(∆) = σ(τ(∆))

στ(∆) = σ(sgn(τ)∆)

στ(∆) = sgn(τ)σ(∆)

στ(∆) = sgn(τ)sgn(σ)∆ For permutations σ, τ , poly ∆
στ(∆) = sgn(στ)∆

sgn is the
signature
function

sgn is a group
homomorphism

composition of
functions

definition
of sgn

definition
of sgn

definition
of sgn

permutation
action

definition of
homomorphism

σ,τ are
permutations

∆ a polynomial

For permutations σ,τ
sgn(σ)sgn(τ) = sgn(στ)Deduction

Backing: warrant field
Backing: warrant valid

Backing: warrant correct

sgn(σ)sgn(τ) = sgn(τ)sgn(σ)

sgn(τ)sgn(σ)∆ = sgn(στ)∆

sgn(τ)sgn(σ) = sgn(στ)

transitivity/
symmetry

of =

division by
non-zero

polynomial

sgn(σ)sgn(τ) = sgn(στ)

transitivity
of =

commutativity
of multiplication

Fig. 15: A final analysis

Given that a model solution is an indication of the minimal response which can obtain maximum
marks, it suggests that examiners are not necessarily looking for students to give much justification
for their steps below the main warrant required to draw the conclusion.

Moreover, as noted earlier, one piece of the argument — the division by the (non-zero) polyno-
mial ∆ — is only implicit in the examiner’s model solution and yet other, arguably simpler steps are
made explicit. For example, the examiner could have written “ and hence sgn(σ)sgn(τ) = sgn(στ)
. . . ” in the penultimate line of the proof (as shown in figure 3), leaving the claim based on the
commutativity of multiplication implicit and yet the claim sgn(σ)sgn(τ) = sgn(τ)sgn(σ) is made
explicit (even if the warrant itself is not). One might ask why it is acceptable to omit the step in-
volving division of a polynomial as implicit but important to have commutativity of multiplication
explicit. One interpretation is that, as Hazzan (1999) notes, commutativity is an issue that may
only become explicitly a focus of attention when encountering abstract algebra for the first time,
so it is important that students can demonstrate that they know when it does and does not apply,
while division by a (non-zero) polynomial is more peripheral to the study of group theory.
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7 Summary and Conclusions

The analysis of this model solution in terms of the expanded Toulmin scheme does, then, provide
some insight into the argumentation which examiners expect of their students. Given the widespread
use of Toulmin’s scheme in analysing arguments and, predominantly, in analysing the act of arguing
in classrooms it is important to note how the scheme’s components function in such analyses and
how aspects can become conflated.

The Toulmin scheme has been used extensively in the literature, but not always in the ways
Toulmin intended. However, mathematics education researchers have tended to find as much value
in using it to analyse arguing as philosophers have in analysing classical arguments. In studying
proofs such as model examination solutions, the näıve interpretation of the Toulmin scheme has
little value in itself and, while the suggestion of Weber and Alcock (2005) to look at warrants needed
at each line of the proof expands considerably on this, it does not focus the analysis of the structure
of a proof. Combining this with chaining and other combinations of partial arguments adds more,
but a fuller analysis is not available until one looks carefully at the notion of backing.

Existing literature has used backing in what one might now contend are three different ways:
the first ensures the warrant applies to the situation, the second that it is an acceptable form
of argument in the context and the third that it is actually correct. The form of argument for a
mathematician writing something they call a proof is likely to be fixed (except for situations in which
one may be interested in the precise axiom system in which the argument is positioned). However,
in the classroom, the form of argument is an important aspect of the sociomathematical norms, and
teachers and pupils may have to cope with shifting norms where some arguments may be allowed to
be generic or heuristic but others must be formal. One role of teachers and the wider mathematical
educational system may be to clarify the acceptable forms of argument in mathematics, such as
justifications for new inferences being based on old ones (Fukawa-Connelly, 2012).

In addition to the difficulty of enculturation into those sociomathematical norms, further confu-
sion can occur in the classroom when there is a lack of clarity about which of the different forms of
backing being sought: recall the reinterpretation of the interesting example given by Cobb (2002).
A teacher may be asking a pupil to explain why their warrant applies to the situation, but the pupil
may defend themselves by giving evidence that their warrant is correct. This need not mean that
a student is not capable of giving an appropriate form of backing for the validity of their warrant,
just that they took the enquiry to be a challenge to its correctness.

The more detailed analysis permitted by the expanded Toulmin scheme allows us to focus
on what examiners value: the highest level of warrant appears to be essential, as does providing
at least some warrant for major steps, but other justifications for proof steps are not as highly
valued. Calculation steps which are directly in the focus of the module (for example, those resting
on commutativity) must be made clear, but those which are more peripheral (for example, those
resting on division by a non-zero polynomial) need not. One could easily imagine a different course
in which a model solution would not make explicit the commutativity of multiplication, but required
that students were entirely explicit about steps involving the division by a polynomial (and were
clear that the polynomial was not zero).

This expanded scheme thus helps provide insight into the sub-fields of argumentation, even
within the overall field of arguing ‘mathematically’.

This leads to one final point about the proof explored in this paper.

At first sight, the complexity of the structure revealed by the full analysis of the argument may
make one wonder about the rationale for the relatively small number of marks available for it: the
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mark scheme indicates that, with the definition, students could attain a maximum of five marks
from a total of twenty for the question, which was one of four equally weighted questions which
had to be completed in two hours. However, if one looks at the steps, most of them are standard
steps which one would expect to be used repeatedly in mathematical arguments: use of definitions,
rules of arithmetic etc. The only parts of the analysis which arguably include concepts from the
module are the definition of the signature function itself, the definition of homomorphism and an
understanding of how a permutation acts on a polynomial.

That said, the analysis also shows the number of different lower level ideas which need to be
meshed with these main concepts into an intricate structure to enable the proof to be constructed.
For students to be successful on even the very small part of their mathematics assessment presented
here, they need not only the concepts of the course, but also a fluent grasp of how to co-ordinate
them with multiple basic proof steps.

It is perhaps unsurprising, then, that so many seem to resort to memorisation.
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