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ABSTRACT: The molecular-level origins of the effects of
annealing temperature and molecular weight on hole mobility
in P3HT are elucidated using coarse-grained molecular
dynamics, quantum chemical calculations, and kinetic Monte
Carlo charge-transport simulations on a variety of realistic thin-
film morphologies. The zero-field hole mobility is shown to
increase as the annealing temperature or average molecular
weights of samples are increased, in accordance with
experimental results. Crystal structure analysis shows that the
annealing temperature dependence of the mobility can be
attributed to the size and structural order of the crystallites in
both the chain-backbone and π-stacking directions. However,
the molecular weight dependence of the mobility cannot be
rationalized in the same way. Longer chains are shown to belong to more crystallites in the morphology, suggesting that the
crystals become better connected as the molecular weight of the sample increases. We show that engineering samples to have an
increased fraction of these long “tie chains” within the morphology improves mobility. As such, we propose that crystal
connectivity in the noncrystalline portions of the morphology is similarly important in determining carrier mobility as crystallite
size and order for semicrystalline conjugated polymers.

1. INTRODUCTION

Solution-processed conjugated polymers are an important class
of semiconductor due to the possibility of affecting their optical
and electronic properties through molecular design1,2 as well as
their compatibility with scalable manufacturing processes.3,4

These versatile materials are attractive alternatives to inorganic
semiconductors in applications where low cost, large area, and
flexibility are needed. A fundamental property of component
polymers is the charge-carrier mobility (μ), which often
determines performance in electronic devices ranging from
organic thin-film transistors (OTFTs) and5 light-emitting
diodes (OLEDs)6,7 to photovoltaics (OPVs).8−11 Indeed, in
some devices, low mobility currently prohibits the use of
conjugated polymers in industrially important applications.12 It
is therefore vital to exert control over the mobility to enable
conjugated polymers to achieve their full potential. As such, the
design of high mobility polymers13−15 and subsequent
processing to yield high mobility morphologies16−18 is an
active area of research. A significant remaining challenge is
understanding the relationship between morphology on the
molecular level and mobility.19 This is demonstrated by
investigations of poly(3-hexylthiophene) (P3HT)a semi-
crystalline polymer often used in OTFTs16,20 and photo-
voltaics.18,21

As is the case for many conjugated polymers, the electronic
properties of P3HT depend sensitively on the morphology.22 In
the amorphous phase, P3HT exhibits a time-of-flight hole
mobility of the order μ ∼ 1 × 10−5 cm2 V−1 s−1.23 However,
P3HT chains can self-assemble into crystals when the film is
subjected to thermal or solvent vapor annealing, or high
pressure,24,25 with the resultant semicrystalline morphologies
exhibiting hole mobilities larger by at least an order of
magnitude.23,26,27 The degree to which crystals form depends
also on the properties of the polymer chains such as
regioregularity,24 molecular weight,28,29 and polydispersity.30

However, the collective effect of these variables on aspects of
morphology, and subsequently the mobility, is complex. Many
aspects of molecular morphology have been correlated with
increased mobility in P3HT, such as a larger proportion of
crystalline material,30,31 improved crystalline order in the π-
stacking direction32 or along the backbone of the chains
themselves,28,33,34 or, more recently, the presence of tie chains
within the morphology linking crystals together.19,35,36 This
demonstrates the challenge of determining causal relationships
between mobility and morphology, since even with the benefit
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of a battery of carefully performed experiments on a well-
studied polymer, the underlying physics is still the subject of
much debateespecially in the context of crystallinity.37

Simulations offer a way to examine the relationship between
molecular morphology and mobility in greater detail than is
generally available by a single experiment. Of course, for such
analysis to be meaningful, the descriptions of both the
morphology and charge transport must be realistic. While
there are a range of morphology simulation techniques,38,39

molecular dynamics (MD) methods stand out as providing
morphologies with atomistic detail for experimentally relevant
molecular weights and polydispersities. MD simulations use a
calibrated force field to replicate the bulk behavior of chains
under different processing conditions and annealing temper-
atures.40−42 While some MD simulations model samples
atomistically, an alternative method involves grouping together
clusters of neighboring atoms into a single “coarse-grained”
(CG) site for reduced computational cost.43,44 This is an
especially important issue as computational cost limits the
amount of simulated material that can be considered. CG
models have been used to successfully reproduce the
experimental data of chain conformation and phase behavior
in conjugated polymers,45 the miscibility and interpenetration
of OPV blends,46 and predicting microstructure architectures47

that can be linked to mesoscopic morphological features.48

However, to date, the detailed film morphologies generated by

these techniques have not been joined with charge transport
simulations. Studies have instead focused solely on either
examining the film morphologies44 or charge transport in
idealized morphologies.49,50

In this article, we generate realistic P3HT morphologies
using CG MD simulations and use these in a charge transport
model to relate structure to mobility. We simulate populations
of chains that have commercially available weight-averaged
molecular weights (19.4 kDa ≤ Mw < 69.9 kDa) and
polydispersity indices (1.5 ≤ PDI < 2.4) for a realistic thin
film density (ρ = 1.1 g cm−3). These chains are then subjected
to various annealing protocols to better understand how thin
film morphology evolves. These diverse, realistic morphologies
are used in kinetic Monte Carlo (KMC) charge transport
simulations in which hopping rates are determined by
semiempirical quantum chemical ZINDO/S calculations.
Using this approach, we recreate the experimentally observed
increase in P3HT hole mobility, μ, when the annealing
temperature, Ta, and molecular weight, Mw, are increased. We
show that the observed annealing temperature dependence of μ
is correlated with increasing volume of crystals, and better
intrachain crystal order, although not crystal order in the π-
stacking direction. Conversely, we find that the observed Mw
dependence of μ cannot be explained by these aspects of the
morphology. Instead, we show the improvement in μ as a
function of Mw is largely due to the presence of tie chains

Figure 1. (a) Depiction of the coarse-graining process and naming nomenclature for the CG sites. (b−d) Results from the coarse-grained simulation
of the S-51 sample, annealed at Ta = 423 K. (b) Sample morphology with conformation of an example chain highlighted. (c, d) d[hkl] histograms for
the morphology, along with the corresponding Gaussian fits to the data (blue lines). (c) d[001] in the along-chain direction (inset: top-down
schematic showing conjugation of the CG P3HT chain). (d) d[010] in the π-stacking direction (inset: orthographic projection showing π-stacking of
CG P3HT chains).
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linking together crystallites within the morphology, which
provide improved charge transport through the amorphous
regions. This suggests a model of mobility in semicrystalline
conjugated polymers that is jointly determined by transport in
the crystal (dependent on crystal size and order) and the
availability of connecting tie chains, which are a subset of the
otherwise noncrystalline regions of the film. Although P3HT is
used as a test case in this investigation, the conclusions are
expected to be generally relevant for other semicrystalline
polymers such as poly(2,5-bis(3-tetradecylthiophen-2-yl)-
thieno[3,2-b]thiophene) (PBTTT) and poly(5,5′-bis(3-alkyl-
2-thienyl)-2,2′-bithiophene) (PQT), which have been shown to
exhibit similar transport activation energies.19

2. SIMULATIONS
The coarse-grained (CG) simulation model of regioregular
P3HT represents each monomer by three spherical sites that
correspond to the thiophene ring (P1), first three hexyl side-
chain methyl groups (P2), and last three side-chain methyl
groups (P3) (Figure 1a) and was parametrized to reproduce
the local structure of an accurate atomistic P3HT model.45,51

We note that as three coarse-grained sites are used, the
monomers are anisotropic, and so chains are still permitted to
self-assemble despite each site being spherical. A closely related
CG model of P3HT with the same bonded interactions (which
most strongly determine the polymer melt structure), but with
nonbonded interactions that describe an implicit anisole
solvent, has previously been shown to capture thermodynamic
and nanoscale structural properties of solution-phase P3HT
well.45 The CG model of pure regioregular P3HT derived here
captures the structural properties of P3HT oligomers in the
atomistic model over a wide range of thermodynamic
conditions, as shown in Supporting Information section S1.
A database of P3HT chains with polymerization lengths

ranging from 2 to 1000 monomers (330 Da−164 kDa) was
generated. These chains were permitted to relax within the MD
simulations for 1 ns in isolation at 290 K, according to the
intramolecular components of the force field, thus mimicking
their arrangement within solution. A total of 40 relaxed chains
were then selected at random from a custom chain distribution
(Supporting Information section S2) to yield weight-averaged
molecular weight (Mw) and polydispersity similar to those
available commercially (e.g., Sigma-Aldrich, Reike Metals). It
was found that the commonly used Schulz−Flory distribution52
did not adequately describe the combination of large molecular
weights and high polydispersities expected in P3HT samples.
This process was repeated to give a range of samples with

19 ≤ Mw < 70 kDa, which are named S-19 to S-70, respectively,
as shown in Table 1. The selected chains, representing a

particular P3HT sample, were then placed in a large,
periodically bounded simulation box at random positions and
orientations, with sufficient empty space between chains to
avoid interchain interactions. This large simulation volume was
then compressed over a period of 40 ps at 290 K, until the
density (ρ) reached the average P3HT film density of 1.1 g
cm−3.53 This mimicked the effect of solvent evaporation,
producing a CG morphology containing P3HT chains with
realistic Mw, PDI, and ρ, occupying a cube with sides of the
order 10 nm. The exact simulation volumes varied with Mw but
were all of similar order to thin film thickness in real
devices.18,44 An example morphology is depicted in Figure
1b, with a single chain highlighted to show expected
conformation within the force field.
The CG morphologies then underwent a series of annealing

and equilibration MD simulations utilizing both the intra- and
intermolecular components of the force field. All simulations
were performed at constant volume and temperature,
maintained using a Nose−́Hoover thermostat and barostat54

and timesteps of 4 fs, using the LAMMPS suite.55 The
morphologies were first simulated at a temperature Ta, varying
from Ta = 290 K (no annealing) to Ta = 623 K for 4 ns. Of
course, real devices are annealed for much longer; however, we
observed that the total potential energy and structural
distribution functions reached constant values within this
time scale (Supporting Information section S3), suggesting that
some level of thermally activated chain reorganization had
taken place. The 4 ns annealing time was imposed due to the
computational cost of the MD simulation. To mitigate the
effect of the reduced annealing time, Ta values exceeding those
used in experiment were also used to increase the energy
transferred to the system during this time,44,56 although it was
found that Ta > 623 K resulted in numerical instabilities in the
MD simulations for the chosen time step. Annealed films were
allowed to cool down to room temperature over a further 4 ns
period, before equilibrating at Ta = 290 K for a final 4 ns.
The physical conformation of the chains in the equilibrated

system was then analyzed to determine the crystal structure of
the samples. Crystals in the morphology were identified by
determining the proximity of conjugated subunits (i.e., CG site
P1the thiophene ring in each monomer) to others in the
morphology, given an initial crystal direction described by the
vector [hkl]. For each subunit, d[hkl] was defined as the
separation to the closest thiophene ring lying within a cone of
apex angle 30° protruding both above and below the CG site in
the [hkl] direction. This was calculated along both the π-
stacking axis (d[010]) and the chain backbone axis (d[001]), based
on the positions of the bonded alkyl side chain and nearest-
neighbor thiophene rings.

Table 1. P3HT Samples Considered in This Investigation with Number- and Weight-Averaged Molecular Weights (Mn,Mw) and
Polydispersity Indices (PDI), Zero-Field Hole Mobilities (μ0), π-Stacking Paracrystallinities (g[010]), Intrachain
Paracrystallinities (g[001]), and Crystal Proportions (γ) for Samples Annealed at the Maximum Considered Temperature, 623 Ka

name S-19 S-37 S-46 S-51 S-57 S-70 M-5 M-10 M-20 M-50

Mw (kDa) 19.4 37.0 45.7 51.1 56.8 69.9 37.3 45.7 51.2 57.0
Mn (kDa) 12.6 20.0 27.8 29.5 30.1 45.0 15.9 18.8 21.8 26.4
PDI 1.5 1.9 1.6 1.7 1.9 1.6 2.3 2.4 2.3 2.2
μ0 (1000 cm2 V−1 s−1) 2.40 2.99 3.80 3.97 3.38 4.67 3.23 3.26 4.38 4.21
g[010] (%) 7.51 7.76 8.76 8.36 8.72 8.73 7.85 8.55 9.80 8.19
g[001] (%) 1.93 2.06 2.17 2.26 2.08 2.14 2.02 2.14 2.48 2.29
γ (%) 44.15 45.43 43.06 44.17 45.55 43.51 43.26 42.5 45.58 43.19

aSingle distributions are denoted by the name “S-⟨Mw⟩”, whereas Mixed samples are “M-⟨proportion of S-70⟩”.
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Figures 1c,d show the d[hkl] histograms for the S-51 sample
annealed at 423 K. The d[001] data, which quantify along-chain
order, are unimodal and can be fit by a Gaussian with mean,
d ̅[001] = 7.5 Å, and variance, σ[001] = 0.2 Å. However, the d[010]
data are better described by a bimodal distribution. We ascribe
one peak to the crystalline portion of the morphology (fitted by
a Gaussian with d ̅[010] = 4.6 Å, σ[010] = 0.4 Å) and the other to
the less ordered regions of the morphology (fitted by a
Gaussian with d̅a = 8.1 Å, σa = 2.1 Å). These data and our
interpretation agree with the literature since both d[̅001] and
crystalline d ̅[010] fit well the grazing incidence wide-angle X-ray
scattering (GIWAXS) data which report d̅[001] = 7.7 Å and d[̅010]
= 3.8 Å57 as well as atomistic MD simulation data which report
d[̅001] = 7.9 Å and d̅[010] = 4.0 Å.50 Hence, the generated
morphologies show crystal packing in agreement with experi-
ment.
From the d[010] distributions, the chain backbone and π-

stacking paracrystallinities58 were calculated as g[001] = σ[001]/
d ̅[001] and g[010] = σ[010]/d[̅010], respectively, where only the
narrow, crystalline distribution is considered for the π-stacking
direction, as this is the region probed by XRD methods. The
crystal proportion (γ) within the morphology was approxi-
mated by determining the integral underneath the crystalline
Gaussian curve as a proportion of the integral under the whole
distribution. Later, we will show that γ can be affected by both
Mw and Ta. However, while the current morphologies have
realistic dimensions, it is important to note that the short
annealing time will have reduced the opportunity for crystals to
form and hence limit γ. The crystals formed here were
necessarily smaller than 10 nm in extent and so were smaller
than some reports on P3HT experimental films.
Having related the supramolecular structure of the CG

morphologies to variations in Mw and Ta, we now move on to
identifying links between these properties and the simulated
hole mobility of the morphology. As such, we implemented a
geometrical “fine-graining” procedure to approximate the
atomic positions based on the CG morphologies (the full
details of which are given in Supporting Information section
S4). This atomistic representation is required in order to
calculate electronic couplings that were ultimately used for the
kinetic Monte Carlo model. Briefly, the fine-graining procedure
was implemented by manipulating an energetically minimized
atomistic template of a thiophene ring to produce a 100%
regioregular chain backbone, with intermonomer torsion
determined using the positions of the bonded neighboring
CG sites. The manipulation was repeated for every monomer in
the chain, resulting in an atomistic polythiophene chain with
thiophene ring positions and orientations corresponding to the
CG MD outputs, an example of which is shown in Supporting
Information section S4. Given that the solubilizing alkyl side
chains only affect the charge mobility characteristics by
constraining the self-organization properties of the backbone
itself,59−61 we omitted the consideration of the side chains in
the transfer integral calculations for simplicity.
Calculations of the density of states (DoS) for P3HT have

shown that the orbital density localization is around seven
monomers.56,62 In our semiclassical charge transport model, we
assumed that holes hop between these segments of increased
orbital overlap. As such, the polythiophene chains were split
into segments by considering the “chain backbone” vector
between centers-of-mass of adjacent thiophene rings, starting at
one end of the chain. If the angle between the chain backbone
vector and the vector to the next thiophene along in the chain

was within a tolerance angle θc, the thiophene units were
assumed to be part of the same delocalized segment; otherwise,
the thiophene unit was assumed to be part of a new segment. θc
was selected such that the hole was, on average, delocalized
over seven monomers for the S-57 sample and then kept
constant for all morphologies. This segmentation of the chains
is an approximation since the HOMO wave functions are not
calculated directly. However, the mean delocalization fits with
more rigorous calculations via θc.

56,63 Segments were then
sorted into pairs of hopping partners, i.e., two segments that
were within rmax = 20 Å of each other including the periodic
boundary conditions, which is much larger than the d[̅010] and
d ̅a spacings. Quantum chemical ZINDO/S calculations were
then performed on each segment individually, as well as all the
hopping partner pairs, in order to calculate the molecular
orbitals64 using the ORCA program suite.65 These allowed the
electronic coupling transfer integral |Jij| to be calculated:

| | = − − Δ−J E E E
1
2

( ) ( )ij ijHOMO HOMO 1
2 2

(1)

where (EHOMO − EHOMO−1) denotes the HOMO splitting
energy for the dimer containing the two hopping partners and
ΔEij is the difference in energy between the initial and final
sites. Like some other quantum chemical calculations,63 we
found the DoS to be approximately Gaussian, but significantly
broader than those expected in real devices.27,33,66 Using these
values to calculate ΔEij led to imaginary transfer integrals which
made the charge transport simulations unrealistic. Some studies
utilize Koopmans’ approximation,67 in order to set ΔEij = 0 by
assuming that isolated segments have the same energy.68,69

While Koopmans’ approximation provides good agreement
with density functional theory results for a variety of
systems,70,71 it nonetheless discards relevant information
about the energy levels of the segments, which in turn are
dependent on the morphologies of interest and argued to be
very important in determining mobility.19 To resolve this issue,
we used an approximate method where the ZINDO/S-
calculated HOMO levels were mapped onto the experimentally
determined DoS (Supporting Information section S5), such
that the sigma within the distribution (e.g., ±1 standard
deviation from the mean) was retained. Note that this mapping
was only used to determine ΔEij for the transfer integral and
the subsequent Marcus hopping rate in eqs 1 and 2; the
HOMO splitting calculation was left unmapped from the
simulated molecular orbitals.
The transfer integral was then used to determine the rate at

which hops could take place, given by the semiclassical Marcus
expression:72
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where kB is the Boltzmann constant, T is the absolute
temperature, and the reorganization energies, λij, were
estimated using a model predicted from DFT calculations
based on the length of the host segment (Supporting
Information section S6).73 Section S6 also includes a
comparison of the transfer integral calculations from other
studies, which are shown to match well the values used here.
Note that the transfer integrals between all segment pairs with
separation r < rmax in the morphology were considered, thereby
implicitly allowing variable range hopping.74
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The charge transport simulations themselves consisted of a
KMC algorithm that calculated the wait time until the next
hopping event using the equation

τ = − x
k
ln

hop (3)

where x is a uniformly distributed random number between 0
and 1 and khop is the Marcus hopping rate calculated from eq 2.
In each simulation, a single hole was injected onto a random
segment within the morphology and permitted to hop through
the system for a time tmax. The mean-squared displacement (⟨x2

⟩) was calculated and the process repeated 104 times. ⟨x2⟩ was
shown to be directly proportional to tmax, with proportionality
corresponding to the 3D diffusion coefficient D. The related
zero-field hole mobility, μ0, for the morphology was calculated
using

μ =
qD
k T0

B (4)

where q is the elementary charge.

3. RESULTS AND DISCUSSION
Figure 2 shows the simulated μ0 for various P3HT samples
used in this investigation (Table 1) as functions of annealing
temperature, Ta, and weight-averaged molecular weight, Mw.
First, it is important to note that the absolute values of the
mobilities recorded here are several orders of magnitude greater

than other time-of-flight measurements obtained from real
devices. These tend to report mobilities within the range 2 ×
10−4−2 × 10−3 cm2 V−1 s−1 for highly regioregular pristine
P3HT films at zero to low fields (F ≃ 4 × 106 V m−1),
depending on the processing regime.23,26,27 However, it is
reasonably common for ab initio calculations of mobility to
differ from experiment by some orders of magnitude due to the
significant challenge of modeling a complex, disordered
system.75,76 Our focus here is how molecular morphology
influences mobility through Mw, Ta, and the PDI. Hence, we
now move on to consider relative changes in mobility and how
this compares with experiment.
While the data show some scatter, there is a clear monotonic

trend of increasing μ0 with both Mw and Ta. The improvement
in μ0 is shown to saturate beyond ∼450 K to an extent that
depends on Mw, with smaller Mw showing more pronounced
saturation. Ta = 423 K is a common annealing temperature, for
which it has been shown that μ0 is larger by a factor of 2−3
when compared to as-cast films.77,78 These data agree
reasonably well with the predicted improvement in μ0 by a
factor of 3.5 shown here. The mobility is also sensitive toMw, as
increasing Mw from 19 to 70 kDa increases μ0 by a factor of 3.2
for unannealed samples and a factor of 2.1 for morphologies
annealed at 623 K. Some field-effect transistor measurements
on samples of unannealed P3HT have reported that an increase
in Mw from 11 to 51 kDa results in an increase in saturation
mobility of around 1 order of magnitude79 or a factor of 5 over
the range 21 ≤ Mw < 61 kDa.80 For transistors annealed at Ta =
370 K, mobilities have been reported to increase by a factor of
∼3 for the range 20 ≤ Mw < 76 kDa.81 However, time-of-flight
mobility investigations for unannealed films show that the
mobility actually decreases by a factor of 5 as Mw is increased
from 26 to 72 kDa.33 It is difficult to be exact in comparing the
current data to experiment due to the variety of protocols used;
however, it is clear that the general trend of increasing μ with
Mw is reproduced. The change in μ0 with Mw is smaller than
most reports; however, this might be expected due to shorter
annealing times. We note again that in our model we have
made simplifying assumptions to allow charge transport
simulations on realistic thin films. Despite this, we note that
the model has recreated the relative changes in μ0 with
temperature and molecular weight, as seen in experiment. In
order to determine the reason for the observed mobility trends
in Figure 2 and that of previous studies, we now consider the
morphological structure of the P3HT film.
The results of the paracrystallinity measurements for the

single distributions are shown in Figure 3. Along the polymer
backbones, the disorder is shown to decrease as the annealing
temperature increases, characterized by a narrowing d[001]
distribution. Regular lattice spacings in this direction result in
strong coherence between adjoining hole delocalization
segments, manifesting as an increase in the average segment
length, L (Figure 3c). A combination of these factors could
explain the observed increasing mobility with increasing
annealing temperature (Figure 2). However, we note that
Figure 3a does not show a monotonically decreasing g[001] as a
function of increasing molecular weight. The g[010] data shown
in Figure 3b lie within 7% ≤ g[010] < 10% and show a slight
reduction with increasing Ta and no clear trend withMw. This is
in agreement with sources in the literature that suggest that
P3HT π-stacking disorder is high and mostly independent of
degree of polymerization beyond 100 monomer units (Mw = 16
kDa)19 as well as XRD data for semicrystalline polymer

Figure 2. (a, b) The zero-field hole mobility for single distribution
samples with different molecular weights (as given in Table 1) as
functions of (a) annealing temperature (Ta) and (b) molecular weight
(Mw).
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films50,82 such as poly(bithiophene-alt-thienothiophene)
(PBTTT).83,84 GIWAXS measurements on thick (∼100 nm)
films annealed at 413 K have shown that P3HT generally
exhibits a slightly lower paracrystallinity g ∼ 5%,85 suggesting
that our morphologies are more disordered than equivalent
experiments but still lie within the semicrystalline regime.82

Although we find correlations between g[001] and Ta, and
hence μ0, there is no clear dependence of g[001] or g[010] on Mw,
even though μ0 does vary with Mw. This may be exacerbated by
the short annealing times that are used in the current
investigation, but it does seem to indicate that not all of the
mobility trends observed in Figure 2 can be solely explained by

the paracrystallinity along either axis. This again is in agreement
with morphological studies that have suggested that the π-
stacking paracrystallinity does not affect the mobility.19,49

The d[010] distributions shown in Figure 1b also allow an
estimation of the volume occupied by the crystal regions. To do
this, we measure the “crystal cutoff” (dcut) for the morphology
as the value of d[010] corresponding to the minimum value for
the combined bimodal distribution (around 6 Å for all
morphologies). Thiophene spacings d[010] < dcut are considered
as belonging to a crystal, whereas thiophene with d[010] > dcut
belong to the amorphous region of the morphology. We then
define the crystal proportion, γ, as the integral of the d[010]
distribution up to dcut as a fraction of the integral of the whole
distribution.
Figure 4 shows γ as functions of both Ta and Mw. The

absolute values of γ are around 0.2 lower than those reported
from melting enthalpy calculations,30 again likely because those
devices were annealed for a much longer period than the
current simulations. In general, Figure 4 shows that γ increases
linearly with annealing temperature as expected. By contrast, γ
shows no clear dependence on Mw.
Differential scanning calorimetry (DSC) measurements of

the enthalpy of fusion have shown that the expected degree of
crystallinity remains approximately constant for 17 ≤ Mw < 93
kDa at room temperature.86 A different study of smaller
molecular weights showed that the volume occupied by crystals
increased from 4.5% atMw = 2.6 kDa to 18% at Mw = 27 kDa.31

Perhaps then it is unsurprising that for the current data in the
range 19 ≤ Mw < 70 kDa and considering the short annealing
times, γ varies by a maximum of 5% for unannealed devices and
even less for films annealed at increased Ta. Again, as with the
paracrystallinity measurements, we find that increasing Ta is
correlated to an increased crystal proportion in the film, which
may partly explain the observed increase in μ0 with respect to
Ta. However, we also find no clear trend relating γ to Mw for
the examined conditions even though μ0 is shown to clearly
increase with Mw.
It has been argued that high mobility is caused not only by

the size of well-ordered crystals but also by the presence of “tie
chains” that form efficient connections between them.19 To
show the impact of tie chains in the current data, Figure 5
shows the number of crystals each chain participates in (ζ) as a
function of polymerization, Dp. We observe that increasing Mw
increases the likelihood that individual chains will participate in
more crystals. Furthermore, it can also be seen that this trend is
largely unaffected by the annealing temperature. We therefore
propose that the observed Mw dependence of μ0, which is not
explained by the crystalline order or crystallite size, is instead
due to the population of long polymer chains which link
together many crystallites, in agreement with Noriega et al.19

Implicit in this argument is that the non-crystalline regions of
the film are divided into tie chains, which are members of many
crystals and benefit mobility, and shorter chains, which are
members of fewer crystals and therefore do not benefit
mobility. This suggests semicrystalline conjugated polymer
mobility can be optimized by increasing the number of tie
chains in the noncrystalline phase.
To test this hypothesis, films were generated in which there

existed an increased population of tie chains in an otherwise
small molecular weight sample. Proportions of the S-19 and
S-70 samples were mixed together to produce systems of
similar Mw to the single distributions, but with polydispersities
ranging between 2.2 ≤ PDI < 2.4. These samples are denoted

Figure 3. (a, b) Paracrystallinity (g) for the investigated samples as a
function of annealing temperature, Ta, for the (a) [001] and (b) [010]
directions. Linear fits to the data are also shown. Note that the highly
uniform Gaussian distributions for the along-chain data result in very
small error bars that are barely visible on these axes. (c) The variation
in average segment length, L, as a function of annealing temperature,
Ta, for each morphology.
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in Table 1 by M-X, where X is the wt % of S-70 incorporated
into the S-19 morphology. Figures 6a,b show that the
population of high-ζ tie chains has been successfully increased
by adding a small number of chains from the S-70 morphology
to the S-19 sample, as predicted by experiment.19,35,36 The tie
chains in the mixed morphologies generally belong to more
crystals than those within single-distribution morphologies of
the same Mw. As with the single-distribution samples, there is
no Ta dependence of ζ, suggesting that the effect of added
chains is largely to join crystals together rather than change
crystal properties.
Figures 6c,d show the mobilities for the resultant mixed

morphologies, along with corresponding single distributions of
equivalent Mw. Increasing the proportion of long chains within
the morphology by mixing is shown to increase the mobility,
and indeed, mixed morphologies are shown to have a
comparable mobility to single-distribution samples of the
same Mw. This suggests that it is possible to make a low Mw

sample behave like a high Mw sample through the addition of
longer chains, which “tie” the crystallites together. In turn, the
data indicate that increasing the polydispersity of semicrystal-
line polymers can have beneficial effects on the electrical
performance. While tie chains have been introduced here by
engineering the distribution of Mw, we note that similar effects
could be achieved in conjugated polymers with increased
persistence length and rigidity.87

4. CONCLUSIONS

To conclude, we have used coarse-grained molecular dynamics
simulations of realistic samples of P3HT chains to obtain thin
film morphologies for a variety of annealing temperatures. The
morphologies then underwent a fine-graining procedure,
returning them to the atomistic representation so that the
semiempirical ZINDO/S method could be used to determine
the charge transport characteristics of the thin films. Hole
mobilities at zero field were calculated and showed that the
mobility increases both when the annealing temperature and
weight-averaged molecular weight of the sample were increased,
in accordance with experimental results. The crystal structure of
the morphologies was then analyzed to help explain these
dependencies.
Both the crystalline order along the chain and the volume

proportion of crystals within the morphology, γ, were shown to
increase with increasing annealing temperature, suggesting that
as devices are annealed at higher temperatures, more and better
ordered crystals are produced, increasing the hole mobility. The
π-stacking crystalline order was shown to increase slightly with
increasing temperature, indicating that although well-ordered π-
stacking crystals can contribute slightly to the observed
mobility dependence on temperature, it is less important than
the other crystal properties, as determined by some
experimental investigations.
Conversely, the molecular weight dependence of the mobility

could not be explained by along-chain or π-stacking disorder, or
γ. It was found that as the molecular weight increases, the

Figure 4. (a, b) The π-stacking crystal proportion (γ) for the investigated samples as a function of (a) annealing temperature (Ta) and (b) molecular
weight (Mw). Linear fits to the data are shown for the temperature response.

Figure 5. (a, b) The functional relationship between the number of participant crystals of each chain, ζ, and its degree of polymerization, Dp. Data
are shown for single-distribution morphologies with (a) varying Mw annealed at Ta = 623 K and (b) varying Ta for samples with Mw = 51 kDa.
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average number of crystals that each chain belongs to also
increases, resulting in better connected crystals. We propose
that the bulk, long-range mobility in semicrystalline polymers is
limited below the short-range crystal mobilities by the
availability of tie chains within the system. This, in turn,
means that the noncrystalline sections of a semicrystalline
morphology perform a useful function, although not all of the
noncrystalline regions are useful tie chains.
As an example to show how the utility of the noncrystalline

parts of the morphology can be improved, we engineered a
P3HT sample with small molecular weight to include a
proportion of longer chains to act as tie chains. We showed that
adding long chains resulted in improved mobility which was
comparable to a single-distribution sample of the same average
molecular weight. The added chains were shown to have
improved crystal connectivity, supporting the conclusion that
tie chains are the main contributor to the molecular weight
dependence of the mobility and simultaneously showing that a
high polydispersity is not necessarily detrimental to charge
transport within the active layer. These conclusions need not be
specific to the test system of P3HT and may be generally true
for other semicrystalline polymers.
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