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Abstract. The inverse Kasteleyn matrix of a bipartite graph holds much information
about the perfect matchings of the system such as local statistics which can be used to
compute local and global asymptotics. In this paper, we consider three different weight-
ings of domino tilings of the Aztec diamond and show using recurrence relations, we can
compute the inverse Kasteleyn matrix. These weights are the one-periodic weighting where
the horizontal edges have one weight and the vertical edges have another weight, the qvol

weighting which corresponds to multiplying the product of tile weights by q if we add a
‘box’ to the height function and the two-periodic weighting which exhibits a flat region with
defects in the center.
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1. Introduction

1.1. Terminology. Domino tilings of bounded lattice regions have been extensively re-
searched during the last twenty years. These tilings are the same as perfect matchings of a
bounded portion G of the dual square lattice, in the following way: a matched edge corre-
sponds to a domino; the fact that the dominos do not overlap means that no two matched
edges share a vertex, and the fact that the dominos cover the entire region means that each
vertex in the region is covered by a matched edge. In the statistical mechanics literature,
one speaks of dimer covers rather than perfect matchings, and dimers rather than matched
edges.

The most well-studied example of such a model is domino tilings of the Aztec diamond
which was introduced in [11]. Here, one tiles the region {(x, y) : |x| + |y| ≤ n + 1} with
2 by 1 rectangles where n is the size of the Aztec diamond. There are other examples of
the theory, but they involve replacing the graph G with a different one, such as the regular
square-octagon lattice (giving the so-called diabolo tilings) or the hexagonal mesh (giving
lozenge tilings).

By giving each edge a multiplicative weight, we can consider random dimer coverings: the
probability of each covering is proportional to the product of the edge weights of the dimer
covering. The corresponding discrete probability space is called the dimer model. If the
graph G is bipartite (as it shall be for the rest of this paper) then each dimer covering can
be encoded by a three dimensional discrete surface, where the third coordinate is derived
from the specific dimer covering and is called the height function [30]. For random tilings,
[9, 21] showed that with probability tending to one, the height function of a randomly tiled
large bounded region tends to a deterministic limit shape. This shape is not smooth over
the entire region: typically, there are macroscopic regions wherein the tiling is “frozen” (i.e.
exhibits deterministic correlations), called facets; as such the measure is often said to be in a
solid state here [22]. Outside of the facets, the correlations between pairs of dimers are only
mesoscopic, tending to zero as the dimers move farther apart. If the decay is polynomial,
the measure is said to be liquid ; if it is exponential it is said to be gaseous [22]. Not all
tilings possess a gaseous region; however, all but the most degenerate have liquid regions.
The limiting height function is smooth in these regions. Figure 1 shows two random tilings
of relatively large Aztec diamonds.

1.2. Local asymptotics for nice regions. For particular bounded regions, one approach
to study these models uses an interlaced particle system which can be derived from the
underlying tiling [15, 3]. Using the Lindström-Gessel-Viennot theorem [16, 29] combined
with the Eynard-Mehta theorem (e.g. see [4]), it is often possible to find the correlation kernel
for a determinantal process and compute finer statistics for the model[15, 3]. Using these



COUPLING FUNCTIONS FOR DOMINO TILINGS OF AZTEC DIAMONDS 3

statistics, one can study the fluctuations between the interface of the solid and liquid regions
when the system size gets large. Amazingly, these fluctuations have the same distributions
arising from the study of eigenvalues of random matrices (see for example [15, 17, 13]).
Furthermore, one can even change the boundary conditions of the underlying tiling problem
to find more degenerate kernels which also appear in the random matrix literature, for
example, see [1].

For bipartite graphs, the Kasteleyn matrix is a signed weighted adjacency matrix indexed
by the white and black vertices of the graph [18]. The inverse of the Kasteleyn matrix, known
as the inverse Kasteleyn matrix, for bipartite graphs provides much information about the
model – by [19] the edges form a determinantal process with the kernel given by the inverse
Kasteleyn matrix. Hence, by knowing the inverse Kasteleyn matrix for a bipartite graph
one can compute all finite, local and global asymptotics of the edges in the dimer model.
For lozenge tilings, the interlaced particle system kernel can be used to compute the inverse
Kasteleyn matrix as the particle system kernel and the inverse Kasteleyn matrix are in
bijection [26]. However, for domino tilings on the Aztec diamond, the most natural kernel
from the interlaced particle system contains different information to the inverse Kasteleyn
matrix. Although, one can derive the particle system correlation kernel from the inverse
Kasteleyn matrix, the particle system correlation kernel gives a better description of the
interface between the unfrozen and frozen regions, see [7]. By knowing both the interlaced
particle system and the inverse Kasteleyn matrix, we believe that one understands the full
asymptotic picture of the system.

1.3. Purpose. The aim of this paper to highlight an elementary procedure which allows
one to compute the correlation kernel of the determinantal process associated to the edges
of tilings of Aztec diamonds. For pedagogical reasons, we do this first for the most well-
understood instance of the dimer model (thereby recovering the work of [14]), followed by
two, substantially more complicated new settings: the so-called qvol weighting (Section 5,
and the two-periodic weighting (Section 6) which includes as a special case the uniform
measure on diabolo tilings on a fortress graph [27]. The two-periodic weighting has a 2 by 2
fundamental domain which is defined in [22].

For the qvol weighting, large random tilings of the Aztec diamond possess a limit shape
when q → 1− as the system size tends to infinity. The existence of a limit shape is due to
the results from [21]. However, when q → 1− and the a → ∞, the results from [21] will no
longer apply but simulations seem to suggest that there may be a limit shape and possibly
interesting local and global asymptotic behavior. Figure 2 shows relatively large tilings with
qvol weighting.

Large random tilings of the two-periodic weighting of the Aztec diamond feature all three
phases where the limit shape is described by an ‘octic’ curve. An explicit formula for this
curve, at the special case corresponding to the uniform measure of tiling diabolos on the
fortress, is given in [27] and is derived in [21] using general machinery. Figure 3 shows
a relatively large random tiling of a two-periodic weighting of the Aztec diamond. By
having an expression for the inverse Kasteleyn matrix for the two-periodic weighted Aztec
diamond, it may be possible to study this model on all the phase interfaces. Computing the
interlaced particle system kernel for the two-periodic weighting of the Aztec diamond using
the Lindström-Gessel-Viennot theorem [16, 29] combined with the Eynard-Mehta theorem
(e.g. see [4]) seems somewhat complicated – one can either proceed by inverting either a
block LGV matrix or a block Toeplitz matrix.
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1.4. Explicit inversion of Kasteleyn matrices. We turn now to a discussion of our
methods. It is possible to derive the inverse Kasteleyn matrix for domino tilings of the
Aztec diamond with weight 1 for horizontal tiles and weight a for vertical tiles (one-periodic
weighting). We also show that it is possible to extend part of the method to the q-analog
of domino tilings of the Aztec diamond (qvol weighting). The height function of a domino
tiling can be viewed as the surface of a pile of Levitov blocks [23, 24]; one can modify the

edge weights so that the weight of each tiling is proportional to q#{Levitov blocks} which is qvol

weighting. Finally, we show that it is possible to compute the inverse Kasteleyn matrix with
a two-periodic weighting of the Aztec diamond and do so for an Aztec diamond of size 4m
for m ∈ N.

It is often quite difficult to invert a matrix whose entries have parameters; indeed, the
typical methods in the literature involve first orthoganalizing, so that the matrix to be
inverted is diagonal [5]. However, in the particular case of the Aztec diamond, one can make
some progress by computing a multivariate generating function for the entries of K−1. This
is possible essentially using graphical transformations similar to those used in [11] which is
the same procedure used in the generalized domino shuffle [27] to compute the weights in
the transitional steps of the shuffling algorithm.

We use three relations among the entries of K−1. The first two are the matrix identities
K · K−1 = I, K−1 · K = I; the third is a recurrence relation in n, the order of the Aztec
diamond, generated from the generalized domino shuffling algorithm which determines only
those elements of K−1 which correspond to two dimers on the boundary of the region. We
solve this recurrence by computing the ordinary power-series generating function for its
coefficients, which we call the boundary generating function.

Having done this, the entries of K−1 are slightly overdetermined. As such, we treat the
equations K ·K−1 = I, K−1 ·K = I as linear recurrence relations, for which the boundary
generating function serves as a boundary condition.

1.5. Details. The heuristic in the preceding sections drastically oversimplifies the intricacy
of the combinatorics involved in these calculations, which consume the bulk of this paper.
We also found that the computation of the boundary generating function of the two-periodic
weighting was intractable without the use of computer algebra. Here is a description of
the calculation in somewhat greater detail. The recurrences K.K−1 = K−1.K = I allow
us to write each entry of the inverse Kasteleyn matrix as a linear combination of entries of
K−1(w, b) where b and w are black and white vertices on the boundary. To find K−1(w, b)
where b and w are black and white vertices on the boundary, we first find Z(w, b)/Z where
Z is the partition function (the sum of the weights of all tilings) and Z(w, b) is the partition
function of the tiling with the vertices b and w removed from the Aztec diamond.

As removing two vertices w and b from the boundary does not change the so-called Kaste-
leyn orientation, we are able to recover K−1(w, b) from Z(w, b)/Z. The boundary recurrence
relation gives a relation for Z(w, b)/Z as a linear combination of Z(w1, b1)/Z for a smaller
Aztec diamond where w, w1 and b, b1 are white and black vertices on the boundaries of
their corresponding Aztec diamonds. To solve this recurrence, we use a generating function
approach and hence find K−1(w, b) for b and w are black and white vertices on the boundary.

For the one-periodic and qvol weighting, we can use the three sets of recurrence relations
mentioned above to find formulas for their inverse Kasteleyn matrices. For the one-periodic
weighting, we derive the formula as a generating function. For the qvol weighting, we guessed
a double contour integral based on our methods and verify that this guess is correct. Indeed,



COUPLING FUNCTIONS FOR DOMINO TILINGS OF AZTEC DIAMONDS 5

Figure 1. Random Simulations of the Aztec diamond of size 100 with one-
periodic weight for a = 1 (left) and a = 1/2 (right)(see Section 4 for a
description of edge weights).

sending q → 1, we find a double contour integral formula of the inverse Kasteleyn matrix in
the one-periodic case, see [7] for a comparison.

For the two-periodic weighting of the Aztec diamond, we must use a further two recurrence
relations; K∗ ·K ·K−1 = K∗ ·I and K−1 ·K ·K∗ = I·K∗ due to the complexity of the model; of
course, these are completely equivalent and in principle carry no new information; however,
they are simpler in a certain sense as they involve the discrete Laplacian. Additionally,
the boundary recurrence relation for the two-periodic weighting of the Aztec diamond has
order 4 with the size of the Aztec diamond and is dependent on the parity of the white
and black vertices on the boundary. This leads to a matrix equation for the recurrence
relations describing the boundary generating function. We only find the solution of the
matrix recurrence relation when the size of the Aztec diamond is equal to 4m, though in
principle the main obstacles to handling the other sizes of the Aztec diamonds are the
difficulty and length of the computations. This leads to a formula for the inverse Kasteleyn
matrix when the size of the Aztec diamond is equal to 4m.

1.6. Remarks about Asymptotics. As remarked above, this paper might provide a gate-
way to computing fine asymptotics of the qvol and two-periodic weightings of the Aztec
diamond. That is, one will hopefully be able to compute global correlations and local corre-
lations at the phase boundaries using the formulas found in this paper.

From simulations, the qvol weighting seems to exhibit interesting limiting behavior when
q → 1− and also when q → 1− and a → ∞ as n → ∞ simultaneously. We believe that a
possible parametrization would be to set a = ec/2 and q = e−c/n where n tends to infinity.
Although it is possible to derive to the limit shape using [21], we think our formula could
be used to find the height fluctuations in the unfrozen region when c > 0. When c = 0, the
model is equivalent to the one-periodic weighting of the Aztec diamond and so the height
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Figure 2. Random simulations of the Aztec diamond of size 200 with qvol

weighting (see Section 5). The top picture has weights q = 0.99 and a = 1.
The picture below has q = 0.98 and a = 10.
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Figure 3. Random simulations of the Aztec diamond of size 200 with two-
periodic weights (see Section 6. The first picture has a = 1/2 and b = 1 with
8 colors. The second picture is the same tiling as the first but contains four
colors to highlight the three phases for black and white printing.
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fluctuations are governed by the so-called Gaussian Free field (details of this process can
be found in [28]) as shown in [7]. When c tends to infinity, we suspect that the unfrozen
region is a flat square given by alternating (diagonal) columns of east and west dominos.
That is, for a rescaled Aztec diamond with corners given by (0, 0), (0, 1), (1, 0) and (1, 1), the
unfrozen region is given by (1/2, 0), (0, 1/2), (1/2, 1) and (1, 1/2). From initial computations,
the asymptotic analysis to find these height fluctuations is encouraging and is current work
in progress.

It may also be possible to derive the qvol correlation (particle) kernel using established
techniques (e.g. [15, 3]). This works quite cleanly, since the process in question is Schur [25],
although, we have not tried this computation.

For the two-periodic weighting, the process does not appear to be Schur. As mentioned
above, under the right choice of parameters the model exhibits a third phase which has been
named gaseous in which the height function correlations decay exponentially [22]. Other
models that might possess similar phenomenon are the three periodic lozenge tiling in a
large hexagon and the six vertex model with domain wall boundary conditions away from
the so-called free fermion line [10]. Indeed, the six vertex model on the free fermion line with
domain wall boundary conditions can be recovered from the one periodic Aztec diamond
[12].

The main motivation behind this paper was to find the correlation kernel of the two-
periodic weighting of the Aztec diamond, so that one can find the local correlations of
dominos at the gaseous-liquid boundary. As mentioned above, this boundary represents the
transition from the correlations of dominos having power law decay to the correlations of
dominos having exponential decay. For tiling models, the solid-liquid boundary (with no
cusps) has been well studied (see [26] for the most general results); the interlaced particle

system associated with the tiling has fluctuations of size n1/3 and the distributions of particles
are normally given by the so-called Airy process, a natural distribution originally formulated
in Random matrix theory [2]. As far as we are aware, the gaseous-liquid boundary of a tiling
model has not been previously studied in any such probabilistic model.

The formula for the inverse Kasteleyn matrix for two-periodic weightings of the Aztec
diamond, is given as a four variable generating function and it is not immediate how to
analyze asymptotically. However, Kurt Johansson, using our formula, has been able to
derive a double contour integral formula. From this double contour integral formula, it
should be possible to use a saddle point analysis. Indeed, early computations using this
approach show that the limiting octic curve can be recovered which agrees with limiting
curve computed using the techniques from [21]. We believe that this approach will lead to
finding the correlations of the dominos at the gaseous-liquid. This is current work in progress
which will hopefully appear elsewhere [6].

1.7. Overview of the Paper. The paper is organized as follows: Section 2 we give some
of the prerequisites and notation for understanding the proofs of the rest of the paper. In
Section 3, we compute the generating function of the inverse Kasteleyn matrix for a uniformly
weighted one-periodic Aztec diamond which provides a blueprint computation. We extend
this result to biased tilings in Section 4 as well as formulate a general boundary recurrence
relation which makes computations simpler in the following sections. In Section 5, we give
a contour integral formula for the inverse Kasteleyn matrix for qvol weighting of an Aztec
diamond. Finally in Section 6 we derive the generating function for two-periodic weightings
of the Aztec diamond for size 4m.
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Figure 4. The Kasteleyn coordinates for an Aztec diamond of order 3.

H 1, 0 L H 3 , 0 L H 5 , 0 L
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H 0 , 3 L

H 0 , 5 L
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2. Notation and Background Information

Let W = {(x1, x2) : x1 mod 2 = 1, x2 mod 2 = 0, 1 ≤ x1 ≤ 2n − 1, 0 ≤ x2 ≤ 2n} and
let B = {(x1, x2) : x1 mod 2 = 0, x2 mod 2 = 1, 0 ≤ x1 ≤ 2n, 1 ≤ x2 ≤ 2n − 1}. The
set W ∪ B denotes the vertex set of the dual graph of the Aztec diamond (rotated by −π/4
and translated), where W denotes the set of white vertices and B denotes the set of black
vertices. We call the above coordinate system (of the dual graph) of the Aztec Diamond,
the Kasteleyn coordinates - see Figure 4 for an example. To avoid any confusion, we only
consider dimer coverings of the dual graph of the Aztec diamond and so we refer to the
Aztec diamond as the graph which has vertices given by W ∪ B. We also set e1 = (1, 1) and
e2 = (−1, 1).

For a planar bipartite finite graph G = (V,E), the Kasteleyn orientation is a choice of
edge weights so that the product of edge weights around each face is odd. In this paper,
G is the graph formed from (the dual graph of) the Aztec diamond. We consider the edge
weights given by positive numbers for edges parallel to e1 and positive numbers multiplied
by i =

√
−1 for edges parallel to e2. As G is a bipartite graph, we consider the Kasteleyn

matrix, whose rows are indexed by black vertices and columns indexed by white vertices,
with entries given by

K(b, w) =

{
wt(e)ij−1 for e = (b, w) and b− w = ej , j ∈ {1, 2}
0 otherwise

where wt(e) is edge weight of edge e. As G is a bipartite finite graph, |detK| is equal to
the number of weighted dimer covers of G. This was first proved by Kasteleyn [18] but in a
more general setting. The explicit formula for the inverse Kasteleyn matrix and correlation
kernel of the dominos is given as follows: suppose that e1 = (b1, w1), . . . , en = (bm, wm) then
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Figure 5. The Urban renewal step which maps the large square on the left
the smaller square on the right and multiplies the partition function by ac+bd.
The diagonal edges have weight 1

a

b

c

d

A

B

C

D

the probability of seeing a perfect matching with the edges e1, . . . , em is given by [19]

(2.1) det
(
K(bi, wi)K

−1(wi, bj)
)m
i,j=1

.

That is, the edges form a determinantal point process with the correlation kernel given
by L(ei, ej) = K(bi, wi)K

−1(wi, bj) [19]. In the case of the two-periodic weighting of the
Aztec diamond, this point process is a block determinantal point process. With an explicit
formula for the inverse Kasteleyn matrix, equation (2.1) means that we can compute the
joint probabilities of any subset of edges appearing in the matching. For instance, we can
compute edge placement probabilities when m = 1.

We now summarize the graph theory techniques used in this paper.
Two dimer models are said to be gauge equivalent if their partition function differs by

a constant multiple. The dimer model obtained from multiplying all the edge weights sur-
rounding one specific vertex by the same constant is called a gauge transformation. As a
slight abuse of terminology, “multiplying the vertex v by a” means applying a gauge trans-
formation where the weights of all the edges incident to v are multiplied by a. Note that to
keep the partition function the same under this operation, we divide the partition function
of the new graph by a. That is, gauge transformed dimer models are gauge equivalent.

Other than gauge transformations, we make use of three other graph transformations. All
three of these alter the graph itself, but leave the partition function invariant up to a gauge
transformation.

(1) Suppose we have a large square with edge weights a, b, c and d where the labelling
is clockwise, contained in some graph H. Suppose we deform this large square to a
smaller square with edge weights A,B,C and D (same labelling convention as the
large square) and also include an edge, with edge weight 1, between each vertex of
the smaller square and its corresponding original vertex — see Figure 5. We call
this new graph H∗. We set A = c/(ac + bd), B = d/(ac + bd), C = a/(ac + bd) and
D = b/(ac+ bd) so that the local configurations and the weights of the matchings of
H are preserved under the transformation to H∗. For example, a dimer covering the
edge with weight a and no dimer covering the edge with weight c in H corresponds
to dimers covering the edge with weight C and the two diagonal edges incident to the
edge with weight A in H∗. This graphical transformation is called urban renewal [27]
and we have that

ZH = (ac+ bd)ZH∗

where ZH and ZH∗ are the partition functions of H and H∗ respectively.
(2) If a vertex, v, is incident to two edges, each having weight 1, we can contract the two

incident edges and vertices of v, to v. The new edge set of v is the union of the edge
set of the two contracted vertices omitting the two edges previously incident to v,
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all with the same edge weight before the contraction. This procedure is called edge
contraction and has no effect on the partition function of the dimer covering.

(3) If a vertex v is incident to one edge e = (v, v′), i.e. it is a pendant vertex, then v, v′

and all edges incident to v′ can be removed, since e is forced to be present in every
perfect matching. This procedure is called removal of pendant edges. The partition
function of the new graph formed by this procedure is equal to the original partition
function divided by the weight of e.

The above three procedures can be used to compute the partition function [11], the edge
probabilities [8, 27] and the inverse Kasteleyn matrix for one-periodic, two-periodic and qvol

Aztec diamonds. For general weightings of the Aztec diamond and also other stepped square
lattices, although it may be theoretically possible to find the inverse Kasteleyn matrix, we
were not able to solve the recurrence relations.

3. Uniform measure case

In this section, we derive the inverse Kasteleyn matrix for uniform dimer coverings as it
provides a simplest example for our new method. The inverse Kasteleyn matrix for uniform
tilings of the Aztec diamond was originally computed in [14].

The new results here are:

• the boundary generating function for the Aztec diamonds, defined below, and
• the observation that the generating function for the entries of K−1, for all Aztec

diamonds together, is a rational function in four variables: two variables marking
the row of K−1, two marking the column of K−1. There is also one parameter, n,
which is the order of the Aztec diamond.

In the next section, we will give vertical edges weight a > 0 and horizontal edges weight
one; this section covers the special case a = 1.

The Kasteleyn matrix for the uniform Aztec diamond is given by

(3.1) K(x, y) =

 1 if x− y = ±e1

i if x− y = ±e2

0 otherwise

for x ∈ B and y ∈ W. Unless stated otherwise, we shall always assume that x = (x1, x2) and
y = (y1, y2).

Let fn(t) = (1− tn)/(1− t) denote the sum of the geometric series 1 + t+ · · ·+ tn−1, and
let

Fn(w, b) = −i/2fn
(

(1 + bi)(1 + wi)

2

)
.

Further, for w = (w1, w2) and b = (b1, b2) set

(3.2) F 0,0
n (w, b) = Fn(w2

1, b
2
2)w1b2,

(3.3) F 0,1
n (w, b) = Fn(−1/w2

1,−b22)w2n−1
1 b2n1 b2i,

(3.4) F 1,0
n (w, b) = Fn(−w2

1,−1/b22)w1w
2n
2 b2n−1

2 i,

and

(3.5) F 1,1
n (w, b) = Fn(1/w2

1, 1/b
2
2)w2n−1

1 w2n
2 b2n1 b2n−1

2 .
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Let

Gn(w, b) =
∑

x∈W,y∈B
wxbyK−1(x, y)

where wx = wx1
1 wx2

2 and by = by11 b
y2
2 denote the generating function of the inverse Kasteleyn

matrix of the one-periodic domino tilings of the Aztec diamond with Kasteleyn orientation
given by multiplying all vertical edges (the vector e2 is vertical) by i.

The following theorem gives the entries of K−1 as the coefficients of a generating function.

Theorem 3.1.

Gn(w, b) =
w1w

2
2b2fn+1(w2

1b
2
1)fn(w2

2b
2
2)

C(w1, w2)

+ (1 + iw1)
(1 + ib22)F 0,0

n + b21

(
b2w1fn(b21w

2
1) + (i + b22)F 0,1

n

)
C(w1, w2)C(b1, b2)

+ (i + w2
1)w2

2

b21b
2n+1
2 w1w

2n
2 fn(b21w

2
1) + (1 + ib22)F 1,0

n + b21(i + b22)F 1,1
n

C(w1, w2)C(b1, b2)

where C(r1, r2) = 1 + r2
1r

2
2 + i(r2

1 + r2
2) and F i,j

n = F i,j
n (w, b) for i, j ∈ {0, 1}.

Our proof (like the proofs of the harder theorems in subsequent sections) breaks down
into three steps:

• Computing the boundary generating function (ignoring the Kasteleyn orientation),
• Moving the white vertices and black vertices to the boundaries,
• Computing the sign of the boundary generating function for each boundary.

3.1. Boundary Generating function. Our method involves first finding a generating
function which will eventually be used to compute K−1(w, b), where w and b correspond
to vertices on the boundary of the Aztec diamond. This generating function is called the
boundary generating function. This will be a generating function in three variables, which
encode (respectively) the position of a white boundary vertex, a black boundary vertex, and
the size of the Aztec diamond.

Consider an Aztec diamond with all edge weights equal to 1. Let Zn denote the number
of dimer coverings of an Aztec diamond of size n. From [11], we have that Zn = 2n(n+1)/2.

We will also consider an Aztec diamond of size n with the vertices (2i+1, 0) and (0, 2j+1)
removed for fixed 0 ≤ i, j ≤ n− 1. We shall call this graph An(i, j). Let Z(i, j, r, n) denote
the number of dimer coverings of An(i, j), with edge weights all equal to r and the constraint
that Z(i, j, r, n) = 0 if i or j (or both) are not in {0, 1, . . . , n− 1}.

It is important to notice that the Kasteleyn orientation on the original Aztec diamond,
restricted to An(i, j), remains a Kasteleyn orientation, so the corresponding entry of K−1

for the Aztec diamond can be computed from the partition function on this graph and a
relevant sign; that is, we can write

|K−1((2i+ 1, 0), (0, 2j + 1))| = Z(i, j, 1, n)

Zn
.

We will compute the sign of K−1((2i+ 1, 0), (0, 2j + 1)) in Lemma 3.6.
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Lemma 3.2.

(3.6)
Z(i, j, 1, n)

Zn
=

1

2

∑
k,l∈{0,1}

(i−k,j−l)6=(−1,−1)

Z(i− k, j − l, 1, n− 1)

Zn−1
+

1

2
I(i,j)=(0,0),n≥1

Proof. It was shown in [11] that one can compute a recurrence for the partition function of
an Aztec diamond using the graph transformations given in Section 2. In particular, they
showed that Zn = 2nZn−1. We first review this computation because showing the recurrence
for Z(i, j, 1, n)/Zn is an extension of this computation.

Consider an Aztec diamond graph of size n with Kasteleyn coordinates. To the faces with
centers given by the coordinates (2i+ 1, 2j + 1) for all 0 ≤ i, j ≤ n− 1 we apply the urban
renewal transformation — see Figure 6 for an example but ignore the dashed edges. Having
applied urban renewal n2 times, we see that Zn is equal to the partition function of the new

graph multiplied by 2n
2
. For this new graph all diagonal edges have weight 1/2 while the

remaining edges have weight 1; there are pendant vertices at (2i+1, 0),(2i+1, 2n), (0, 2j+1)
and (2n, 2j + 1) for all 0 ≤ i, j ≤ n− 1 which are all removed with their pendant edges (all
edges have weight 1) with no effect to the partition function; and there are vertices that are
incident to two edges (both weight 1) at coordinates (2i + 1, 2j) for all 0 ≤ i ≤ n − 1 and
1 ≤ j ≤ n − 1 and (2i, 2j + 1) for all 1 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1. The edges incident
to these vertices are contracted with no effect to the partition function. The effect of the
above three graph transformations on an Aztec diamond of size n with edge weights 1 gives
an Aztec diamond of size n− 1 with edges weights 1/2 and which means

Zn = 2n
2
Z̃n−1

where Z̃n−1 denotes an Aztec diamond of size n− 1 with all edge weights equal to 1/2. By
multiplying every white vertex by 2, we are applying a gauge transform so that all edges of
the Aztec diamond have edge weight 1. As there are n(n − 1) white vertices of an Aztec
diamond of size n−1, the effect of the gauge transformation is to divide the partition function
by 2n(n−1). We conclude that Zn = 2nZn−1. We now compute a recurrence for Z(i, j, 1, n).

Notice that Z(i, j, 1, n) is in fact equal to the number of matchings of an Aztec diamond
with two extra vertices v0 and v1 added with an edge (edge weight 1) between v0 and
(2i + 1, 0) and an edge (edge weight 1) between v1 and (0, 2j + 1). We shall call v0 and
v1 auxiliary vertices and their incident edges will be called auxiliary edges. To this graph,
we will apply the same sequence of graph transformations, keeping track of the auxiliary
edges. The remainder of this proof is a careful accounting of the effects of these graph
transformations on the partition function.

Explicitly, the computation is as follows. We first apply urban renewal on the faces with
centers (2k + 1, 2l + 1) for all 0 ≤ k, l ≤ n − 1, i.e. we apply urban renewal n2 times, see
Figure 6 for an example. From applying the urban renewal, every diagonal edge has weight
1/2 and the remaining edges have weight 1. Similar to the computation of the partition
function recurrence, we apply edge contractions to all the edges incident to vertices located
at (2k+1, 2l) for 0 ≤ k ≤ n−1 and 1 ≤ l ≤ n−1 and located at (2k, 2l+1) for 1 ≤ k ≤ n−1
and 0 ≤ l ≤ n− 1. Some care has to be applied removing the pendant edges; we remove the
pendant edges incident to the following pendant vertices:

• (2k + 1, 0) for 0 ≤ k ≤ n− 1 but k 6= i,
• (0, 2l + 1) for 0 ≤ l ≤ n− 1 but l 6= j,
• (2k + 1, 2n) for 0 ≤ k ≤ n− 1 and
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Figure 6. For the partition function computation, ignore the dashed edges.
Otherwise, the dashed edges on the left are the two extra edges added as
described in the proof of Lemma 3.2 for an Aztec diamond of size 4. The
figure on the right is obtained from the figure on the left by applying urban
renewal 16 times.

• (2n, 2l + 1) for 0 ≤ l ≤ n− 1.

As the auxiliary edges are also pendant, we remove these edges too (or, equivalently, we
contract them).

The resulting shape is a modified Aztec diamond of size n− 1: because our initial graph
contained auxiliary edges, we have an additional vertex (call it v2) and its incident edges
on the bottom boundary and an additional vertex (call it v3) and its incident edges on the
left-hand boundary of the Aztec diamond of size n − 1. Note that the edges incident to v2

(and similarly to v3) have weight 1/2. We shall describe the incident edges to v2 and similar
descriptions hold for v3 which are based on our initial choice of v0 and v1. If (v0, (2i+ 1, 0))
was our initial choice of the auxiliary edge on the bottom boundary for 1 ≤ i ≤ n− 2, then
the edges incident to v2 are (v2, (2i−1, 0)) and (v2, (2i+1, 0)) – see Figure 7 for an example.
If (v0, (2n− 1, 0)) was our initial choice of the auxiliary edge on the bottom boundary, then
the edge incident to v2 is (v2, (2n− 3, 0)). If (v0, (1, 0)) was our initial choice of the auxiliary
edge on the bottom boundary, in order to determine the edges incident v2, we must also
keep track of the initial choice of edges incident to v1. If we initially chose the auxiliary
edges (v0, (1, 0)) and (v1, (0, 2j + 1)) for j 6= 0, then the edge incident to v2 is (v2, (1, 0)). If
we initially chose the auxiliary edges (v0, (1, 0)) and (v1, (0, 1)) then the edges incident to v2

(and v3) are (v2, v3) and (v2, (1, 0)) (and (v3, (0, 1))).
For (i, j) 6= (0, 0), in a dimer covering the edge v2 is matched to a vertex (2k + 1, 0)

where 0 ≤ k ≤ n − 2 with k = i or k = i − 1 which has the same effect of removing the
vertex (2k + 1, 0) from an Aztec diamond of size n − 1. A similar statement is true for v3.
We conclude that for (i, j) 6= (0, 0), the dimer covering consists of edges (v2, (2k + 1, 0)),
(v3, (0, 2l + 1)) and an Aztec diamond of size n − 1 with vertices (2k + 1, 0) and (0, 2l + 1)
removed (i.e. a covering of An−1(k, l)) for 0 ≤ k ≤ n − 2 with k = i or k = i − 1 and
0 ≤ l ≤ n − 2 with l = j or l = j − 1. For (i, j) = (0, 0), we either match (v2, (1, 0)),
(v3, (0, 1)) and an Aztec diamond of size n − 1 with vertices (1, 0) and (0, 1) removed (i.e.
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Figure 7. The result of edge contraction from Figure 6. The four dashed
edges represent the result of the edge contraction on the two dashed edges in
Figure 6.

matching An−1(0, 0)) or we match (v2, v3) in which case the remaining graph is an Aztec
diamond of size n − 1 with edge weights 1/2. The above formulation means that we have
built a recurrence of Z(i, j, 1, n) in terms of Z(k, l, 1/2, n− 1), namely

(3.7) Z(i, j, 1, n) =
∑

k∈{i−1,i}
j∈{j−1,j}

1

4
Z(k, l, 1/2, n− 1)2n

2
I0≤k≤n−2I0≤l≤n−2 +

1

2
I(i,j)=(0,0)Z̃n−12n

2

where the factor 1/4 is explained by the fact that the edges incident to v2 and v3 have

edge weight 1/2, Z̃n−1 is an Aztec diamond of size n − 1 with edge weights equal to 1/2

and the factor 2n
2

is explained by the urban renewal steps. By a change of summation
index and setting Z(n − 1, s, 1/2, n − 1) = Z(r, n − 1, 1/2, n − 1) = Z(−1, s, 1/2, n − 1) =
Z(r,−1, 1/2, n− 1) = 0 for all 0 ≤ r, s ≤ n− 2, the above equation can be rewritten as

Z(i, j, 1, n) =
∑

k,l∈{0,1}
(i−k,j−l)6=(−1,−1)

1

4
Z(i− k, j − l, 1/2, n− 1)2n

2
+

1

2
I(i,j)=(0,0)Z̃n−12n

2
.

We apply the gauge transformation to write Z̃n−1 = 2−n
2+nZn−1 which we described

above in the partition function recurrence computation. To rewrite Z(i− k, j − l, 1/2, n) in
terms of Z(i− k, j − l, 1, n) for k, l ∈ {0, 1} and (i− k, j − l) 6= (−1,−1), we apply a gauge
transformation which multiplies all the edge weights incident to the white vertices by 2. As
there are n(n− 1)− 1 white vertices in Z(i− k, j− l, 1/2, n− 1) for (i− k, j− l) 6= (−1,−1),

we have to divide Z(i− k, j − l, 1, n− 1) by 2n(n−1)−1. These operations give

Z(i, j, 1, n) =
∑

k,l∈{0,1}
(i−k,j−l)6=(−1,−1)

Z(i− k, j − l, 1, n− 1)2n−1 + I(i,j)=(0,0)Zn−12n−1.

Dividing the above equation by Zn and noting that Zn = 2nZn−1 from the partition
function recurrence computation gives the lemma.

�
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Definition 3.3. The boundary generating function is

Z∂(w, b, 1, z) =
∞∑
n=0

n−1∑
i=0

n−1∑
j=0

Z(i, j, 1, n)

Zn
wibjzn.

We now compute the boundary generating function.

Lemma 3.4.

Z∂(w, b, 1, z) =
z

(1− z)(2− z(1 + b)(1 + w))

Proof. We multiply (3.6) by wibjzn and sum over 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1 and n ≥ 0
which gives

Z∂(w, b, 1, z) =
1

2
(1 + b)(1 + w)zZ∂(w, b, 1, z) +

1

2

z

1− z

Rearranging the above equation gives the result.
�

3.2. Moving the white vertices and black vertices to the boundary. In this section,
we derive recurrences for K−1 from each of the matrix equations K ·K−1 = I and K ·K−1 = I.
Using these relations, we find that it is possible to write Gn(w, b) as a function of K−1(w, b)
where w and b are white and black vertices (respectively) on the boundary of the Aztec
diamond. By this, we mean that w is either (2i+ 1, 0) or (2i+ 1, 2n) for 0 ≤ i ≤ n− 1 and b
is either (0, 2j + 1) or (2n, 2j + 1) for 0 ≤ j ≤ n− 1. We define some additional generating
functions: let

G0
n(w1, b1, b2) =

∑
(x1,0)∈W

y=(y1,y2)∈B

K−1((x1, 0), y)wx1
1 by11 b

y2
2 ,

Gn
n(w1, b1, b2) =

∑
(x1,2n)∈W

y=(y1,y2)∈B

K−1((x1, 2n), y)wx1
1 by11 b

y2
2 ,

and

(3.8) H i,j
n (w, b) =

∑
1≤x1≤2n−1,x1 mod 2=1
1≤y2≤2n−1,y2 mod 2=1

K−1((x1, 2ni), (2nj, y2))wx1
1 w2ni

2 b2nj1 by22

where i, j ∈ {0, 1}. From the above definition and for each i, j ∈ {0, 1}, H i,j
n is a bound-

ary generating function (with Kasteleyn orientation) where i and j determin which two
boundaries the removed vertices lie on.

We now write Gn(w, b) in terms of the boundary generating functions with the Kasteleyn
orientation.
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Lemma 3.5.

Gn(w, b) =
w1w

2
2b2fn+1(w2

1b
2
1)fn(w2

2b
2
2)

C(w1, w2)

+ (1 + iw1)
(1 + ib22)H0,0

n + b21

(
b2w1fn(b21w

2
1) + (i + b22)H0,1

n

)
C(w1, w2)C(b1, b2)

+ (i + w2
1)w2

2

b21b
2n+1
2 w1w

2n
2 fn(b21w

2
1) + (1 + ib22)H1,0

n + b21(i + b22)H1,1
n

C(w1, w2)C(b1, b2)

where C(r1, r2) = 1 + r2
1r

2
2 + i(r2

1 + r2
2) and H i,j

n = H i,j
n (w, b).

Proof. From equation (3.1), we know that K is a sparse matrix: each row has at most four
nonzero entries, one entry for each neighbor of the vertex indexing the row. As such, we
expand the matrix product K · K−1 in terms of the unknown matrix entries of K−1 and
compare them to the entries of I, this gives∑

v∼x,v∈W
K(x, v)K−1(v, y) = δx=y

where x, y ∈ B and v ∼ x, v ∈ W means that v is a white vertex in the Aztec diamond which
is nearest neighbored to x (i.e. v is a vertex of the form x ± e1, x ± e2 provided that these
vertices are inside the Aztec diamond).

In the above equation, we evaluate the entries of K using equation (3.1) and so we obtain
a five term relation
(3.9)
K−1(x+e1, y)δx1<2n+iK−1(x+e2, y)δx1>0+iK−1(x−e2, y)δx1<2n+K−1(x−e1, y)δx1>0 = δx=y

where x, y ∈ B, x = (x1, x2), y = (y1, y2) and

δx1>0 =

{
1 if x1 > 0
0 otherwise

For the left-hand side of the above equation, the delta functions account for the vertices on
the boundary. For example, the black vertex (0, 2k + 1) has two neighboring white vertices
(1, 2k) and (1, 2k + 2).

Similarly, we expand the matrix product K−1 ·K entry wise and compare with the identity
matrix. We obtain another five term relation which is given by
(3.10)
K−1(x, y+e1)δy2<2n+iK−1(x, y+e2)δy2<2n+K−1(x, y−e1)δy2>0+iK−1(x, y−e2)δy2>0 = δx=y,

where x, y ∈ W. We view equations (3.9) and (3.10) as recurrence relations with the initial
conditions coming from evaluating K−1 at the boundary vertices. We remark that (3.9) is
a relation for the white vertices of K−1 which keeps the black vertex of K−1 fixed. On the
other hand (3.10) is a relation for the black vertices of K−1 keeping the white vertex of K−1

fixed.
We proceed to use the above recurrence relations to find the generating function for K−1.

We first multiply (3.9) by wxby = wx1
1 wx2

2 by11 b
y2
2 for x = (x1, x2), y = (y1, y2) ∈ B and sum

both quantities over B. Each term on the left-hand side of (3.9) can be written using Gn(w, b)
and either G0

n(w1, b1, b2) or Gn
n(w1, b1, b2) by taking a sum change of variables so that we

sum over x ∈ W (as opposed to x ∈ B). We list these computations for each term on the



18 SUNIL CHHITA AND BENJAMIN YOUNG

left-hand side of (3.9) and then give the outcome of (3.9) under these computations: the first
term gives

∑
x,y∈B

K−1(x+ e1, y)δx1<2nw
xby =

1

w1w2

∑
x∈W,x2 6=0,y∈B

K−1(x, y)wxby

=

Gn(w, b)−
∑

1≤x1≤2n
(x1,0)∈W,y∈B

K−1((x1, 0), y)wx1
1 by

w1w2

=
Gn(w, b)−G0

n(w1, b1, b2)

w1w2
,

(3.11)

the second term gives

i
∑
x,y∈B

K−1(x+ e2, y)δx1>0w
xby = i

w1

w2

∑
x∈W,x2 6=0,y∈B

K−1(x, y)wxby

= i
w1

w2

Gn(w, b)−
∑

1≤x1≤2n
(x1,0)∈W,y∈B

K−1((x1, 0), y)wx1
1 by


= i

w1

w2

(
Gn(w, b)−G0

n(w1, b1, b2)
)
,

(3.12)

the third term gives

i
∑
x,y∈B

K−1(x− e2, y)δx1<2nw
xby = i

w2

w1

∑
x∈W,x2 6=2n,y∈B

K−1(x, y)wxby

= i
w2

w1

Gn(w, b)− w2n
2

∑
1≤x1≤2n

(x1,2n)∈W,y∈B

K−1((x1, 2n), y)wx1
1 by


= i

w2

w1

(
Gn(w, b)− w2n

2 Gn
n(w1, b1, b2)

)
,

(3.13)

the fourth term gives

∑
x,y∈B

K−1(x− e1, y)δx1>0w
xby = w1w2

∑
x∈W,x2 6=2n,y∈B

K−1(x, y)wxby

= w1w2

Gn(w, b)− w2n
2

∑
1≤x1≤2n

(x1,2n)∈W,y∈B

K−1((x1, 2n), y)wx1
1 by


= w1w2

(
Gn(w, b)− w2n

2 Gn
n(w1, b1, b2)

)
,

(3.14)
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and using (3.11), (3.12), (3.13) and (3.14), (3.9) becomes(
1

w1w2
+
w1

w2
i +

w2

w1
i + w1w2

)
Gn(w, b)−

(
1

w1w2
+
w1

w2
i

)
G0

n(w1, b1, b2)

−
(
w1w2 +

w2

w1
i

)
Gn

n(w1, b1, b2)w2n
2 =

∑
x∈B
y∈B

δx=yw
xby.

(3.15)

We evaluate the right-hand side of the above equation by computing explicitly the sum,
namely∑
x∈B
y∈B

δx=yw
xby =

∑
0≤x1≤2n,x1 mod 2=0

1≤x2≤2n−1,x2 mod 2=1

wx1
1 wx2

2 bx1
1 b

x2
2 =

(
1− (w1b1)2n+2

1− w2
1b

2
1

)(
w2b2(1− (w2b2)2n)

1− w2
2b

2
2

)

We use the above equation, the definitions of fn and C(w1, w2) to rewrite (3.15). After
multiplying both sides by w1w2 and rearranging, (3.15) becomes

C(w1, w2)Gn(w, b) = w1w
2
2b2fn+1(w2

1b
2
1)fn(w2

2b
2
2) + (1 + w2

1i)G0
n(w1, b1, b2)

+ (w2
1 + i)w2

2G
n
n(w1, b1, b2)w2n

2

(3.16)

We now find expressions for G0
n(w1, b1, b2) and Gn

n(w1, b1, b2) in terms of H i,j
n (w, b) for

i, j ∈ {0, 1}. We first compute G0
n(w1, b1, b2) using the recurrence given in (3.10): we set

x = (x1, 0) fixed and we mulitply (3.10) by by with y ∈ W and we sum over all white vertices
y ∈ W and the white vertices x = (x1, 0) ∈ W. Each term on the left-hand side of (3.10)

can be written in terms of G0
n(w1, b1, b2) and either H0,0

n (w, b) or H0,1
n (w, b) by taking a sum

change of variables. We list these computations for the first four terms of (3.10) and then
give (3.10) under this computation: the first term is∑

(x1,0)∈W
y∈W

K−1((x1, 0), y + e1)δy2<2nw
x1
1 by =

1

b1b2

∑
(x1,0)∈W
y1 6=0,y∈B

K−1((x1, 0), (y1, y2))wx1
1 by11 b

y2
2

=
1

b1b2

(
G0

n(w1, b1, b2)−H0,0
n (w, b)

)
,

the second term is

i
∑

(x1,0)∈W
y∈W

K−1((x1, 0), y + e2)δy2<2nw
x1
1 by = i

b1
b2

∑
(x1,0)∈W

y1 6=2n,y∈B

K−1((x1, 0), (y1, y2))wx1
1 by11 b

y2
2

= i
b1
b2

(
G0

n(w1, b1, b2)−H0,1
n (w, b)

)
,

the third term is∑
(x1,0)∈W

y∈W

K−1((x1, 0), y − e1)δy2>0w
x1
1 by = b1b2

∑
(x1,0)∈W

y1 6=2n,y∈B

K−1((x1, 0), (y1, y2))wx1
1 by11 b

y2
2

= b1b2
(
G0

n(w1, b1, b2)−H0,1
n (w, b)

)
,
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the fourth term is

i
∑

(x1,0)∈W
y∈W

K−1((x1, 0), y − e2)δy2>0w
x1
1 by = i

b2
b1

∑
(x1,0)∈W
y1 6=0,y∈B

K−1((x1, 0), (y1, y2))wx1
1 by11 b

y2
2

= i
b2
b1

(
G0

n(w1, b1, b2)−H0,0
n (w, b)

)
,

and (3.10) becomes(
1

b1b2
+
b1
b2
i + b1b2 +

b2
b1
i

)
G0

n(w1, b1, b2)−
(

1

b1b2
+
b2
b1
i

)
H0,0

n (w, b)

−
(
b1
b2
i + b1b2

)
H0,1

n (w, b) =
w1b1(1− (w1b1)2n)

1− (w1b1)2

(3.17)

where the right-hand side of the above equation follows from∑
(x1,0)∈W,(y1,y2)∈W

δ(x1,0)=(y1,y2)w
x1
1 by11 b

y2
2 =

w1b1(1− w2n
1 b2n1 )

1− w2
1b

2
1

By multiplying (3.17) by b1b2 and using the definition of fn and C(b1, b2), we obtain

C(b1, b2)G0
n(w1, b1, b2) = w1b1fn(w2

1b
2
1)b1b2 + (1 + b22i)H0,0

n (w, b)

+ b21(b22 + i)H0,1
n (w, b).

(3.18)

To find an expression for Gn
n(w1, b1, b2), we mirror the computation used for finding an

expression for G0
n(w1, b1, b2). From doing this computation, we obtain

C(b1, b2)Gn
n(w1, b1, b2)w2n

2 = w2n
2 b2n2 w1b1b1b2fn(w2

1b
2
1) + (1 + b22i)H1,0

n (w, b)

+ b21(b22 + i)H1,1
n (w, b).

(3.19)

We now substitute the expressions for G0
n(w1, b1, b2) and G2n

n (w1, b1, b2)w2n
2 from (3.18)

and (3.19) into (3.16), which gives the formula given in the lemma.
�

3.3. Computing the sign of the boundary generating function for each boundary.
The determinant of a Kasteleyn matrix computes the partition function only up to an overall
sign. It is important to compute this sign whenever two such determinants appear in the
same formula (as they do throughout our work). To do this, it suffices to compute the
contribution of any one perfect matching to detK.

In this subsection, we complete the proof of Theorem 3.1 by computing the sign of the
boundary generating function for each boundary. We prove the following lemma

Lemma 3.6. For i, j ∈ {0, 1}, we have

H i,j
n (w, b) = F i,j

n (w, b)

where H i,j
n (w, b) is defined in (3.8) and F 0,0

n (w, b), F 0,1
n (w, b), F 1,0

n (w, b) and F 1,1
n (w, b) are

given in equations (3.2), (3.3),(3.4) and (3.5) respectively.

Proof. We first remark that H i,j
n (w, b) denotes a boundary generating functions of an Aztec

diamond of size n with the Kasteleyn orientation for each i, j ∈ {0, 1}. In Lemma 3.4, we
computed the boundary generating function Z∂(w, b, 1, z) where the parameter z marked the
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size of the Aztec diamond. To find the boundary generating function of an Aztec diamond
of size n, we extract out the nth coefficient of z in Z∂(w, b, 1, z). This is given by

(3.20)
1

2

1−
(

(1+b)(1+w)
2

)n
1−

(
(1+b)(1+w)

2

)
Recall that we have |K−1((2i + 1, 0), (0, 2j + 1))| = Z(i, j, 1, n)/Zn for 0 ≤ i, j ≤ n − 1.
This follows from the fact that the Kasteleyn orientation remains the same if we remove two
vertices on the same face and so each signed count of perfect matchings on the graph with
the two removed vertices has the same sign. We first compute the sign of K−1((1, 0), (0, 1)).
Consider the Aztec diamond with only vertical dimers (parallel to e2). This has weight

in(n+1). After removing the edge ((1, 0), (1, 0)), the product of edge weights is given by

in(n+1)−1. This means that K−1((1, 0), (0, 1)) has sign −i. We proceed in computing
K−1((2i + 1, 0), (0, 2j + 1)) from K−1((2i + 1, 0), (0, 2j − 1)) by induction: we add a ver-
tex at (−1, 2j) with edges ((−1, 2j), (0, 2j − 1)) and ((−1, 2j), (0, 2j + 1)) with the edges
given the Kasteleyn orientation (i.e. edges parallel to e2 have weight i). It follows that
for K−1((2i + 1, 0), (0, 2j − 1)) we have the edge ((−1, 2j), (0, 2j − 1)) matched. To obtain
K−1((1, 0), (0, 2j+ 1)) we rotate the edges around the face (0, 2j) which contributes a factor
of (−1)i−1 where the (−1) is from applying the rotation and i−1 is from having one less
vertical edge. Therefore, we have that the sign of K−1((2i+ 1, 0), (0, 2j+ 1)) is given by the
sign of K−1((2i+ 1, 0), (0, 2j − 1)) multiplied by i. By reflection we can apply the same ar-
gument for computing the sign of K−1((2i+1, 0), (0, 2j+1)) from K−1((2i−1, 0), (0, 2j+1))
but we now add a vertex at (2i,−1) instead. It follows from the above argument that the
sign of K−1((2i + 1, 0), (0, 2j + 1)) is equal to −ii+j+1. We can substitute this sign back
into (3.20) noting that the coefficient of wibj in (3.20) corresponds to removing the vertices
(2i+ 1, 0) and (0, 2j+ 1). Under this operation, (3.20) is exactly Fn(w, b). We conclude that
Fn(w, b) is the boundary generating function of the uniform Aztec diamond of size n with
the Kasteleyn orientation, that is

Fn(w, b) =
∑

0≤i≤n−1
0≤j≤n−1

K−1((2i+ 1, 0), (0, 2j + 1))wibj

We compare the above equation with H0,0
n (w, b) and we find

H0,0
n (w, b) = Fn(w2

1, b
2
2)w1b2,

because the coefficient of wibj in Fn(w, b) is K−1((2i+1, 0), (0, 2j+1)). From (4.2), the right-

hand side of the above equation is equal to F 0,0
n (w, b) and so we have shown H0,0

n (w, b) =

F 0,0
n (w, b). We now have to consider the boundary generating functions on the different

boundaries to compute the remaining terms H0,1
n (w, b), H1,0

n (w, b) and H1,1
n (w, b).

To find H0,1
n (w, b), we first consider the boundary generating function (with Kasteleyn

orientation) where the horizontal edges have weight i and vertical edges have weight 1. By
the symmetry of the Aztec diamond, we use the boundary generating function (with no
orientation) for a uniform weighted Aztec diamond of size n given in (3.20) and compute
the sign from the orientation using the argument given above for attaching a sign to the
boundary generating function. For this particular orientation, we find that the coefficient
of wibj in (3.20) is given by i3i+3j . This means that the boundary generating function
(with Kasteleyn orientation) with horizontal edges given weight i and vertical edges with
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weight 1 is given by iFn(−w,−b). The coefficient of wibj in iFn(−w,−b) is exactly equal
to K−1((2n− 1− 2i, 0), (2n, 2j + 1)) and so we have

iFn(−w,−b) =
∑

0≤i≤n−1
0≤j≤n−1

K−1((2i+ 1, 0), (2n, 2j + 1))wn−1−ibj .

We compare the above equation with H0,1
n (w, b) and we find

H0,1
n (w, b) = Fn(−1/w2

1,−b22)w2n−1
1 b2n1 b2i,

and from (4.3), the right-hand side of the above equation is equal to F 0,1
n (w, b). We conclude

that H0,1
n (w, b) = F 0,1

n (w, b).

To find H1,0
n (w, b), we first consider the boundary generating function (with Kasteleyn

orientation) where the horizontal edges have weight i and vertical edges have weight 1
which we computed in the previous paragraph and is given by iFn(−w,−b). The coefficient
of wibj in iFn(−w,−b) is exactly equal to K−1((2i+ 1, 2n), (0, 2n− 2j− 1)) and so we have

iFn(−w,−b) =
∑

0≤i≤n−1
0≤j≤n−1

K−1((2i+ 1, 2n), (0, 2j + 1))wibn−1−j

We compare the above equation with H1,0
n (w, b) and we find

H1,0
n (w, b) = Fn(−w2

1,−1/b22)w1w
2n
2 b2n−1

2 i.

From (4.4), the right-hand side of the above equation is equal to F 1,0
n (w, b). We conclude

that H1,0
n (w, b) = F 1,0

n (w, b).

To find H1,1
n (w, b), we use the above argument for computing the sign when the horizontal

edges have weight 1 and the vertical edges have weight i. By following the computation
given for H0,0

n (w, b), the sign of K−1((2n− 2i− 1, 2n), (2n, 2n− 2j− 1)) is given by −ii+j+1.
By the symmetry of the Aztec diamond, it follows that K−1((2i+1, 2n), (2n, 2j+1)) is equal
to the coefficient of wn−1−ibn−1−j in Fn(w, b) which means that

Fn(w, b) =
∑

0≤i≤n−1
0≤j≤n−1

K−1((2i+ 1, 2n), (2n, 2j + 1))wn−1−ibn−1−j .

We compare the above equation with H1,1
n (w, b) and we find

H1,1
n (w, b) = Fn(1/w2

1, 1/b
2
2)w2n−1

1 w2n
2 b2n1 b2n−1

2 .

From (4.5), the right-hand side of the above equation is equal to F 1,1
n (w, b). We conclude

that H1,1
n (w, b) = F 1,1

n (w, b).
�

The computation for the sign of K−1((2i+1, 0), (0, 2j+1)) (and other boundary values of
the inverse Kasteleyn matrix) is independent of the edge weights and only depends on which
Kasteleyn orientation we choose. As all of the Aztec diamonds considered in this paper have
the same Kasteleyn orientation, from the proof of Lemma 3.6 we find

sgn(K−1((2i+ 1, 0), (0, 2j + 1))) = sgn(K−1((2n− 2i− 1, 2n), (2n, 2n− 2j − 1)) = −ii+j+1

sgn(K−1((2n− 2i− 1, 0), (2n, 2j + 1))) = sgn(K−1((2i+ 1, 2n), (0, 2n− 2j − 1)) = i3i+3j
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We now prove Theorem 3.1.

Proof of Theorem 3.1. In Lemma 3.6, we found the expressions for H i,j
n (w, b) for all i, j ∈

{0, 1}. We substitute these expressions for H i,j
n (w, b) into the formula given in Lemma 3.5

which gives the generating function for K−1.
�

4. Biased One-Periodic Case

The inverse Kasteleyn matrix for biased, one-periodic tilings was first computed in [7].
The formula was guessed based on the one-to-two lifting from the interlaced particle system
[15]. We are now able to do this in a much more systematic way, following the framework
laid out in Section 3. As before, we compute the inverse Kasteleyn matrix by computing
a multivariate generating function for its entries. The formula strictly generalizes that of
Theorem 3.1, adding one new parameter: a, the bias.

The Kasteleyn matrix for the one-periodic Aztec diamond is given by

(4.1) Ka(x, y) =

 1 if x− y = ±e1

ai if x− y = ±e2

0 otherwise

for x ∈ B and y ∈ W. Unless stated otherwise, we shall always assume that x = (x1, x2) and
y = (y1, y2)

Let fn(t) = (1− tn)/(1− t) denote the sum of the geometric series 1 + t+ · · ·+ tn−1. Let

Fn(w, b, a) = −i/(1 + a2)afn

(
(1 + bai)(1 + wai)

1 + a2

)
.

Further, for w = (w1, w2) and b = (b1, b2) set

(4.2) F 0,0
n (w, b, a) = Fn(w2

1, b
2
2, a)w1b2,

(4.3) F 0,1
n (w, b, a) = Fn(−1/w2

1,−b22, a−1)w2n−1
1 b2n1 b2i/a,

(4.4) F 1,0
n (w, b, a) = Fn(−w2

1,−1/b22, a
−1)w1w

2n
2 b2n−1

2 i/a

and

(4.5) F 1,1
n (w, b, a) = Fn(1/w2

1, 1/b
2
2, a)w2n−1

1 w2n
2 b2n1 b2n−1

2 .

Let

Gn(w, b) =
∑

x∈W,y∈B
wxbyK−1

a (x, y)

where wx = wx1
1 wx2

2 and by = by11 b
y2
2 denote the generating function of the inverse Kasteleyn

matrix of the one-periodic weighting of the Aztec diamond with Kasteleyn orientation given
by multiplying all vertical edges (the vector e2 is vertical) by i.
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Theorem 4.1.

Gn(w, b) =
w1w

2
2b2fn+1(w2

1b
2
1)fn(w2

2b
2
2)

C(w1, w2)

+ (1 + iaw1)
(1 + iab22)F 0,0

n + b21

(
b2w1fn(b21w

2
1) + (ia+ b22)F 0,1

n

)
C(w1, w2)C(b1, b2)

+ (ia+ w2
1)w2

2

b21b
2n+1
2 w1w

2n
2 fn(b21w

2
1) + (1 + iab22)F 1,0

n + b21(ia+ b22)F 1,1
n

C(w1, w2)C(b1, b2)

where C(r1, r2) = 1 + r2
1r

2
2 + ia(r2

1 + r2
2) and F i,j

n = F i,j
n (w, b, a) for i, j ∈ {0, 1}.

The proof of Theorem 4.1 is given in the next but one subsection. In the next subsection,
we introduce a general boundary recurrence relation which is a generalization of the methods
used in Lemma 3.2. This general boundary recurrence is used in the proof of Theorem 4.1
and the subsequent proofs of the other weightings.

4.1. General boundary recurrence. In this subsection, we introduce a general boundary
recurrence relation. Essentially, this is built by a generalization of part of the proof of
Lemma 3.2 by using an Aztec diamond graph with arbitrary edge weights. Although the
notation for this subsection is self-contained, we will refer to it later in the paper.

Let w0,0(k, l),w0,1(k, l),w1,0(k, l) and w1,1(k, l) be the edge weights of the four edges sur-
rounding the face whose center has coordinates (2k + 1, 2l + 1) for 0 ≤ k, l ≤ n − 1 for an
Aztec diamond of size n. That is, the weights of the edges ((2k, 2l + 1), (2k + 1, 2l + 2)),
((2k + 1, 2l+ 2), (2k + 2, 2l+ 1)),((2k, 2l+ 1), (2k + 1, 2l)) and ((2k + 1, 2l), (2k + 2, 2l+ 1))
are given by w0,0(k, l),w0,1(k, l),w1,0(k, l) and w1,1(k, l) respectively for 0 ≤ k, l ≤ n− 1. We
denote the urban renewal factor of the face whose center has coordinates (2k + 1, 2l+ 1) by
∆(k, l) for 0 ≤ k, l ≤ n− 1. Explicitly, we have

∆(k, l) = w0,0(k, l)w1,1(k, l) + w0,1(k, l)w1,0(k, l)

for 0 ≤ k, l ≤ n− 1. Let Zn be the number of weighted dimer covers of the Aztec diamond
of size n (with the above weighting) and let Zn(i, j) denote the weighted number of dimer
coverings of the Aztec diamond of size n (with the above weighting) with the vertices (2i+1, 0)
and (0, 2j + 1) removed from the graph, for fixed 0 ≤ i, j ≤ n− 1.

To the above Aztec diamond, we apply urban renewal to the faces with centers (2k +
1, 2l+ 1) for all 0 ≤ k, l ≤ n− 1 (i.e. apply urban renewal n2 times), removal of all pendant
edges and edge contraction of each edge which is incident to a vertex incident to exactly two
edges which gives an Aztec diamond of size n− 1. This deformation is detailed in the proof
of Lemma 3.2 — see computing the partition function recurrence. For this new graph, the
edge weights around the face whose center has coordinates (2k+1, 2l+1) for 0 ≤ k, l ≤ n−2
are given by w0,0(k, l+ 1)/∆(k, l+ 1), w0,1(k+ 1, l+ 1)/∆(k+ 1, l+ 1), w1,0(k, l)/∆(k, l) and
w1,1(k + 1, l)/∆(k + 1, l). That is, the weights of the edges ((2k, 2l + 1), (2k + 1, 2l + 2)),
((2k + 1, 2l+ 2), (2k + 2, 2l+ 1)),((2k, 2l+ 1), (2k + 1, 2l)) and ((2k + 1, 2l), (2k + 2, 2l+ 1))
are given by w0,0(k, l+ 1)/∆(k, l+ 1), w0,1(k+ 1, l+ 1)/∆(k+ 1, l+ 1), w1,0(k, l)/∆(k, l) and
w1,1(k + 1, l)/∆(k + 1, l) respectively for 0 ≤ k, l ≤ n − 2. This will be shown in the proof

of the lemma given below. For this graph, let Z̃n−1 denote the number of weighted dimer
covers and let Z̃n−1(i, j) denote the number (weighted) of dimer covers when removing the
vertices (2i+ 1, 0) and (0, 2j + 1) from this graph for fixed 0 ≤ i, j ≤ n− 2.
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Lemma 4.2. For Zn,Z̃n,Zn(i, j) and Z̃n(i, j) be given above. We have

(4.6) Zn = Z̃n−1

n−1∏
k,l=0

∆(k, l)

and for fixed 0 ≤ i, j ≤ n− 1,

Zn(i, j) =
w0,1(0, 0)

∆(0, 0)
Z̃n−1

n−1∏
r,s=0

∆(r, s)

+

 n−1∏
r,s=0

∆(r, s)

 ∑
k∈{i−1,i}
l∈{j−1,j}

w0,i−k(i, 0)

∆(i, 0)

w1+l−j,1(0, j)

∆(0, j)
Z̃n−1(k, l)I0≤k≤n−2I0≤l≤n−2

(4.7)

In the above lemma, we chose to remove vertices from the left and bottom boundaries of
the Aztec diamond. Analogous results can be obtained for the other boundary pairings.

Proof. We first show that the edges weight of Z̃n−1 are obtained from applying the urban
renewals, removal of pendant edges and edge contraction as detailed in Lemma 3.2 and then
show (4.6). Finally, we show (4.7).

For the Aztec diamond of size n which corresponds to Zn, the edges around the face whose
center has coordinates (2k + 1, 2l + 1) have weight

{w0,0(k, l), w0,1(k, l), w1,0(k, l), w1,1(k, l)}
where we use the same labeling procedure as above. The urban renewal factor from this face
is exactly equal to ∆(k, l) and when we apply urban renewal to this face, the edge weights
around the small square (same labeling procedure as above) read

(4.8)

{
w1,1(k, l)

∆(k, l)
,
w1,0(k, l)

∆(k, l)
,
w0,1(k, l)

∆(k, l)
,
w0,0(k, l)

∆(k, l)

}
.

When applying the removal of pendant edges and edge contractions, as given in Lemma 3.2,
we obtain an Aztec diamond of order n − 1. Moreover, this Aztec diamond of order n − 1
is contained within the Aztec diamond of size n: the Aztec diamond of size n − 1 consists
of the vertices and edges around the faces (2r + 2, 2s + 2) for 0 ≤ r, s ≤ n − 2 of an Aztec
diamond with a weight change explained from applying urban renewal n2 times (i.e. to the
faces with coordinates (2k+ 1, 2l+ 1) for all 0 ≤ k, l ≤ n− 1). To find these edge weights of
the Aztec diamond of size n− 1, it is enough to find the edge weights around the face with
center (2r + 2, 2s + 2) for 0 ≤ r, s ≤ n − 2 for an Aztec diamond of size n where the edge
weights around the face with center (2k + 1, 2l + 1) are given by (4.8). We find that these
edge weights are given by{

w0,0(r, s+ 1)

∆(r, s+ 1)
,
w0,1(r + 1, s+ 1)

∆(r + 1, s+ 1)
,
w1,0(r, s)

∆(r, s)
,
w1,1(r + 1, s)

∆(r + 1, s)

}
.

Hence, we have that the edge weights around the face with center (2k + 1, 2l + 1) for an
Aztec diamond of size n− 1 are given by{

w0,0(k, l + 1)

∆(k, l + 1)
,
w0,1(k + 1, l + 1)

∆(k + 1, l + 1)
,
w1,0(k, l)

∆(k, l)
,
w1,1(k + 1, l)

∆(k + 1, l)

}
which are exactly the edge weights encoded by Z̃n−1.
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Equation (4.6) follows exactly from the construction of Z̃n from Zn because the product
on the right-hand side of (4.6) is exactly equal to the product of all the urban renewal factors.

For equation (4.7), we follow the steps given in the proof of Lemma 3.2 which generate a
recurrence for Zn(i, j) in the case when all the edge weights are set to equal to 1. As in the
proof of Lemma 3.2, we add an auxiliary edge incident to (2i + 1, 0) and another auxiliary
edge incident to (0, 2j + 1). As the shape of the graph remains the same after applying the
same steps given in Lemma 3.2 (for the computation of Zn(i, j)), we only need to compute
the analog of (3.7) for the above choice of edge weights, which is the effect on Zn(i, j)
after applying urban renewal (n2 times), removal of pendant edges and edge contractions.
Therefore, we follow the computation to obtain (3.7) in Lemma 3.2 noting the following
differences due to the choice of edge weights:

• The product of the urban renewal factors is given by
∏n−1

r,s=0 ∆(r, s) (as opposed to

2n
2
).

• For (i, j) 6= (0, 0), the edge (v2, (2k+1, 0)) for 0 ≤ k ≤ n−2 has weight w0,0(i, 0)/∆(i, 0)
if k = i and weight w0,1(i, 0)/∆(i, 0) if k = i − 1. Note that the vertex v2 has the
same definition as given in Lemma 3.2.
• For (i, j) 6= (0, 0), the edge (v3, (0, 2l+1)) for 0 ≤ l ≤ n−2 has weight w1,1(0, j)/∆(0, j)

if l = j and weight w0,1(0, j)/∆(0, j) if l = j−1. The vertex v3 has the same definition
as given in Lemma 3.2.
• For (i, j) = (0, 0), the edges (v2, (1, 0)) and (v3, (0, 1)) have weights w0,0(0, 0)/∆(0, 0)

and w1,1(0, 0)/∆(0, 0) respectively. The edge (v2, v3) has weight w0,1(0, 0)/∆(0, 0)
and recall that when this edge is matched, the resulting graph is an Aztec diamond
of order n− 1 whose weighted number of matchings is equal to Z̃n−1.

The above edges (v2, (2k+ 1, 0)) and (v3, (0, 2l+ 1)) are a consequence of the auxiliary edges
— they are the resulting edges after applying urban renewal (n2 times), removal of pendant
edges and edge contractions. After matching the edges (v2, (2k+1, 0)) and (v3, (0, 2l+1)), the

number of weighted matchings on the remaining graph is equal to Z̃n−1(k, l). By following
the computation detailed in Lemma 3.2 to find (3.7) with the edge weights found above, we
obtain (4.7).

�

4.2. Proof of Theorem 4.1. The proof of Theorem 4.1 follows the same steps as the one
for Theorem 3.1. Generalizing the proof to arbitrary a requires no new ideas, but rather
increases the complexity and amount of bookkeeping required:

• we first find the boundary recurrence relation (without the Kasteleyn orientation)
which is the analog of Lemma 3.2 for biased tilings using Section 4.1.
• From this boundary recurrence relation, we find the analog of Lemma 3.4 which is

given in Lemma 4.4
• We next find the analogs of Lemmas 3.5 and 3.6 which are given in Lemma 4.5

and 4.6
• Finally, we use the above lemmas to give the proof of Theorem 4.1.

Let Zn(r, a) denote the partition function of an Aztec diamond of size n with weights r
and ra for horizontal and vertical edges respectively. Let Z(i, j, r, a, n) denote the number
of matchings of an Aztec diamond of size n with weights r and ra for horizontal and vertical
edges respectively with the vertices (2i+ 1, 0) and (0, 2j + 1) removed from the graph.
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Lemma 4.3. For i, j ∈ {0, 1, . . . , n− 1} we have

(4.9)
Z(i, j, 1, a, n)

Zn(1, a)
=

∑
k,l∈{0,1}

(i−k,l−k)6=(−1,−1)

ak+lZ(i− k, j − l, 1, a, n− 1)

Zn−1(1, a)(1 + a2)
+

a

1 + a2
I(i,j)=(0,0),n≥1.

and Z(i, j, 1, a, n− 1) = 0 unless both i and j are in {0, 1, . . . , n− 2}.

Proof. By using Lemma 4.2 (i.e. set w0,0(k, l) = w1,1(k, l) = 1 and w0,1(k, l) = w1,0(k, l) = a
for all 0 ≤ k, l ≤ n− 1) and in particular from (4.6), we have

Zn(1, a) = (1 + a2)n
2
Zn−1

(
1

1 + a2
, a

)
and by applying a gauge transformation which multiplies all the white vertices by 1 + a2 we
have

Zn(1, a) = (1 + a2)nZn−1(1, a).

where Z0(1, a) = 1. For Z(i, j, 1, a, n), from (4.7), we have that

Z(i, j, 1, a, n) = (1 + a2)n
2

∑
k∈{i−1,i}
l∈{j−1,j}

ai−k+l−j

(1 + a2)2
Z

(
k, l,

1

1 + a2
, a, n− 1

)
I0≤k≤n−2I0≤l≤n−2

+
a

1 + a2
(1 + a2)n

2
Zn−1

(
1

1 + a2
, a

)
and we apply gauge transformations to both terms which multiplies to the white vertices by
1 + a2 giving

Z(i, j, 1, a, n) = (1 + a2)n−1
∑

k∈{i−1,i}
l∈{j−1,j}

ai−k+l−jZ (k, l, 1, a, n− 1) I0≤k≤n−2I0≤l≤n−2

+
a

1 + a2
(1 + a2)nZn−1 (1, a)

We divide the recurrence for Z(i, j, 1, a, n) by the recurrence for Zn(1, a) and rearranging
the summation, we obtain the lemma. �

Let

Z∂(w, b, a, z) =
∑
n≥0

n−1∑
i=0

n−1∑
j=0

Z(i, j, 1, a, n)

Zn(1, a)
wibjzn

which denotes the boundary generating function without Kasteleyn orientation for the bot-
tom and left boundaries where w and b mark the white and black vertices respectively while
z marks the size of the Aztec diamond.

Lemma 4.4.

Z∂(w, b, a, z) =
az

(1− z)(1 + a2 − z(1 + wa)(1 + ba))

Proof. As given in the proof of Lemma 3.4, we multiply (4.9) by wibjzn and sum of 0 ≤
i, j ≤ n− 1 and n ≥ 0 and we obtain

(4.10) Z∂(w, b, a, z) =
z(1 + wa)(1 + ba)

1 + a2
Z∂(w, b, a, z) +

z

1− z
a

1 + a2
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which is the boundary generating function at the bottom and left boundary of the biased
one-periodic weighting of the Aztec diamond. Solving (4.10) gives the lemma. �

Let

(4.11) H i,j,a
n (w, b)

∑
1≤x1≤2n−1,x1 mod 2=1
1≤y2≤2n−1,y2 mod 2=1

K−1
a ((x1, 2ni), (2nj, y2))wx1

1 w2ni
2 b2nj1 by22

Lemma 4.5.

Gn(w, b) =
w1w

2
2b2fn+1(w2

1b
2
1)fn(w2

2b
2
2)

C(w1, w2)

+ (1 + iaw1)
(1 + aib22)H0,0,a

n + b21

(
b2w1fn(b21w

2
1) + (ai + b22)H0,1,a

n

)
C(w1, w2)C(b1, b2)

+ (ia+ w2
1)w2

2

b21b
2n+1
2 w1w

2n
2 fn(b21w

2
1) + (1 + ib22)H1,0,a

n + b21(ai + b22)H1,1,a
n

C(w1, w2)C(b1, b2)

where C(r1, r2) = 1 + r2
1r

2
2 + ai(r2

1 + r2
2) and H i,j,a

n = H i,j,a
n (w, b) defined in (4.11).

Proof. We follow the proof of Lemma 3.5 but replace K by Ka defined in (4.1) and replace

K−1 by K−1
a . This results in setting i to ia and H i,j

n to Hni, j, a in the proof of Lemma 3.5.
�

Lemma 4.6. For i, j ∈ {0, 1}, we have

H i,j,a
n (w, b) = F i,j

n (w, b, a1−2(j(1−i)−i(1−j)))

where H i,j,a
n (w, b) is defined in (4.11) and F 0,0

n (w, b, a), F 0,1
n (w, b, a−1), F 1,0

n (w, b, a−1) and

F 1,1
n (w, b, a) are given in equations (4.2), (4.3),(4.4) and (4.5) respectively.

Proof. The computations for (i, j) = (0, 0) and (i, j) = (1, 1) are analogs of Lemma 3.6
using the same Kasteleyn orientation but using the boundary generating function (without
Kasteleyn orientation) from Lemma 4.4 instead.

For (i, j) = (1, 0), we cannot use the boundary generating function computed in Lemma 4.4
directly — we need to interchange the vertical and horizontal edge weights so that we can
use our previous computations (this interchange accounts for the top leftmost edge having
weight 1 while the bottom leftmost edge having weight a). Consider an Aztec diamond with
all horizontal edges having weight a and all vertical edges having weight 1. By the above
notation, its partition function is Zn(a, 1/a) and the partition function when removing two
vertices (2i+ 1, 0) and (0, 2j + 1) is given by Z(i, j, a, 1/a, n). By multiplying all the white
vertices by 1/a, we recover an Aztec diamond with horizontal edges having weight 1 and
vertical edges having weight 1/a. Because there is one less white vertex in Z(i, j, a, 1/a, n)
that Zn(a, 1/a), this gauge transformation leads to

Z(i, j, a, 1/a, n)

Zn(a, 1/a)
=

1

a

Z(i, j, 1, a−1, n)

Zn(1, a−1)

From the above equation, we compute the boundary generating function for Z(i, j, a, 1/a, n)/Zn(a, 1/)
(i.e. set a to 1/a and multiply by 1/a in Lemma 4.4). From this boundary generating func-
tion, we follow the proof in Lemma 3.6 for the Kasteleyn orientation and change of variables
and we recover (4.3). A similar computation holds for (i, j) = (0, 1).

�
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We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. In Lemma 4.6, we found the expressions for H i,j,a
n (w, b) for all i, j ∈

{0, 1}. We substitute these expressions for H i,j,a
n (w, b) into the formula given in Lemma 4.5

which gives the generating function for K−1
a .

�

5. qvol weighting

As mentioned in the introduction, it is possible to associate a discrete stepped surface
to a covering of the Aztec diamond. This function is called the height function. The most
concrete way of viewing the height function is as the surface of a certain stack of blocks,
called Levitov blocks [23, 24]. One can construct an edge weighting of the Aztec diamond in

several ways, so that the contribution from each covering is proportional to q#{Levitov Blocks}

- that is, adding a block to a covering multiplies the weight of the covering by q. Concretely,
this means that for each face, the product of the edges parallel to e2 divided by the product
of edges parallel to e1 is equal to q or q−1, depending on the parity of the face. Such a choice
of weightings is not unique, and we refer to any such choice as a qvol weighting of the Aztec
diamond. For technical reasons, we make use of two such weightings here.

We call the weighting qcol to be the choice of weights where all edges parallel to e1 have
weight 1 and the edges parallel to e2 have edge weights organized in columns given by
aq2n, aq1−2n, aq2n−2, . . . , aq−1 reading from left to right – see Figure 8. We let Kcol denote
the Kasteleyn matrix with qcol weights and its entries are given by

(5.1) Kcol(x, y) =


1 y − x = ±e1

aq−2n+x1−1i y − x = e2

aq2n−x1i y − x = −e2

0 otherwise

where x = (x1, x2) ∈ B and y ∈ W.

Theorem 5.1. The entries of the inverse of Kcol are given by

K−1
col (x, y) =

{
f1(x, y) if x1 < y1 + 1
f1(x, y) + f2(x, y) x1 ≥ y1 + 1

for x = (x1, x2) ∈ W and y = (y1, y2) ∈ B, where

f1(x, y) =
i(−x1+x2+y1−y2+2)/2q(4+4n−x1+x2−y1−y2)(x1−x2−y1+y2)/4

(2πi)2

∫
Γn
1/a,q

∫
Γ0

dz dw

wy1/2

z(x1+1)/2(w − z)

∏x2/2−1
k=0 (z + aq−2k−1+y2−1)

∏n−x2/2−1
k=0 (azq2k+x2+3−y2 − 1)∏(y2−1)/2

k=0 (w + aq2k−1)
∏n−(y2+1)/2

k=0 (awq2k+2 − 1)

(5.2)

and

f2(x, y) =

∏(x1−y1−3)/2
k=0 (−iq−2n+x1−4−2k)

∏(x2−y2−3)/2
k=0 iq2n−x1+4+2k

2πi

∫
Γn
1/a,q

dw

wy1/2−(x1+1)/2

∏x2/2−1
k=0 (w + aq−2k−1+y2−1)

∏n−x2/2−1
k=0 (awq2k+x2+3−y2 − 1)∏(y2−1)/2

k=0 (w + aq2k−1)
∏n−(y2+1)/2

k=0 (awq2k+2 − 1)
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Figure 8. The two qvol weightings used in this paper for Aztec diamond of
size 3. The figure on the left is qcol weighting and the figure on the right is
the qdiag.
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where Γ0 is a contour surrounding the origin and Γn
1/a,q is a contour surrounding 1/(aq2),

1/(aq4),. . . , 1/(aq2n) which does not intersect with Γ0.

When q = 1, we recover the double contour integral form for K−1 of a one-periodic
weighting of the Aztec diamond with edge weights 1 and a for the horizontal and vertical
edges. Unlike the formulas for the one-periodic case (Theorems 3.1 and 4.1), we were unable
to find a generating function form for K−1

col . However, we believe that Theorem 5.1 is written
in the most suitable form for asymptotic computations — one can apply the saddle point
analysis to compute both local and global behavior of the model.

The rest of this section is organized as follows: similar to the proof of the one-periodic case,
we first derive the boundary generating function for a gauge equivalent weighting of the qcol

weighting. From this boundary generating function, we show how we can obtain coefficients
of the boundary generating function of the qcol weighting. Unlike the one-periodic and two-
periodic cases, we do not derive K−1

col directly from the expansion of the boundary generating

function. Instead, we guess a formula for K−1
col which is outlined in Section 5.2. We then

prove that this guess is correct in Section 5.3.

5.1. Boundary Generating functions on the top and right boundaries. We focus
on extracting the coefficients of the boundary generating function for qcol weights on the
top boundary (the white vertices (2k − 1, 2n) for 0 ≤ k ≤ n − 1) and the right boundary
(the black vertices (2n, 2k + 1) for 0 ≤ k ≤ n − 1). For the rest of this section, label
the white vertices on the top boundary 0 to n − 1 with the label i representing the vertex
(2n − 2i − 1, 2n). Similarly, label the black vertices on the right boundary 0 to n − 1 with
the label j representing the vertex (2n, 2n− 1− 2j).
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Although we can find a boundary recurrence relation for the qcol weighting, it seems
intractable (to us at least) to find an explicit solution. This inconvenience can be bypassed
by working on another (gauge equivalent) choice of qvol weighting.

We let qdiag be the qvol weighting where all edges parallel to e1 have weight 1 and all
edges parallel to e2 on the top and right boundary have weight a. Because the qdiag weight-
ing is a qvol weighting which has all horizontal edges equal to 1, this choice of boundary
weights uniquely determines the remaining edge weights – see Figure 8. Let Kdiag denote

the Kasteleyn matrix for the qdiag weighting. Its entries are given by

(5.3) Kdiag(x, y) =


1 y − x = ±e1

iaq−2 min(n−x1/2,n−(x2+1)/2) y − x = e2

iaq2 min(n−x1/2−1,n−(x2+1)/2))+1 y − x = −e2

0 otherwise

where x = (x1, x2) ∈ B and y ∈ W.

Lemma 5.2. The gauge transformation from the qcol weighting to the qdiag weighting is given

by multiplying the white vertices y = (y1, y2) by q((y2−y1+1)/2)2 if y2 > y1 and q(y2−y1+1)/2 if

y1 > y2 and multiplying the black vertices x = (x1, x2) by q−((x2−x1+1)/2)2 if x1 < x2 and

q(x1−x2−1)/2 if x1 > x2.

Proof. Consider the qcol weighting with the gauge transformation described in the lemma.
Label this gauge transformation g so that g(v) represents the gauge transform which multi-
plies the vertex v by g(v).

From the above gauge transformation, for x = (x1, x2) ∈ B, we compute a new Kasteleyn

matrix, labeled K̃ which is given entry wise by Kcol(x, y)g(x)g(y) where y ∈ W is a nearest
neighbor vertex to x. We find that for x1 < x2, the entries of this new Kasteleyn matrix are

• K̃col(x, x+ e1).q−((x2−x1+1)/2)2 .q((x2−x1+1)/2)2 = 1,

• K̃col(x, x− e1).q−((x2−x1+1)/2)2 .q((x2−x1+1)/2)2 = 1,

• K̃col(x, x+ e2).q−((x2−x1+1)/2)2 .q((x2−x1+3)/2)2 = aqx2−1−2ni and

• K̃col(x, x− e2).q−((x2−x1+1)/2)2 .q((x2−x1−1)/2)2 = aq2n−x2i.

For x = (x1, x2) ∈ B, we similarly compute Kcol(x, y)g(x)g(y) for x1 > x2 and we obtain

• K̃col(x, x+ e1).q(x1−x2+1)/2.q−(x1−x2+1)/2 = 1,

• K̃col(x, x− e1).q(x1−x2+1)/2.q−(x1−x2+1)/2) = 1,

• K̃col(x, x+ e2).q(x1−x2+1)/2.q−(x1−x2−1)/2 = aqx1−2ni and

• K̃col(x, x− e2).q(x1−x2+1)/2.q−(x1−x2+3)/2 = aq2n−x1−1i.

Using (5.3), it follows that K̃ is equal to Kdiag. �

We now write out the partition function and boundary recurrence for the qvol weighting of
the Aztec diamond. The latter recurrence will be written in terms of the vertices on the top
and right boundaries, whereas in Section 4.1 we considered a recurrence with the bottom
and left boundaries. To fix this, we work with the faces with centers having coordinates
(2n− 2k − 1, 2n− 2l − 1) and interchange w0,1 and w1,0 for an Aztec diamond of size n for
the remainder of this section. That is, the edge weights around a face whose center has co-
ordinates (2n−2k−1, 2n−2l−1) are given by w0,0(k, l), w1,0(k, l), w0,1(k, l) and w1,1(k, l) for
0 ≤ k, l ≤ n− 1 where we have used the same labeling procedure as given in Section 4.1 (i.e.
the weights correspond to the edges ((2n− 2k− 2, 2n− 2l− 1), (2n− 2k− 1, 2n− 2l)), ((2n−
2k−1, 2n−2l), (2n−2k, 2n−2l−1)), ((2n−2k−2, 2n−2l−1), (2n−2k−1, 2n−2l−2)) and
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((2n−2k−1, 2n−2l−2), (2n−2k, 2n−2l−1))). With this notation change, let Zdiag
n (b, a, q)

denote the partition function of the Aztec diamond with weights

w0,0(k, l) = b, w1,0(k, l) = aq−2 min(k,l),

w0,1(k, l) = aq2 min(k,l)+1 and w1,1(k, l) = b
(5.4)

for 0 ≤ k, l ≤ n − 1, i.e. Zdiag
n (b, a, q) is the partition function of the qdiag weighting of an

Aztec diamond of size n. Let Z̃diag
n−1(b, a, q) be the partition function of an Aztec diamond of

size n− 1 whose faces have edge weights

w̃0,0(k, l) = b, w̃1,0(k, l) = aq−2 min(k,l)),

w̃0,1(k, l) = aq2 min(k,l)+3 and w̃1,1(k, l) = b
(5.5)

for 0 ≤ k, l ≤ n − 2. We denote Zdiag(i, j, a, q, n) to be the partition function of an Aztec
diamond of size n whose edge weights are given by (5.4) with b = 1 and where i and j
denote removing the vertices (2n − 2i − 1, 2n) and (2n, 2n − 2j − 1) respectively from the
graph. We denote Zdiag(i, j, b, a, q, n− 1) to be the partition function of an Aztec diamond
of size n − 1 whose edge weights are given by (5.5) where i and j denote removing the
vertices (2n − 2i − 3, 2n − 2) and (2n − 2, 2n − 2j − 3) respectively from the graph. We
set Zdiag(i, j, a, q, n) = Zdiag(i, j, c, a, q, n) = 0 if either i or j (or both) are not contained in
{0, 1, . . . , n− 1}.

Lemma 5.3. We have that Zdiag(i, j, a, q, n)/Zdiag
n (1, a, q) satisfies the following recurrence

Zdiag(i, j, a, q, n)

Zdiag
n (1, a, q)

= qi+j+1


∑

(k,l)∈{0,1}
(i−k,j−k)
6=(−1,−1)

ak+lZ
diag(i− k, j − l, aq, q, n− 1)

(1 + a2q)Zdiag
n−1(1, aq, q)

+
aI(i,j)=(0,0),n≥1

1 + a2q

 .

Proof. We first compute the recurrence for Zdiag
n (1, a, q) and then compute the recurrence

for Zdiag(i, j, a, q, n).

For Zdiag
n (1, a, q) we compute the urban renewal factors and using the notation from

Section 4.1 we find

∆(k, l) = w0,0(k, l)w1,1(k, l) + w0,1(k, l)w1,0(k, l) = 1 + a2q

for all 0 ≤ k, l ≤ n − 1. Because of the change in notation from Section 4.1, the edge
weights under the deformation of the Aztec diamond of size n to an Aztec diamond of
size n − 1 as detailed in Section 4.1 are equal to w0,0(k + 1, l)/∆(k, l), w1,0(k, l)/∆(k, l),
w0,1(k+1, l+1)/∆(k, l) and w1,1(k, l+1)/∆(k, l) around the face whose center has coordinates
(2n− 2k − 3, 2n− 2l − 3). Comparing with (5.5), we have

wr,s(k + (1− r), l + s) = w̃r,s(k, l)∆(k, l)

for r, s ∈ {0, 1} and so we use (4.6) to obtain

(5.6)
Zdiag
n (1, a, q)

(1 + a2q)n2 = Z̃diag
n−1

(
1

1 + a2q
,

a

1 + a2q
, q

)
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As all the edge weights on the right-hand side are divided by 1 + a2q, we apply a gauge

transformation to Zdiag
n−1(·) on the right-hand side of the above equation which multiplies the

white vertices by (1 + a2q). As this term encodes n(n− 1) white vertices, we find

Zdiag
n (1, a, q)

(1 + a2q)n
= Z̃diag

n−1(1, a, q)

Setting a 7→ aq−1 gives

(5.7)
Zdiag
n (1, a, q)

(1 + a2q)n

∣∣∣∣∣
a7→aq−1

= Z̃diag
n−1(1, aq−1, q)

To the right-hand side of the above equation, we apply a gauge transformation which mul-
tiplies the white vertices at (2n − 2i − 3, 2n − 2) by q1+i for all 0 ≤ i ≤ n − 2, the black
vertices at (2n − 2, 2n − 2j − 3) by qj for all 0 ≤ j ≤ n − 2 and the remaining black and
white vertices are multiplied by the appropriate factor so that all the horizontal edges have
weight 1 (that is, multiply each white vertex (x1, x2) by q(x2−x1−1)/2 and each black vertex

(x1, x2) by q(x1−x2−1)/2). Due to the overall multiplication factor of this gauge transform is
q0, we find that

(5.8) Z̃diag
n−1(1, aq−1, q) = Zdiag

n−1(1, a, q)

and after substituting (5.8) into (5.7) and setting a 7→ aq on both sides in (5.7), we find

(5.9) Zdiag
n (1, a, q) = (1 + a2q)nZdiag

n−1(1, aq, q).

We now find the recurrence for Zdiag(i, j, a, q, n) following similar transformations used
in computing the partition function recurrence. To make the computations simpler, we will
divide through by (1 + a2q)n−1 and set a 7→ aq−1 and so we will compute a relation for

(5.10)
Zdiag(i, j, a, q, n)

(1 + a2q)n−1

∣∣∣∣
a7→aq−1

For the above equation, we use (4.7) but as the formulas are rather long we shall treat each
term of the right-hand side of (4.7) separately. Substituting the first term on the right-hand
side of (4.7) with the qdiag weighting into (5.10), because w0,1(0, 0)/∆(0, 0) = aq/(1 + a2q)

[
aq(1 + a2q)n

2−nZ̃diag
n−1

(
1

1 + a2q
,

a

1 + a2q
, q

)]
a7→aq−1

= aZ̃diag
n−1(1, aq−1, q) = aZdiag

n−1(1, a, q)

(5.11)

where the second line follows from the gauge transformation multiplying all n(n− 1) white
vertices by (1+a2q) as given computed in (5.6) followed by setting a 7→ aq−1 while the third
line follows from (5.8). Substituting the second term on the right-hand side of (4.7) with
the qdiag weighting, we find that because w0,1(r, s) = aq for all 0 ≤ r ≤ n− 1 provided s = 0
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and for all 0 ≤ s ≤ n− 1 provided r = 0, the second term of (5.10) is equal to

=

(1 + a2q)n
2−n+1

∑
k∈{i−1,i}
l∈{j−1,j}

(aq)i−k+j−l

(1 + a2q)2
Z̃diag

(
k, l,

1

1 + a2q
,

a

1 + a2q
, q, n− 1

)
I0≤k,l≤n−2


∣∣∣∣∣∣∣∣
a7→aq−1

=

 ∑
k∈{i−1,i}
l∈{j−1,j}

(aq)i−k+j−lZ̃diag(k, l, 1, a, q, n− 1)I0≤k,l≤n−2


∣∣∣∣∣∣∣∣
a7→aq−1

=
∑

k∈{i−1,i}
l∈{j−1,j}

ai−k+j−l
(
Z̃diag(k, l, 1, a, q, n− 1)I0≤k,l≤n−2

∣∣∣
a7→aq−1

)

=
∑

k∈{i−1,i}
l∈{j−1,j}

qk+l+1ai−k+j−lZdiag(k, l, a, q, n− 1)I0≤k,l≤n−2

(5.12)

where the first line to the second line follows from using apply a gauge transformation which
multiplies the n(n− 1)− 1 white vertices by (1 + a2q). The third to fourth line in the above
block of equations is due to the gauge transformation used in (5.8) which is be seen by the

following: Z̃diag(k, l, 1, a, q, n− 1)|a7→aq−1 has the same weights as Z̃diag
n−1(1, aq−1, q) with the

vertices (2n− 2k− 3, 2n− 2) and (2n− 2, 2n− 2l− 3) removed from the Aztec diamond. We
apply the same gauge transformation given in (5.8) and the factor qk+l+1 compensates for
these two removed vertices. Using (5.12) and (5.11), (5.10) becomes

Zdiag(i, j, a, q, n)

(1 + a2q)n−1

∣∣∣∣
a7→aq−1

= q
∑

k∈{i−1,i}
l∈{j−1,j}

qk+lai−k+j−lZdiag(k, l, a, q, n−1)I0≤k,l≤n−2+aZdiag
n−1(1, a, q)

We set a 7→ aq on both sides of the above equation and divide by the partition function
recurrence given in (5.9). A change of summation index gives the result.

�

Following the steps outlined in Section 3, we now find the boundary generating function
(ignoring the Kasteleyn orientation) for the qdiag weighting of the Aztec diamond. Let

Gdiag
NE (w, b, a, q) denote the two variable boundary generating function for the qdiag weighting

of an Aztec diamond of size n, that is

Gdiag
NE (w, b, a, q) =

n−1∑
i=0

n−1∑
j=0

Zdiag(i, j, a, q, n)

Zdiag
n (1, a, q)

wibj

For this generating function, the variable w marks the white vertices and the variable b
marks the black vertices.

We also let

G
diag
NE (w, b, a, q, z) =

∞∑
n=0

Gdiag
NE (w, b, a, q)zn,
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which denotes the three variable boundary generating function for the qdiag weighting of the
Aztec diamond. For this generating function, the variables w and b mark the white and
black vertices respectively, while the variable z marks the size of the Aztec diamond.

Lemma 5.4. The boundary generating function for the qdiag weighting of an Aztec diamond
of size n is given by

Gdiag
NE (w, b, a, q) =

n−1∑
i=0

aqi+1

1 + q2i+1a2

i∏
k=0

q(1 + q2k+1ab)(1 + q2k+1aw)

1 + a2q2k+1

Proof. Multiplying the recurrence relation given in Lemma 5.3 by wibjzn and summing over
n ≥ 0, 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1 we obtain

(5.13) G
diag
NE (w, b, a, q, z) =

zq(1 + abq)(1 + awq)

1 + a2q
G

diag
NE (wq, bq, aq, q, z) +

aq

1 + a2q

z

1− z

The above equation is a recurrence for the qdiag boundary generating function. To solve this

recurrence, we let F (w, b, a) = G
diag
NE (w, b, a, q, z),

R(w, b, a) =
zq(1 + abq)(1 + awq)

1 + a2q
,

and

S(a) =
aq

1 + a2q

z

1− z
.

This means, we rewrite (5.13) as

(5.14) F (w, b, a) = R(w, b, a)F (qw, qb, qa) + S(a)

By applying the recurrence relation (5.14) iteratively we have

F (w, b, a) =
∞∏
i=0

R(wqi, bqi, aqi)F (0, 0, 0) +
∞∑
i=0

S(aqi)
i−1∏
k=0

R(wqi, bqi, aqi)

The first term on the right-hand side of the above equation goes to zero by choosing zq < 1,
and so we obtain

G
diag
NE (w, b, a, q, z) =

∞∑
i=0

S(aqi)

i−1∏
k=0

R(wqi, bqi, aqi).

To obtain the lemma, we extract the nth coefficient of the above equation which is computed
using the fact that

i−1∏
k=0

R(wqi, bqi, aqi) = zi
i−1∏
k=0

q(1 + abq2k+1)(1 + awq2k+1)

(1 + a2q2k+1)

and

S(aqi) =
aqi+1

1 + a2q2i+1

∞∑
n=1

zn.

�
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Let Zcol
n (a, q) denote the partition function of the Aztec diamond with qcol and Zcol(i, j, a, q, n)

denote the partition function of the Aztec diamond with qcol weights with vertices (2n−2i−
1, 2n) and (2n, 2n− 1− 2j) removed.

Lemma 5.5. For 0 ≤ i, j ≤ n− 1, n ∈ N and a, q > 0 we have

Zcol(i, j, a, q, n)

Zcol
n (a, q)

=
1

(2πi)2

∫
Γ0

∫
Γ0

q(i+1)2+jG
diag
NE (w, b, a, q)

wibj
dw

w

db

b

Proof. The gauge transformation from the proof of Lemma 5.2 gives

q(i+1)2+jZ
diag(i, j, a, q, n)

Zdiag
n (1, a, q)

=
Zcol(i, j, a, q, n)

Zcol
n (a, q)

.

From Lemma 5.4, the coefficient of wibj inGdiag
NE (w, b, a, q) is equal to Zdiag

n (i, j, a, q, n)/Zdiag
n (1, a, q)

and this is given by

1

(2πi)2

∫
Γ0

∫
Γ0

Gdiag
NE (w, b, a, q)

wibj
dw

w

db

b

�

5.2. Finding K−1
col . In this subsection, we explain how we guessed the formula for K−1

col which
appears in Theorem 5.1. The proof of Theorem 5.1 appears in the following subsection. It
is a correct but somewhat unilluminating argument, since we essentially demonstrate that
the formula for K−1

col satisfies the equation Kcol ·K−1
col = I; the purpose of this section is to

describe the heuristics behind the guess that we made.
The first step is to rewrite the formula given in Lemma 5.5 as a double contour integral

formula where the contours of integration are given by Γ0 and Γn
1/a,q. We found that

Zcol(i, j, a, q, n)

Zcol
n (a, q)

=
q(2+i+j)2−1

(2πi)2

∫
Γ0

∫
Γn
a,q

dw dz

wn
∏n−1

k=0 aq
−2k−1+2(n−j−1) + z

(w − z)zn−i
∏n−j−1

k=0 (aq2k−1 + w)
∏j

k=0(−1 + awq2k+2)

(5.15)

We guessed (5.15) using the following:

• we knew that such a formula holds in the case when q = 1 by comparing the formulas
for the absolute value of the inverse Kasteleyn matrix on the boundary given in Sec-
tion 4 and [7] which writes the formula for the inverse Kasteleyn matrix as a double
contour integral formula. We compared the absolute values due to different Kaste-
leyn orientations. We also found a direct computation between these two formulas
however, we were unable to extend this computation when q 6= 1.
• From Lemma 5.5, we had an approximate structure of the formula: for example,

each q appears as q2k+1 for some k.
• We guessed that the poles with respect to w split when q 6= 1 (because this occurs

for the lozenge tiling case– e.g. see Theorem 2.25 in [3]).
• We used small examples and the above steps to guess formula (5.15).

To prove (5.15) is correct, we setup a boundary recurrence relation for Zcol(i, j, a, q, n)/Zcol
n (a, q)

similar to Lemma 5.3 and showed that (5.15) satisfied the boundary recurrence and its initial
condition.
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We next found values of K−1
col by multiplying the sign from the Kasteleyn orientation to

equation (5.15) and writing the formula in terms of the Kasteleyn coordinates. Due to the
qcol weighting having the same Kasteleyn orientation as the uniform case, the sign of the
boundary values of the inverse Kasteleyn matrix are the same. In the proof of Lemma 3.6,
we found that the sign of K−1((x1, 2n), (2n, y2)) is equal to −ii+j+1where i = (2n−1−x1)/2
and j = (2n− 1− y2)/2. Multiplying (5.15) by −ii+j+1 and setting i = (2n− 1− x1)/2 and
j = (2n− 1− y2)/2, we obtain

K−1
col ((x1, 2n), (2n, y2)) =

i(4n−x1−y2+2)/2q(4+4n−x1−y2)(x1+y2−4n)/4

(2πi)2

∫
Γn
a,q

∫
Γ0

dz dw

wn

z(x1+1)/2(w − z)

∏n−1
k=0(z + aq−2k+y2−2)∏(y2−1)/2

k=0 (w + aq2k−1)
∏n−(y1+1)/2

k=0 (awq2k+2 − 1)
.

We found K−1
col (x, y) for all x ∈ W and y ∈ B by treating the entry-wise expansions of the

matrix equations Kcol · K−1
col = I and K−1

col · Kcol = I as recurrence relations whose initial
condition is given by K−1 on the top and right boundaries which is given in the above
equation. Details on the reason why these two matrix equations give a recurrence relations
can be found in Section 3.

5.3. Proof of Theorem 5.1. In this subsection we prove Theorem 5.1. As the computations
are particularly messy, we used computer algebra to help with the simplifications. We will
use the following notations: let (a; q)n =

∏n−1
i=0 (1− aqi) be the q-Pochhammer symbol. For

x = (x1, x2) ∈ W and y = (y1, y2) ∈ B, we set

g1(w, z, x, y) = iw
1
2

(y1−y2−1)(−1)
1
4

(−x1−x2+y1+y2)z
1
2

(−x1+x2−1)

× q−
1
4

(x1−x2−y1+y2)(4n−x1+x2−y1−y2+4)

(
−aqy2−2

z ; 1
q2

)
x2
2

(
aqx2−y2+3z; q2

)
n−x2

2

(w − z)
(
− a

qw ; q2
)

1
2

(y2+1) (aq2w; q2) n− y2
2

+ 1
2

,

g2(w, x, y) = −(−1)
1
4

(7x1+x2−7y1−y2)i−x2+y2+1w
1
2

(−x1+x2+y1−y2−2)

× q
1
4

(x1−x2−y1+y2)(−4n+x1−x2+y1+y2−4)

(
−aqy2−2

w ; 1
q2

)
x2
2

(
aqx2−y2+3w; q2

)
n−x2

2(
− a

qw ; q2
)

1
2

(y2+1) (aq2w; q2) n− y2
2

+ 1
2

and

g̃2(w, x, y) = −(−1)
1
4

(7x1+x2−7y1−y2)i−x2+y2+1w
1
2

(−x1+x2+y1−y2−2)

× q−
1
4

(x1−x2−y1+y2)(4n−x1+x2−y1+y2+4)

(
− a

q2w
; 1
q2

)
x2
2

(
aqx2+3w; q2

)
n−x2

2(
−aq−y2−1

w ; q2
)

1
2

(y2+1) (aqy2+2w; q2) n− y2
2

+ 1
2

(5.16)

Note that, by reversing the order of summation, we have

(5.17)

(
− a

q2w
;

1

q2

)
(y2+1)/2

=

(
−aq

−y2−1

w
; q2

)
(y2+1)/2
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We have chosen g1 and g2 to be integrands of f1 and f2 and g̃2 to be the integrand of f2

under the change of variables w 7→ wqy2 . This means that

1

(2πi)2

∫
Γn
1/a,q

∫
Γ0

g1(w, z, x, y)dz dw = f1(x, y),

and

1

2πi

∫
Γn

a−1q−y2 ,q

g̃2(w, x, y)dw =
1

2πi

∫
Γn
1/a,q

g2(w, x, y) dw = f2(x, y).

Note that we also have

(5.18) g2(w, x, y) = − lim
z→w

(w − z)g1(w, z, x, y)

for x ∈ W and y ∈ B.

Proof. Throughout the proof, we assign x = (x1, x2) ∈ B and y = (y1, y2) ∈ B. To prove
Theorem 5.1, we have to verify the equation Kcol · L = I where we set

L(x, y) =

{
f1(x, y) x1 < y1 + 1
f1(x, y) + f2(x, y) x1 ≥ y1 + 1

where f1(x, y) and f2(x, y) are as given in Theorem 5.1 and x = (x1, x2) ∈ W and y =
(y1, y2) ∈ B.

We first expand out Kcol · L entry-wise by using the definition of Kcol given in equa-
tion (5.1). By comparing with the identity matrix, we want to verify the equation
(5.19)
(L(x+e1, y)+aiqx1−2n−1L(x+e2, y))δx1<2n+(L(x−e1, y)+aiq2n−x1L(x−e2, y))δx1>0 = δx=y

where x, y ∈ B and the delta functions account for x is on the left or right boundaries of the
Aztec diamond. There are three cases to consider for (5.19), namely x1 = 0, 0 < x1 < 2n
and x1 = 2n.

For 0 < x1 < 2n, from (5.19) we want to verify the equation

(5.20) L(x+ e1, y) + L(x− e1, y) + aiqx1−2n−1L(x+ e2, y) + aiq2n−x1L(x− e2, y) = δx=y

for x = (x1, x2), y ∈ B. We first consider the term g1(w, z, x, y) when substituted into the
left-hand side of the above equation. We find that after some simplification

g1(w, z, x+ e1, y) + g1(w, z, x− e1, y) + aiqx1−2n−1g1(w, z, x+ e2, y) + aiq2n−x1g1(w, z, x− e2, y)

=
(−1)

1
4

(−x1−x2+y1+y2)z
1
2

(−x1+x2−3)q
1
4(−2x1(2n+x2−y2+2)+(x2+y1−y2)(4n+x2−y1−y2)+x2

1+4y1−8y2−4)

w−
1
2

(y1−y2−1)(w − z)
(
− a

qw ; q2
)

1
2

(y2+1) (aq2w; q2) n− y2
2

+ 1
2

×


(
−aqy2−2

z ; 1
q2

)
1
2

(x2+1)

(
aqx2−y2+4z; q2

)
n−x2

2
− 1

2

z−1q−x2−1 (qy2 − azqx2+2)−1 −

(
−aqy2−2

z ; 1
q2

)
1
2

(x2−1)

(
aqx2−y2+2z; q2

)
n−x2

2
+ 1

2

q−y2 (aqy2 + zqx2+1)−1


= 0

(5.21)

where the first equality follows from computer algebra simplification and the second equality
follows because we are able to factor the q-Pochhammer symbols in the third line, that is,
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the third line in the above equation is equal to

(
−aq

y2−2

z
;

1

q2

)
1
2

(x2−1)

(
aqx2−y2+4z; q2

)
n−x2

2
− 1

2

×
(
q1+x2

(
1 +

aq−1−x2+y2

z

)
z
(
qy2 − aq2+x2z

)
− qy2

(
aqy2 + q1+x2z

) (
1− aq2+x2−y2z

))
= 0

It follows from (5.21) that

(5.22) f1(x+ e1, y) + f1(x− e1, y) + aiqx1−2n−1f1(x+ e2, y) + aiq2n−x1f1(x− e2, y) = 0

for x = (x1, x2), y ∈ B and 0 < x1 < 2n. Due to the method of computation, we note that
the above equation holds for any black vertices x, y, including vertices outside the Aztec
diamond.

To substitute the term g2 into the left-hand side of (5.20), we have to consider x1 = y1

and x1 ≥ y1 + 2 for x, y ∈ B separately due to the split definition of L. For x1 ≥ y1 + 2,
all four terms of g2 are present in the left-hand side of (5.20) and using (5.18) and (5.21), it
follows that for x1 ≥ y1 + 2 and x, y ∈ B

(5.23) f2(x+ e1, y) + f2(x− e1, y) + aiqx1−2n−1f2(x+ e2, y) + aiq2n−x1f2(x− e2, y) = 0,

whereas, for x1 = y1, we have that the left-hand side of (5.20) reads

(5.24) f2((x1 + 1, x2 + 1), (y1, y2)) + aiq2n−x1f2((x1 + 1, x2 − 1), (y1, y2)).

Using (5.16), we write the integrand of the above equation using g̃2. We find that this is
given by

(−1)
1
4

(y2−x2)w
1
2

(x2−y2−4)q
1
4(y2(−4n+2x1−4)+x2(4n−2x1)+x2

2−y22−4)(
−aq−y2−1

w ; q2
)

1
2

(y2+1) (aqy2+2w; q2) n− y2
2

+ 1
2(

a

(
− a

q2w
;

1

q2

)
x2−1

2

(
aqx2+2w; q2

)
2n−x2+1

2

− wqx2+1

(
− a

q2w
;

1

q2

)
x2+1

2

(
aqx2+4w; q2

)
n−x2−1

2

))
.

(5.25)

We simplify the second line of the above equation by expanding the q-Pochhammer symbols
and factorizing. This is given by

−qx2+1(1 + a2q)w

(
− a

q2w
;

1

q2

)
1
2

(x2−1)

(
aqx2+4w; q2

)
n−x2

2
− 1

2
.

Using the above simplification of (5.25), (5.24) is equal to

1

2πi

∫
Γn
1/(aqy2 ),q

dw
(−1)

1
4

(y2−x2)w
1
2

(x2−y2−2)q
1
4(y2(−4n+2x1−4)+x2(4n−2x1)+x2

2−y22−4)(
−aq−y2−1

w ; q2
)

1
2

(y2+1) (aqy2+2w; q2) n− y2
2

+ 1
2

×
(
−qx2+1(1 + a2q)

(
− a

q2w
;

1

q2

)
1
2

(x2−1)

(
aqx2+4w; q2

)
n−x2

2
− 1

2

)(5.26)

We now compute the above integral for different values of x2 and y2. First, notice that for
x2 = y2, (5.26) simplifies to

1

2πi

∫
Γn
1/(aqy2 ),q

dw
−(1 + a2q)

(aq−1−y2 + w)(1− aq2+y2w)
= 1
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To compute (5.26) for other choices of x2 and y2, we write out the parts of the integrand
which contain w. This is given by

w
1
2

(x2−y2−2)

(
− a

q2w
; 1
q2

)
1
2

(x2−1)

(
aqx2+4w; q2

)
n−x2

2
− 1

2(
−aq−y2−1

w ; q2
)

1
2

(y2+1) (aqy2+2w; q2) n− y2
2

+ 1
2

=

∏x2−3
2

k=0 w + aq−2k−2
∏n−x2

2
− 3

2
k=0 1 + aqx2+4+2kw∏ y2−1

2
k=0 w + aq−2k−2

∏n− y2
2
− 1

2
k=0 1 + aqy2+2+2kw

where we have used (5.17) to rearrange a q−Pochhammer symbol. For x2 < y2 which means
that x2 ≤ y2 − 2, there are no poles in above equation for w inside the contour Γn

1/(aqy2 ),q

and so (5.26) is equal to zero. For x2 > y2, the degree of the numerator of the above
equation in w is n − 1 while the degree of the denominator is n + 1. Therefore, we move
the contour of integration of the integral in (5.26) through infinity so that it now surrounds
{−aq−2,−aq−4, . . . ,−aq−y2−1}. But from the above equation, the integrand of (5.26) has
no poles at these points for x2 > y2 which means that (5.26) is equal to zero. This means
we conclude

(5.27) f2((x1 + 1, x2 + 1), (x1, y2)) + aiq2n−x1f2((x1 + 1, x2 − 1), (x1, y2)) = δx2=y2

for x = (x1, x2), y = (y1, y2) ∈ B. By our method of computation, the above relation holds
for 0 ≤ x1 ≤ 2n. It follows from (5.22), (5.23) and (5.27) that we have verified (5.20).

For x1 = 0 from (5.19) we want to verify

(5.28) L(x+ e1, y) + aiq2nL(x− e2, y) = δx=y

for x = (0, x2), y ∈ B. Due to the split definition of L, when we substitute the term f2 into
the left-hand side of (5.28), we are required to have y = (0, y2). Using (5.27) with x1 = 0,
we obtain

(5.29) f2((1, x2 + 1), (y1, y2)) + aiq2nf2((1, x2 − 1), (y1, y2)) = δx=y.

When we substitute term f1 into the left-hand side of (5.28), notice that we have

f1((−1, w2), (y1, y2)) = 0

for w2 mod 2 = 0 because there is no residue at z = 0 in (5.2) and as (5.22) holds for any
value of x1, we conclude that

(5.30) f1((x1 + 1, x2 + 1), (x1, y2)) + aiq2nf1((x1 + 1, x2 − 1), (x1, y2)) = 0.

It follows from (5.29) and (5.30) that we have verified (5.28).
For x1 = 2n, from (5.19) we want to verify

(5.31) L(x− e1, y) + aiq−1L(x+ e2, y) = δx=y

We first consider substituting in f1 into the left-hand side above equation, which means we
consider

g1(w, z, x− e1, y) + aiq−1g1(w, z, x+ e2, y).
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for x = (2n, x2). The above expression is equal to

i−nw
y1−y2−1

2 (−1)
−x2+y1+y2

4 q−(n− y1
2

+1)2−1z
1
2

(−2n+x2−1)

(w − z)
(
− a

qw ; q2
)

1
2

(y2+1) (aq2w; q2) n− y2
2

+ 1
2

(
−q

1
4

(x2−y2+2)2+1

(
−aq

y2−2

z
;

1

q2

)
x2−1

2

(
aqx2−y2+2z; q2

)
n−x2+1

2

− azq
1
4

(x2−y2+4)2
(
−aq

y2−2

z
;

1

q2

)
x2+1

2

(
aqx2−y2+4z; q2

)
n−x2−1

2

)
where we used computer algebra to make the simplifications. In the above expression,
we select the terms that only involve z and factor them by collecting the appropriate q-
Pochhammer symbols which gives

z
x2−2n−1

2

(w − z)

(
−aq

y2−2

z
;

1

q2

)
x2−1

2

(
aqx2−y2+4z; q2

)
n−x2−1

2

×
(
−aq

1
4

(4+x2−y2)2
(

1 +
aq−1−x2+y2

z

)
z − q1+ 1

4
(2+x2−y2)2

(
1− aq2+x2−y2z

))

= −q
1
4(8+x2

2−2x2(−2+y2)−4y2+y22)
(
1 + a2q

) ∏x2−3
2

k=0 z + aqy2−2−2k
∏ 2n−x2−3

2
k=0 1 + aq4+x2−y2+2kz

zn(w − z)
.

(5.32)

This means
(5.33)

1

2πi

∫
Γ0

g1(w, z, x−e1, y)+aiq−1g1(w, z, x+e2, y)dz = −g2(w, z, x−e1, y)−aiq−1g2(w, z, x+e2, y)

which is be seen by pushing the contour through infinity which picks up a residue at z = w
because from (5.32) (with respect to z), the integrand in (5.33) is a polynomial of degree
n− 1 divided by a polynomial of degree n+ 1 for x = (2n, x2), and using (5.18) to evaluate
the integral. From (5.33), we compute the integral with respect to w over the contour Γn

1/a,q

to find for x = (2n, x2)

f1(x− e1, y) + aiq−1f1(x+ e2, y) = −f2(x− e1, y)− aiq−1f2(x+ e2, y)(5.34)

By the definition of L, for 2n = x1 ≥ y1+2 (i.e. y1 ≤ 2n−2) and x = (2n, x2), y = (y1, y2) ∈ B

and using the above equation we obtain

L(x− e1, y) + aiq−1L(x+ e2, y) = f1(x− e1, y) + f2(x− e1, y)

+ aiq−1(f1(x+ e2, y) + f2(x+ e2, y)) = 0
(5.35)

For x1 = y1 = 2n, we have using (5.34), (5.23) and (5.27)

L(x− e1, y) + aiq−1L(x+ e2, y) = f1(x− e1, y) + aiq−1f1(x+ e2, y)

= −f2(x− e1, y)− aiq−1f2(x+ e2, y)

= f2(x+ e2, y) + aif2(x− e2, y)

= δx=y

(5.36)

for x = (2n, x2), y ∈ B. Equations (5.35) and (5.36) mean that we have verified (5.31).
As we have verified (5.20) for 0 ≤ x1 ≤ 2n, (5.28) for x1 = 0 and (5.31) for x1 = 2n, we

have verified (5.19).
�
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6. Two-Periodic Weighting

In this section, we compute the generating function of the inverse Kasteleyn matrix for the
two-periodic weighting of an Aztec diamond of size 4m. This is much akin to the parameter
a introduced in Section 4, except now there are two parameters, a and b, which decorate the
edges of the Aztec diamond in a checkerboard fashion described below. As remarked in the
introduction, one of the special cases of this model is equivalent to a different, uniform tiling
problem: namely, the so-called diabolo tilings of the fortress introduced in [27]. The dual
graph of the fortress is the square-octagon lattice with certain boundary conditions. This
model was the main motivation for this work.

Because of this periodicity, the problem becomes complicated in two ways: the recur-
rence relation increases in order, and the generating function becomes a vector of generating
functions. Finally, the relation which we solve in order to compute the boundary generat-
ing function involves a certain matrix multiplication which must be explicitly diagonalized
before the recurrence can be solved.

We begin, as before, by explicitly writing down the Kasteleyn matrix K to invert. In fact,
we will have two Kasteleyn matrices, K (for even-order diamonds) and K̃ (for odd-order
diamonds); for brevity, we will only invert K, and that only for Aztec diamonds of order 4m.

But we will compute boundary generating functions for both K and K̃. These are generating
functions which give those entries of the inverses of K, K̃ corresponding to two white and
black vertices on the boundary of the Aztec diamond. The boundary generating functions
appear in Lemma 6.1.

The matrix K has rows indexed by black vertices and columns indexed by white vertices.
Due to the periodicity of the weights, we have two types of white and black vertices. We
denote for i ∈ {0, 1}

Wi = {(x1, x2) : (x1 + x2) mod 4 = 2i+ 1, (x1, x2) ∈ W}

and

Bi = {(x1, x2) : (x1 + x2) mod 4 = 2i+ 1, (x1, x2) ∈ B}.

For an Aztec diamond of size n, we give weights a and b to the Aztec diamond in the
following way: if the size of the Aztec diamond is even, i.e. n = 2r, then the edge weights
around each face with center (2i+ 1, 2j + 1) for 0 ≤ i, j ≤ n− 1 are given weight a if (i+ j)
mod 2 = 0 and weight b if (i+j) mod 2 = 1. Conversely, if n = 2r−1, then the edge weights
are obtained from embedding the diamond in an Aztec diamond of order 2r. Figure 9 shows
this choice of edge weights.

Let K denote the Kasteleyn matrix for an Aztec diamond when n is even and K̃ denote
the Aztec diamond when n is odd. We have

(6.1) K(x, y) =


a(1− i) + bi if y = x+ e1, x ∈ Bi
(ai+ b(1− i))i if y = x+ e2, x ∈ Bi
ai+ b(1− i) if y = x− e1, x ∈ Bi
(a(1− i) + bi)i if y = x− e2, x ∈ Bi

and

(6.2) K̃(x, y) =


ai+ b(1− i) if y = x+ e1, x ∈ Bi
(ai+ b(1− i))i if y = x+ e2, x ∈ Bi
a(1− i) + bi if y = x− e1, x ∈ Bi
(a(1− i) + bi)i if y = x− e2, x ∈ Bi
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Figure 9. The two-periodic weighting of the Aztec diamond with the pic-
ture on the left being an even ordered Aztec diamond and the picture on the
right being an odd ordered Aztec diamond. The edges surrounding each face
are given the same weight, denoted by the parameter in the center of each
face with the exception of the boundary of the odd ordered Aztec diamond,
where the edge weights are given by the adjacent parameter.
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for x ∈ B and y ∈ W.
We now give the entries of K−1 for white and black vertices on the bottom and left

boundaries respectively for K defined in (6.1) and the size of the Aztec diamond is even. To
shorten the length of the formulas, we will write [i]2 = i mod 2.

Lemma 6.1. For an Aztec diamond of size n, let n = 4m and let K denote the Kasteleyn
matrix given in (6.1). Let L(a, b, i, j) denote K−1((2i + 1, 0), (0, 2j + 1)) for the Kasteleyn
matrix with parameters a and b. We have

L(a, b, i, j) =
−ii+j+1

(2πi)2

∫
|z|=1

∫
|w|=1

m−1∑
r=0

∑
k,l∈{0,1}

g2k+l+1
2[i]2+[j]2+1(a, b, w, z)αr

k(a, b, w)αr
l (a, b, z)

wbi/2c+1zbj/2c+1
dw dz

where for 1 ≤ i, j ≤ 4 we have gji (a, b, w, z) = Ni,j(a, b, w, z) which is given in Appendix A
and

αr
k(a, b, w) =

(β0(a, b, w))2r + (−1)k(β1(a, b, w))2r

4
√
ab(a2 + b2)(

√
w
√

(b4 + a4)w + a2b2(1 + w2))k
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for k ∈ {0, 1} with

βl(a, b, w) =

(
(a2 + b2)

√
w − (−1)l

√
(b4 + a4)w + a2b2(1 + w2)

)
√

2ab(a2 + b2)

Note that the expressions α0(a, b, w) and α1(a, b, w) are polynomials in w and the L(a, b, i, j)
is a rational function in a and b.

It is clearly also possible to find the boundary entries of the inverse Kasteleyn matrix for
the size of the Aztec diamond equal to 4m − 1, 4m − 2 and 4m − 3, but we will not do so
here. The proof of the lemma is given in the next subsection. For the generating function
of K−1, we need the following terms:

c∂(w1, w2) = 2(1 + a2) + a(w2
1 + w−2

1 )(w2
2 + w−2

2 ),

si,0(w1, w2) = −a
(
w−2

1 w−2
2 + w2

1w
−2
2

)
− aiw2

1 + aiw−2
1 − 2a2i,

si,2n(w1, w2) = w2n
2

(
−a
(
w2

1w
2
2 + w−2

1 w2
2

)
+ aiw2

1 − aiw−2
1 − 2a2(1−i)

)
.

for i ∈ {0, 1}. We set fn(x) = (1− xn)/(1− x) – the sum of a geometric series and we also
let for n = 2r and w = (w1, w2) and b = (b1, b2),

d(w, b) = fr(w
4
2b

4
2)fr(w

4
1b

4
1)b2w1(a+ w2

1b
2
1 + w2

2b
2
2(1 + aw2

1b
2
1))(w2

2 + b21 − i(1 + w2
2b

2
1))

+
((

1− iw2
2

)
w−1

1 b2(1 + aw2
2b

2
2) +

(
w2

2 − i
)
w2n+1

1 b2n1 b2(a+ w2
2b

2
2)
)
fr(w

4
2b

4
2)

− dsides(w, b)

c∂(b1, b2)
fr(w

4
1b

4
1)

where

dsides(w, b) = s0,0(w1, w2)
(
a(b21 − i)w1b2 + w1b

−1
2 (1− ib21)

)
+ s1,0(w1, w2)

(
(b21 − i)w3

1b
2
1b2 + aw3

1b
2
1b
−1
2 (1− ib21)

)
+ s0,2n(w1, w2)

(
(1− ib21)w1b

2n−1
2 + aw1b

2n+1
2 (b21 − i)

)
+ s1,2n(w1, w2)

(
a(1− ib21)w3

1b
2
1b

2n−1
2 + w3

1b
2
1b

2n+1
2 (b21 − i)

)
.

(6.3)

We denote the generating function of K−1 for K defined in (6.1) as

G(a, b, w, b) =
∑
x∈W

∑
y∈B

K−1(x, y)wxby

where wx = wx1
1 wx2

2 and by = by11 b
y2
2 for x = (x1, x2) and y = (y1, y2).

Theorem 6.2. For an Aztec diamond of size n, the generating function of K−1 for K
defined in (6.1) with b = 1, n = 4m for m ∈ N, w = (w1, w2) and b = (b1, b2) is given by

G(a, 1, w, b) =
d(w, b)

c∂(w1, w2)

+

 ∑
i,j∈{0,1}

∑
k,l∈{0,2n}

∑
(x1,k)∈Wi

∑
(l,y2)∈Bj

si,k(w1, w2)sj,l(b2, b1)K−1((x1, k), (l, y2))

c∂(w1, w2)c∂(b1, b2)
wx1

1 by22

(6.4)
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where

K−1((x1, 0), (0, y2)) = L

(
a, 1,

x1 − 1

2
,
y2 − 1

2

)
,

K−1((x1, 0), (2n, y2)) = i2n−1−x1+y2L

(
1, a, n− x1 + 1

2
,
y2 − 1

2

)
,

K−1((x1, 2n), (0, y2)) = i2n−1+x1−y2L

(
1, a,

x1 − 1

2
, n− y2 + 1

2

)
and

K−1((x1, 2n), (2n, y2)) = L

(
a, 1, n− x1 + 1

2
, n− y2 + 1

2

)
.

(6.5)

and L(a, b, i, j) is given in Lemma 6.1.

For the proof of this theorem, we are not able to follow the approach exactly as given in
Theorem 3.1 because the relations K.K−1 = I and K−1.K = I, while technically sufficient,
are not of a suitably nice form to allow any progress. Instead, we need to use two further
recurrences K∗.K.K−1 = K∗I and K−1.K.K∗ = I.K∗ where K∗ denotes complex conju-
gate transpose. These identities have an interpretation in terms of the discrete Laplacian
interpretation, see [20] — though this interpretation is only heuristically relevant here.

6.1. Boundary Generating Function. In this section, we find the boundary recurrence
relation and solve the recurrence. We rely on the computations given in Section 4.1. Because
we have a difference recurrence for each type of black and white vertex, we obtain a matrix
equation explaining the boundary recurrence. This matrix equation is also periodic. Due
to the nature of the computations, we had to rely heavily on computer algebra in this
subsection.

Let ZP (a, b, n) denote the partition function of an Aztec diamond of size 2n, whose Kaste-

leyn matrix is given by (6.1). Let Z̃P (a, b, n) denote the partition function of an Aztec di-
amond of size 2n − 1, whose Kasteleyn matrix is given by (6.2). Let Zkl(i, j, a, b, n) count
the number of weighted dimer coverings of an Aztec diamond of size 2n with the vertices
(4i + 2k + 1, 0) and (0, 4j + 2l + 1) removed, whose Kasteleyn matrix is given by (6.1) but

omitting the removed vertices from the matrix. Let Z̃kl(i, j, a, b, n) count the number of
weighted dimer coverings of an Aztec diamond of size 2n−1 with the vertices (4i+2k+1, 0)
and (0, 4j + 2l + 1), whose Kasteleyn matrix is given by (6.2) but omitting the removed
vertices from the matrix. Note that we have the constraint that Zkl(i, j, a, b, n) = 0 if either

2i+ k or 2j + l (or both) are not in {0, 1, . . . , 2n− 1} and Z̃kl(i, j, a, b, n) = 0 if either 2i+ k
or 2j + l (or both) are not in {0, 1, . . . , 2n− 2}.

We introduce the following generating functions: denote

Gkl(a, b, x, y, z) =
∞∑
n=0

n−1∑
i=0

n−1∑
j=0

Zkl(i, j, a, b, n)

ZP (a, b, n)
xiyjzn

and

G̃kl(a, b, x, y, z) =
∞∑
n=0

n−1∑
i=0

n−1∑
j=0

Z̃kl(i, j, a, b, n)

Z̃P (a, b, n)
xiyjzn.
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for k, l ∈ {0, 1}. Let

G(a, b, x, y, z) =


G00(a, b, x, y, z)
G01(a, b, x, y, z)
G10(a, b, x, y, z)
G11(a, b, x, y, z)


and similarly, let G̃ denote the corresponding vector for G̃kl.

Lemma 6.3. The boundary generating functions G and G̃ satisfy the following recurrences

(6.6) G(a, b, x, y, z) = A(a, b, x, y).G̃

(
1

2a
,

1

2b
, x, y, z

)
+ B(a)

z

1− z

and

(6.7) G̃(c, d, x, y, z) = zC(c, d, x, y).G(c, d, x, y, z) + D(c, d)
z

1− z

where

A(a, b, x, y) =


1

4a2
y

4a2
x

4a2
xy
4a2

1
4ab

1
4ab

x
4ab

x
4ab

1
4ab

y
4ab

1
4ab

y
4ab

1
4b2

1
4b2

1
4b2

1
4b2

 , B(a) =


1
2a
0
0
0



C(c, d, x, y) =
1

c2 + d2


d2 cdy cdx c2xy
d2 cd cdx c2x
d2 cdy cd c2y
d2 cd cd c2

 and D(c, d) =


c

c2+d2

0
0
0

 .

Proof. To prove the lemma, we will use Lemma 4.2 and the notation of Section 4.1 to compute
recurrences for ZP (a, b, n), Z̃P (c, d, n), Zst(i, j, a, b, n) and Z̃st(i, j, c, d, n) for s, t ∈ {0, 1}.
We first compute the recurrence starting with ZP (a, b, n) followed by the recurrence starting
from Zst(i, j, a, b, n) for s, t ∈ {0, 1} which will lead to obtaining (6.6). We will then compute

the recurrence starting from Z̃P (c, d, n) and finally compute the recurrence starting from

Z̃st(i, j, c, d, n) for s, t ∈ {0, 1} which will lead to obtaining (6.7).
We write the edge weights of the Aztec diamond encoded by ZP (a, b, n) using the notation

from Section 4.1. We find that the edge weights around the face whose center has coordinates
(2k + 1, 2l + 1) are given by

(6.8) wi,j(k, l) =

{
a if (k + l) mod 2 = 0
b if (k + l) mod 2 = 1

for i, j ∈ {0, 1} and for all 0 ≤ k, l ≤ 2n− 1 where wi,j(k, l) is described in Section 4.1. For
the faces with coordinates (2k + 1, 2l + 1) with 0 ≤ k, l ≤ 2n− 1, the urban renewal factors
∆(k, l), are given by 2a2 if k + l mod 2 = 0 and 2b2 otherwise for 0 ≤ k, l ≤ 2n− 1 and so

2n−1∏
k,l=0

∆(k, l) = (4ab)2n2
.
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The edge weights under the deformation of an Aztec diamond of size 2n to an Aztec diamond
of size 2n− 1 as detailed in Section 4.1 are equal to{

w0,0(k, l + 1)

∆(k, l + 1)
,
w0,1(k + 1, l + 1)

∆(k + 1, l + 1)
,
w0,0(k, l)

∆(k, l)
,
w1,1(k + 1, l)

∆(k + 1, l)

}
=

{
{1/(2a), 1/(2b), 1/(2a), 1/(2b)} if k + l mod 2 = 0
{1/(2b), 1/(2a), 1/(2b), 1/(2a)} if k + l mod 2 = 1

(6.9)

for all 0 ≤ k, l ≤ 2n − 2. These edge weights are the same edge weights as encoded by
Z̃P (1/(2a), 1/(2b), n). From (4.6) in Lemma 4.2, we conclude

(6.10) ZP (a, b, n) = (4ab)2n2
Z̃P

(
1

2a
,

1

2b
, n

)
We now write the relation starting from Zst(i, j, a, b, n) for s, t ∈ {0, 1} using (4.7) and the
edge weights given in (6.8). Recall that Zst(i, j, a, b, n) corresponds to the partition function
of the Aztec diamond with weights given by (6.8) with the vertices (4i + 2s + 1, 0) and
(0, 4j + 2t+ 1) removed. Using the notation from Section 4.1, we write Z2n(2i+ s, 2j + t) =

Zst(i, j, a, b, n). We now list the contributions for Z̃2n−1(·, ·). Under the deformation of an
Aztec diamond of size 2n to an Aztec diamond of size 2n − 1 as detailed in Section 4.1,
the edge weights are given by (6.9). This means that Z̃2n−1 = Z̃P (1/(2a), 1/(2b), n) and

Z̃2n−1(·, ·) can written in terms of Z̃kl(·, ·, 1/(2a), 1/(2b), n) where k, l ∈ {0, 1} while the
removed vertices need to be determined. By comparing all the different combinations of
Z̃2n−1(·, ·) given in (4.7), we find that for k, l ∈ {0, 1}

(6.11) Z̃2n−1(2i+ s− k, 2j + t− l) = Z̃kl

(
i− k(1− s), j − l(1− t), 1

2a
,

1

2b
, n

)
From (6.8) we also have

(6.12)
w0,r(2i+ s, 0)

∆(2i+ s, 0)
=

1

2a1−sbs
and

wp,1(0, 2j + t)

∆(0, 2j + t)
=

1

2a1−tbt

for p, r ∈ {0, 1}. We rewrite part of the sum in (4.7) under a change of summation, that is,
we write (i.e. setting i 7→ 2i+ s, j 7→ 2j + s and n 7→ 2n in the last line of (4.7) and ignore
the product of the urban renewal factors)

∑
k∈{2i+s−1,2i+s}
l∈{2j+t−1,2j+t}

w0,2i+s−k(2i+ s, 0)

∆(2i+ s, 0)

w1+2j+t−l,1(0, 2j + t)

∆(0, 2j + t)
Z̃2n−1(k, l)I0≤k,l≤2n−2

=
∑

k,l∈{0,1}
(i−k(1−s),j−l(1−t))

6=(−1,−1)

w0,k(1−s)+s(1−k)(2i+ s, 0)w1−(l(1−t)+t(1−l)),1(0, 2j + t)

∆(2i+ s, 0)∆(0, 2j + t)

× Z̃kl

(
i− k(1− s), j − l(1− t), 1

2a
,

1

2b
, n

)
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where we have used (6.11). Using the above equation and (6.12), for s, t ∈ {0, 1} we
write (4.7) as

Zst(i, j, a, b, n) =
∑

k,l∈{0,1}
(i−k,j−l) 6=(−1,−1)

(4ab)2n2

4a2−s−tbs+t
Z̃kl

(
i− k(1− s), j − l(1− t), 1

2a
,

1

2b
, n

)

+
(4ab)2n2

2a
Z̃P

(
1

2a
,

1

2b
, n

)
I(i,j,s,t)=(0,0,0,0)

We divide both sides of the above equation by ZP (a, b, n) and use (6.10) which gives

Zst(i, j, a, b, n)

ZP (a, b, n)
=

∑
k,l∈{0,1}

(i−k,j−l)6=(−1,−1)

Z̃kl

(
i− k(1− s), j − l(1− t), 1

2a ,
1
2b , n

)
4a2−s−tbs+tZ̃P

(
1
2a ,

1
2b , n

) +
I(i,j,s,t)=(0,0,0,0)

2a

For the recurrence equation given in the equation above, we multiply by xiyjzn and sum
over the relevant quantities which gives

Gst(a, b, x, y, z) =
∑

k,l∈{0,1}

G̃kl(a, b, x, y, z)
xk(1−s)yl(1−t)

4a2−s−tbs+t
+

z

2a(1− z)
I(s,t)=(0,0)

for s, t ∈ {0, 1} which is exactly equal to the row 2s+ t+ 1 of (6.6) for s, t ∈ {0, 1}.
We write the edge weights of the Aztec diamond encoded by Z̃P (a, b, n) using the notation

from Section 4.1. We find that the edge weights around the face whose center has coordinates
(2k + 1, 2l + 1) are given by

(6.13) wi,j(k, l) =


c if (i+ j) mod 2 = 1 and (k + l) mod 2 = 0
d if (i+ j) mod 2 = 0 and (k + l) mod 2 = 0
d if (i+ j) mod 2 = 1 and (k + l) mod 2 = 1
c if (i+ j) mod 2 = 0 and (k + l) mod 2 = 1

for i, j ∈ {0, 1} and for all 0 ≤ k, l ≤ 2n− 2 where wi,j(k, l) is described in Section 4.1. For
the faces with coordinates (2k + 1, 2l + 1) with 0 ≤ k, l ≤ 2n− 2, the urban renewal factors
∆(k, l), are given by c2 + d2 for all 0 ≤ k, l ≤ 2n− 2 and so

2n−2∏
k,l=0

∆(k, l) = (c2 + d2)(2n−1)2 .

The edge weights under the deformation of an Aztec diamond of size 2n − 1 to an Aztec
diamond of size 2n− 2 as detailed in Section 4.1 are equal to{

w0,0(k, l + 1)

∆(k, l + 1)
,
w0,1(k + 1, l + 1)

∆(k + 1, l + 1)
,
w0,0(k, l)

∆(k, l)
,
w1,1(k + 1, l)

∆(k + 1, l)

}
=

{
{c/(c2 + d2), c/(c2 + d2), c/(c2 + d2), c/(c2 + d2)} if k + l mod 2 = 0
{d/(c2 + d2), d/(c2 + d2), d/(c2 + d2), d/(c2 + d2)} if k + l mod 2 = 1

(6.14)

for all 0 ≤ k, l ≤ 2n − 3. These edge weights are the same edge weights as encoded by
ZP (c/(c2 + d2), d/(c2 + d2), n− 1). From (4.6) in Lemma 4.2, we conclude

Z̃P (c, d, n) = (c2 + d2)(2n−1)2ZP

(
c

c2 + d2
,

d

c2 + d2
, n− 1

)
= (c2 + d2)2n−1ZP (c, d, n− 1)

(6.15)
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where the last line follows by applying a gauge transformation which multiplies all the white
vertices by c2 + d2.

We now write the relation starting from Z̃st(i, j, a, b, n) for s, t ∈ {0, 1} using (4.7) and the

edge weights given in (6.13). Recall that Z̃st(i, j, a, b, n) corresponds to the partition function
of the Aztec diamond with weights given by (6.13) with the vertices (4i + 2s + 1, 0) and
(0, 4j+2t+1) removed. Using the notation from Section 4.1, we write Z2n−1(2i+s, 2j+t) =

Z̃st(i, j, a, b, n). We now list the contributions for Z̃2n−2(·, ·). Under the deformation of an
Aztec diamond of size 2n−1 to an Aztec diamond of size 2n−2 as detailed in Section 4.1, the
edge weights are given by (6.14). This means that Z̃2n−2 = ZP (c/(c2 +d2), d/(c2 +d2), n−1)

and Z̃2n−2(·, ·) can written in terms of Zkl(·, ·, c/(c2 + d2), d/(c2 + d2), n − 1) where k, l ∈
{0, 1} while the removed vertices need to be determined. By comparing all the different

combinations of Z̃2n−2(·, ·) given in (4.7), we find that for k, l ∈ {0, 1}

(6.16) Z̃2n−2(2i+s−k, 2j+ t− l) = Zkl

(
i− k(1− s), j − l(1− t), c

c2 + d2
,

d

c2 + d2
, n− 1

)
From (6.13), we write out the edge weights that are found in the right-hand side of (4.7).
These are given by

w0,r(2i+ s, 0)

∆(2i+ s, 0)
=
c(1−r)s+r(1−s)d1−((1−r)s+r(1−s))

c2 + d2
and

wp,1(0, 2j + t)

∆(0, 2j + t)
=
c1−((1−t)p+(1−p)t)d(1−p)t+(1−t)p)

c2 + d2

(6.17)

for p, r ∈ {0, 1}. We rewrite part of the sum in (4.7) under a change of summation, that is,
we write (i.e. setting i 7→ 2i + s, j 7→ 2j + s and n 7→ 2n − 1 in the last line of (4.7) and
ignoring the product of the urban renewal factors)∑

k∈{2i+s−1,2i+s}
l∈{2j+t−1,2j+t}

w0,2i+s−k(2i+ s, 0)

∆(2i+ s, 0)

w1+2j+t−l,1(0, 2j + t)

∆(0, 2j + t)
Z̃2n−2(k, l)I0≤k,l≤2n−3

=
∑

k,l∈{0,1}
(i−k(1−s),j−l(1−t))

6=(−1,−1)

w0,k(1−s)+s(1−k)(2i+ s, 0)w1−(l(1−t)+t(1−l)),1(0, 2j + t)

∆(2i+ s, 0)∆(0, 2j + t)

× Zkl

(
i− k(1− s), j − l(1− t), c

c2 + d2
,

d

c2 + d2
, n− 1

)
(6.18)

where we use have used (6.16). In the above equation we have

(6.19)
w0,k(1−s)+s(1−k)(2i+ s, 0)

∆(2i+ s, 0)
=
ckd1−k

c2 + d2

which is be seen by evaluating the cases for s = 0 and s = 1 separately and using (6.17). We
also find

(6.20)
w1−(l(1−t)+t(1−l)),1(0, 2j + t)

∆(0, 2j + t)
=

cld1−l

c2 + d2
.
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Using (6.18), (6.19) and (6.20) for s, t ∈ {0, 1} the recurrence in (4.7) is equal to

Z̃st(i, j, c, d, n) =
c

c2 + d2
(c2 + d2)(2n−1)2ZP

(
c

c2 + d2
,

d

c2 + d2
, n− 1

)
I(i,j,s,t)=(0,0,0,0)

+
∑

k,l∈{0,1}
(i−k,j−l)
6=(−1,−1)

d2−k−lck+l

(c2 + d2)2
(c2 + d2)(2n−1)2Zkl

(
i− k(1− s), j − l(1− t), c

c2 + d2
,

d

c2 + d2
, n− 1

)

= c(c2 + d2)2n−2ZP (c, d, n− 1)I(i,j,s,t)=(0,0,0,0)

+
∑

k,l∈{0,1}
(i−k,j−l)6=(−1,−1)

d2−k−lck+l(c2 + d2)2n−2Zkl (i− k(1− s), j − l(1− t), c, d, n− 1)

where the last line follows by applying a gauge transformation which multiplies all the white
vertices in each expression by c2 +d2. We divide the above equation by the partition function
recurrence given in (6.15) which gives

Z̃st(i, j, c, d, n)

Z̃P (a, b, n)
=

∑
k,l∈{0,1}

(i−k,j−l)6=(−1,−1)

d2−k−lck+l

c2 + d2

Zkl(i− k(1− s), j − l(1− t), c, d, n− 1)

ZP (c, d, n− 1)

+
c

c2 + d2
I(i,j,s,t)=(0,0,0,0).

For the recurrence equation given in the equation above, we multiply by xiyjzn and sum
over the relevant quantities. This gives

G̃st(a, b, x, y, z) =
∑

k,l{0,1}

Gkl(a, b, x, y, z)
ck+ld2−k−lxk(1−s)yl(1−t)

c2 + d2
+

cz

(c2 + d2)(1− z)
I(s,t)=(0,0)

which is exactly equal to row 2s+ t+ 1 of (6.7) for s, t ∈ {0, 1}.
�

Let

M(a, b, x, y) = A(a, b, x, y).C
(
(2a)−1, (2b)−1, x, y

)
.A
(
(2a)−1, (2b)−1, x, y

)
.C(a, b, x, y)

and define the vectors

B1(a, b, x, y) = A(a, b, x, y).D
(
(2a)−1, (2b)−1

)
+ B(a)

and

B2(a, b, x, y) = A(a, b, x, y).C
(
(2a)−1, (2b)−1, x, y

)
.B1

(
(2a)−1, (2b)−1, x, y

)
.

Lemma 6.4. For n = 4m, the nth coefficient of z of the generating function G(a, b, x, y, z)
is given by

m−1∑
i=0

ΓΛiΓ−1. (B1 + B2)

where (Λ,Γ) is the eigensystem of M(a, b, x, y). Explicitly, the eigenvalues of M(a, b, x, y)
are given by

λ2i+j+1(a, b, x, y) = βi(a, b, x)2βj(a, b, y)2
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and the eigenvectors are given by

v2i+j+1 =



(
(b2−a2)x−(−1)i

√
x
√

(a4+b4)x+a2b2(1+x2)
)(

(b2−a2)y−(−1)j
√
y
√

(a4+b4)y+a2b2(1+y2)
)

a2b2(1+x)(1+y)

((b2−a2)x−(−1)i
√
x
√

(a4+b4)x+a2b2(1+x2))

ab(1+x)

(b2−a2)y−(−1)j
√
y
√

(a4+b4)y+a2b2(1+y2)

ab(1+y)

1


Although the above lemma does give the boundary generating function for a two-periodic

Aztec diamond, the expression is complicated. We believe that the expression given in
Lemma 6.1 is more feasible for potential asymptotic computations.

Proof. From Lemma 6.3, we have a generating function equation for G and G̃. We write

G(a, b, x, y, z) = zA(a, b, x, y).C
(
(2a)−1, (2b)−1, x, y

)
.G
(
(2a)−1, (2b)−1, x, y, z

)
+
(
A(a, b, x, y).D

(
(2a)−1, (2b)−1

)
+ B(a)

) z

1− z

Apply the above equation to itself, we write

G(a, b, x, y, z) = z2M(a, b, x, y)G(a, b, x, y, z) +
z

1− z
B1(a, b, x, y) +

z2

1− z
B2(a, b, x, y)

=

∞∑
k=0

z2k(M(a, b, x, y))k.

(
z

1− z
B1(a, b, x, y) +

z2

1− z
B2(a, b, x, y)

)
by using the expansion of a geometric series of matrices. The above equation can be solved
but it does not appear to give a tractable answer. As we are interested in the nth coefficient,
we use the above expansion and the expansion of (1− z)−1 to find the coefficient of zn. This
is given by

m−1∑
k=0

(M(a, b, x, y))k. (B1(a, b, x, y) + B2(a, b, x, y)) .

The eigenvalues and eigenvectors of M can be verified by M.v = λv where λ is the eigenvalue
for the eigenvector v. �

We now prove Lemma 6.1.

Proof of Lemma 6.1. From Lemma 6.4, we write the nth coefficient of G(a, b, x, y, z) as

(6.21)
m−1∑
i=0

4∑
j=1

Xjλ
i
j

where {λi}4i=1 are the eigenvalues of M(a, b, x, y) and Xi are four column vectors which are
the coefficients of ai in the following expression

Γ.diag (a1, a2, a3, a4) .Γ−1. (B1(a, b, x, y) + B2(a, b, x, y)) .
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where diag(a1, a2, a3, a4) denotes a diagonal matrix with four entries a1, . . . , a4. We rewrite (6.21)
as

m−1∑
k=0

Y.


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .


λi1
λi2
λi3
λi4


where

Y =
[

X1 X2 X3 X4

]
.


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


A computation shows that for

D1 = 16ab(a2 + b2)2diag


1√

y
√

(b4 + a4)y + a2b2(1 + y2)√
x
√

(b4 + a4)x+ a2b2(1 + x2)√
x
√

(b4 + a4)x+ a2b2(1 + x2)
√
y
√

(b4 + a4)y + a2b2(1 + y2)


that

N(a, b, x, y) = Y.D1

where N(a, b, x, y) is the matrix defined in (A.1) and
αi

0(a, b, x)αi
0(a, b, y)

αi
0(a, b, x)αi

1(a, b, y)
αi

1(a, b, x)αi
0(a, b, y)

αi
1(a, b, x)αi

1(a, b, y)

 = D1
−1.


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .


λi1
λi2
λi3
λi4


where αj is defined in the statement of Lemma 6.1 for j ∈ {0, 1}. This means that the
coefficient of zn in the expression G(a, b, x, y, z) is equal to

N(a, b, x, y).


αi

0(a, b, x)αi
0(a, b, y)

αi
0(a, b, x)αi

1(a, b, y)
αi

1(a, b, x)αi
0(a, b, y)

αi
1(a, b, x)αi

1(a, b, y)

 .

We extract the relevant coefficient of the above equation to find |L(a, b, i, j)| which means
we now only need to compute the sign of L(a, b, i, j). Because the Kasteleyn orientation is
the same as the Kasteleyn orientation as the Aztec diamond with uniform weights, the same
computation from the proof of Lemma 3.6 holds. We conclude that the sign of L(a, b, i, j) is
given by −ii+j+1.

�

6.2. Generating Function of K−1. For notational purposes in the proof, we write G =
G(a, 1, w, b) and let

(6.22) G|x=(i,j) =
∑

x=(x1,x2),x1=i,x2=j
y∈B

K−1(x, y)wxby =
∑
y∈B

K−1((i, j), y)bywi
1w

j
2
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where wx = wx1
1 wx2

2 , by = by11 b
y2
2 , for i ∈ {1, 2n− 1} or j ∈ {0, 2n}. As an abuse of notation,

for j ∈ {0, 2n}, we will also write

(6.23) G|x=(x1,j)
=

∑
1≤i≤2n−1,
i mod 2=1

G|x=(i,j) =
∑

1≤i≤2n−1,
i mod 2=1

∑
y∈B

K−1((i, j), y)bywi
1w

j
2

and for i ∈ {1, 2n− 1}

(6.24) G|x=(i,x2) =
∑

0≤j≤2n,
j mod 2=0

G|x=(i,j) =
∑

0≤j≤2n,
j mod 2=0

∑
y∈B

K−1((i, j), y)bywi
1w

j
2

We will also denote

G|x=(x1,j)
x∈Wi

=
∑

0≤x1≤2n−1,x2=j
x∈Wi,y∈B

K−1(x, y)wxby

for j ∈ {0, 2n} and i ∈ {0, 1}.
The proof of Theorem 6.2 has similar structure to the proof of Theorem 3.1 albeit it is

slightly more involved: we have to use the additional recurrences derived from K∗ ·K ·K−1 =
K∗ · I and K−1 ·K ·K∗ = I ·K∗, where K∗ denotes the complex transpose of K.

Proof of Theorem 6.2. Recall that K∗ is the conjugate transpose of K which means that the
rows of K∗ are indexed by white vertices, the columns are indexed by black vertices and
the entries corresponding to vertical edges have sign −i. We remind the reader that K is
a sparse matrix: each row has at most four nonzero, one for each neighbor of the vertex
indexing the row.

Applying K∗ to both sides of the equation K ·K−1 = I, we obtain K∗ ·K ·K−1 = K∗ · I.
To obtain the left-hand side of this equation, we have that K∗ ·K is an operator on white
vertices with

(6.25) (K∗ ·K)f(x) =
∑
w∼b
w∈W

∑
b∼x
b∈B

K∗(w, b)K(b, x)f(w)

where f : W → W, b ∼ x, b ∈ B means that b is a nearest neighbored black vertex to x and
w ∼ b, w ∈ W means that w is a nearest neighbored white vertex to b. In the above sum, if the
coefficient of f(w̃) for w̃ ∈ W and w̃ 6= x, is given by K∗(w̃, b1)K(b1, x) + K∗(w̃, b2)K(b2, x)
for b1 6= b2 with b1, b2 ∈ B, then this coefficient is zero. This follows from the fact that K∗

is the conjugate transpose of K, that K has the Kasteleyn orientation and the choice of
weighting. Because K and K∗ are sparse matrices, it is possible to expand the double sum
in (6.25) to obtain an expression for K∗ ·Kf(x), taking care to include the boundary of the
Aztec diamond. To do so, we first list the possible choices for w in (6.25) for the different
possibilities of x = (x1, x2) ∈ W, where the first item in the following list corresponds to
x = (x1, x2) in the interior while the remaining items correspond to x = (x1, x2) close to or
on the boundary.

• If 3 ≤ x1 ≤ 2n− 3 and 2 ≤ x2 ≤ 2n− 2, the possible choices for w are x, x± 2e1 and
x± 2e2.
• If x1 = 1 and 2 ≤ x2 ≤ 2n− 2, the possible choices for w are x, x+ 2e1 and x− 2e2.
• If x1 = 1 and x2 = 0, the possible choices for w are x, x+ 2e1 and x+ e1 − e2.
• If x1 = 1 and x2 = 2n, the possible choices for w are x, x− 2e2 and x+ e1 − e2.
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• If x1 = 2n − 1 and 2 ≤ x2 ≤ 2n − 2, the possible choices for w are x, x − 2e1 and
x+ 2e2.
• If x1 = 2n− 1 and x2 = 0, the possible choices for w are x, x+ 2e2 and x− e1 + e2.
• If x1 = 2n− 1 and x2 = 2n, the possible choices for w are x, x− 2e1 and x− e1 + e2.
• If 3 ≤ x1 ≤ 2n − 3 and x2 = 0, the possible choices for w are x, x + 2e1,x + 2e2,
x+ e1 − e2 and x− e1 + e2.
• If 3 ≤ x1 ≤ 2n − 3 and x2 = 2n, the possible choices for w are x, x − 2e1,x − 2e2,
x+ e1 − e2 and x− e1 + e2.

For the last two items of the above list, notice that x+ e2 − e1 and x+ e1 − e2 changes the
parity of the white vertex, that is x+e2−e1, x+e2−e1 ∈ W1−i for x ∈ Wi for i ∈ {0, 1}. From
the above list, we will evaluate the coefficient of f(w) given in (6.25) for each possibility of
w. For example, if we set w = x+ 2e1, from the above list we have x1 6= 2n− 1 or x2 6= 2n
and so the coefficient of f(w + 2e1) is equal to

K∗(x+ 2e1, x+ e1)K(x+ e1, x)δx1<2n−1δx2<2n = aδx1<2n−1δx2<2n

because K(x+e1, x) = a1−i and K∗(x+2e1, x+e1) = ai for x ∈ Wi and i ∈ {0, 1}. Continuing
for the rest of the choices of w in the above list, we find that the expansion of the double
sum in (6.25) is given by

(K∗K)f(x) =a(f(x+ 2e1)δx2<2nδx1<2n−1 + f(x+ 2e2)δx2<2nδx1>1

+ f(x− 2e1)δx2>0δx1>1 + f(x− 2e2)δx2>0δx1<2n−1)

+ 2
(
1 + a2 − δx2=0(δx∈W0 + a2δx∈W1)− δx2=2n(a2δx∈W0 + δx∈W1)

)
f(x)

+ aiδx2=0 (−f(x+ e2 − e1)δx1>1 + f(x+ e1 − e2)δx1<2n−1)

+ aiδx2=2n (f(x+ e2 − e1)δx1>1 − f(x+ e1 − e2)δx1<2n−1)

(6.26)

Using (6.26) we find that an entry of the matrix equation K∗ ·K ·K−1 = K∗ · I is given by

a(K−1(x+ 2e1, y)δx2<2nδx1<2n−1 +K−1(x+ 2e2, y)δx2<2nδx1>1

+K−1(x− 2e1, y)δx2>0δx1>1 +K−1(x− 2e2, y)δx2>0δx1<2n−1)

+ 2
(
1 + a2 − δx2=0(δx∈W0 + a2δx∈W1)− δx2=2n(a2δx∈W0 + δx∈W1)

)
K−1(x, y)

+ aiδx2=0

(
−K−1(x+ e2 − e1, y)δx1>1 +K−1(x+ e1 − e2, y)δx1<2n−1

)
+ aiδx2=2n

(
K−1(x+ e2 − e1, y)δx1>1 −K−1(x+ e1 − e2, y)δx1<2n−1

)
= K∗(δx+·=y(x))

(6.27)

for x = (x1, x2) ∈ W and y ∈ B and where we denote

K∗(δx+·=y(x)) =
∑

x̃∼x,x̃∈B
K∗(x, x̃)δx̃=y

where x̃ ∼ x means that x̃ is a nearest neighbored black vertex to x. A consequence of (6.27)
is that it ‘moves’ the white vertices, that is, there is no change in the black vertices in the
above equation.

We multiply both sides of equation (6.27) by wxby = wx1
1 wx2

2 by11 b
y2
2 and sum over all

the white and black vertices of the Aztec diamond. We then rewrite each term of (6.27)
using G(a, 1, w, b), an expression with white vertices on the top or bottom boundary and an
expression with x1 = 1 or x1 = 2n− 1. These terms can both be written using (6.22), (6.23)
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and (6.24). We give an example of this computation for the first term in (6.27)

∑
x∈W
y∈B

wxbyK−1(x+ 2e1, y)δx2<2nδx1<2n−1

=

(∑
x∈W,y∈B−

∑
x1=1,x2 6=0
x∈W,y∈B

−
∑

x2=0
x∈W,y∈B

)
wxbyK−1(x, y)

w2
1w

2
2

=
G− G|x=(1,x2) + G|x=(1,0) − G|x=(x1,0)

w2
1w

2
2

The computations for the remaining terms in (6.27) are given in Appendix B.1. Using the
above equation and the computations in Appendix B.1, we collect terms and we find that

(2(1 + a2) + a(w2
1 + w−2

1 )(w2
2 + w−2

2 ))G

− a G|x=(1,x2)

(
1 + w4

2

w2
1w

2
2

)
− a G|x=(2n−1,x2)

(
w2

1(1 + w4
2)

w2
2

)
+ a G|x=(1,0)

(
1 + w4

2

w2
1w

2
2

− w2
2

w2
1

− w−2
1 i

)
+ a G|x=(1,2n)

(
1 + w4

2

w2
1w

2
2

− 1

w2
1w

2
2

+ w−2
1 i

)
+ a G|x=(2n−1,0)

(
w2

1(1 + w4
2)

w2
2

− w2
1w

2
2 + w2

1i

)
+ a G|x=(2n−1,2n)

(
w2

1(1 + w4
2)

w2
2

− w2
1

w2
2

− w2
1i

)
+ G|x=(x1,0)

x∈W0

(
−a(w−2

1 w−2
2 + w2

1w
−2
2 )− aw2

1i + aw−2
1 i− 2

)
+ G|x=(x1,0)

x∈W1

(
−a(w−2

1 w−2
2 + w2

1w
−2
2 )− aw2

1i + aw−2
1 i− 2a2

)
+ G|x=(x1,2n)

x∈W0

(
−a(w2

1w
2
2 + w−2

1 w2
2) + aw2

1i− aw−2
1 i− 2a2

)
+ G|x=(x1,2n)

x∈W1

(
−a(w2

1w
2
2 + w−2

1 w2
2) + aw2

1i− aw−2
1 i− 2

)
=
∑
x∈W
y∈B

K∗(δx+·=y(x))wxby

(6.28)

We remark that the coefficient of G in the above equation is exactly c∂(w1, w2). We also
remark that the coefficients of G|x=(x1,0),x∈Wi and G|x=(x1,2n),x∈Wi in the above equation are

given by si,0(w1, w2) and w−2n
2 si,2n(w1, w2) respectively for i ∈ {0, 1}, where the latter we

divide by w2n
2 because there is already a factor of w2n

2 in G|x=(x1,2n),x∈Wi .

The terms G|x=(1,x2) and G|x=(2n−1,x2) involve white vertices away from the top and

bottom boundary. For both terms, we use the recurrence relation obtained K · K−1 = I

to write these expressions in terms of the boundary vertices. For G|x=(1,x2), we extract the

entry (x+e2, y) of K−1 ·K and compare the entry (x+e2, y) of I where x ∈ W with x = (1, x2)
and y ∈ B. This gives

K−1(x+ e2 + e1, y) =
1

a1−i δx+e2=y − iK−1(x, y)
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for x = (1, x2) ∈ Wi for i ∈ {0, 1}. We multiply the above equation by w1w
x2
2 by and sum over

all the black vertices and the white vertices x = (1, x2). This gives
(6.29)

w−2
2 G|x=(1,x2)−w

2
2 G|x=(1,0) =

∑
i∈{0,1}

∑
x1=1

x2 6=2n,x∈Wi
y∈B

1

a1−i δx+e2=yw
xby−i G|x=(1,0) +i G|x=(1,2n) .

Rearranging (6.29), we find that
(6.30)

G|x=(1,x2) (w−2
2 + i) =

∑
i∈{0,1}

∑
x1=1

x2 6=2n,x∈Wi
y∈B

1

a1−i δx+e2=yw
xby + w−2

2 G|x=(1,0) + i G|x=(1,2n) .

Similar to the computation of G|x=(1,x2) given above, to compute G|x=(2n−1,x2) we use

the recurrence relation

K−1(x+ e2 + e1, y)i =
1

ai
δx+e1=y −K−1(x, y)

for x = (2n − 1, x2) ∈ Wi for i ∈ {0, 1}, which is derived from the entry (x + e1, y) of the
matrix equation K ·K−1 = I with x = (2n− 1, x2). We now repeat the steps that we used
in computing G|x=(1,x2) for the computation of G|x=(2n−1,x2). This gives

(6.31)

G|x=(2n−1,x2) (w−2
2 i+1) =

∑
i∈{0,1}

∑
x1=2n−1

x2 6=2n,x∈Wi
y∈B

1

ai
δx+e1=yw

xby+w−2
2 i G|x=(2n−1,0)+G|x=(2n−1,2n)

From (6.30) and (6.31), we now have expressions for G|x=(1,x2) and G|x=(2n−1,x2) which can
then be substituted into (6.28). After doing this, we find that the coefficient of a G|x=(1,0)

in (6.28) is given by

1 + w4
2

w2
1w

2
2

− w2
2

w2
1

− w−2
1 i− w2

2(1 + w4
2)

(w−2
2 + i)w2

1w
2
2

= 0.

Similarly, we also find that the coefficients of a G|x=(1,2n), a G|x=(2n−1,0) and a G|x=(2n−1,2n)

are also zero. This means we reduce (6.28) to

c∂(w1, w2)G+
∑

i∈{0,1}

si,0(w1, w2) G|x=(x1,0)
x∈Wi

+ w−2n
2

∑
i∈{0,1}

si,2n(w1, w2) G|x=(x1,2n)
x∈Wi

= dw(w, b)

(6.32)

where we have defined

dw(w, b) =
a(1 + w4

2)

w2
1w

2
2(w−2

2 + i)

∑
i∈{0,1}

∑
x1=1

x2 6=2n,x∈Wi
y∈B

1

a1−i δx+e2=yw
xby

+
a(1 + w4

2)w2
1

w2
2(w−2

2 i + 1)

∑
i∈{0,1}

∑
x1=2n−1

x2 6=2n,x∈Wi
y∈B

1

ai
δx+e1=yw

xby +
∑
x∈W
y∈B

K∗(δx+·=y)(x))wxby
(6.33)
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We evaluate dw(w, b) in Appendix B.2 and we find that

dw(w, b) = d(w, b) +
dsides(w, b)

c∂(b1, b2)
fr(w

4
1b

4
1)

and we refer the reader there for the details of the computation.
To findG(a, 1, w, b) in the above equation (6.32), we need to find expressions forG|x=(x1,0),x∈Wi

andG|x=(x1,2n),x∈Wi for i ∈ {0, 1}. This is a very similar to the computation used to find (6.32)

and so we outline the main steps. First, we derive a relation in terms of entries of K−1 from
an entry-wise expansion of the matrix equation K−1 · K · K∗ = I · K∗. This relation is
analogous to the relation given in (6.27) but acts on the black vertices of K−1, keeping the
white vertices of K−1 fixed. To this new relation, we multiply both sides of the equation by
by = by11 b

y2
2 and sum over all y ∈ B. We then apply the long simplification procedure that is

detailed above to find (6.32). We find that for a fixed x ∈ W we have

c∂(b1, b2)
∑
y∈B

K−1(x, y)by +
∑

j∈{0,1}

sj,0(b2, b1)
∑

y=(0,y2)∈Bj

K−1(x, (0, y2))by22

+
∑

j∈{0,1}

sj,2n(b2, b1)
∑

y=(2n,y2)∈Bj

K−1(x, (2n, y2))by22 = d̃b(x, b)
(6.34)

where

d̃b(x, b) =
a(1 + b41)

b21b
2
2(b−2

1 + i)

∑
j∈{0,1}

∑
y2=1

y1 6=2n,y∈Bj

1

a1−j δy−e2=xb
y

+
a(1 + b41)b22
b21(b−2

1 i + 1)

∑
j∈{0,1}

∑
y2=2n−1

y1 6=2n,y∈Bj

1

aj
δy+e1=xb

y +
∑
y∈B

K∗(δy+·=x(y))by
(6.35)

where

K∗(δy+·=x(y)) =
∑

ỹ∼y,ỹ∈W
K∗(ỹ, y)δỹ=x

where ỹ ∼ y means that ỹ is a nearest neighbored vertex to y. Note that (6.34) can also be
obtained by symmetry using (6.32) because the model is symmetric under the map w1 7→ b2
and w2 7→ b1. We now choose x in (6.34) to be either x = (x1, 0) ∈ W0, x = (x1, 0) ∈ W1,
x = (x1, 2n) ∈ W0 or x = (x1, 2n) ∈ W1 and for each case, we multiply (6.34) by wx1

1 w2nk
2 and

sum over (x1, 2nk) ∈ Wi for i, k ∈ {0, 1}. This gives an expression for G|x=(x1,2nk),x∈Wi for
i, k ∈ {0, 1} because by applying the above operations to the first term in (6.34) gives

c∂(b1, b2)
∑

(x1,2nk)∈Wi

wx1
1 w2nk

2

∑
y∈B

K−1((x1, 2nk), y)by = c∂(b1, b2) G|x=(x1,2nk),x∈Wi .

We substitute these expressions for G|x=(x1,2nk),x∈Wi for i, k ∈ {0, 1} into (6.32). We obtain

c∂(w1, w2)G−
∑

i,j∈{0,1}

∑
k,l∈{0,2n}

∑
(x1,k)∈Wi

∑
(l,y2)∈Bj

si,k(w1, w2)sj,l(b2, b1)
K−1((x1, k), (l, y2))

c∂(b1, b2)
wx1

1 by22

+
∑

i,k∈{0,1}

∑
x=(x1,2nk)∈Wi

si,2kn(w1, w2)
d̃b((x1, 2nk), b)

c∂(b1, b2)
wx1

1 = dw(w, b)

(6.36)
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A computation in Appendix B.3 shows that

(6.37)
∑

i,k∈{0,1}

∑
x=(x1,2nk)∈Wi

si,2kn(w1, w2)d̃b((x1, 2nk), b)wx1
1 = dsides(w, b)fn/2(w4

1b
4
1)

and hence (6.36) is equal to (6.4).
We have computed K−1((x1, 0), (0, y2)) in Lemma 6.1. By symmetry, we have that

K−1((x1, 0), (0, y2)) = K−1((2n− x1, 2n), (2n, 2n− y2))

which gives the last equation in (6.5). To compute |K−1((x1, 2n), (0, 2n − y2))|, we use
the expression from |K−1((x1, 0), (0, y2))| provided we interchange between a and b. To
obtain the sign of K−1((x1, 2n), (0, 2n − y2)) as given in the third equation of (6.5), we
use the same sign found in the proof of Lemma 3.6 for the vertices removed from the top
and left boundaries of the Aztec diamond because the Kasteleyn orientation are the same
and account for the fact that we assigned L(a, b, i, j, n) a sign (equal to −ii+j+1). From
K−1((x1, 2n), (0, 2n− y2)), we find K−1((2n− x1, 0), (2n, y2)) by symmetry. �

Appendix A. The Matrix N

In this subsection, we give the matrix N. We have

N(a, b, w, z)1,1 = 4b5(1 + wz) + a2b3(7 + 3w + 3z + 5wz) + 2a4b(2 + w + z + wz)

N(a, b, w, z)1,2 = −4b7z(1 + wz)− a2b5z(5 + 5w + 5z + 5wz + 2wz2)

− a4b3z(2 + 6w + 5z + 5wz + z2 + wz2)− 2a6bz(w + z + wz)

N(a, b, w, z)1,3 = −4b7w(1 + wz)− a2b5w(5 + 5w + 5z + 5wz + 2w2z)

− a4b3w(2 + 5w + w2 + 6z + 5wz + w2z)− 2a6bw(w + z + wz)

N(a, b, w, z)1,3 = 4b9wz(1 + wz) + a2b7wz(3 + 7w + 7z + 5wz + 2w2z + 2wz2)

+ a4b5wz(3 + 9w + 2w2 + 9z + 10wz + w2z + 2z2 + wz2 + w2z2)

+ a6b3wz(7 + 6w + w2 + 6z + 7wz + w2z + z2 + wz2)

+ 2a8bwz(2 + w + z + wz)

(A.1)

N(a, b, w, z)2,1 = 2ab4(1 + w + wz) + a3b2(5 + 7w + z + wz) + 4a5(1 + w)

N(a, b, w, z)2,2 = −2ab6(2 + z + wz + wz2)− a3b4(7 + 3w + 7z + 3wz + 2z2 + 6wz2)

− a5b2(4 + 2w + 7z + 7wz + 3z2 + 3wz2)− 4a7(1 + w)z

N(a, b, w, z)2,3 = −2ab6w(1 + w + wz)− a3b4w(6 + 9w + w2 + 2z + wz + w2z)

− a5b2w(9 + 9w + 2w2 + z + wz)− 4a7w(1 + w)

N(a, b, w, z)2,4 = 2ab8w(2 + z + wz + wz2)

+ a3b6w(5 + 5w + 6z + 3wz + w2z + 3z2 + 6wz2 + w2z2)

+ a5b4w(2 + 5w + w2 + 5z + 10wz + w2z + 7z2 + 5wz2 + 2w2z2)

+ a7b2w(2w + 7z + 9wz + 2w2z + 3z2 + 3wz2) + 4a9w(1 + w)z
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N(a, b, w, z)3,1 = 2ab4(1 + z + wz) + a3b2(5 + w + 7z + wz) + 4a5(1 + z)

N(a, b, w, z)3,2 = −2ab6z(1 + z + wz)− a3b4z(6 + 2w + 9z + wz + z2 + wz2)

− a5b2z(9 + w + 9z + wz + 2z2)− 4a7z(1 + z)

N(a, b, w, z)3,3 = −2ab6(2 + w + wz + w2z)− a3b4(7 + 7w + 2w2 + 3z + 3wz + 6w2z)

− a5b2(4 + 7w + 3w2 + 2z + 7wz + 3w2z)− 4a7w(1 + z)

N(a, b, w, z)3,4 = 2ab8z(2 + w + wz + w2z)

+ a3b6z(5 + 6w + 3w2 + 5z + 3wz + 6w2z + wz2 + w2z2)

+ a5b4z(2 + 5w + 7w2 + 5z + 10wz + 5w2z + z2 + wz2 + 2w2z2)

+ a7b2z(7w + 3w2 + 2z + 9wz + 3w2z + 2wz2) + 4a9wz(1 + z)

N(a, b, w, z)4,1 = a2b3(3 + w + z + wz) + 2a4b(5 + w + z) + 8a6b−1

N(a, b, w, z)4,2 = −a2b5(2 + z + wz + z2 + wz2)− a4b3(5 + w + 5z + wz + 6z2 + 2wz2)

− 2a6b(2 + 5z + wz + 3z2)− 8a8b−1z

N(a, b, w, z)4,3 = −a2b5(2 + w + w2 + wz + w2z)− a4b3(5 + 5w + 6w2 + z + wz + 2w2z)

− 2a6b(2 + 5w + 3w2 + wz)− 8a8b−1w

N(a, b, w, z)4,4 = a2b7(4 + 2w + 2z + 3wz + w2z + wz2 + w2z2)

+ a4b5(7 + 7w + 2w2 + 7z + 6wz + 3w2z + 2z2 + 3wz2 + 5w2z2)

+ a6b3(4 + 7w + 3w2 + 7z + 9wz + 6w2z + 3z2 + 6wz2 + 5w2z2)

+ 2a8b(2w + 2z + 5wz + 3w2z + 3wz2) + 8a10b−1wz

Appendix B. Appendix to Proof of Theorem 6.2

B.1. Generating function for the white vertices. The following computations are the
simplifications from multiplying (6.27) by wxby and summing over the white and black ver-
tices of the Aztec diamond. We computed the first term in the proof of the theorem. The
next three terms can computed similarly:

∑
x∈W
y∈B

wxbyK−1(x+ 2e2, y)δx2<2nδx1>1

=

(∑
x∈W,y∈B−

∑
x1=2n−1,x2 6=0

x∈W,y∈B
−
∑

x2=0
x∈W,y∈B

)
wxbyK−1(x, y)

w−2
1 w2

2

=
G− G|x=(2n−1,x2) + G|x=(2n−1,0) − G|x=(x1,0)

w−2
1 w2

2

,
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x∈W
y∈B

wxbyK−1(x− 2e1, y)δx2>0δx1>1

=

(∑
x∈W,y∈B−

∑
x1=2n−1,x2 6=2n

x∈W,y∈B
−
∑

x2=2n
x∈W,y∈B

)
wxbyK−1(x, y)

w−2
1 w−2

2

=
G− G|x=(2n−1,x2) + G|x=(2n−1,2n) − G|x=(x1,2n)

w−2
1 w−2

2

and ∑
x∈W
y∈B

wxbyK−1(x− 2e2, y)δx2>0δx1<2n−1

=

(∑
x∈W,y∈B−

∑
x1=1,x2 6=2n
x∈W,y∈B

−
∑

x2=2n
x∈W,y∈B

)
wxbyK−1(x, y)

w2
1w
−2
2

=
G− G|x=(1,x2) + G|x=(1,2n) − G|x=(x1,2n)

w2
1w
−2
2

.

For i ∈ {0, 1}, we have ∑
x∈W
y∈B

wxbyK−1(x, y)δx2=0δx∈Wi = G|x=(x1,0)
x∈Wi

and ∑
x∈W
y∈B

wxbyK−1(x, y)δx2=2nδx∈Wi = G|x=(x1,2n)
x∈Wi

.

For the computation involving the last four terms on the left-hand side of (6.27), we have∑
x∈W
y∈B

wxbyK−1(x+ e2 − e1, y)δx2=0δx1>1 = w2
1

∑
x1 6=2n−1,x2=0

x∈W,y∈B

wxbyK−1(x, y)

= w2
1

(
G|x=(x1,0) − G|x=(2n−1,0)

)
,

∑
x∈W
y∈B

wxbyK−1(x+ e1 − e2, y)δx2=0δx1<2n−1 = w−2
1

∑
x1 6=1,x2=0
x∈W,y∈B

wxbyK−1(x, y)

= w−2
1

(
G|x=(x1,0) − G|x=(1,0)

)
,

∑
x∈W
y∈B

wxbyK−1(x+ e2 − e1, y)δx2=2nδx1>1 = w2
1

∑
x1 6=2n−1,x2=2n

x∈W,y∈B

wxbyK−1(x, y)

= w2
1

(
G|x=(x1,2n) − G|x=(2n−1,2n)

)
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and ∑
x∈W
y∈B

wxbyK−1(x+ e1 − e2, y)δx2=2nδx1<2n−1 = w−2
1

∑
x1 6=1,x2=2n
x∈W,y∈B

wxbyK−1(x, y)

= w−2
1

(
G|x=(x1,2n) − G|x=(1,2n)

)
B.2. Computation of dw(w, b). In this subsection, we evaluate dw(w, b) which is defined
in (6.33).

We first evaluate the sum in the first term of dw(w, b). We first split up the sum, then we
sum over y ∈ B and finally we sum over x ∈ W in the following way:∑

i∈{0,1}

∑
x1=1

x2 6=2n,x∈Wi
y∈B

1

a1−i δx+e2=yw
xby =

∑
x1=1

x2 6=2n,x∈W0
y∈B

1

a
δx+e2=yw

xby +
∑
x1=1

x2 6=2n,x∈W1
y∈B

δx+e2=yw
xby

=
∑

x=(1,x2)∈W0
x2 6=2n

1

a
w1w

x2
2 bx2+1

2 +
∑

x=(1,x2)∈W1
x2 6=2n

w1w
x2
2 bx2+1

2

=
1

a
w1b2

n/2−1∑
j=0

b4j2 w
4j
2 + w1w

2
2b

3
2

n/2−1∑
j=0

b4j2 w
4j
2

= fn/2(w4
2b

4
2)w1b2(a−1 + w2

2b
2
2)

This means that the first term in dw(w, b) reads

(B.1)
a(1 + w4

2)

w2
1w

2
2(w−2

2 + i)
fn/2(w4

2b
4
2)w1b2(a−1 + w2

2b
2
2)

In the same way, as computed above, we evaluate the sum in the second term of dw(w, b)
which gives

∑
i∈{0,1}

∑
x1=2n−1

x2 6=2n,x∈Wi
y∈B

1

ai
δx+e1=yw

xby =
∑

x1=2n−1
x2 6=2n,x∈W0

y∈B

δx+e1=yw
xby +

∑
x1=2n−1

x2 6=2n,x∈W1
y∈B

1

a
δx+e1=yw

xby

=
∑

x=(2n−1,x2)∈W0
x2 6=2n

w2n−1
1 wx2

2 b2n1 bx2+1
2 +

∑
x=(2n−1,x2)∈W1

x2 6=2n

1

a
w2n−1

1 wx2
2 b2n1 bx2+1

2

= w2n−1
1 b2n1 b2

n/2−1∑
j=0

b4j2 w
4j
2 +

1

a
w2n−1

1 b2n1 w2
2b

3
2

n/2−1∑
j=0

b4j2 w
4j
2

= fn/2(w4
2b

4
2)w2n−1

1 b2n1 b2(1 + a−1w2
2b

2
2)

Using the above evaluation, the second term in dw(w, b) reads

(B.2)
a(1 + w4

2)w2
1

w2
2(w−2

2 i + 1)
fn/2(w4

2b
4
2)w2n−1

1 b2n1 b2(1 + a−1w2
2b

2
2)

We have that adding and simplifying (B.1) and (B.2) gives the second term in d(w, b).
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We now have to evaluate the last term in dw(w, b) and it remains to show that this term
is equal to the first term of d(w, b). We first expand out the definition of K∗(δx̃=y(x)) which
gives

K∗(δx+·=y(x)) =
∑

x̃∼x,x̃∈B
K∗(x, x̃)δx̃=y

= δx2>0

(
aiδx−e1=y − iaiδx−e2=y

)
+ δx2<2n

(
a1−iδx+e1=y − ia1−iδx+e2=y

)
.

where the delta functions δx2>0 and δx2<2n account for the boundary of the Aztec diamond.
We multiply both sides by wxby and we obtain

∑
x∈W
y∈B

wxbyK∗(δx+·=y(x)) =

∑
i∈{0,1}

∑
x∈Wi

(w1b1)x1(w2b2)x2

(
−aiib1

b2
δx2>0 +

ai

b1b2
δx2>0 + a1−ib1b2δx2<2n − a1−ii

b2
b1
δx2<2n

)
.

(B.3)

In (B.3), we have the following four sums which can be evaluated directly∑
x∈W0,x2>0

(w1b1)x1(w2b2)x2 = w4
2b

4
2w1b1fr(w

4
2b

4
2)fr(w

4
1b

4
1) + w3

1b
3
1w

2
2b

2
2fr(w

4
1b

4
1)fr(w

4
2b

4
2)

= w1b1w
2
2b

2
2(w2

2b
2
2 + w2

1b
2
1)fr(w

4
1b

4
1)fr(w

4
2b

4
2)∑

x∈W0,x2<2n

(w1b1)x1(w2b2)x2 = w1b1fr(w
4
2b

4
2)fr(w

4
1b

4
1) + w3

1b
3
1w

2
2b

2
2fr(w

4
1b

4
1)fr(w

4
2b

4
2)

= w1b1(1 + w2
1b

2
1w

2
2b

2
2)fr(w

4
1b

4
1)fr(w

4
2b

4
2)∑

x∈W1,x2>0

(w1b1)x1(w2b2)x2 = w2
2b

2
2w1b1fr(w

4
2b

4
2)fr(w

4
1b

4
1) + w3

1b
3
1w

4
2b

4
2fr(w

4
1b

4
1)fr(w

4
2b

4
2)

= w1b1w
2
2b

2
2(1 + w2

1b
2
1w

2
2b

2
2)fr(w

4
1b

4
1)fr(w

4
2b

4
2)∑

x∈W1,x2<2n

(w1b1)x1(w2b2)x2 = w3
1b

3
1fr(w

4
2b

4
2)fr(w

4
1b

4
1) + w1b1w

2
2b

2
2fr(w

4
1b

4
1)fr(w

4
2b

4
2)

= w1b1(w2
1b

2
1 + w2

2b
2
2)fr(w

4
1b

4
1)fr(w

4
2b

4
2)

where r = n/2. We substitute the above four sums back into (B.3) and after some simplifi-
cation, we obtain the first term of d(w, b).

B.3. Computation of (6.37). In this subsection, we show (6.37) which is another compu-

tation. We first expand out the third term of d̃b(x, b) by expanding out the definition of K∗.
This gives
(B.4)
K∗(δy+·=x(y)) = δy1>0

(
−ia1−jδx=y−e2 + a1−jδx=y+e1

)
+ δy1<2n

(
ajδx=y−e1 − iajδx=y+e2

)
for y ∈ Bj and j ∈ {0, 1} and the delta functions δy1>0 and δy1<2n account for the boundary
of the Aztec diamond.

We now split up the left-hand side in (6.37) into four different cases (x1, 0) ∈ W0, (x1, 0) ∈
W1, (x1, 2n) ∈ W0 and (x1, 2n) ∈ W1.
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The first case we consider is

(B.5)
∑

x=(x1,0)∈W0

s0,0(w1, w2)d̃b(x, b)wx1
1 = s0,0(w1, w2)

∑
x=(x1,0)∈W0

d̃b(x, b)wx1
1

and we shall show that this is equal to the first term of dsides(w, b) defined in (6.3). We now

expand out the three sums of d̃b(x, w) which are given in (6.35). When we insert the first

term of d̃b(x, w) into (B.5) because (x1, 0) + e2 ∈ B0 for (x1, 0) ∈ W0, we have the following

a(1 + b41)

b21b
2
2(b−2

1 + i)

∑
j∈{0,1}

∑
y2=1,y1 6=2n
y=(y1,y2)∈B

(x1,0)∈W0

1

a1−j δy−e2=xb
ywx1

1 =
a(1 + b41)

b21b
2
2(b−2

1 + i)

∑
y2=1,y1 6=2n

(x1,0)∈W0

1

a
δy−e2=xb

y1
1 b2w

x1
1

= b−2
2 (1− ib21)

∑
(x1,0)∈W0

wx1
1 bx1−1

1 b2

= fn/2(w4
1b

4
1)w1b

−1
2 (1− ib21).

(B.6)

When we insert the second term of d̃b(x, w) into (B.5) we obtain zero because δy+e1=x = 0

for y = (y1, 2n−1) and x = (x1, 0) ∈ W0. When we insert the third term of d̃b(x, w) into (B.5)
because (x1, 0) + ei ∈ B2−i for (x1, 0) ∈ Wi and i ∈ {1, 2}, we find that∑

(x1,0)∈W0
y∈B

K∗(δy+·=x(y))bywx1
1 = −i

∑
(x1,0)∈W0

awx1
1 bx1−1

1 b2 +
∑

(x1,0)∈W0

awx1
1 bx1+1

1 b2

= fn/2(w4
1b

4
1)(−iaw1b2 + aw1b

2
1b2)

(B.7)

where we use the expansion of K∗(δx=ỹ(y)) given in (B.4) and use the fact that δx=y+e1 = 0

and δx=y+e2 = 0 for x = (x1, 0) ∈ W0. We sum up all the contributions of d̃b(x, w) when
inserted into (B.5), i.e. summing (B.6) and (B.7), which gives the first term in dsides(w, b)
defined in (6.3).

The second case we consider is

(B.8)
∑

x=(x1,0)∈W1

s1,0(w1, w2)d̃b(x, b)wx1
1 = s1,0(w1, w2)

∑
x=(x1,0)∈W1

d̃b(x, b)wx1
1

and we shall show that this is equal to the second term of dsides(w, b) defined in (6.3). We

now expand out the three sums of d̃b(x, w) which are given in (6.35). When we insert the first

term of d̃b(x, w) into (B.8), because (x1, 0) + e2 ∈ B1 for (x1, 0) ∈ W1, we have the following

a(1 + b41)

b21b
2
2(b−2

1 + i)

∑
j∈{0,1}

∑
y2=1,y1 6=2n
y=(y1,y2)∈B

(x1,0)∈W1

1

a1−j δy−e2=xb
ywx1

1 =
a(1 + b41)

b21b
2
2(b−2

1 + i)

∑
y2=1,y1 6=2n

(x1,0)∈W1

δy−e2=xb
y1
1 b2w

x1
1

= ab−2
2 (1− ib21)

∑
(x1,0)∈W1

wx1
1 bx1−1

1 b2

= fn/2(w4
1b

4
1)w3

1b
2
1b
−1
2 (1− ib21).

(B.9)

When we insert the second term of d̃b(x, w) into (B.8) we obtain zero because δy+e1=x = 0 for

y = (y1, 2n− 1) and x = (x1, 0) ∈ W0. When we insert the third term of d̃b(x, w) into (B.8),
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because (x1, 0) + ei ∈ Bi−1 for (x1, 0) ∈ W1 and i ∈ {1, 2}, we find that∑
(x1,0)∈W1

y∈B

K∗(δy+·=x(y))bywx1
1 = −i

∑
(x1,0)∈W1

wx1
1 bx1−1

1 b2 +
∑

(x1,0)∈W1

wx1
1 bx1+1

1 b2

= fn/2(w4
1b

4
1)(−iw3

1b
2
1b2 + w3

1b
4
1b2)

(B.10)

where we use the expansion of K∗(δx=ỹ(y)) given in (B.4) and use the fact that δx=y+e1 = 0

and δx=y+e2 = 0 for x = (x1, 0) ∈ W1. We sum up all the contributions of d̃b(x, w) when
inserted into (B.8), i.e. summing (B.9) and (B.10), which gives the second term in dsides(w, b)
defined in (6.3).

The third case we consider is

(B.11)
∑

x=(x1,2n)∈W0

s0,2n(w1, w2)d̃b(x, b)wx1
1 = s0,2n(w1, w2)

∑
x=(x1,2n)∈W0

d̃b(x, b)wx1
1

and we shall show that this is equal to the third term of dsides(w, b) defined in (6.3) We

now expand out the three sums of d̃b(x, w) which are given in (6.35). When we insert the

first term of d̃b(x, w) into (B.11), we find that it is equal to zero because δy−e2=x = 0 for

x = (x1, 2n) ∈ W0 for all y = (1, y2) ∈ B. When we insert the second term of d̃b(x, w)
into (B.5), because (x1, 2n)− e1 ∈ B1 for (x1, 2n) ∈ W0, we obtain

a(1 + b41)b22
b21(b−2

1 i + 1)

∑
j∈{0,1}

∑
y2=2n−1,y1 6=2n
y=(y1,y2)∈B
(x1,2n)∈W0

1

aj
δy+e1=xb

ywx1
1 =

a(1 + b41)b22
b21(b−2

1 i + 1)

∑
y2=2n−1,y1 6=2n

(x1,2n)∈W0

δy+e1=xb
y1
1 b

y2
2 w

x1
1

= ab22(b21 − i)
∑

(x1,2n)∈W0

wx1
1 bx1−1

1 b2n−1
2

= afn/2(w4
1b

4
1)w1b

2n+1
2 (b21 − i).

(B.12)

When we insert the third term of d̃b(x, w) into (B.5), because (x1, 2n)−ei ∈ B2−i for (x1, 2n) ∈
W0 and i ∈ {1, 2}, we find that∑

(x1,2n)∈W0
y∈B

K∗(δy+·=x(y))bywx1
1 = −i

∑
(x1,2n)∈W0

wx1
1 bx1+1

1 b2n−1
2 +

∑
(x1,2n)∈W0

wx1
1 bx1−1

1 b2n−1
2

= fn/2(w4
1b

4
1)(−iw1b

2n−1
2 b21 + w1b

2n−1
2 )

(B.13)

where we use the expansion of K∗(δx=ỹ(y)) given in (B.4) and use the fact that δx=y−e1 = 0

and δx=y−e2 = 0 for x = (x1, 2n) ∈ W0. We sum up all the contributions of d̃b(x, w) when
inserted into (B.11), i.e. summing (B.12) and (B.13), which gives the third term in dsides(w, b)
defined in (6.3).

The final case we need to consider is

(B.14)
∑

x=(x1,2n)∈W1

s1,2n(w1, w2)d̃b(x, b)wx1
1 = s1,2n(w1, w2)

∑
x=(x1,2n)∈W1

d̃b(x, b)wx1
1

and we shall show that this is equal to the final term of dsides(w, b) defined in (6.3). We

now expand out the three sums of d̃b(x, w) which are given in (6.35). When we insert the

first term of d̃b(x, w) into (B.14), we find that it is equal to zero because δy−e2=x = 0 for
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x = (x1, 2n) ∈ W1 for all y ∈ B. When we insert the second term of d̃b(x, w) into (B.8),
because (x1, 2n)− e1 ∈ B0 for (x1, 2n) ∈ W1, we obtain

a(1 + b41)b22
b21(b−2

1 i + 1)

∑
j∈{0,1}

∑
y2=2n−1,y1 6=2n
y=(y1,y2)∈B
(x1,2n)∈W1

1

aj
δy+e1=xb

ywx1
1 =

a(1 + b41)b22
b21(b−2

1 i + 1)

1

a

∑
y2=2n−1,y1 6=2n

(x1,2n)∈W1

δy+e1=xb
y1
1 b

y2
2 w

x1
1

= b22(b21 − i)
∑

(x1,2n)∈W1

wx1
1 bx1−1

1 b2n−1
2

= fn/2(w4
1b

4
1)w3

1b
2
1b

2n+1
2 (b21 − i).

(B.15)

When we insert the third term of d̃b(x, w) into (B.14), because (x1, 2n) − ei ∈ Bi−1 for
(x1, 2n) ∈ W1 and i ∈ {1, 2}, we find that∑

(x1,2n)∈W1
y∈B

K∗(δy+·=x(y))bywx1
1 = −ai

∑
(x1,2n)∈W1

wx1
1 bx1+1

1 b2n−1
2 + a

∑
(x1,2n)∈W1

wx1
1 bx1−1

1 b2n−1
2

= fn/2(w4
1b

4
1)(−aiw3

1b
4
1b

2n−1
2 + aw3b

2
1b

2n−1
2 )

(B.16)

where we use the expansion of K∗(δx=ỹ(y)) given in (B.4) and use the fact that δx=y−e1 = 0

and δx=y−e2 = 0 for x = (x1, 2n) ∈ W1. We sum up all the contributions of d̃b(x, w) when
inserted into (B.14), i.e. summing (B.15) and (B.16), which gives the final term in dsides(w, b)
defined in (6.3).
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