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1 Introduction

In this paper, we continue the study of correlation functions of the operators in the stress-

tensor supermultiplet T in N = 4 SYM initiated in [1, 2]. This supermultiplet plays a

privileged role since it comprises all local conserved currents as well as the Lagrangian

of the theory. Its correlation functions have a number of remarkable properties. The

two- and three-point functions are protected by superconformal symmetry and do not

receive quantum corrections. The four-point function G4 = 〈T (1)T (2)T (3)T (4)〉 is the

first non-protected quantity. At strong coupling it has been thoroughly studied via the

AdS/CFT correspondence [3, 4] whereas at weak coupling it has been computed at one

loop [5], at two loops [6, 7] and recently at three loops [1, 8]. The operator product

expansion of this correlation function has provided valuable data about the spectrum of

anomalous dimensions of twist-two operators [9]. The interest in these correlation functions,

for an arbitrary number of points, has been renewed in the context of the recent studies

of scattering amplitudes in N = 4 SYM. The correlation functions have been found to be

dual to the scattering amplitudes in a special light-like limit [10–12].

Computing the weak coupling corrections to these correlation functions within the

conventional Feynman diagram approach turned out to be a difficult task, even at low

levels of the perturbative expansions. Already the evaluation of the two-loop correction

to the four-point function needed judicious use of N = 1 or N = 2 supersymmetry [6, 7].

Going to higher orders became possible by using the Lagrangian insertion method combined

with the recently discovered hidden permutation symmetry of G4 that mixes integration

and external points [1, 2]. More precisely, since the (on-shell chiral) Lagrangian of N = 4

SYM appears as the top component in the chiral sector of the stress-tensor supermultiplet,

the order O(g2ℓ) correction to G4 can be related to the Born-level correlation function G4+ℓ

involving the insertion of ℓ additional chiral stress-tensor supermultiplets, integrated over

their positions in the chiral superspace. The permutation symmetry follows from the Bose

symmetry of the correlation function G4+ℓ.

This point illustrates the importance of the general multi-point correlation functions

Gn = 〈T (1) . . . T (n)〉 of the stress-tensor supermultiplet in the chiral sector. Another rea-

son to study these is the above mentioned duality with scattering amplitudes. Knowing Gn

allows us to predict the general n−point tree-level superamplitude as well as the integrands

of its perturbative corrections.

The goal of the present paper is to develop a new approach to computing the correlation

functions Gn which makes efficient use of N = 4 superconformal symmetry.1 Viewed as a

function of the chiral odd variables θ, Gn admits the expansion

Gn = Gn;0 +Gn;1 + · · ·+Gn;n−4 , (1.1)

where Gn;p is a homogenous polynomial in θ of degree 4p. Notice that the expansion

terminates at p = n − 4 (instead of the maximally allowed p = n) due to N = 4 super-

conformal symmetry. An important consequence of (1.1) is that for n = 4 the correlation

function coincides with its lowest component, G4 = G4;0, and so it does not depend on the

Grassmann variables.
1Throughout the paper we always mean the chiral half of N = 4 superconformal symmetry.
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Each term on the right-hand side of (1.1) should respect the N = 4 superconformal

symmetry. As a consequence, it can be expanded over a set of invariants In;p of this

symmetry. As was shown in [1], for the bottom (p = 0) and top (p = n − 4) components

the invariant is unique (up to an arbitrary function of conformal cross-ratios). For the

remaining components in (1.1) the number of invariants varies with p and they have not

been studied in the literature. One of the main goals of this paper is to provide a convenient

basis for such invariants in twistor superspace.

Note that the expansion (1.1) is very similar to that of the n−particle scattering super-

amplitude in N = 4 SYM. In fact, the two quantities are related to each other in the limit

in which the operators T (i) are located at the vertices of light-like n−gon [10–15]. This

duality yields non-trivial relations between the invariants In;p and their on-shell counter-

parts defining the scattering amplitudes. It is in this sense that we can think of In;p as the

off-shell generalisation of the on-shell (amplitude) invariants. In particular, in the simplest

non-trivial case p = 1, in the light-like limit the off-shell invariants In;1 are related to the

NMHV R−invariants [16, 17].

Computing the higher components Gn;p in (1.1) and finding the corresponding off-shell

superconformal invariants In;p proves to be a very non-trivial problem. In the conventional

approach, the Born approximation toGn;p is given by a set of Feynman diagrams with many

interaction vertices and the associated Feynman integrals. The number of diagrams and

their complexity rapidly increase with the Grassmann degree p. Moreover, the contribution

of each individual diagram is neither gauge invariant nor (super)conformally covariant. The

N = 4 superconformal symmetry is only restored in the sum of all diagrams.

In this paper we demonstrate that these difficulties can be avoided by employing the

reformulation of N = 4 SYM in twistor space [18]. We find a representation of the chiral

part of the stress-tensor supermultiplet T as a four-fold fermionic integral of the main

interaction term in the twistor Lagrangian. In the judiciously chosen axial gauge, the self-

dual sector of SYM is free and has no interaction vertices. Furthermore, all the interaction

vertices are comprised in the non-polynomial expression for T in terms of the twistor

superfield. As a result, the correlation function Gn;p is given in the Born approximation by

a new type of Feynman diagram which only involves free propagators of twistor superfields

but no interaction vertices. The calculation of the twistor space Feynman diagrams is

drastically simplified (no Feynman integrals!) and yields very concise expressions for Gn;p.

We check by an explicit calculation that the results for Gn;1 obtained by the new method

agree with those of the conventional Feynman diagram approach.

Analysing the Feynman diagrams in twistor space, we introduce a new class of N =

4 off-shell superconformal invariants and study their properties. The simplest invariant

R(1; 234) is given by a nilpotent Grassmann polynomial of degree two in the odd variables

θ. It depends on four points and an auxiliary (reference) supertwistor defining the axial

gauge for the twistor action. This invariant serves as an elementary building block for

constructing higher-point invariants. Namely, the general n−point invariant In;p factorises

into a product of 2p elementary R−invariants. We show that the correlation function (1.1)

is given in the Born approximation by a linear combination of such off-shell invariants with

rational coefficient functions of the distances x2ij ≡ (xi − xj)
2. Although each invariant

depends on the reference supertwistor, this dependence drops out in their sum.

– 3 –
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The paper is organised as follows. In section 2 we define the correlation function of

the stress-tensor multiplet in the chiral sector and summarise its properties. In section 3

we reformulate this correlation function in twistor space and develop a diagram technique

for computing its components Gn;p of a given Grassmann degree 4p. In section 4 we

present an explicit calculation of the first non-trivial component Gn;1 and show that it

satisfies all necessary consistency conditions (operator product expansion and duality with

the NMHV amplitude in the light-like limit). In section 5, we apply the conventional

Feynman diagram technique to compute the five-point correlation function G5;1 in the

Born approximation. In section 6 we match the two approaches and demonstrate that they

lead to the same expressions for various components of the four- and five-point correlation

functions. Section 7 contains concluding remarks. Some technical details are summarised

in four appendices.

2 Correlation functions of the stress-tensor multiplet

In this section, we define the correlation functions of the operators in the stress-tensor

supermultiplet in N = 4 SYM and discuss their general properties. A distinctive feature

of this multiplet is that it comprises the stress-energy tensor (hence the name) and the

Lagrangian of the theory. They appear as coefficients in the expansion of the corresponding

superfield T (x, θA, θ̄A) in powers of the odd coordinates θAα and θ̄α̇A (with Lorentz spinor

indices α = 1, 2, α̇ = 1̇, 2̇ and SU(4) index A = 1, . . . , 4). In addition, this superfield is

annihilated by half of the Poincaré supercharges and, as a consequence, it depends on half

of the odd variables, both chiral and anti-chiral:

T = T (x, θ+, θ̄−, u) , θ+a
α = θAαu

+a
A , θ̄α̇−a′ = θ̄α̇Aū

A
−a′ . (2.1)

Here the odd coordinates θA and θ̄A appear projected with auxiliary bosonic variables u+a
A

and ūA−a′ with a = 1, 2, a′ = 1′, 2′ (see appendix A for details), or ‘harmonics’ on the coset

SU(4)/(SU(2)×SU(2)′×U(1)). The harmonics allow us to define the so-called Grassmann

analytic (or just ‘analytic’) superspace with odd coordinates θ+ and θ̄−, without breaking

the R−symmetry SU(4). More details can be found in refs. [19–24] (see also footnote 6).

For our purposes in this paper we shall restrict T to its purely chiral sector by setting

θ̄α̇−a′ = 0. Then the expansion of the superfield in powers of θ+ has the form2

T (x, θ+, 0, u) = O++++(x) + θ+a
α O+++,α

a (x) + (θ+)2αβO
++,αβ(x)

+ (θ+)2 abO++
ab (x) + (θ+)3 aα O+,α

a (x) + (θ+)4L(x) , (2.2)

where the lowest component (or superconformal primary) O++++ = tr(φ++φ++) is a half-

BPS operator built from the scalar fields φ++ = φABu+a
A u+b

B ǫab and the top component

L(x) is the chiral form of the N = 4 SYM on-shell Lagrangian. The remaining components

can be obtained by successively applying the chiral N = 4 supersymmetry transformations

2Here we use the notation (θ+)2αβ = θ+a
α θ+b

β ǫab, (θ
+)2 ab = θ+a

α θ+b
β ǫαβ , (θ+)3 a

α = θ+b
α θ+c

β θ+a
γ ǫbcǫ

βγ and

(θ+)4 = θ+a
α θ+b

β θ+c
γ θ+d

δ ǫbcǫadǫ
αβǫγδ.
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to the lowest component [13]. Their explicit expressions are given in eq. (5.1) below. Notice

that T carries four units of harmonic U(1) charge, as indicated by the number of pluses in

each term on the right-hand side.

In this paper we propose a new approach to evaluating the Euclidean correlation

functions of the stress-tensor multiplet3

Gn = 〈0|T (1) . . . T (n)|0〉 , (2.3)

where we used the short-hand notation T (i) = T (xi, θ
+
i , 0, ui) so that Gn depends on n

copies of the chiral superspace coordinates (xi, θ
+
i , ui). N = 4 superconformal symmetry

imposes strong constraints on Gn. In particular, for n = 2 and n = 3, the super-correlation

function (2.3) is a protected quantity, independent of the coupling constant. Moreover, it

does not depend on the chiral odd variables and coincides with the correlation function of

the lowest component tr[φ++φ++] evaluated at Born level.

For n ≥ 4 the correlation function (2.3) depends on the coupling constant g2. This

dependence can be controlled through the Lagrangian insertion method which relies on the

following relation

∂

∂g2
Gn =

∫
d4xn+1 〈0|T (1) . . . T (n)L(xn+1)|0〉

=

∫
d4xn+1d

4θ+n+1 〈0|T (1) . . . T (n)T (n+ 1)|0〉

≡
∫

d4xn+1d
4θ+n+1Gn+1 . (2.4)

Here in the second line we made use of the relation between the on-shell action of N = 4

SYM and the stress-tensor multiplet

SN=4 =

∫
d4xL(x) =

∫
d4x

∫
d4θ+ T (x, θ+, 0, u) (2.5)

that follows from (2.2). Expanding the correlation functions in (2.4) in the powers of the

coupling constant, we find from (2.4) that the order O(g2ℓ) correction to Gn is determined

by the order O(g2ℓ−2) correction to Gn+1, integrated over the position of the (n + 1)−th

point. Successively applying (2.4) we can express the O(g2ℓ) integrand of Gn in terms of

the correlation function Gn+ℓ evaluated at the lowest order in the coupling, i.e., in the

Born approximation.

This property shows that in order to find any quantum correction to the above corre-

lation function it is sufficient to evaluate (2.3) at Born level and for an arbitrary number of

points n. In this approximation Gn is a rational function of the distances x2ij ≡ (xi − xj)
2.

This function can be reconstructed if we known the form of its singularities corresponding

to null separations x2ij = 0 between the operators in (2.3).

The various components of the correlation function (1.1) have different dependence

on the coupling constant g2 and on the number of colours N . As follows from (2.3)

3Here and throughout this paper we will only be considering the connected component of the correlation

functions without explicitly stating this each time.

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
8

and (2.2), the lowest component Gn;0 is given by the correlation function of scalar op-

erators tr(φ++φ++) and reduces, in the Born approximation, to a product of free scalar

propagators. Therefore, it does not depend on the coupling constant and scales as Gn;0 ∼
dim(SU(N)) = N2−1. The higher components Gn;p in (1.1) are given by more complicated

correlation functions involving other members of the supermultiplet (2.2). As we show later

in the paper, their perturbative expansion necessarily involves interaction vertices whose

number increases with p. Each vertex is accompanied by a power of the coupling constant

g, so that Gn;p scales in the Born approximation as

Gn;p =
N2 − 1

(2π)2n

(
g2N

4π2

)p

Ĝn;p , (2.6)

with Ĝn;p depending on the n superspace points and on the parameter 1/N2 controlling

the non-planar corrections. According to [2], non-planar corrections only exist for p ≥ 4

due to the occurrence of the higher Casimir operators of the gauge group SU(N) in the

individual Feynman diagrams.4 The correlation function Gn;p involves an overall factor

which is a product of free scalar propagators, each bringing a factor of 1/(2π)2. For the

sake of simplicity of the formulae, in what follows we shall not display the normalisation

factor in (2.6).

By construction, the correlation functions Gn;p have to respect (the chiral half of)

N = 4 superconformal symmetry and to satisfy the corresponding Ward identities. The

general solution to these identities is given by a linear combination ofN = 4 superconformal

nilpotent invariants In;p whose number depends on the Grassmann degree p. As was shown

in [1], for the top component of the correlation function with p = n− 4 the corresponding

invariant In;n−4 is unique leading to

Gn,n−4 =
In;n−4∏

1≤i<j≤n x
2
ij

. (2.7)

The explicit expression for In;n−4 can be found in [1].

In this paper, we extend the relation (2.7) to the remaining components Gn;p of the

correlation function (1.1) with p < n − 4. Namely, we shall construct the set of N = 4

superconformal invariants In;p and determine their contributions to Gn;p.

3 Correlation functions on twistor space

In this section, we present a new approach to computing the correlation functions (2.3)

that relies on the reformulation of N = 4 SYM as a gauge theory on twistor space based

on a twistor action. The twistor space Feynman diagrams that arise from this twistor

action provide an off-shell generalization of the MHV diagrams of [25] that give rise to

scattering amplitudes. The framework extends to null polygonal Wilson loops [12, 26] and

other correlators [15, 27] giving dual conformal invariant versions of MHV diagrams for the

amplitude or standard ones for the Wilson loop.

4The simplest example is the quartic Casimir operator dabcddabcd/(N2 − 1) = (N4 − 6N2 + 18)/(96N2)

that first appears for p = 4.

– 6 –
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Here we show how to obtain Feynman rules on twistor space for the correlation func-

tions (2.3) that avoid many of the difficulties of conventional space-time Feynman diagrams.

The main advantage of the twistor rules as opposed to the conventional ones is that the

contribution of each diagram manifests the N = 4 superconformal symmetry up to the

choice of a reference twistor that has been used to define the axial gauge. Its contribu-

tion remains invariant under a superconformal transformation acting on all external data,

if we in addition transform the reference supertwistor linearly. In the sum over all dia-

grams, dependence on the reference supertwistor drops out as we shall prove below. There

are also relatively few diagrams compared to the conventional ones, particularly at low

MHV degree.

3.1 Twistor space approach

Non-projective twistor space is the fundamental representation space of the complexified

spinor covering of the super conformal group SL(4|4;C). We first explain how the bosonic

conformal group in this form acts on space-time and how it relates to bosonic twistor space

and then build up to the full supersymmetric correspondence.

As mentioned above, the correlation functions (2.3) at Born level are rational functions

of the distances x2ij . Therefore, they admit analytic continuation to complex space-time

coordinates. This is an advantage because the action of the complexified conformal group

SL(4;C) on the correlation functions can be greatly simplified by employing the embedding

formalism, in which complexified compactified Minkowski space is realised as a light-cone

in complex projective space CP
5 with homogenous coordinates XIJ ∼ cXIJ (with I, J =

1, . . . , 4)

(X ·X) ≡ XIJX
IJ = 0 , (3.1)

where XIJ = 1
2ǫIJKLX

KL and XIJ = −XJI . The complex coordinates xαα̇ define a

particular parameterisation of XIJ

XIJ =

[
ǫαβ −ixβ̇α

ixα̇β −x2ǫα̇β̇

]
, (3.2)

with xβ̇α = xαα̇ǫ
α̇β̇ and x2 = 1

2x
β̇
αxα

β̇
. Conformal transformations of xαα̇ correspond to

global SL(4;C) transformations of XIJ .

Bosonic twistor space is the complex projective space CP
3 whose homogenous coor-

dinates ZI ∼ cZI (with I = 1, . . . , 4) transform in the fundamental representation of the

cover SL(4;C) of the conformal group. A space-time point XIJ corresponds to a line in

twistor space given by the incidence relation

XIJZ
J = 0 . (3.3)

For a given point XIJ this relation defines a line in twistor space since (3.1) is the condition

that XIJ has rank two. Choosing two arbitrary points on this line, ZJ
1 and ZJ

2 , we can

reconstruct XIJ as

XIJ = ZI
1Z

J
2 − ZJ

1 Z
I
2 = ǫabZI

aZ
J
b . (3.4)

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
8

Combining (3.2) and (3.4) we obtain that each point in complexified Minkowski space-time

xαα̇ is mapped into a line XIJZ
J(σ) = 0 in twistor space5

ZI(σ) = ZI
1σ

1 + ZI
2σ

2 ≡ ZI
aσ

a , (3.5)

with σa = (σ1, σ2) being local coordinates on the line. For n points xi, defining the

space-time coordinates of the operators in the correlation function (2.3), the correspond-

ing configuration in twistor space consists of n (non-intersecting) lines whose moduli are

determined by the corresponding projective coordinates XIJ
i , as shown in figure 2 below.

Then, the (square of the) distance between two operators is given by

x2ij ∼
1

2
(Xi ·Xj) =

1

4
ǫIJKLX

IJ
i XKL

j

=
1

4
ǫIJKLǫ

abZI
i,aZ

J
i,bǫ

cdZK
j,cZ

L
j,d ≡ 〈Zi,1Zi,2Zj,1Zj,2〉 , (3.6)

where Zi,a and Zj,a (with a = 1, 2) are two pairs of points belonging to two lines with

moduli Xi and Xj , respectively. If two lines intersect, we can choose ZI
i,2 = ZI

j,1 leading to

x2ij = 0. Thus, the light-like limit of the correlation function, x2ij → 0, corresponds to the

limit of intersecting lines.

To deal with correlation functions in N = 4 SYM in the chiral sector, we have to

extend the twistor space to include four odd coordinates

Z = (ZI , χA) , (with I, A = 1, . . . , 4) , (3.7)

subject to the equivalence relation Z ∼ cZ. The odd twistor coordinates χA satisfy an

incidence relation analogous to (3.3). Using the parameterisation (3.2) we can rewrite the

relation between a point in chiral Minkowski (super)space-time (xα̇α, θAα) and a line in

twistor superspace as

ZI = (λα, ix
α̇βλβ) , χA = θA,βλβ , (3.8)

with λα being homogeneous coordinates on the line in twistor space.6 The N = 4 super-

conformal transformations correspond to global GL(4|4) rotations of the supertwistor Z.

3.2 N = 4 SYM on twistor space

The fields ofN = 4 SYM theory are described on projective twistor space PT by a superfield

A that takes values in (0, 1)-forms with values in the Lie algebra of the gauge group.

Expanding in the fermionic coordinates χA we obtain

A(Z, Z̄, χ) = a(Z, Z̄) + χAγ̃A(Z, Z̄) +
1

2
χAχBφAB(Z, Z̄)

+
1

3!
ǫABCDχ

AχBχCγD(Z, Z̄) +
1

4!
ǫABCDχ

AχBχCχDg(Z, Z̄) . (3.9)

5More precisely this is a line in projective twistor space CP
3 or equivalently a two-plane in (non-

projective) twistor space C
4. So Minkowski space is the Grassmannian of two-planes in C

4, Gr(2, 4).
6Again, more precisely this identifies chiral Minkowsksi superspace with the space of lines in projective

supertwistor space CP
3|4, or equivalently the space of two-planes in non-projective supertwistor space C

4|4,

that is the Grassmannian Gr(2, 4|4). Similarly analytic superspace, on which the stress-energy tensor

naturally sits, is the super-Grassmannian of (2|2) planes in C
4|4, Gr(2|2, 4|4) [21]. The modding out of a

super-plane accounts for the halving of the odd degrees of freedom (for example in (2.1)).

– 8 –
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The coefficients in front of χn are antiholomorphic (0, 1)−differential forms on the super-

twistor space CP
3|4, homogeneous of degree n that are related to the various component

fields of N = 4 SYM by the Penrose transform: g and a give rise to self-dual and anti

self-dual part of the field strength tensor, γ̃A and γD are mapped into gaugino fields and

φAB produce the scalar fields.

The twistor action of N = 4 SYM takes the form

S[A] =

∫

CP
3|4

D3|4Z ∧ tr

(
1

2
A ∂̄A− 1

3
A3

)
+

∫
d4x d8θ Lint(x, θ) , (3.10)

where D3|4Z = 1
4!ǫIJKLZ

IdZJdZKdZLd4χ is the integration measure on the complex pro-

jective space and

Lint(x, θ) = g2
[
ln det(∂̄ −A)− ln det ∂̄

]
. (3.11)

The separation of the action S[A] into the sum of two terms corresponds to expansion of

N = 4 theory around the self-dual sector. Indeed, the holomorphic Chern-Simons action

is equivalent, in the appropriate gauge, to the self-dual part of the N = 4 action. The

second term on the right-hand side of (3.10) describes the interaction induced by the non

self-dual part of the action. It involves the logarithm of the chiral determinant of the Dirac

operator evaluated on the line in twistor space defined in (3.8), and then integrated over

all lines.

To perform calculations using (3.10) it is convenient to choose an axial gauge in which

the component of A in the direction of a fixed reference twistor Z∗ vanishes. In this

gauge, the cubic term in the holomorphic Chern-Simons action vanishes and the remaining

quadratic term defines the propagator

〈Aa(Z1)Ab(Z2)〉 = δ̄2|4(Z1,Z2,Z∗)δ
ab , (3.12)

where we have displayed the SU(N) indices of the fields A = AaT a (with T a being the

SU(N) generators in the fundamental representation) and explicitly denoted the super-

twistor Z∗ that defines the axial gauge. Here

δ̄2|4(Z1,Z2,Z∗) =

∫
ds

s

dt

t
δ̄4|4(sZ1 + tZ2 + Z∗) (3.13)

is a projective delta function. It is a homogenous (0, 2)−form on twistor space that enforces

the condition for its arguments to be collinear in the projective space. In the axial gauge, all

interaction vertices are produced by Lint. Its expansion in powers of superfields looks like

Lint(x, θ) = −g2
∑

n≥2

1

n
tr
[
∂̄−1A . . . ∂̄−1A

]

= −g2
∑

k≥2

1

k

∫
tr [A(Z(σ1)) ∧Dσ1 . . .A(Z(σk)) ∧Dσk]

〈σ1σ2〉 . . . 〈σkσ1〉
, (3.14)

where Dσi = 〈σi, dσi〉 ≡ ǫabσ
a
i dσ

b
i is the projective measure and

〈σiσj〉 = ǫabσ
a
i σ

b
j . (3.15)
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In the second relation in (3.14) the superfields are integrated along the line in twistor space

Z(σi) = Z1σ
1
i +Z2σ

2
i parameterised by coordinates σa

i ≡ (σ1
i , σ

2
i ) with two reference points

Z1 and Z2 of the form (3.7) and (3.8) with the same xαα̇ and θAα but different λα.

Making use of (3.14) and (3.12) we can apply the conventional Feynman diagram tech-

nique to compute the correlation functions of operators built from supertwistor fields at

weak coupling. To establish the correspondence with (2.3) we have to work out the repre-

sentation of the stress-tensor superfield T (x, θ+, u) in twistor space. Our main contention

is that7

T (x, θ+, u) =

∫
d4θ−Lint(x, θ) , (3.16)

where θ−a′α = θAαu−a′

A and θ+aα = θAαu+a
A are the projected fermionic coordinates re-

quired in the definition of T . We first remark that, although Lint is not gauge invariant

because of the chiral gauge anomaly in ln det(∂̄ − A) in (3.11), the fermionic integration

in (3.16) annihilates the anomalous gauge variation.8

To justify (3.16), denote the corresponding operator as TA(x, θ+, u) and examine an-

other equivalent representation for the correlation function (2.3)

Gn = 〈0|TA(1) . . . TA(n)|0〉A , (3.17)

where we inserted the subscript A to indicate that the expectation value is evaluated with

the action given by (3.10). To determine the explicit expression for TA(x, θ+, u) we shall

require that, in the twistor space approach, the derivative of the correlation function (3.17)

with respect to the coupling constant ∂Gn/∂g
2 has to be related to Gn+1 as in the last

relation in (2.4).

Since the dependence of the twistor action (3.14) on the coupling constant only resides

in Lint we obtain

∂

∂g2
Gn =

∫
d4xn+1d

8θn+1〈0|TA(1) . . . TA(n)Lint(xn+1, θn+1)|0〉A . (3.18)

This relation is remarkably similar to (2.4). However, an important difference is that, in

distinction to Lint(xn+1, θn+1) the stress-tensor superfield T (xn+1, θ
+
n+1, un+1) entering the

second line in (2.4) only depends on half of the θAα
n+1 variables while it has an additional

dependence on the harmonic variables un+1. To match the sets of variables these two

operators depend on, we employ the harmonics to decompose θAα
n+1 into the two projections

θ+a,α
n+1 = θAα

n+1u
+a
n+1,A , θ−a′,α

n+1 = θAα
n+1u

−a′

n+1,A , (3.19)

7Other previous works discussing composite operators within the twistor framework are the proof of the

correlator/amplitude duality for the Konishi multiplet [15, 28] and the recent papers [29, 30] where the

N = 4 one-loop dilatation operator in the SO(6) sector is rederived. In either case the realisation of the

operators is necessarily different from our approach because they are not connected to the Lagrangian by

supersymmetry, which we use extensively.
8This is a refinement of the discussion following eq. (3.6) of [18]. There, the variation of Lint under

a gauge transformation is seen to be quintic in the θ’s. A more detailed examination shows that the

Grassmann integral in (3.16) does not find a matching θ−structure in this gauge variation.
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with A = (+a,−a′), and then integrate out θ−a′,α
n+1 using the identity

∫
d8θn+1 =∫

d4θ+n+1

∫
d4θ−n+1. Appealing to the analogy with (2.4) we identify the resulting oper-

ator as representing the stress-tensor superfield in twistor space

TA(n+ 1) =

∫
d4θ−n+1 Lint(xn+1, θn+1) , (3.20)

whereby (3.18) takes the same form as (2.4). Notice that the dependence of TA(n+ 1) on

the harmonic variable un+1 enters through the integration measure
∫
d4θ−n+1.

We combine the relations (3.20) and (3.17) to obtain the following representation for

the correlation function in twistor space

Gn =

∫
d4θ−1 . . . d4θ−n 〈0|Lint(1) . . . Lint(n)|0〉A , (3.21)

where Lint(i) ≡ Lint(xi, θi) and θ−a′,α
i = θAα

i (ui)
−a′

A . As before, we will be interested

in computing this correlation function to lowest order in the coupling constant. In this

approximation, we can neglect the dependence of the twistor action (3.10) on the coupling

constant and retain only the first (Chern-Simons) term on the right-hand side of (3.10). In

addition, we recall that in the axial gauge the Chern-Simons term reduces to the kinetic

term, quadratic in twistor superfield A. As a consequence, calculating (3.21) we can treat

A as a free field. In this way, replacing Lint(i) by its expression (3.14) we have to perform all

possible Wick contractions of the superfields A and express the correlation function (3.21)

as a product of propagators defined in (3.12). This leads to the set of Feynman rules

formulated in the next subsection.

3.3 Feynman rules from twistor space

According to the definition (3.14), each operator Lint(xi, θi) lives on a line in twistor space

Zi(σ) = Zi,1σ
1 + Zi,2σ

2 ≡ Zi,ασ
α , (3.22)

with two reference points Zi,1 and Zi,2 satisfying the incidence relations involving xi and

θi. Then, each term in the sum in the second relation in (3.14) can be viewed as a line in

twistor space; the k legs attached to it represent the twistor superfields A(Zi(σ)). For our

purposes it will also be convenient to treat the same diagram as defining a new effective

interaction vertex as shown in figure 1.

Then, the correlation function (3.21) is given by a set of diagrams in which an arbitrary

number of propagators are stretched between n lines, or equivalently connect n effective

vertices (see figure 2).

Let us consider the propagator connecting two lines with indices i and j. Denoting the

local parameters of the points on these two lines by σα
ij and σα

ji, respectively, we can write

its contribution as∫
〈σijdσij〉

∫
〈σjidσji〉 δ2|4(Zi(σij),Zj(σji),Z∗)(. . . )

=

∫
〈σijdσij〉

∫
〈σjidσji〉

∫
ds

s

dt

t
δ4|4(sZi(σij) + tZj(σji) + Z∗)(. . . )

=

∫
d2σij

∫
d2σji δ

4|4(Z∗ + σα
ijZi,α + σα

jiZj,α)(. . . ) , (3.23)
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Zi,1

Zi,2 Zj,1

Zj,2

i

i

i

i
j

j

j1j1 j2j2 j3j3 jkjk

. . .. . .

Figure 1. Propagators and vertices in twistor space.

1
1 22

33

44
n

n

Figure 2. Feynman diagram on twistor space contributing to an n−point correlation function. A

double line with label i represents a line in twistor space with moduli (xi, θi). Solid lines stand for

propagators of twistor superfields and dots denote effective interaction vertices.

where the expression inside (. . . ) corresponds to the rest of the diagram and we made use

of (3.13) in the second relation. Here in the third relation we replaced the integration

variables σα
ij → sσα

ij and σα
ji → tσα

ji taking into account that the expression inside (. . . ) is

a homogenous function of σij and σji of degree (−2).

Then, the Feynman rules taking us from a graph as shown in figure 2 to a contribution

to the correlation function (3.21) are as follows:

• To each line connecting vertices i and j we associate two pairs of spinor variables σα
ij

and σα
ji (with α = 1, 2). They define the coordinates of the end points σα

ijZi,α and

σα
jiZj,α belonging to the ith and jth lines, respectively, in projective twistor space;9

• A propagator connecting vertices i and j produces a graded delta function

δaiajδ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α) with ai and aj being SU(N) colour indices;

9Such an assignment of the σij variables would be ambiguous if two vertices were connected by more

than one line. As we show below (see eq. (3.48)), this never happens for n−point correlation functions if

n > 2.
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i

i j

j1
j2 j3

jk

− tr[T aj1T aj2 · · ·T ajk ]

〈σij1σij2〉〈σij2σij3〉 · · · 〈σijkσij1〉. . .

δaiajδ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α)

Figure 3. Feynman rules for propagators and vertices in twistor space.

• Each vertex comes with a Parke-Taylor-like denominator accompanied by the SU(N)

colour factor, − tr[T aj1T aj2 · · ·T ajk ]/
∏k

ℓ=1〈σijℓσijℓ+1
〉 (with jk+1 ≡ j1 and 〈σijℓσijℓ+1

〉
given by (3.15)). In virtue of trT aj = 0 , we must have at least two lines coming

from each vertex;

• Finally, at each vertex i = 1, . . . , n we have to perform an integration∫
d2σij1 . . . d

2σijk over the σ−parameters of all lines attached to that vertex and,

in addition, integrate out half of the Grassmann variables by
∫
d4θ−i .

These rules are summarised in figure 3.

To compute an n−point correlation function using these Feynman rules we have to

examine all diagrams with exactly n vertices and an arbitrary number of propagators. Since

each vertex has at least two lines attached to it, the minimal number of propagators is n. Let

us denote the total number of propagators as n+p (with p ≥ 0) and examine the Grassmann

degree of the corresponding diagram. Each propagator increases the Grassmann degree by

four units whereas each vertex reduces it by four units due to the integration
∫
d4θ−i . Thus,

the Grassmann degree of a diagram containing n vertices and n+p propagators is 4 p. This

counting is in perfect agreement with the general form of the correlation function (1.1).

It also allows us to identify each term in the expansion (1.1) with the contribution of a

particular class of diagrams:

Gn;p = Sum of diagrams with n vertices and n+ p propagators (3.24)

Note that in our conventions (which correspond to having a 1/g2 in front of the action)

each propagator comes with a factor of g2 and each vertex with a 1/g2.

3.4 Lowest component

To illustrate the formalism, we apply the Feynman rules formulated in the previous sub-

section to compute the simplest Gn;0 component of the correlation function (1.1). Ac-

cording to (3.24), Gn;0 is given by the sum of diagrams with n vertices and n propaga-

tors. A distinctive feature of such diagrams is that all vertices are bivalent. In what

follows we shall only consider connected twistor diagrams.10 A particular example of

10The disconnected twistor diagrams describe contributions to the correlation function which reduce to

products of correlators with lower number of points.
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such a diagram is the graph in which vertices i and i + 1 are connected by a single

line. All remaining diagrams can be obtained by permuting the labels of the vertices.

According to the Feynman rules in figure 1, the contribution of the ith vertex involves

−1/(〈σi,i−1σi,i+1〉〈σi,i+1σi,i−1〉) = 1/〈σi,i−1σi,i+1〉2. We combine it with the propagators

to obtain11

Gn;0 =
n∏

i=1

∫
d4θ−i

∫
d2σi,i−1d

2σi,i+1

〈σi,i−1σi,i+1〉2
δ4|4(Z∗ + σβ

i,i−1Zi,β + σβ
i−1,iZi−1,β) + (Sn−perm),

(3.25)

where (Sn−perm) denotes the additional terms needed to restore the Bose symmetry of

the correlation function.

We recall that Zi,1 and Zi,2 denote two points on a line in supertwistor space. They

have the general form (3.7) and (3.8) with the local coordinates λ1,β and λ2,β , respectively.

The correlation function (3.25) should not depend on the choice of these coordinates.

Indeed, the change of the local coordinates corresponds to the GL(2) rotation λγ,β →
gγ

δλδ,β , or equivalently Zi,β → gγ
δZi,δ. This variation can be compensated in (3.25) by

the change of the integration variable σβ
ik → (g−1)βδσ

δ
ik. We can make use of this symmetry

to choose Zi,β in the following form

Zi,β = (Z I
i,β , θA

i,β) , Z I
i,β = (ǫαβ , ix α̇

i,β) , (3.26)

with I = (α, α̇). It is also convenient to parameterise the axial gauge supertwistor as

Z∗ = (Z I
∗ , θA

∗ ) . (3.27)

We substitute (3.26) into (3.25) and perform the integration over θ−i to obtain (see

eq. (3.33) below)

Gn;0 =
n∏

i=1

y2i,i+1

∫
d2σi,i−1d

2σi,i+1δ
4(Z∗ + σβ

i,i−1Zi,β + σβ
i−1,iZi−1,β) + (Sn−perm) . (3.28)

Here yi,i+1 = yi−yi+1 with yi being the local coordinates on the harmonic coset introduced

in (A.5). We notice that the total number of delta functions in this integral matches the

number of integration variables. Therefore, the integral is localised at the values of the

σ−parameters satisfying Z∗ + σβ
i,i−1Zi,β + σβ

i−1,iZi−1,β = 0. Equivalently

σα
i,i−1 = ǫαβ

〈Zi,βZ∗Zi−1,1Zi−1,2〉
〈Zi−1,1Zi−1,2Zi,1Zi,2〉

,

σα
i−1,i = ǫαβ

〈Zi−1,βZ∗Zi,1Zi,2〉
〈Zi−1,1Zi−1,2Zi,1Zi,2〉

, (3.29)

where we used the notation 〈Z1Z2Z3Z4〉 = ǫIJKLZ
I
1Z

J
2 Z

K
3 ZL

4 . In this way, we finally obtain

Gn;0 =
n∏

i=1

y2i,i+1

x2i,i+1

+ (Sn−perm) . (3.30)

11Here we do not display the factor (N2 − 1) coming from the contraction of the SU(N) colour indices

since it is included in (2.6).
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Notice that the dependence on the reference supertwistor Z∗ disappeared in Gn;0 as it

should for a gauge invariant quantity.

The result (3.30) perfectly meets our expectations. In the conventional approach, Gn;0

coincides with the correlation function of n operators tr[φ++φ++], the lowest component

of the stress-tensor multiplet (2.2). Then, to lowest order in the coupling constant, Gn;0

is given by a product of n free scalar propagators 〈φ++(i)φ++(j)〉 = y2ij/x
2
ij , properly

symmetrised to respect Bose symmetry.

3.5 Twistor Feynman rules for higher components

To compute higher components of the correlation function Gn;p we have to examine all

diagrams containing n vertices and n + p propagators. We can apply the Feynman rules

formulated in the previous sections to write down their contribution as a productsof n+ p

graded delta functions of the form δ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α). However, this approach is

not very efficient in that it involves integrating a function of Grassmann degree 4(n + p)

over 4n odd variables
∫
d4θ−i to arrive at the function Gn;p of Grassmann degree 4p. So,

in this subsection we instead perform the explicit integration over the variables θ−i at the

level of the twistor Feynman rules and thus derive a simpler set of rules.

To begin with, we split each propagator up into a product of bosonic and fermionic

delta functions,

δ4(Z∗ + σα
ijZi,α + σα

jiZj,α)δ
4(θ∗ + σα

ijθi,α + σα
jiθj,α) . (3.31)

To integrate over θ−i , we employ the harmonics ui to decompose the variables θi into two

halves (3.19) (see appendix A),

θAi = θ+a
i ūAi,+a + θ−a′

i ūAi,−a′ . (3.32)

Then, multiplying the argument of the fermionic delta function by the 4× 2 matrices u+a
i,A

and u+a
j,A we find after some algebra

δ4(θ∗ + 〈σijθi〉+ 〈σjiθj〉) = y2ij δ
2
(
〈σijθ−i 〉+Aij

)
δ2

(
〈σjiθ−j 〉+Aji

)
, (3.33)

with y2ij =
1
4ǫ

ABCDu+a
i,Aǫabu

+b
i,Bu

+c
j,Cǫcdu

+d
j,D. Here the functions

Aa′

ij =
[
〈σjiθ+b

j 〉+ 〈σijθ+c
i 〉(Uij)

+b
+c + θA∗ u

+b
j,A

]
(U−1

ij )−a′

+b (3.34)

depend only on θ+i and θ+j , and the matrices Uij are defined as

(Uij)
+b
+c = ūAi,+cu

+b
j,A , (Uij)

+b
−a′ = ūAi,−a′u

+b
j,A . (3.35)

The function Aa′

ji can be obtained from Aa′

ij by exchanging the indices i ↔ j. It is often

convenient to use a parameterisation of the harmonic variables ui in terms of the local

coordinates yi on the harmonic coset defined in (A.5). In this case, (Uij)
+b
+c = δbc and

(Uij)
+b
−a′ = (yij)

b
a′ , so that the expression (3.34) significantly simplifies,

Aa′

ij =
[
〈σjiθ+b

j 〉+ 〈σijθ+b
i 〉+ θA∗ u

+b
j,A

]
(y−1

ij )a
′

b . (3.36)
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Notice that the dependence on θ−i and θ−j on the right-hand side of (3.33) resides in

the first and second delta functions, respectively. This suggests associating the first delta

function with the vertex i and the second one with the vertex j. Then, if the vertex i

has k propagators attached to it, we take into account the additional σ−dependent factor

coming from the Feynman rules in figure 3 to arrive at the integral

R(i; j1j2 . . . jk) = −
∫
d4θ−i

δ2(〈σij1θ−i 〉+Aij1)δ
2(〈σij2θ−i 〉+Aij2) . . . δ

2(〈σijkθ−i 〉+Aijk)

〈σij1σij2〉 〈σij2σij3〉 . . . 〈σijkσij1〉
.

(3.37)

Here the index i labels the vertex and the indices j1, . . . , jk enumerate the outgoing lines.

By construction, this integral has Grassmann degree (2k − 4). As we shall see in the next

section, the quantity R(i; j1j2 . . . jk) plays a crucial role in our analysis.

Relation (3.37) depends on the parameters σα
ij and σα

ji. Their values can be determined

using the bosonic part of the propagator (3.31). Namely, solving the equation ZI
∗+〈σijZI

i 〉+
〈σjiZI

j 〉 = 0 we obtain

σα
ij = ǫαβ

〈Zi,βZ∗Zj,1Zj,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

, σα
ji = ǫαβ

〈Zj,βZ∗Zi,1Zi,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

, (3.38)

cf. (3.29). Finally, for each propagator (3.31) the bosonic delta function allows us to do

the σ−integration yielding

y2ij

∫
d2σijd

2σji δ
4|0(Z∗ + σijZi + σjiZj) =

y2ij
〈Zi,1Zi,2Zj,1Zj,2〉

=
y2ij
x2ij

, (3.39)

where the additional factor of y2ij comes from (3.33).

In summary, we arrive at the following twistor Feynman rules shown in figure 4:

• A line connecting vertices i and j is associated with the propagator dij = y2ij/x
2
ij ;

• Bivalent vertices are associated with R(i; j1j2) tr[T
aj1T aj2 ] = R(i; j1j2)δ

aj1aj2 ;

• Higher valency vertices are associated with R(i; j1 . . . jk) tr[T
aj1 . . . T ajk ] evaluated

for the σ−parameters given by (3.38).

3.6 Properties of the R−vertices

Let us summarise the properties of R(i; j1j2 . . . jk). In twistor diagrams, this function is

accompanied by the colour factor tr[T aj1 . . . T ajk ] with the same ordering of external lines.

As follows from the representation (3.37), R(i; j1j2 . . . jk) is invariant under a cyclic shift

of the j−indices and changes sign under a ‘mirror’ exchange of the indices, jℓ → jk−ℓ+1,

R(i; j1j2 . . . jk−1jk) = R(i; j2j3 . . . jkj1) = (−1)kR(i; jkjk−1 . . . j2j1) . (3.40)

For k = 3 external lines, this relation implies that R(i; j1j2j3) is completely antisymmetric

under the exchange of external legs,

R(i; j1j2j3) = −R(i; j1j3j2) = −R(i; j3j2j1) = R(i; j2j3j1) . (3.41)
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i

i j

j1
j2 j3

jk

tr[T aj1T aj2 · · ·T ajk ]R(i; j1j2 . . . jk)

. . .

δaiajdij = δaiaj
y2ij
x2ij

Figure 4. Feynman rules for propagators and vertices in analytic superspace.

In the special case j2 = j3, corresponding to a graph in which the two external legs are

attached to the same vertex, this relation implies

R(i; j1j2j2) = 0 . (3.42)

Let us examine the explicit expression for R(i; j1j2 . . . jk) for the lowest values of k.

For a bivalent vertex, k = 2, the integration in (3.37) yields

R(i; j1j2) = 1 . (3.43)

For a valency three vertex, k = 3, we can make use of the Schouten identity

σα
ij1

〈σij2σik〉+ σα
ij2

〈σikσij1〉+ σα
ik〈σij1σij2〉 = 0 (3.44)

to rewrite the argument of one of the three delta functions on the support of the other two

in such a way that it becomes θ−i independent. In this way, we obtain

R(i; j1j2j3) = −
δ2
(
〈σij1σij2〉Aij3 + 〈σij2σij3〉Aij1 + 〈σij3σij1〉Aij2

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
. (3.45)

For vertices of higher valency, we can recursively apply the same trick, reducing a k−valent

vertex to a product of 3− and (k−1)−valent vertices. Specifically, we rewrite the last delta

function on the right-hand side of (3.37) as a combination of the first and the (k − 1)st

to get

R(i; j1j2 . . . jk) = R(i; j1j2 . . . jk−1)R(i; j1jk−1jk) . (3.46)

Continuing recursively we can express the k−valent vertex as a product of (k − 2) copies

of 3−valent vertices

R(i; j1j2 . . . jk) = R(i; j1j2j3)R(i; j1j3j4) . . . R(i; j1jk−1jk) . (3.47)

Note that the index j1 plays a special role here as it appears in every factor on the right-

hand side. We can obtain another equivalent representation for R(i; j1j2 . . . jk) by making
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use of the symmetry properties (3.40). Combining (3.47) with (3.42) we find that the

R−vertex vanishes if two indices of external lines coincide

R(i; j1j1j3 . . . jk) = R(i; j1j2 . . . j1 . . . jk) = 0 . (3.48)

In terms of twistor diagrams this relation implies that diagrams with (at least) two propa-

gators stretched between any two twistor lines do not contribute to the correlation function.

We observe that the denominator in (3.37) has the same form as in the Parke-Taylor

MHV amplitude upon identifying the variables σij with the holomorphic variables λj that

define the on-shell momenta of the particles. As a consequence, we can use the properties

of the MHV amplitude to obtain non-trivial relations for R(i; j1j2 . . . jk). In particular, the

U(1) decoupling relation for MHV amplitudes [31] translates into

R(i; j1j2 . . . jk−1jk) +R(i; j1j3 . . . jkj2) + · · ·+R(i; j1jk . . . jk−2jk−1) = 0 , (3.49)

where the sum runs over cyclic permutations of the indices j2, . . . , jk−1, jk. This relation

can be verified using the Schouten identity (3.44).

The R−vertices satisfy another set of non-trivial relations. In the simplest case of

three-point vertices it takes the form

R(i; j1j2j3) = R(i; j4j2j3) +R(i; j1j4j3) +R(i; j1j2j4) , (3.50)

with j1, . . . , j4 being arbitrary. The proof of this relation can be found in appendix B. We

can then use (3.50) and (3.47) together to obtain an analogous relation for four points

R(i; j1j2j3j4) = R(i; j5j2j3j4) +R(i; j1j5j3j4) +R(i; j1j2j5j4) +R(i; j1j2j3j5)

+R(i; j5j1j2)R(i; j5j3j4) +R(i; j5j2j3)R(i; j5j4j1) . (3.51)

It is straightforward to generalise it to an arbitrary number of points

R(i; j1j2 . . . jk) = R(i; jk+1j2 . . . jk) +
1

2

k−2∑

p=2

R(i; jk+1j1 . . . jp)R(i; jk+1jp+1 . . . jk)

+ cyclic(j1j2 . . . jk) , (3.52)

where the expression on the right-hand side is symmetrised with respect to cyclic permu-

tations of the indices j1, j2, . . . , jk.

4 Next-to-lowest component

As we have shown in the previous section, the lowest component of the correlation func-

tion (1.1) reduces to a product of free scalar propagators (3.30). In this section, we shall

compute the first component Gn;1 of (1.1) with non-trivial dependence on the Grassmann

variables. We recall that Gn;1 is a homogenous function of θ+i (with i = 1, . . . , n) of

degree four.
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Figure 5. Topologies of twistor diagrams that contribute to Gn;1.

In the conventional approach, to obtain Gn;1 we have to replace the superfields T (i)

in (2.3) by their expansion (2.2) in powers of θ+i and to single out the contribution in-

volving products of four Grassmann variables. In this way, Gn;1 is given by a sum of

n−point correlation functions involving various components of the stress-tensor supermul-

tiplet. Each of these component correlation functions has conformal symmetry, but N = 4

supersymmetry is not manifest. The main advantage of the twistor space approach is to

offer an efficient way of finding Gn;1 without the need of computing individual component

correlation functions; N = 4 supersymmetry is manifest.12

According to (3.24), the correlation function Gn;1 is given by the sum of all twistor

diagrams containing n vertices and (n + 1) edges. Since each vertex is at least 2−valent,

such diagrams may have either two 3−valent vertices, or a single 4−valent vertex with

the remaining vertices being 2−valent. Thus, we distinguish different topologies of twistor

diagrams shown in figure 5. The last three diagrams correspond to different embeddings

of the colour-ordered quartic vertex.

Let us first consider the contribution of the diagram shown in figure 5(a). It involves

two chains of propagators attached to two cubic vertices with indices i and j3. Applying

the Feynman rules, we find that the contribution of this diagram to the correlation function

vanishes

G
(a)
n;1 ∼ δaj1aj2 tr[T aj1T aj2T aj3 ]R(i; j1j2j3) = 0 , (4.1)

where δaj1aj2 comes from the product of propagators connecting 2−valent vertices j1 and

j2. Here we took into account that T aT a = CF = (N2 − 1)/N is the quadratic Casimir

of the gauge group SU(N) and, as a consequence, the colour trace in the above relation

vanishes, trT aj3 = 0.

12We recall that the price to pay for this is the presence of the reference twistor Z∗, in addition to the

external data. The important point however is that Z∗ drops out from the final expressions, due to gauge

invariance.
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The diagram shown in figure 5(b) contains three chains of propagators attached to two

vertices with indices i and j. Explicitly, its contribution is

figure 5(b) = R(i; k1l1m1) tr[T
ak1T al1T am1 ]×R(j; k2l2m2) tr[T

ak2T al2T am2 ]

× δak1ak2

(
y2ik1
x2ik1

. . .
y2k2j
x2k2j

)
× δal1al2

(
y2il1
x2il1

. . .
y2l2j
x2l2j

)

× δam1am2

(
y2im1

x2im1

. . .
y2m2j

x2m2j

)
, (4.2)

where the dots stand for the product of the remaining propagators constituting the three

chains. As opposed to the previous case, the colour factor of this diagram is differ-

ent from zero. In the correlation function, the above expression should be symmetrised

with respect to the indices of all vertices in order to respect the Bose symmetry. In

particular, since the cubic vertex is antisymmetric under the exchange of external legs,

R(i; k1l1m1) = −R(i; l1k1m1), its colour factor tr[T
ak1T al1T am1 ] should also have the same

property for the contribution of the diagram to be Bose symmetric. This allows us to

replace tr(T ak1T al1T am1 ) → tr([T ak1 , T al1 ]T am1 ) yielding

δak1ak2 δal1al2 δam1am2 tr ([T ak1 , T al1 ]T am1 ) tr ([T ak2 , T al2 ]T am2 ) = −2(N2 − 1)N , (4.3)

where we used [T a, T b] = i
√
2fabcT c with fabcfabc′ = Nδcc

′
for the gauge group SU(N)

and tr(T aT b) = δab. In this way, we find the contribution of the diagram in figure 5(b)

(see footnote 11)

G
(b)
n;1 = −R(i; k1l1m1)R(j; k2l2m2)dik1...k2jdil1...l2jdim1...m2j + (Sn−perm) , (4.4)

where the notation was introduced for the product of scalar propagators

dik1...k2j =
y2ik1
x2ik1

. . .
y2k2j
x2k2j

. (4.5)

The diagrams shown in figure 5(c)–(e) contain two chains of propagators that are attached

to the quartic vertex in three different ways. Their contribution to the correlation func-

tion is

figure 5(c+d+e) = dij1...j2idij4...j3i
[
CcR(i; j1j2j3j4)+CdR(i; j1j3j4j2)+CeR(i; j1j4j2j3)

]
.

(4.6)

The colour factors are

Cc = δaj1aj2 δaj3aj4 tr (T aj1T aj2T aj3T aj4 ) = NC2
F ,

Cd = δaj1aj2 δaj3aj4 tr (T aj2T aj1T aj3T aj4 ) = NC2
F ,

Ce = δaj1aj2 δaj3aj4 tr (T aj1T aj4T aj2T aj3 ) = NCF (CF −N) , (4.7)

where CF = (N2 − 1)/N is the quadratic Casimir of SU(N) in the fundamental repre-

sentation. Notice that Ce is suppressed at large N by a factor of 1/N2, compared to Cc
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and Cd. This reflects the fact that the former diagram is non-planar whereas the latter

two are planar.

Substituting (4.7) into (4.6) we expect to encounter both planar and non-planar contri-

butions. It turns out that the non-planar diagram 5(e) cancels against the 1/N2 suppressed

contributions of the diagrams in figure 5(c)+(d) in such a way that their total sum remains

planar in the large N limit, in perfect agreement with (2.6). To show this, we apply the

relation (3.49) for k = 4 to replace R(i; j1j4j2j3) = −R(i; j1j2j3j4)−R(i; j1j3j4j2) in (4.6)

leading to

CcR(i; j1j2j3j4) + CdR(i; j1j3j4j2) + CeR(i; j1j4j2j3)

= (Cc − Ce)R(i; j1j2j3j4) + (Cd − Ce)R(i; j1j3j4j2)

= (N2 − 1)N
[
R(i; j1j2j3j4) +R(i; j2j1j3j4)

]
, (4.8)

where in the last relation we made use of the identity R(i; j1j3j4j2) = R(i; j2j1j3j4),

eq. (3.40). Comparing with (4.7) we observe that all terms proportional to C2
F cancel

out in the sum over all diagrams and the only terms that survive are those involving the

colour factor CFN . This property is reminiscent of the so-called non-abelian exponentia-

tion of Wilson loops [32, 33].

We combine (4.6) and (4.8) to obtain the contribution of the diagrams fig-

ure 5(c),(d),(e) to the correlation function (see footnote 11)

G
(c)+(d)+(e)
n;1 = R(i; j1j2j3j4) dij1...j2idij4...j3i + (Sn−perm) . (4.9)

This expression involves a quartic vertex which can be expressed in terms of cubic vertices

using (3.47)

R(i; j1j2j3j4) = R(i; j1j2j3)R(i; j1j3j4) = R(i; j2j4j1)R(i; j2j3j4) . (4.10)

Finally, we combine relations (4.1), (4.4) and (4.9) to obtain the following representation

for the next-to-lowest component of the correlation function:

Gn;1 =−R(i; k1l1m1)R(j; k2l2m2)dik1...k2jdil1...l2jdim1...m2j

+R(i; j1j2j3)R(i; j1j3j4)dij1...j2idij4...j3i + (Sn−perm) . (4.11)

Here the indices i, j, k, l,m label n different points and the sum runs over their permuta-

tions.

The following comments are in order concerning the properties of (4.11).

A remarkable feature of (4.11) is that the whole dependence on the Grassmann vari-

ables is encoded in the simple cubic R−vertex given by (3.45). According to its definition,

eqs. (3.45) and (3.36), the function R(i; j1j2j3) is a homogenous polynomial in θ+i of degree

2, so that Gn;1 has Grassmann degree 4 as it should be.

Recall that the dependence of the correlation function (4.11) on the super-coordinates

of the operators (xi, θ
+
i ) enters into R(i; j1j2j3) through the commuting spinors σij and

the function Aij given by (3.38) and (3.36), respectively. They depend in turn on the

supertwistor coordinates defined in (3.26) as well as on the reference supertwistor Z∗.
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Notice that each term on the right-hand side of (4.11) depends on Z∗ but this dependence

should cancel in the total sum in order for Gn;1 to be gauge invariant. We demonstrate

the independence of the correlation function (4.11) of the reference supertwistor Z∗ in the

next section.

For n = 4 the relation (4.11) takes the form

G4;1= −
∏

1≤i<j≤4

dij [R(1; 324)R(2; 314)/d34+R(1; 234)R(3; 214)/d24+R(1; 243)R(4; 213)/d23

+R(2; 134)R(3; 124)/d14+R(2; 143)R(4; 123)/d13+R(3; 142)R(4; 132)/d12
]
, (4.12)

with dij = y2ij/x
2
ij . However, G4;1 should vanish due to N = 4 superconformal symmetry

(see eq. (1.1)). Therefore, the linear combination inside the square brackets in this relation

should vanish. We demonstrate this in section 6 by an explicit calculation.

4.1 The light-like limit

As another test of (4.11) we consider the limit of the correlation function Gn in which the n

operators become sequentially light-like separated. In chiral superspace, this corresponds

to x2i,i+1 → 0 and θA,α
i,i+1(xi,i+1)αα̇ → 0 for i = 1, . . . , n and the periodic boundary condition

i+ n ≡ i is assumed. In this limit we expect the correlation function to be related to the

square of the n−particle superamplitude [13–15]

Gn

x2
i,i+1→0
∼ Gn;0

(
1 +RNMHV

n + . . .+RMHV
n

)2
, (4.13)

where RNMHV
n is given by the ratio of the NMHV and MHV n−particle amplitudes and

similarly for the other components. For Gn computed in the Born approximation, the

amplitudes can be replaced by their tree level expressions. In this way, we find for the

next-to-lowest component

lim
x2
i,i+1→0

Gn;1/Gn;0 = 2RNMHV
n . (4.14)

The NMHV ratio function RNMHV
n is known to have an enhanced dual (super)conformal

symmetry [16] and is given by a sum of five-point on-shell invariants (see eq. (4.24) be-

low). The duality relation (4.14) then suggests that the ratio of the correlation functions

Gn;1/Gn;0 should also have an enhanced symmetry, at least in the light-like limit.

Let us first examine the asymptotic behaviour of the lowest component Gn;0 in the

light-like limit. It is easy to see from (3.30) that, in the sum over all Sn permutations, only

one term provides the leading singularity,

Gn;0

x2
i,i+1→0
∼

n∏

i=1

y2i,i+1

x2i,i+1

≡ d12...n , (4.15)

where the d−function was introduced in (4.5).

For the next-to-lowest component Gn;1 the light-like limit can be imposed diagram

by diagram. Since each edge (ij) connecting the vertices with the corresponding la-

bels comes with a factor y2ij/x
2
ij , we observe that only those graphs containing the edges
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(12), (23), . . . , (n1) provide the leading contribution in the light-like limit x2i,i+1 → 0; all

other graphs will be subleading. So in this limit only graphs containing a simply connected

n−gon will survive. This n−gon clearly yields the same product of free scalar propaga-

tors y2i,i+1/x
2
i,i+1 as the leading term in Gn;0, and therefore it provides a non-vanishing

contribution to the ratio Gn;1/Gn;0 in the light-like limit.

Examining the diagrams shown in figure 5(b) – (e) we notice that, since the total

number of vertices in the diagrams equals n, graphs (c), (d) and (e) cannot contain a

simply connected n−gon and are thus subleading in the light-like limit. For graph (b)

to contain an n−gon, one of the chains connecting the cubic vertices i and j should not

contain any vertices. In other words, the graphs that contribute to Gn;1 in the light-like

limit have the form of an n−gon with one additional propagator stretched between vertices

i and j. Using (4.11) their contribution is brought to the form

Gn;1

x2
i,i+1→0
∼ d12...n

∑

i 6=j

Rij∗ , (4.16)

where Rij∗ is given by the product of two cubic vertices

Rij∗ =
y2ij
x2ij

R(i; i− 1 j i+ 1)R(j; j − 1 i j + 1) . (4.17)

Here we explicitly indicated the dependence of Rij∗ on the reference supertwistor Z∗.

Taking into account (4.15) and (4.16), we find for the ratio of correlation functions in

the light-like limit

lim
x2
i,i+1→0

Gn;1/Gn;0 = 2
∑

i<j

Rij∗ . (4.18)

To simplify the expression for Rij∗ it is convenient to return to the integral representation

of Gn;1 based on the Feynman rules in twistor space in figure 3. Then,

Rij∗ =

∫
d2σijd

2σji 〈σii−1σii+1〉〈σjj−1σjj+1〉
〈σii−1σij〉〈σijσii+1〉〈σjj−1σji〉〈σjiσjj+1〉

δ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α) . (4.19)

To reproduce (4.17) it suffices to split the delta function in this relation into bosonic and

fermionic parts, eq. (3.31), and to apply relations (3.33) and (3.39).

The parameters σii−1 and σi−1i in (4.19) are given by the general expressions (3.29)

which become singular in the light-like limit since 〈Zi−1,1Zi−1,2Zi,1Zi,2〉 = x2i−1,i → 0.

Nevertheless, we can use the invariance of (4.19) under rescalings of σ to put

σβ
i,i−1 = ǫβα〈Z∗Zi−1,1Zi−1,2Zi,α〉 , σβ

i,i+1 = ǫβα〈Z∗Zi+1,1Zi+1,2Zi,α〉 , (4.20)

and similarly for σj,j−1 and σj,j+1. We recall that in twistor space the light-like limit,

x2ii+1 → 0 and θA,α
i,i+1(xi,i+1)αα̇ → 0, is equivalent to the intersection of the corresponding

twistor lines Ziα and Zi+1α. The local GL(2) invariance (corresponding to the reparam-

eterisation freedom on each twistor line) allows us to choose this intersection to occur in

the following convenient manner

Zi,2 = Zi+1,1 ≡ Zi , (i = 1 . . . n) , (4.21)
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where Zi = (Zi, χ
A
i ) with Zi = (λα

i , x
α̇β
i λiβ) and χA

i = θA,β
i λiβ . Substituting the bosonic

part of this relation into (4.20) we find

σα=1
i i+1 = σα=2

i i−1 = 0 , σα=2
i i+1 = −σα=1

i+1 i . (4.22)

Denoting σα
ij = (s1, s2) and σα

ji = (t1, t2) we finally obtain from (4.19)

Rij∗ =

∫
ds1ds2dt1dt2

s1s2t1t2
δ4|4(Z∗ + s1Zi−1 + s2Zi + t1Zj−1 + t2Zj)

=
δ4(χ∗〈i− 1ij − 1j〉+ χi−1〈ij − 1j∗〉+ . . .+ χj〈∗i− 1ij − 1〉)
〈i− 1ij − 1j〉〈ij − 1j∗〉〈j − 1j ∗ i− 1〉〈j ∗ i− 1i〉〈∗i− 1ij − 1〉 , (4.23)

with 〈i− 1ij − 1j〉 ≡ 〈Zi−1ZiZj−1Zj〉, which is precisely the invariant defining the NMHV

tree-level amplitude [16, 17]

RNMHV
n =

∑

i<j

Rij∗ . (4.24)

Comparing this relation with (4.18) we observe perfect agreement with (4.14). In addi-

tion, (4.17) yields the factorisation of the NMHV (on-shell) invariant Rij∗ into a product

of two (off-shell) cubic vertices in the light-like limit.

4.2 Independence of the reference twistor

In the previous section we have shown that the correlation function Gn;1 can be built from

the cubic vertices R(i; j1j2j3). These vertices depend on the four supertwistors correspond-

ing to the external points i, j1, j2, j3 as well as on the reference supertwistor Z∗. They are

constructed using the Feynman rules in figure 3 that have manifest N = 4 superconformal

covariance as long as we transform the reference twistor too. In this sense the symmetry of

R(i; j1j2j3) is actually broken by the presence of the fixed constant reference supertwistor.

However, the symmetry is restored in Gn;1 since it must not depend on the reference twistor

(that is, on the gauge choice). In this section we confirm that this is indeed the case.

As follows from (3.45), the dependence of R(i; j1j2j3) on the reference twistor en-

ters through the parameters σij given by (3.38). Viewed as a function of Z∗, the vertex

R(i; j1j2j3) has spurious poles located at 〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉 = 0. We shall argue

that the absence of spurious poles is equivalent to the Z∗−independence of Gn;1. Let us

show how the spurious poles cancel in the sum of all twistor diagrams shown in figure 5.

More specifically, consider a particular spurious pole located at 〈σ12σ13〉 = 0.13 We

can use (3.38) to verify the following identity

〈σ12σ13〉x212x213 = 〈σ23σ21〉x223x221 = 〈σ31σ32〉x213x223 ≡ (123) , (4.25)

where (123) is totally antisymmetric under the exchange of any pair of points. It im-

plies that the same spurious pole corresponds to 〈σ12σ13〉 = 〈σ23σ21〉 = 〈σ31σ32〉 = 0, or

equivalently

(σ13)
α = z1(σ12)

α , (σ21)
α = z2(σ23)

α , (σ32)
α = z3(σ31)

α . (4.26)

13Of course we can choose any three points for the spurious pole condition.

– 24 –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
8

The complex parameters zi in this relation are not independent however. We take into

account the identity (see eq. (D.5) in appendix D for its derivation)

(σα
13σ

β
21) + (σα

12σ
β
23)− (σα

13σ
β
23) = 0 , for (123) = 0 (4.27)

and substitute (4.26) to get

z1 + 1/z2 − z1/z2 = 0 . (4.28)

To obtain an analogous relation between z1 and z3 we permute the indices 2 and 3 on both

sides of (4.27) and take into account that (132) = −(123). In this way, we obtain

z2 =
z1 − 1

z1
, z3 =

1

1− z1
. (4.29)

Examining the expression for the cubic vertex (3.45) for different values of the indices, we

find that the spurious pole at (123) = 0 appears in three different vertices,

R(1; 23i), R(2; 31j), R(3; 12k), (4.30)

where i, j and k are arbitrary points (different from 1, 2, 3). We use (3.45) and (4.26) to

compute the residues at the spurious pole

lim
(123)→0

(123)
y212
x212

y213
x213

R(1; 23i) =
1

z 1
y212y

2
13δ

2(z1A12 −A13) ,

lim
(123)→0

(123)
y212
x212

y223
x223

R(2; 31j) =
1

z 2
y212y

2
23δ

2(z2A23 −A21) ,

lim
(123)→0

(123)
y213
x213

y223
x223

R(3; 12k) =
1

z 3
y213y

2
23δ

2(z3A31 −A32) , (4.31)

where Aij are given by (3.36) and (3.34).

Let us show that the sum of the three residues (4.31) vanishes. To simplify the calcu-

lation, we make use of the superconformal symmetry of the R−vertex to fix the gauge

θ+1 = θ+2 = θ+3 = 0 , y1 = 0, y2 = 1, y3 → ∞ . (4.32)

The generic values of these coordinates can be restored via a finite N = 4 superconformal

transformation. In this gauge, the Aij in (4.31) simplify to Aa′

ij = θA∗ u
+b
j,A(y

−1
ij )a

′

b . Splitting

θA∗ = (θa∗ , θ
a′

∗ ) and expressing u+j in terms of the variables yj as described in (A.5), we find

A12 = θ′∗ − θ∗ , A23 = −θ∗ , A31 = −θ′∗y
−1
3 ,

A13 = −θ∗ , A21 = −θ′∗ , A32 = (θ∗ − θ′∗)y
−1
3 . (4.33)

Substituting these relations into (4.31) and taking into account (4.29), we find that the

delta functions on the right-hand side of (4.31) are proportional to

r123 = y23δ
2
(
Θ∗

)
, Θ∗ = (1− z1)θ∗ + z1θ

′
∗. (4.34)
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Next, we evaluate the sum of the residues of the three R−vertices at the spurious pole

(123) = 0 and find that it vanishes,

lim
(123)→0

(123)

[
y212
x212

y213
x213

R(1; 23i) +
y212
x212

y223
x223

R(2; 31j) +
y213
x213

y223
x223

R(3; 12k)

]

= r123

[
1

z1
− 1

z1(1− z1)
+

1

(1− z1)

]
= 0 . (4.35)

Here the three terms in the second relation correspond to the three terms in the first line.

Notice that the residues of the vertices (4.30) at the spurious pole do not depend on the

choice of the points i, j, k and are proportional to each other.

We can now apply (4.35) to show the cancellation of spurious poles in the sum of

the diagrams contributing to the correlation function Gn. As we explained in section 3.5,

these diagrams involve vertices of different valency. According to (3.47), they can all be

expressed in terms of the cubic R−vertices. Examining all possible vertices we find that the

spurious pole at (123) = 0 is only present in the vertices of the following types: R(1; 23a..b),

R(2; 31c..d) and R(3; 12e..f) with indices a, b, c, d, e, f labeling the other external points.

Indeed, we can use (3.46) to obtain the following representation

R(1; 23a..b) = R(1; 3a..b)R(1; 23b) = R(1; 2a..b)R(1; 23a) ,

R(2; 31c..d) = R(2; 1c..d)R(2; 31d) = R(2; 3c..d)R(2; 31c) ,

R(3; 12e..f) = R(3; 2e..f)R(3; 12f) = R(3; 1e..f)R(3; 12e) , (4.36)

where the cubic vertices are of the form (4.30) and thus contain a spurious pole at (123) = 0.

Let us consider the graphs shown in figure 6. They can be viewed as part of a bigger

diagram in which points a, b, c, d, e, f, . . . label other vertices. The first three graphs in

figure 6 have the same number of propagators, hence their contribution to the correlation

function has the same Grassmann degree. A special feature of these graphs is that they

involve vertices of the form (4.36) and thus have spurious poles. Moreover, these are

the only diagrams that are singular for (123) = 0. There is however another graph (see

figure 6(d)) that contains the same singular vertices (4.36). We will show below that its

contribution remains finite for (123) = 0.

The total contribution of the graphs shown in figure 6 (a)–(c) is14

d12d13R(1; 23a..b)R(2; 1c..d)R(3; 1e..f) + d12d23R(1; 2a..b)R(2; 31c..d)R(3; 2e..f)

+ d13d23R(1; 3a..b)R(2; 3c..d)R(3; 12e..f) , (4.37)

where dij = y2ij/x
2
ij is a scalar propagator. We apply (4.36) to rewrite the first term in the

last relation as

R(1; 23a..b)R(2; 1c..d)R(3; 1e..f) = R(1; 2a..b)R(1; 23a)R(2; 1c..d)R(3; 1e..f) (4.38)

= R(1; 2a..b)R(1; 23a)R(2; 3c..d)R(3; 1e..f) + (reg.) ,

14Here we assume the planar limit.
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2 2223 333
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c ccc
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f fff

(a) (b) (c) (d)

Figure 6. All subgraphs with a potential spurious pole at (123) = 0. The spurious pole is present

in graphs (a), (b) and (c) but cancels in their sum. The graph (d) in fact has no spurious pole at

(123) = 0. In the above diagrams the number of legs coming out of each of the vertices 1,2,3 is

arbitrary and we can even have just one leg coming out. For example, we can have a = b or c = d

etc. In the graph (d) we can even have no additional legs from the vertices.

where ‘reg’ denotes terms regular for (123) = 0. Here in the second relation we took into

account that the residues of R(1; 23a) and R(2; 31d) at (123) = 0 are proportional to each

other and are independent of the points a and d (see eq. (4.35)), leading to

lim
(123)→0

(123)R(1; 23a)R(2; 1c..d) = ξ lim
(123)→0

(123)R(2; 31d)R(2; 1c..d)

= ξ lim
(123)→0

(123)R(2; 31c)R(2; 3c..d)

= lim
(123)→0

(123)R(1; 23a)R(2; 3c..d), (4.39)

where ξ = (z1 − 1)d23/d13 and we applied (4.36) in the second line. The remaining terms

in (4.37) can be simplified likewise. In this way, we evaluate the residue of (4.37) at

(123) = 0 and find that it is proportional to the same linear combination of cubic vertices

as in (4.35),

lim
(123)→0

(123)× eq. (4.37) = R(1; 2a..b)R(2; 3c..d)R(3; 1e..f)

× lim
(123)→0

(123)
[
d12d13R(1; 23a) + d12d23R(2; 31c) + d13d23R(3; 12e)

]
= 0 . (4.40)

We conclude that the spurious pole is indeed absent in the sum of all diagrams in fig-

ure 6(a)–(c).

Finally, there exists the possibility of having a subgraph of the type shown in fig-

ure 6(d). Its contribution contains the product of three vertices

d12d23d13R(1; 23a..b)R(2; 31c..d)R(3; 12e..f) , (4.41)

each of which having a spurious pole at (123) = 0. Denoting (123) = ǫ we find for ǫ → 0

R(1; 23a..b) ∼ R(1; 23a) ∼ 1

ǫ
δ2
(
Θ∗ + ǫf1 +O(ǫ2)

)
. (4.42)
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Figure 7. Example of diagrams contributing to Gn;1 and having a spurious pole at (123) = 0.

This pole cancels in the sum of three diagrams.

Here in the first relation we applied (4.36) and in the second relation made use of (4.31)

and (4.35). As compared with (4.34), we included in (4.42) the subleading O(ǫ) correction

parameterised by some odd function f1 whose explicit form will not be important for our

purposes. For ǫ = 0, the delta function on the right-hand side of (4.42) coincides with

r123 defined in (4.34). The two remaining R−vertices in (4.40) also satisfy (4.42) with f1
replaced by some functions. Then, for the product of three R−vertices we find for ǫ → 0

eq. (4.42) ∼ 1

ǫ3
δ2
(
Θ∗ + ǫf1)

)
δ2
(
Θ∗ + ǫf2

)
δ2
(
Θ∗ + ǫf3

)

=
1

ǫ3
δ2
(
Θ∗ + ǫf1)

)
δ2
(
ǫ(f1 − f2)

)
δ2
(
ǫ(f1 − f3)

)
∼ O(ǫ) , (4.43)

so that the contribution of the graph in figure 6(d) vanishes for (123) → 0.

Note that the above discussion is not sensitive to the number of legs attached to vertices

1, 2 and 3 (see figure 6). In particular, it also applies when there is only one additional

line coming out of each vertex, e.g. we could have a = b and/or c = d and/or e = f . In

this case, R(1; 2a..b), R(2; 3c..d) and R(3; 1e..f) in (4.40) describe bivalency vertices which

equal 1 according to (3.43).

The mechanism of cancellation of spurious poles described in this subsection is rather

general as it applies to any component of the correlation function Gn. In application to the

next-to-lowest component Gn;1 defined by the diagrams shown in figure 5 given by (4.11),

we can restrict ourselves to the graphs in figure 6 containing vertices of valency 2, 3 and

4 only. As an example, we show in figure 7 the set of diagrams which contribute to Gn;1

and whose sum is free from spurious pole at (123) = 0. It is straightforward to extend the

analysis of spurious poles to the higher components of Gn.

In this subsection we have demonstrated that the correlation function Gn is free from

spurious poles depending on the reference supertwistor Z∗. This property combined with

the fact that Gn is a rational homogeneous function of Z∗ of degree 0 implies that it is Z∗

independent.

4.3 Short-distance limit

In the previous subsection we have shown that all spurious poles cancel in the correlation

function Gn. As a consequence, the only singularities that Gn can have are those coming

from short distances xi → xj . We shall refer to them as physical poles.
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The short distance asymptotics of Gn is controlled by the operator product expansion

of the stress-tensor multiplets T (1)T (2). Each operator depends on the set of coordinates

(xi, θ
+
i , ui(yi)) and the short distance Euclidean limit 1 → 2 amounts to x1 → x2, θ

+
1 → θ+2

and y1 → y2. In this limit we have

T (1)T (2) =
N2 − 1

2

(
y212
x212

)2

I + 2
y212
x212

T (1) + . . . , (4.44)

where the dots denote terms suppressed by powers of x212 and y212. The first term on the

right-hand side of (4.44) involves the identity operator and it describes the disconnected

contribution to the correlation function Gn for 1 → 2. Applying (4.44), we find the leading

asymptotic behaviour of the connected part of the correlation function Gn for 1 → 2 to be

Gn
1→2∼ 2

y212
x212

Gn−1 . (4.45)

Examining the twistor diagrams contributing to Gn, we find that the physical pole y212/x
2
12

only comes from the diagrams in which vertices 1 and 2 are connected by a propagator.

Then, in order to verify (4.45) it is sufficient to show that in the short-distance limit the

product of two R−vertices at points 1 and 2 reduces to a single R−vertex.

For the lowest component Gn;0, the relation (4.45) follows immediately from (3.30). For

the next-to-lowest component Gn;1, we have to examine different contributions where the

vertices 1 and 2 have valency 2, 3 and 4. If both vertices have valency 2, the contribution

of the corresponding graph to Gn;1 automatically verifies (4.45). When one of the vertices

has valency 2 and the other has valency 3, the corresponding contribution to Gn;1 reads

(see figure 8)

d12
[
R(1; 2j1)R(2; 1j2j3) +R(1; 2j1j2)R(2; 1j3) + cyclic(j1j2j3)

]
, (4.46)

where d12 = y212/x
2
12. This expression is invariant under cyclic shifts of the indices of the

external legs j1, j2 and j3. It can be simplified using (3.50) and (3.43),

Eq. (4.46) = d12 [R(1; j1j2j3) +R(2; j1j2j3)]
1→2∼ 2d12R(1; j1j2j3) , (4.47)

where in the last relation we took into account that the difference R(1; j1j2j3)−R(2; j1j2j3)

vanishes in the limit 1 → 2. Thus, in the short-distance limit the product of two vertices

of valency 2 and 3 reduces to a single valency 3 vertex leading to (4.45).

Finally, we have to examine the product of two vertices of total valency 6 (see the

second line in figure 8). Their contribution to the correlation function is given by the

expression

d12
[
R(1; 2j1)R(2; 1j2j3j4) +R(1; 2j1j2j3)R(2; 1j4) +R(1; 2j1j2)R(2; 1j3j4)

+ cyclic(j1j2j3j4)
]
, (4.48)

which is symmetric under cyclic shifts of the external legs j1, . . . , j4. Using (3.37) it is

straightforward to verify that each term in the square brackets remains finite for 1 → 2.
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Figure 8. The OPE relations for 3− and 4−point vertices. The expressions on the left-hand side

are symmetrised with respect to cyclic shifts of the labels of the external legs.

Moreover, the resulting expression can be simplified with the help of (3.51) (applied for

i = j5 = 1)

eq. (4.48)
1→2∼ 2d12R(1; j1j2j3j4) , (4.49)

in perfect agreement with (4.45).

The above relations can be extended to the product of vertices of an arbitrary total

valency k. In this case, (4.46) and (4.48) should be generalised to include the sum of

products of vertices of valency (p+ 1) and (k − p+ 1) with p = 1, . . . , k − 1. Then, in the

short distance limit 1 → 2, we can apply the identity (3.52) for i = jk+1 = 1 to show that

the sum collapses into 2d12R(1; j1 . . . jk), leading to (4.45).

To conclude, in this section we have demonstrated that the expressions for the cor-

relation function Gn obtained within the twistor space approach satisfy two consistency

conditions: they are independent of the reference supertwistor and have the correct asymp-

totic behaviour in the light-like and short distance limits. In the following two sections, we

shall compare these results with the analogous expressions for Gn computed using the con-

ventional Feynman rules in Minkowski space and shall demonstrate their perfect agreement.

5 Correlation functions from Feynman diagrams

In this section we outline the calculation of the correlation function Gn in the conventional

Feynman diagram approach. More precisely, we shall concentrate on computing the next-

to-lowest component Gn;1 in the Born approximation. As was explained above, Gn;1 has

Grassmann degree 4 and its perturbative expansion starts at order O(g2).

5.1 Next-to-lowest component

To evaluate Gn;1, we use the superfield expansion (2.2) of the stress-tensor multiplet T
in (2.3) and retain the contributions of Grassmann degree 4. This yields a representation

for Gn;1 as a collection of correlation functions involving various components of T . Each

correlation function has conformal symmetry but not the N = 4 supersymmetry. The

latter is realised in the form of Ward identities that these correlation functions satisfy.
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The stress-tensor multiplet has the form (2.2) with components given by the following

gauge invariant composite operators [13]

O++++ = tr(φ++φ++),

O+++,α
a = 2

√
2i tr

(
ψ+α
a φ++

)
,

O++,αβ = tr
(
ψ+c(αψ+β)

c − i
√
2Fαβφ++

)
,

O++
ab = − tr

(
ψ+γ

(a ψ+
b)γ − g

√
2[φ+C

(a , φ̄+b,C)]φ
++

)
,

O+,α
a = −4

3
tr
(
Fα
β ψ

+β
a + ig[φ+B

a , φBC ]ψ
Cα

)
,

L =
1

3
tr

{
−1

2
FαβF

αβ +
√
2gψαA[φAB, ψ

B
α ]−

1

8
g2[φAB, φCD][φAB, φCD]

}
, (5.1)

where the shorthand notations were introduced for the scalar and gaugino fields projected

with SU(4) harmonic variables

φ+B
a = ǫabu

+b
A φAB , φ̄+b,A = ūB+bφAB , φ++ = −1

2
u+a
A ǫabu

+b
B φAB ,

ψ+α
a = ǫabu

+b
A ψαA , ψ+ aα = u+a

A ψαA . (5.2)

Here φAB = 1
2ǫ

ABCDφCD, and we adopt the conventions for the raising-lowering of indices

summarised in appendix A. We also use weighted symmetrisation A(αβ) =
1
2(Aαβ +Aβα).

The correlation function Gn;1 depends on the analytic superspace Grassmann variables

ρi ≡ θ+i with i = 1, . . . , n. It can be expanded over eight different nilpotent polynomials in

ρi of degree 4, covariant under Lorentz and R−symmetry transformations,

Gn;1 =
∑

i

ρ4i f(i) +
∑

i 6=j

ρaiα(ρ
3
j )

b
βf

αβ
ab (i, j) +

∑

i 6=j

(ρ2i )
(αβ)(ρ2j )

(γδ)f(αβ)(γδ)(i, j)

+
∑

i 6=j

(ρ2i )
(αβ)(ρ2j )

(cd)f(αβ)(cd)(i, j) +
∑

i 6=j

(ρ2i )
(ab)(ρ2j )

(cd)f(ab)(cd)(i, j)

+
∑

i 6=j 6=k

ραai ρβbj (ρ2k)
(γδ)fαβ(γδ),ab(i, j, k) +

∑

i 6=j 6=k

ραai ρβbj (ρ2k)
(cd)fαβ,ab(cd)(i, j, k)

+
∑

i 6=j 6=k 6=l

ραai ρβbj ργck ρδdl fαβγδ,abcd(i, j, k, l) , (5.3)

where we introduced the notation for

(ρ3) aα = ρbαρ
β
b ρ

a
β , ρ4 = ρbαρ

β
b ρ

c
βρ

α
c , (ρ2)(αβ) = ρaαǫabρ

b
β , (ρ2)(ab) = ρaαǫ

αβρbβ . (5.4)

The functions f , fαβ,ab, f(αβ)(γδ), f(αβ)(cd), f(ab)(cd), fαβ(γδ),ab, fαβ,ab(cd), fαβγδ,abcd are poly-

nomials in the variables yi and are rational functions in the variables xi. They correspond

to the correlation functions of the operators (5.1), e.g.

f(1) = 〈0|L(1)O++++(2) . . . O++++(n)|0〉 ,

fαβ
ab (1, 2) = 〈0|O+++,α

a (1)O+,β
b (2)O++++(3) . . . O++++(n)|0〉 . (5.5)

In what follows we shall calculate the eight coefficient functions in (5.3) at order O(g2) by

means of the standard N = 4 SYM Feynman rules.
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5.2 T−block approach

We use the explicit component field form of the Lagrangian of N = 4 SYM15

LN=4 = tr

{
−1

4

(
FαβF

αβ + F̄α̇β̇F̄
α̇β̇

)
+

1

4
Dαα̇φ

ABDα̇αφAB +
1

8
g2[φAB, φCD][φAB, φCD]

+ 2iψ̄α̇AD
α̇αψA

α −
√
2gψαA[φAB, ψ

B
α ] +

√
2gψ̄α̇A[φ

AB, ψ̄α̇
B]

}
, (5.6)

where all fields are in the adjoint representation of the gauge group SU(N) , e.g. φAB =

φa
ABT

a, Fαβ = F a
αβT

a, ψαA = ψαAaT a, with the generators T a being N × N traceless

matrices normalised as tr(T aT b) = δab.

We do the calculation in coordinate space. The scalar and gaugino propagators have

the form

〈φ++(x1, u1) φ
++(x2, u2)〉 =

1

(2π)2
y212
x212

,

〈ψA
α (x1) ψ̄

B
α̇ (x2)〉 = − 1

(2π)2
∂αα̇

1

x212
δAB , (5.7)

with the SU(N) indices suppressed. It is convenient to introduce the normalisation factor

cn =
g2N(N2 − 1)

(2π)2n+2
. (5.8)

As we will see in a moment, it appears in the expression for the individual diagrams. The

same normalisation factor enters (2.6) for p = 1.

To illustrate our approach, we first compute the coefficient function fαβ
ab (1, 2) for n = 4

points. According to (5.5), it is given by the four-point correlation function involving two

scalar operators O+++ and the operators O+++,α
a and O+,β

b defined in (5.1). To lowest order

in the coupling, fαβ
ab (1, 2) receives contribution from the following Feynman diagrams (and

their permutations 3 ⇄ 4)

1

23

4

(Γ4;1)

1

23

4

(Γ4;2)

1

23

4

(Γ4;3)

1

23

4

(Γ4;4)

1

23

4

(Γ4;5)

1

23

4

(Γ4;6)

1

23

4

(Γ4;7)

15The operator L in (5.1) coincides (up to a normalisation factor) with the chiral form of the N = 4 SYM

on-shell Lagrangian.
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Here the diagrams in the first and the second lines correspond to the two terms in the

expression (5.1) for the operator O+,β
b at point 2.

The above diagrams involve interaction vertices. We can significantly simplify the

calculations of the corresponding Feynman integrals by defining two simple building blocks

which are called bosonic and fermionic T−blocks. The former represents the interaction of

a gluon in the Feynman gauge with a pair of scalars,

1 2

3

= 〈φa,++(1)F b
αβ(3)φ

c,++(2)〉 = 2g

(2π)4
fabcy212

(x31x̃32)(αβ)

x212x
2
13x

2
23

,

(5.9)

and the latter stands for the Yukawa interaction of a scalar with a pair of chiral fermions,

1 2

3

= 〈ψa,A
α (1)φb,++(3)ψc,B

β (2)〉 = − i
√
2g

(2π)4
fabc(3̄A−a′ǫ

a′b′ 3̄B−b′)
(x31x̃32)αβ
x212x

2
13x

2
23

.

(5.10)

Here fabc are the SU(N) structure constants and we use the shorthand notation 3̄A−a′ ≡
ūA3,−a′ .

We then observe that diagrams (Γ4;3) and (Γ4;4) involve a product of the two T−blocks

supplemented by scalar propagators dij = y2ij/x
2
ij , e.g.

(Γ4;4) ∼ 〈φ++(3)F βγ(2)φ++(4)〉〈ψA,α(1)φ++(3)ψB
γ (2)〉u+a

1,Au
+b
2,B d14 , (5.11)

where we suppressed the SU(N) indices. Going through the calculation of (Γ4;4) we find

(Γ4;4) = −4

3
c4 y

2
14y

2
34(y13ỹ32)

ab (x31x̃32x24x̃23 − x31x̃32x23x̃24)
αβ

x212x
2
13x

2
14x

4
23x

2
24x

2
34

. (5.12)

Note that this expression is gauge dependent and, as a consequence, it is not conformally

covariant. Conformal symmetry is restored in the sum of diagrams that is gauge invariant.

Similarly, diagrams (Γ4;6) and (Γ4;7) involve only a single fermionic T−block (5.10), e.g.

(Γ4;7) =
4

3
c4 y

2
14y

2
34(y13ỹ32)

ab (x13x̃32)
αβ

x212x
2
13x

2
14x

4
23x

2
24

. (5.13)

This expression is gauge invariant and, as a consequence, it is conformally covariant. It

contains however the factor of 1/x423 which should disappear in the sum of all Feynman di-

agrams in order to restore the expected 1/x223 asymptotic behavior (4.45) of the correlation

function in the short-distance limit 2 → 3.

The remaining diagrams (Γ4;1), (Γ4;2) and (Γ4;5) cannot be reduced to products of

T−blocks. Moreover, they involve more complicated Feynman integrals that are potentially
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ultraviolet divergent and, in addition, produce a contribution that is not a rational function

of x2ij . We recall however that the correlation function in the Born approximation should

be a rational function of x2ij . This suggests that the non-rational pieces from the above

mentioned diagrams should disappear in the sum of all diagrams. Indeed, there exists an

efficient way to organise the calculation so that we do not actually need to compute these

complicated integrals. Instead of considering the ‘difficult’ diagrams one by one, we shall

combine them into sums that are explicitly rational.

To identify such rational sums, we return to (1.1) and notice that, in virtue of N = 4

superconformal symmetry, the correlation function for n = 4 only involves the lowest

component Gn;0 given by (3.30). This means that G4;1 = 0, so that all coefficient functions

in (5.3) vanish for n = 4. In particular, fαβ
ab (1, 2) = 0 for n = 4. In other words, the sum of

all diagrams Γ4;k (with k = 1, . . . , 7), symmetrised with respect to the exchange of points

3 ↔ 4, should vanish. Since the diagrams (Γ4;k) have a harmonic structure y213y
2
34(y14ỹ42)ab

that is not invariant under the exchange of points 3 and 4, this yields the condition

7∑

k=1

(Γ4;k) = 0 . (5.14)

This relation allows us to express the sum of ‘difficult’ diagrams in terms of ‘easy’ diagrams

(Γ4;3), (Γ4;4), (Γ4;6), (Γ4;7) that are reduced to fermionic and bosonic T−blocks, eqs. (5.9)

and (5.10). It is convenient to represent (5.14) in the following diagrammatic form

1

23

4

= (Γ4;1) + (Γ4;2) + (Γ4;3) + (Γ4;5) + (Γ4;6) = −(Γ4;4)− (Γ4;7) (5.15)

where the graph on the left-hand side has a shaded block with a free propagator attached to

points 3 and 4. This block stands for the sum of diagrams containing interaction vertices

and we shall refer to it as a ‘black box’. It is expressed in terms of the easy diagrams

(Γ4;4) and (Γ4;7) given by (5.12) and (5.13) and, therefore, it is a rational function.16 The

main reason for introducing the ‘black box’ is that, as we show in the next subsection, it

naturally appears as a non-trivial core of higher-point diagrams.

5.3 The O(ρ1ρ
3
2) component for 5 points

We are now ready to compute the coefficient function fαβ
ab (1, 2) for the n = 5 correlation

function. We recall that it defines the ρ1ρ
3
2−component in the expansion (5.3) of G5;1.

Unlike the n = 4 case examined above, fαβ
ab (1, 2) is different from zero for five points.

16If we were to reproduce (5.15) without appealing to G4;1 = 0, we would need to choose a particular

regularisation and to calculate several non-trivial integrals which are not rational. Their sum is rational

however.
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Let us first identify the relevant Feynman diagrams. Compared to the n = 4 case,

these diagrams involve the additional vertex 5 with two scalar propagators attached:

1

23

4

5 1

23

4

5

1

23

4

5

1

23

4

5 1

23

4

5

(Γ5;1) (Γ5;2) (Γ5;3) (Γ5;4) (Γ5;5)

Here the shaded block has the same meaning as in (5.15). Namely, it denotes the sum of

graphs (Γ4;1) + (Γ4;2) + (Γ4;3) + (Γ4;5) + (Γ4;6) with the scalar line between points 3 and 4

removed. As a result, the contribution of the diagram (Γ5;3) can be obtained from (5.15)

by replacing the scalar propagator d34 with the product of two propagators d34d45 in the

sum of two ‘easy’ diagrams −[(Γ4;4) + (Γ4;7)]:

(Γ5;3) =
4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x25x̃23 − x31x̃32x23x̃25)
αβ − x235(x13x̃32)

αβ

x212x
2
13x

2
15x

4
23x

2
25x

2
34x

2
45

. (5.16)

The calculation of (Γ5;1) and (Γ5;2) is similar to that of (Γ4;4). They are given by

products of fermionic and bosonic T−blocks (5.9) and (5.10) resulting in

(Γ5;1) = −4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x24x̃23 − x31x̃32x23x̃24)
αβ

x212x
2
13x

2
15x

4
23x

2
24x

2
34x

2
45

,

(Γ5;2) = −4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x25x̃24 − x31x̃32x24x̃25)
αβ

x212x
2
13x

2
15x

2
23x

2
24x

2
25x

2
34x

2
45

. (5.17)

We note that (Γ5;3) contains a double pole 1/(x223)
2 which should disappear in the sum

of all Feynman diagrams. In addition, the expressions in (5.16) and (5.17) do not trans-

form covariantly under the conformal transformations. In order to recover the conformal

symmetry we have to examine the sum of all three diagrams. We find after some algebra

∑

k=1,2,3

(Γ5;k) =− 4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab

× x225x
2
34(x13x̃32)

αβ − x223(x13x̃35x54x̃42 − x13x̃34x45x̃52)
αβ

x212x
2
13x

2
15x

4
23x

2
24x

2
25x

2
34x

2
45

. (5.18)

This example shows that in a order to obtain a conformal result we have to assemble

together a gauge invariant set of diagrams with all possible attachments of the gluon

propagators.

The two remaining diagrams (Γ5;4) and (Γ5;5) are conformally covariant. The diagram

(Γ5;4) can be obtained from (Γ4;7) by replacing the scalar propagator d41 → d45d51 in (5.13).

When combined together with (5.18), it cancels the first term in the numerator in the

second line of (5.18). The resulting expression does not have a double pole 1/(x223)
2 but
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only a simple pole 1/x223. The diagram (Γ5;5) is the 5−point analogue of (Γ4;6), however

its harmonic structure is more complicated due to the higher number of points,

(Γ5;5) =
4

3
c5 y

2
15y

2
34(y13ỹ34y45ỹ52 − y13ỹ35y54ỹ42)

ab (x13x̃32)
αβ

x212x
2
13x

2
15x

2
23x

2
24x

2
25x

2
34

. (5.19)

Finally, to obtain fαβ
ab (1, 2) we add together the contributions of all diagrams (Γ5;k)

(at k = 1, 2, · · · , 5) and symmetrise over all permutations of the points 3, 4, 5 in order to

restore the Bose symmetry of the correlation function. The result takes the remarkably

simple form

fαβ,ab(1, 2) =
8

3
c5

x214x
2
35y

2
15y

2
34∏

1≤i<j≤5 x
2
ij

[
y245(y13ỹ32)

ab(x13x̃35x54x̃42)
αβ − (x ↔ y)

]
+ perm345.

(5.20)

Notice that the product fαβ,ab(1, 2)
∏

i<j x
2
ij is symmetric under the exchange of spatial

and harmonic coordinates xi ⇄ yi (see appendix C for explanation of this property).

Thus, we were able to compute the O(ρ1ρ
3
2) component of G5;1 by using only the

T−blocks (5.9) and (5.10) combined with the ‘black box’ relation (5.15). We can apply

the same approach to computing the remaining components of the 5−point correlation

function G5;1. Their explicit expressions can be found in appendix C.

5.4 Consistency checks

In this subsection, we compare the obtained result for G5;1 with the analogous expression

found in [1]. As was shown in that paper, the N = 4 superconformal symmetry allows us to

predict the form of the 5−point correlation function up to an overall normalisation factor

G5;1 = c
I5;1(x, ρ, y)∏
1≤i<j≤5 x

2
ij

, (5.21)

where the dependence on the Grassmann and harmonic variables resides in the function

I5;1. It is a polynomial in ρ of Grassmann degree 4, invariant underQ and S̄ superconformal

transformations. Its explicit form has been found in [1]

I5;1 = Q8S̄8
5∏

i=1

δ4(ρi)

=

∫
d4ǫ d4ǫ′d4ξ̄ d4ξ̄′

5∏

i=1

δ(4)
(
ρi − (ǫ+ yiǫ

′)− xi(ξ̄ + yiξ̄
′)
)

= x223x
2
24x

2
25x

2
34x

2
35x

2
45 ×R(2345)×

(
ρ1 +

5∑

i=2

R1i ρi

)4

, (5.22)
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where δ4(ρi) ≡ ρ4i . Here (R1i ρi)
αa = Rαβ,ab

1i (ρi)βb involves the matrix Rαβ,ab
1i (see eq. (5.25)

below) and the function R(2345) is polynomial in y2ij and rational in x2ij ,

R(2345) =
x212x

2
13x

2
14x

2
15∏

1≤i<j≤5 x
2
ij

[
(y223y

2
45x

2
25x

2
34 − x223x

2
45y

2
25y

2
34)(y

2
23y

2
45x

2
24x

2
35 − x223x

2
45y

2
24y

2
35)

+ (y224y
2
35x

2
25x

2
34 − x224x

2
35y

2
25y

2
34)(y

2
24y

2
35x

2
23x

2
45 − x224x

2
35y

2
23y

2
45)

+ (y225y
2
34x

2
23x

2
45 − x225x

2
34y

2
23y

2
45)(y

2
25y

2
34x

2
24x

2
35 − x225x

2
34y

2
24y

2
35)

]
. (5.23)

Expanding (5.21) in powers of the Grassmann variables and matching the result with (5.3)

we can express the f−coefficient functions in terms of R(2345) and R1i−matrices.

In this way, we examine the O(ρ41) component and obtain

f(1) = c
R(2, 3, 4, 5)

x212x
2
13x

2
14x

2
15

. (5.24)

Comparing this relation with (C.1), we observe perfect agreement and fix the normalisation

constant, c = 2c5/3. In a similar manner, for the O(ρ2ρ
3
1) component we find

fαβ,ab(2, 1) = −4Rαβ,ab
12 f(1) . (5.25)

Together with (5.20) this relation leads to a definite prediction for the matrix R12 that

we could match against the integral representation for the same matrix, eq. (5.22). Going

through the calculation we find agreement.

The same analysis can be repeated for the other components of G5;1. We verified that

for n = 5 the relation (5.3) with the coefficient functions given in appendix C coincides

with (5.21).

6 Matching the two approaches

In the preceding section we employed the conventional Feynman diagram technique to com-

pute the five-point correlation function G5;1. In this section we show that the relation (4.11)

obtained in the twistor approach correctly reproduces this result. To save space, here we

consider the matching of one component only, (ρ21)
(ab)(ρ23)

(cd) in (5.3), and leave the more

detailed discussion for a future publication.

6.1 Four points

As a simpler illustration, let us first consider the component (ρ21)
ab(ρ23)

cd in the four-

point correlation function G4;1. As was already mentioned, it should vanish in virtue

of N = 4 superconformal symmetry. At the same time, the twistor approach leads to the

expression (4.12) that involves the product of 3−point R−vertices. In this subsection we

demonstrate that the (ρ21)
(ab)(ρ23)

(cd) contribution to (4.12) does indeed vanish.
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At four points there is only one topology of twistor graphs that contributes to G4;1. It

is given by:

I1234 =

1

2

3

4
= d12d23d34d41d13R(1; 234)R(3; 412) (6.1)

and is obviously symmetric under the exchange of points 1 ↔ 3 and 2 ↔ 4. The correlation

function is given by the sum over the non-trivial permutations of this graph,

G4;1 ∼ I1234 + I1243 + I2134 + I2143 + I1324 + I3142 . (6.2)

To extract the contribution (ρ21)
(ab)(ρ23)

(cd), we have to replace the R−invariants in (6.1)

by their expansion (see (B.3) in appendix B) and truncate the resulting expression to the

component we are looking for. In this way, we find after some algebra

I1234 =

[
d34d14(y123)ab(y123)cd

x212x
2
23x

2
13y

2
13

− d23d14(y123)ab(y341)cd
x212x

2
13x

2
34y

2
13

+
(y12341)ac(y34123)bd
2x212x

2
14x

2
34x

2
13x

2
23y

2
13

+ (2 ↔ 4)

]
(ρ21)

ac(ρ23)
bd + . . . ,

I1243 = −(124)

(123)

d24(y123)ab(y341)cd
x212x

2
34x

2
13x

2
14

(ρ21)
ad(ρ23)

bc + . . . ,

I2143 =
(124)(324)

(413)(231)

d24(y321)ab(y143)cd
x214x

2
12x

2
43x

2
32

(ρ21)
bc(ρ23)

ad + . . . , (6.3)

where the dots denote the remaining terms and we used the shorthand notations for

yijk = yij ỹjk , yijklm = yij ỹjkyklỹlm , (ijk) = 〈σijσik〉x2ijx2ik . (6.4)

The expressions for the remaining terms on the right-hand side of (6.2) can be obtained

from (6.3) through permutation of the indices, e.g. I2134 = I1243[1 ↔ 3, 2 ↔ 4], I1324 =

I1243[2 ↔ 4] and I3142 = I1243[1 ↔ 3].

Note that the contribution to (6.2) from I1234 is independent of the reference twistor.

It is straightforward to verify that the same is true for the sum of the remaining five terms

on the right-hand side of (6.2). Finally, substituting (6.3) into (6.2) we find after some

algebra

G4;1 ∼
1

x212x
2
23x

2
13x

2
34x

2
14y

2
13

[
y234y

2
14(y123)ab(y321)cd − y223y

2
12(y143)ab(y134)cd

− y223y
2
41(y123)ab(y341)cd − y243y

2
21(y143)ab(y321)cd − y224y

2
13(y123)ab(y341)cd

+ (y12341)ad(y34123)bc

]
(ρ21)

ad(ρ23)
bc + . . . (6.5)

The expression inside the square brackets vanishes via a non-trivial y−identity. The easiest

way to see this is to use the SU(4) covariance of (6.5) in order to fix the y−variables at the
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four points as:

y1 →
(
1 0

0 1

)
, y2 → ∞ , y3 → 0 , y4 →

(
y 0

0 ȳ

)
. (6.6)

Implementing this choice sets (6.5) to zero. Hence, the (ρ2i )
ab(ρ2j )

cd component of G4;1

vanishes

G4;1 ∼ 0× (ρ21)
ad(ρ23)

bc + . . . (6.7)

as it should be.

6.2 Five points

At five points, the correlation function G5;1 receives contributions from twistor graphs of

three different topologies:

1

1

1

2

2

2

3 33

4

4

4

5

5
5

A12345 B12345 C12345

Applying the Feynman rules shown in figure 4 we find

A12345 = d12d23d13d15d45d34R(1; 235)R(3; 412) ,

B12345 = d14d34d15d35d12d23R(1; 452)R(3; 254) ,

C12345 = d12d13d14d15d23d45R(1; 345)R(1; 234) . (6.8)

G5;1 is given by their total sum symmetrised with respect to the permutations of the

five points.

Let us examine the contribution of each topology to the component (ρ21)
ab(ρ23)

cd. Re-

placing the R−invariants in (6.8) by their expansion in powers of the Grassmann variables

(see eqs. (B.2) and (B.3)) we find that this component does not receive contributions from

graphs of type C for all possible relabelings of the points. The total set of contributing

graphs is

G5;1 ∼ A12345 +
1

2
(A51342 +A53142 +A41352 +A43152 +B53412) +

1

6
B12345 + perm245 .

(6.9)

Here each inequivalent graph appears with coefficient 1, and the numerical factors are

introduced to account for over-counting in the sum over permutations. We split the com-

putation up in this way, since, as we will see in a moment, the linear combination in the

parentheses on the right-hand side of (6.9) is independent of the reference twistor.
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Going through calculations similar to those performed in the four-point case, we obtain

the following expressions for the component (ρ21)
ab(ρ23)

cd

A12345 = −y245(y15243)ab(y123)dc
x212x

2
23x

2
13x

2
34x

2
45x

2
15

(ρ21)
ad(ρ23)

bc + . . . ,

A51342 =
(345)

(341)

y224y
2
25(y153)ab(y341)cd

x215x
2
35x

2
34x

2
13x

2
24x

2
25

(ρ21)
ad(ρ23)

bc + . . . ,

B12345 =
(y12541)ab(y34523)cd
x212x

2
23x

2
34x

2
41x

2
15x

2
35

(ρ21)
ab(ρ23)

cd + . . . ,

B53412 =
(345)(145)

(431)(513)

y224y
2
25(y341)ab(y153)cd

x215x
2
14x

2
35x

2
34x

2
24x

2
25

(ρ21)
bc(ρ23)

ad + . . . (6.10)

The remaining graphs can be obtained by permuting the indices in these expressions.

Notice that the expressions for A12345 and B12345 do not depend on the reference

twistor and have the correct conformal and SU(4) properties. Then, we examine the sum

of graphs in the parentheses in (6.9)

A51342 +A53142 +A41352 +A43152 +B53412

=
y225y

2
24∏

1≤i<j≤5 x
2
ij

x212x
2
23x

2
45

(431)(513)
(y341)ab(y153)cd(ρ

2
1)

bc(ρ23)
ad

×
[
(345)(145)x213+(451)(351)x234+(134)(534)x215+(345)(531)x214+(451)(143)x235

]
+ . . .

= − y225y
2
24∏

1≤i<j≤5 x
2
ij

x212x
2
23x

4
45(y341)ab(y351)dc(ρ

2
1)

bc(ρ23)
ad , (6.11)

where in the second relation we made use of the six-term identity (D.7). We observe that

the dependence on the reference twistor disappears in the sum of graphs.

Finally, we substitute (6.10) and (6.11) into (6.9) and obtain the following expression

for the component (ρ21)
ac(ρ23)

bd of the correlation function

G5;1=
1∏

1≤i<j≤5 x
2
ij

[
− 1

2
x212x

2
23x

4
45y

2
25y

2
24(y143)ab(y153)cd−x214x

2
24x

2
25x

2
35y

2
45(y15243)ab(y123)cd

+
1

6
x213x

2
24x

2
25x

2
45(y12541)ac(y34523)bd + perm245

]
(ρ21)

ac(ρ23)
bd + . . . (6.12)

We compare this expression with the analogous result (C.3) obtained in the standard

Feynman diagram approach and find perfect agreement (after appropriate permutations of

indices).17

To summarise, we demonstrated by an explicit calculation of a particular component of

G5;1 that the expression (4.11) for the correlation function in the twistor approach matches

that obtained in the conventional Feynman diagram approach.

17Note that the harmonic y−structure that comes out of the Feynman graph approach for this component

is graphically identical to the twistor graph.
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7 Conclusions

We have developed a new approach to computing the correlation function Gn of the chiral

part of the stress-tensor supermultiplet in the Born approximation. It relies on the refor-

mulation of N = 4 SYM in twistor space and gives Gn as a sum of effective diagrams on

twistor space which only involve propagators and no integration vertices. We have used this

unusual feature of the twistor diagrams to decompose them into simple building blocks, the

N = 4 superconformal invariants R(i; j1j2j3). However, the price to pay for the relative

simplicity of the twistor diagrams is the dependence of these invariants on the reference

supertwistor Z∗ defining the axial gauge condition. This dependence cancels in the sum of

all twistor diagrams, due to the gauge invariance of Gn but it is present in the contribution

of each individual diagram. The situation here is similar to that of the tree-level scattering

superamplitudes in planar N = 4 SYM.

The relation to the scattering amplitudes can be made more precise by examining the

asymptotic behaviour of Gn in the light-like limit. As we have shown, in the simplest case of

the NMHV amplitude and the next-to-lowest component Gn;1, the on-shell NMHV invari-

ants are given by the product of two off-shell R−invariants evaluated in the light-like limit.

The on-shell invariants are known to possess a larger, dual superconformal symmetry [16]

which is promoted to a Yangian symmetry [34] when combined with the conventional

N = 4 superconformal symmetry. As a consequence, the off-shell invariants also have this

extended symmetry, in the light-like limit at least. Whether this symmetry survives away

from the light-like limit is a very interesting question which requires further investigation.

Knowing Gn in the Born approximation allows us to predict the quantum correc-

tions to the same correlation function using the Lagrangian insertion method. Namely,

integrating the correlation function Gn+1 over the position of one of the operators,∫
d4xn+1 d

4θ+n+1Gn+1, produces the order O(g2) correction to the correlation function Gn.

Continuing this procedure, we can interpret Gn+ℓ in the Born approximation as the O(g2ℓ)

integrand for the quantum corrections to the correlation function Gn. For n = 4 this pro-

cedure, combined with the uniqueness of the top superconformal invariant Iℓ+4,ℓ, has been

used in [1] to reveal a new permutation symmetry of the four-point correlation function.

Starting from n = 5, the quantum corrections to Gn receive contributions from several

superconformal invariants Iℓ+n,p (with p = ℓ, . . . , ℓ + n − 4) whose explicit form can be

found using the approach presented in this paper. It remains to be seen what these in-

variants can tell us about the properties of the corresponding integrands. It would be

interesting to establish the relationship with the Grassmannian approach to the integrand

of the amplitude [35] and with the recent ‘amplituhedron’ construction [36].

When computing the correlation function Gn, we restricted our analysis to the chiral

sector. By putting the antichiral Grassmann variables θ̄ to zero we explicitly broke half of

the supersymmetry. We could ask what happens if we include the dependence of Gn on

θ̄, thus recovering the full N = 4 superconformal symmetry. In the simplest case n = 4

the dependence on θ̄ can be restored unambiguously [37], whereas for n ≥ 5 the N = 4

superconformal symmetry is not powerful enough to lift the correlation function from the

chiral sector to the full superspace. It would be interesting to extend the twistor space

approach to this case.
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A Conventions

We introduce harmonic variables in order to covariantly decompose all quantities carrying

indices in the fundamental representation of SU(4). These variables appear as components

of the unitary matrix

uBA ≡ (u+b
A , u−b′

A ) , (A.1)

where the index A transforms under global SU(4) while the other index B splits into two

halves B = (b, b′) according to the local subgroup SU(2) × SU(2)′ × U(1) ∈ SU(4) with

indices b, b′ = 1, 2 in the fundamental representation of SU(2) and SU(2)′, respectively, and

the signs +b and −b′ referring to the U(1) charge. The unitarity conditions for the matrix

u and its conjugate ū are

ūA+au
+b
A = δba , ūA−a′u

−b′

A = δb
′

a′ , ūA−a′u
+b
A = ūA+au

−b′

A = 0 . (A.2)

They satisfy the completeness relation

u+a
A ūB+a + u−a′

A ūB−a′ = δBA , (A.3)

which allows us to decompose θA as

θA = θ+aūB+a + θ−a′ ūA−a′ , θ+a = θAu+a
A , θ−a′ = θAu−a′

A . (A.4)

It is convenient to use a particular parametrisation of the harmonic variables

u+a
B = (δab , y

a
b′) , u−a′

B = (0, δa
′

b′ ) , ūB+a = (δba, 0) , ūB−a′ = (−yba′ , δ
b′

a′) , (A.5)

which amounts to choosing a gauge for the local subgroup SU(2)× SU(2)′ ×U(1). In this

parameterisation, the SU(4) transformations can be reduced to combining a shift of y with

the discrete operation of inversion

yba′ → yba′ + ǫba′ , yba′ → ya
′

b /y2 , (A.6)

with ya
′

b = yab′ǫ
b′a′ǫab and y2 = yba′y

a′

b /2, in close analogy with the action of the conformal

group on the space-time coordinates xαα̇

xαα̇ → xαα̇ + ǫαα̇ , xαα̇ → x̃α̇α/x2 . (A.7)
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We use the following conventions for rising and lowering Lorentz and SU(2) indices

x̃α̇α = ǫαβxββ̇ǫ
β̇α̇ = xα

β̇
ǫβ̇α̇ , ỹa

′a = ǫabybb′ǫ
b′a′ = yab′ǫ

b′a′ , (A.8)

so that (with xij = xi − xj and yij = yi − yj)

(x12x̃23)α
β = (x12)αβ̇(x̃23)

β̇β , (y12ỹ23)a
b = (y12)ab′(ỹ23)

b′b . (A.9)

It is straightforward to verify that these expressions transform covariantly under the SU(4)

and conformal transformations, eqs. (A.6) and (A.7), correspondingly,

(x12x̃23)α
β →

(x1)
α̇γ(x12x̃23)γ

δ(x̃3)δβ̇
x21x

2
2x

2
3

,

(y12ỹ23)a
b → (y1)

a′c(y12ỹ23)c
d(ỹ3)db′

y21y
2
2y

2
3

. (A.10)

B Component form of the R−invariants

In this appendix we work out the expansion of the three-point R−invariants (3.45) in

powers of the Grassmann variables. We start with the definition (3.45)

R(i; 123) = −
δ2
(
〈σi1σi2〉Ai3 + 〈σi2σi3〉Ai1 + 〈σi3σi1〉Ai2

)

〈σi1σi2〉 〈σi2σi3〉 〈σi3σi1〉
, (B.1)

where Aa′

ij =
[
〈σjiρbj〉+ 〈σijρbi〉

]
(y−1

ij )a
′

b with ρai ≡ θ+a
i . Compared with (3.36), here we put

θA∗ = 0 for simplicity.

Expanding (B.1) in powers of ρ’s we obtain a sum of five different structures antisym-

metrised with respect to the indices of the external legs

R(i; 123) =R1(i; 12) +
1

2
R2(i; 12) +

1

2
R3(i; 12) +

1

2
R4(i; 123) +

1

6
R5(i; 123) + antisym123 .

(B.2)

Here we have defined

R1(i; 12) =
〈σi1|ρiyi12ρ2|σ2i〉

(i12)

x2i1
y2i1

x2i2
y2i2

,

R2(i; 12) = −〈σ1i|ρ1y1i2ρ2|σ2i〉
(i12)

x2i1
y2i1

x2i2
y2i2

,

R3(i; 12) =
〈σi1|ρ2i |σi2〉y212

(i12)

x2i1
y2i1

x2i2
y2i2

,

R4(i; 123) = −〈σ1i|ρ21|σ1i〉
x2i1(i23)

(i12)(i31)

x2i1
y2i1

,

R5(i; 123) = −(ραi yi123iρi,α)
1

y2i1y
2
i2y

2
i3

, (B.3)
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where we used (6.4) and introduced a shorthand notation for ραi yi123iρi,α =

ραai (yi123i)a
bρi,αb, 〈σi1|ρiyi12ρ2|σ2i〉 = σα

i1ρ
a
i,α(yi12)a

bρβ2,bσ2i,β , etc.

The functions R1, R2 and R3 depend on two external points and change sign under their

exchange, Rk(i, 12) = −Rk(i; 21). The function R5(i; 123) is completely antisymmetric in

1,2,3 and R4(i; 123) = −R4(i; 132). The rational factors are introduced in (B.2) to avoid

double counting due to these symmetries.

We can apply (B.2) to calculate various components in the product of R−invariants.

For instance, to find the component (ρ21)
ab(ρ23)

cd in (6.1) we use

R(1; 234)R(3; 412) = −R1(1; 23)R1(3; 21) +R1(1; 23)R1(3; 41) (B.4)

−R1(1; 43)R1(3; 41)+R1(1; 43)R1(3; 21)+R5(1; 234)R5(3; 412)+. . .

where the dots denote terms that do not produce the above mentioned component. The

first term in (B.4) gives:

R1(1; 23)R1(3; 21) =
〈σ12|ρ1ỹ123ρ3|σ31〉

(123)d12d13

〈σ32|ρ3ỹ321ρ1|σ13〉
(321)d23d13

. (B.5)

We can then decompose the product of two ρ’s belonging to the same point into irreducible

components with the help of the identity

ρaαρ
b
β =

1

2
ǫαβ(ρ

2)ab +
1

2
ǫab(ρ2)αβ . (B.6)

To get the component (ρ21)
ab(ρ23)

cd we can neglect the second term. In this way, we obtain

R1(1; 23)R1(3; 21) = −(y123)ab(y321)cd(ρ
2
1)

ad(ρ23)
bc

4x212x
4
13x

2
32d

2
13d12d23

+ . . . , (B.7)

where we used (6.4) to replace 〈σ12σ13〉 = (123)/(x212x
2
13) and 〈σ32σ31〉 = (321)/(x213x

2
23).

Performing similar manipulations we find

R1(1; 23)R1(3; 41) =
(y123)ab(y143)dc(ρ

2
1)

ad(ρ23)
bc

4x212x
2
13x

2
13x

2
34d

2
13d34d12

+ . . . ,

R5(1; 234)R5(3; 412) =
(y12341)ab(y34123)cd(ρ

2
1)

ab(ρ23)
cd

x212x
2
14x

2
34x

2
13x

2
23y

2
13

+ . . . . (B.8)

The remaining terms on the right-hand side of (B.4) can be obtained from the last two

relations by swapping the indices 2 ↔ 4. Substituting these expressions into (B.4) we

arrive at the first relation in (6.3).

Let us show that the invariants (B.1) satisfy relation (3.50). We start with the U(1)

decoupling relation (3.49) for the 4−point vertex

R(1; abcd) +R(1; acdb) +R(1; adbc) = 0 (B.9)

and use (3.47) together with (3.41) to factor out each term on the left-hand side into a

product of 3−point vertices

R(1; abcd) = R(1; abc)R(1; cda) = −R(1; abc)R(1; dca) ,

R(1; acdb) = R(1; acb)R(1; cdb) = −R(1; abc)R(1; dbc) ,

R(1; adbc) = R(1; abc)R(1; adb) = −R(1; abc)R(1; dab) . (B.10)

– 44 –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
8

In this way, we obtain from (B.9)

R(1; abc)
[
R(1; dca) +R(1; dbc) +R(1; dab)

]
= 0 . (B.11)

It follows from (B.1) that R(1; abc)2 = 0 and, therefore, the general solution to this rela-

tion is

R(1; dca) +R(1; dbc) +R(1; dab) = κR(1; abc) . (B.12)

We can use (4.31) to verify that the expression on the left-hand side has zero residue at the

poles (1di) = 0 with i = a, b, c, implying that κ does not depend on the choice of point d.

Putting d = a on both sides and making use of (3.42) we find that κ = 1. We can obtain

the same result by replacing the R−invariants in (B.12) by their explicit expressions (B.2)

and (B.3).

C The components of the five-point correlator

In this appendix we summarise the expressions for the eight coefficient functions defining

the 5−point correlation function G5;1 in (5.3). Going through the steps outlined in sec-

tion 5.3 we can compute them in terms of bosonic and fermonic T−blocks (5.9) and (5.10).

One of the coefficient function is given by (5.20) and the remaining seven functions are

f(1) =
2

3

c5∏
x2ij

[
(y223y

2
45x

2
25x

2
34−x223x

2
45y

2
25y

2
34)(y

2
23y

2
45x

2
24x

2
35−x223x

2
45y

2
24y

2
35)

+ (y224y
2
35x

2
25x

2
34 − x224x

2
35y

2
25y

2
34)(y

2
24y

2
35x

2
23x

2
45 − x224x

2
35y

2
23y

2
45)

+ (y225y
2
34x

2
23x

2
45−x225x

2
34y

2
23y

2
45)(y

2
25y

2
34x

2
24x

2
35−x225x

2
34y

2
24y

2
35)

]
(C.1)

f (αβ)(ab)(1, 2) =− c5∏
x2ij

[
y234y

2
45x

2
24x

2
35(y23ỹ31y15ỹ52)

(ab)(x14x̃45x53x̃31)
(αβ)

− x234x
2
45y

2
14y

2
35(x13x̃32x25x̃51)

(αβ)(y24ỹ45y53ỹ32)
(ab)

]
+perm345 (C.2)

f (ab)(cd)(1, 2) = − 2
c5∏
x2ij

[
1

2
x214x

2
24x

4
35 y

2
34y

2
45(y13ỹ32)

(a
(c(y15ỹ52)

b)
d)

+ x213x
2
25x

2
34x

2
45 y

2
35(y15ỹ54y43ỹ32)

(a
(c(y14ỹ42)

b)
d) (C.3)

+
1

6
x212x

2
34x

2
35x

2
45(y13ỹ34y45ỹ51)

(ab)(y23ỹ34y45ỹ52)
(cd)

]
+ perm345

f (αβ)(γδ)(1, 2) = 2
c5∏
x2ij

[
1

2
y214y

2
24y

4
35 x

2
34x

2
45(x13x̃32)

(α
(γ (x15x̃52)

β)
δ)

+ y215y
2
23y

2
34y

2
45 x

2
35(x13x̃34x45x̃52)

(α
(γ (x14x̃42)

β)
δ) (C.4)

+
1

6
y212y

2
34y

2
35y

2
45(x14x̃43x35x̃51)

(αβ)(x24x̃43x35x̃52)
(γδ)

]
+ perm345

fαβγδ,abcd(1, 2, 3, 4) = 8c5
1

x215x
2
25x

2
35x

2
45

y214y
2
23

x212x
2
14x

2
23x

2
34

(y15ỹ52)
ab(x15x̃52)

αβ

× (y35ỹ54)
cd(x35x̃54)

γδ + graded perm234 (C.5)
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fαβ,ab(cd)(1, 2, 3) = 4
c5∏
x2ij

[
(x14x̃42)

αβ
(
x212x

2
35x

2
45y

2
15y

2
25(y14ỹ43)

a(c(y24ỹ43)
bd)

− x214x
2
25x

2
35y

2
15y

2
45(y12ỹ23)

a(c(y24ỹ43)
bd) − x215x

2
24x

2
35y

2
25y

2
45(y14ỹ43)

a(c(y21ỹ13)
bd)

+ x215x
2
25x

2
34y

2
45(y14ỹ42)

ab(y31ỹ12y25ỹ53)
(cd) + x213x

2
25x

2
45y

2
15(y14ỹ42)

ab(y32ỹ24y45ỹ53)
(cd)

− x215x
2
23x

2
45y

2
25(y14ỹ42)

ab(y31ỹ14y45ỹ53)
(cd)

)

+
(
x212x

2
45y

2
15y

2
24 − x215x

2
24y

2
12y

2
45

)
(x14x̃43x35x̃52)

αβ(y14ỹ43)
a(c(y25ỹ53)

bd)

+ x245(x
2
15x

2
24y

2
14y

2
25 − x214x

2
25y

2
15y

2
24)(x13x̃32)

αβ(y14ỹ43)
a(c(y25ỹ53)

bd)

]
+ perm45 (C.6)

fαβ(γδ),ab(1, 2, 3) = 4
c5∏
x2ij

[
(y14ỹ42)

ab
(
y212y

2
35y

2
45x

2
15x

2
25(x14x̃43)

α(γ(x24x̃43)
βδ)

− y214y
2
25y

2
35x

2
15x

2
45(x12x̃23)

α(γ(x24x̃43)
βδ) − y215y

2
24y

2
35x

2
25x

2
45(x14x̃43)

α(γ(x21x̃13)
βδ)

+ y215y
2
25y

2
34x

2
45(x14x̃42)

αβ(x31x̃12x25x̃53)
(γδ) + y213y

2
25y

2
45x

2
15(x14x̃42)

αβ(x32x̃24x45x̃53)
(γδ)

− y215y
2
23y

2
45x

2
25(x14x̃42)

αβ(x31x̃14x45x̃53)
(γδ)

)

+ (y212y
2
45x

2
15x

2
24 − y215y

2
24x

2
12x

2
45)(y14ỹ43y35ỹ52)

αβ(x14x̃43)
α(γ(x25x̃53)

βδ)

+ y245(y
2
15y

2
24x

2
14x

2
25 − y214y

2
25x

2
15x

2
24)(y13ỹ32)

ab(x14x̃43)
α(γ(x25x̃53)

βδ)
]
+ perm45 (C.7)

Multiplied by
∏

i<j x
2
ij , these expressions have a definite parity under the exchange of

spatial and harmonic coordinates, xi ↔ yi. Namely, f and fαβγδ,abcd are invariant under

this transformation, f(αβ)(ab)(1, 2) transforms into −f(αβ)(ab)(2, 1); f(ab)(cd) and f(αβ)(γδ)
transform into each other as well as fαβ(γδ),ab into fαβ,ab(cd). To understand the origin of

these properties, we notice that, according to the second relation in (5.22), I5;1 is invariant

under xi ↔ yi. Consequently the correlation function G5;1 (as well as its components)

inherit the same symmetry.

D Useful identities

In this appendix we prove some identities that we used in computing the correlation func-

tion in the twistor approach. They involve the variables σij defined in (3.38). Using the

gauge (3.26), we can express them in terms of the spatial coordinates x as

σα
ij = ǫαβ

〈Zi,βZ∗Zj,1Zj,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

= (x−1
ij x̃j0|0〉)α , (D.1)

where the auxiliary point x0 and spinor |0〉 ≡ λ0 originate from the expression for the

reference twistor

ZI
∗ = (λ0,α, ix

α̇β
0 λ0,β) . (D.2)

Then, we apply (D.1) to obtain the following representation for the brackets (ijk) intro-

duced in (4.25)

(ijk) = 〈σijσik〉x2ijx2ik = 〈0|x0j x̃jixikx̃k0|0〉 . (D.3)
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It is straightforward to verify that

(ijk) = x20i〈0|x0j x̃0k|0〉 − x20j〈0|x0ix̃0k|0〉+ x20k〈0|x0ix̃0j |0〉 (D.4)

so that (ijk) is completely antisymmetric in the indices.

Let us show that the following identities take place

(σα
13σ

β
21) + (σα

12σ
β
23)− (σα

13σ
β
23) =

(x13x̃32)
αβ

x212x
2
23x

2
31

(123) ,

(i12)(i34) + (i13)(i42) + (i14)(i23) = 0 . (D.5)

To begin with we notice that both relations stay invariant under the conformal transfor-

mations acting both on the external points 1, 2, 3, 4, i and on the auxiliary point 0 defining

the reference twistor (D.2). We can then use the conformal symmetry to put x2 = 0 and

x3 → ∞ in (D.5). Under this choice the first relation in (D.5) simplifies as

|0〉α(x−1
1 x̃10|0〉)β + (x−1

1 x̃0|0〉)α|0〉β − |0〉α|0〉β = −ǫαβ〈0|x−1
1 x̃0|0〉 (D.6)

and it is obviously satisfied. We can prove the second relation in (D.5) in a similar manner

by choosing xi → ∞ and x2 = 0.

Finally, we prove of the non-trivial six-term identity

(234)(341)x212 − (234)(124)x213 + (123)(234)x214

+(124)(134)x223 − (123)(134)x224 + (123)(124)x234 = 0 . (D.7)

It is convenient to introduce an auxiliary dual reference twistor Z̃∗ normalised as Z̃∗AZ
A
∗ =

1. It then allows us to define two sets of dual variables

Z̃iA = Xi,ABZ
B
∗ , ẐA

i = XAB
i Z̃∗B , (D.8)

with XBC
i = ZB

i,1Z
C
i,2 − ZC

i,1Z
B
i,2 and Xi,AB = 1

2ǫABCDX
CD
i . They satisfy the relations

Z̃jAZ
A
∗ = ẐA

i Z̃∗A = 0 . (D.9)

We also notice that since theXAB takes values in the Clifford algebra of SU(4), the following

holds true:

ẐA
i Z̃jA + ẐA

j Z̃iA = −Z̃∗AZ
C
∗ (XAB

i XjBC +XAB
j XiBC) = −(Xi ·Xj) . (D.10)

Using the dual variables (D.8) we can obtain two equivalent representations for (ijk) defined

in (D.1) and (D.3)

(ijk) =
1

2
ǫABCDZ̃iAZ̃jBZ̃kCZ̃∗D =

1

2
ǫABCDẐ

A
i Ẑ

B
j ẐC

k ZD
∗ ≡ 〈 ijk∗ 〉 . (D.11)

According to (D.9), the twistors Z̃jA with j = 1, . . . , 4 are all orthogonal to ZA
∗ , therefore,

they are linear dependent. The same is true for ẐA
j with j = 1, . . . , 4. This yields two

identities

Z̃1A 〈234∗〉+ Z̃2A 〈34∗1〉+ Z̃3A 〈4∗12〉+ Z̃4A 〈∗123〉 = 0 ,

ẐA
1 〈234∗〉+ ẐA

2 〈34∗1〉+ ẐA
3 〈4∗12〉+ ẐA

4 〈∗123〉 = 0 (D.12)
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Finally we multiply the expressions on the left-hand side and contract the SU(4) indices

to get

(234)(341)(X1 ·X2)− (123)(134)(X2 ·X4)− (234)(124)(X1 ·X3)

+(123)(234)(X1 ·X4) + (124)(134)(X2 ·X3) + (123)(124)(X3 ·X4) = 0 . (D.13)

where we made use of (D.10) and took into account that (Xi · Xi) = 0. Since the last

relation is homogenous in X’s we can employ the gauge (3.26) and replace (Xi ·Xj) = x2ij
to arrive at (D.7).
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