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1. INTRODUCTION
The quantified constraint satisfaction problem QCSP(B), for a fixed template (struc-
ture) B, is a popular generalisation of the constraint satisfaction problem CSP(B). In
the latter, one asks if a primitive positive sentence (the existential quantification of a
conjunction of atoms) Φ is true on B, while in the former this sentence may be posi-
tive Horn (where universal quantification is also permitted). Much of the theoretical
research into CSPs is in respect of a large complexity classification project – it is conjec-
tured that CSP(B) is always either in P or NP-complete [Feder and Vardi 1999]. This
dichotomy conjecture remains unsettled, although dichotomy is now known on sub-
stantial classes (e.g. structures of size ≤ 3 [Schaefer 1978; Bulatov 2006] and smooth
digraphs [Hell and Nešetřil 1990; Barto et al. 2009]). Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear on this
classification project, with many remarkable consequences. A conjectured delineation
for the dichotomy was given in the algebraic language in [Bulatov et al. 2005].
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Complexity classifications for QCSPs appear to be harder than for CSPs. Indeed,
a classification for QCSPs will give a fortiori a classification for CSPs (if B ] K1 is
the disjoint union of B with an isolated element, then QCSP(B ] K1) and CSP(B) are
polynomially equivalent). Just as CSP(B) is always in NP, so QCSP(B) is always in
Pspace. However, no overarching polychotomy has been conjectured for the complexi-
ties of QCSP(B), as B ranges over finite structures, but the only known complexities
are P, NP-complete and Pspace-complete. It seems plausible that these complexities
are the only ones that can be so obtained (for more on this see [Chen 2012]).

In this paper we study the complexity of QCSP(H), where H is a semicomplete di-
graph, i.e. an irreflexive graph so that for each distinct vertices xi and xj at least one of
xixj or xjxi (and possibly both) is in E(H). We prove that each such problem is either
in P, is NP-complete or is Pspace-complete. In some respects, our paper is a companion
to the classifications for partially reflexive forests [Martin 2011] and partially reflexive
cycles [Madelaine and Martin 2013], however our work here differs in two important
ways. Firstly, our classification is a complete trichotomy instead of a partial classifi-
cation between P and NP-hard. Secondly, our classification uses the algebraic method
to derive hardness results, whereas in [Martin 2011; Madelaine and Martin 2013] the
main algebraic tool, surjective polymorphisms, appear only for tractability. Indeed, we
believe our use of the algebraic method here is the most complex so far for any QCSP
trichotomy complexity classification. The first published QCSP trichotomy appeared in
(the preprints of) [Börner et al. 2009] and used relatively straightforward application
of the algebraic method pioneered in the same paper. Subsequently, a combinatorial
QCSP trichotomy appeared, essentially for irreflexive pseudoforests, in [Martin and
Madelaine 2006]. The task to unite [Martin and Madelaine 2006; Martin 2011; Made-
laine and Martin 2013], with the spirit of [Feder et al. 2010], to a QCSP trichotomy
for partially reflexive pseudoforests, remains open-ended and ambitious. Two other
notable trichotomies have appeared in the QCSP literature in the form of [Bodirsky
and Chen 2009] and [Bodirsky and Chen 2010], though both are slightly unorthodox.
The former deals with a variant of the QCSP, which allows for relativisation of the
universal quantifier, and the latter deals with infinite equality languages.

Our work follows in the spirit of the CSP dichotomy for semicomplete digraphs given
long ago in [Bang-Jensen et al. 1988]. What we uncover is that the semicomplete di-
graphs with at most one cycle, whose CSPs are in P as per [Bang-Jensen et al. 1988],
beget QCSPs which remain in P. However, of the semicomplete digraphs with more
than one cycle, whose CSPs are NP-complete, some produce QCSPs of maximal com-
plexity while others remain no more than NP-complete. Our classification is as follows:
if H is a semicomplete digraph then either

—H contains at most one cycle and QCSP(H) is in P, or
—H contains at least two cycles, a source and a sink and QCSP(H) is NP-complete, or
—H contains at least two cycles, but not both a source and a sink, and QCSP(H) is

Pspace-complete.

The tractability results, membership for both P and NP, are relatively straightforward
and date back to the last author’s 2006 Ph.D. thesis [Martin 2006]. Together with
the complexity classification of the CSP for semicomplete digraphs, which was proved
in [Bang-Jensen et al. 1988], they justify the first two items of the above complexity
classification of the QCSP.

The natural trichotomy conjecture for the complexity of QCSP of semicomplete di-
graphs was made (not in print), but repeated efforts to settle it combinatorially failed.
The present work arose from a discussion in Dagstuhl about two related, more specific
conjectures involving the algebraic approach, which had always been deemed appro-
priate as semicomplete digraphs are cores for which all polymorphisms are surjective.
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The first of these specific conjectures sought to deal with a large subclass of the
semicomplete digraphs, those with neither source nor sink (termed smooth). The con-
jecture stated that all polymorphisms of smooth semicomplete digraphs with multiple
cycles are essentially unary. The largest part of our paper is in proving this conjecture.
From the proof of our Theorem 3.3 it follows that the only smooth semicomplete finite
digraphs with one cycle are the 2-cycle and the 3-cycle. When this first conjecture is
proved, applying [Börner et al. 2009] we get that for any smooth semicomplete digraph
H which is not the 2-cycle nor the 3-cycle, QCSP(H) is Pspace-complete.

The remaining cases, after removing those in NP and the smooth ones, are where
there is more than one cycle and no source (dually resp., sink) but there is a sink
(dually resp., source) in the graph. W.l.o.g. we assume that there is no source, but there
is a sink in the graph. The remaining case is thus reduced to the digraph H built by
iteratively adding m sinks to a smooth semicomplete digraph H′ with multiple cycles.
Suppose Kn is the irreflexive n-clique and let K→mn be the same graph with m sinks
iteratively added. From the first conjecture and [Pöschel and Kalužnin 1979], Lemma
1.3.1 (b) follows that Pol(H′) are contained in Pol(Kn), where n = |H′|. The second
Dagstuhl conjecture held that perhaps Pol(H) should be contained in Pol(K→mn ), and
that would be enough to prove Pspace-completeness for the corresponding QCSP (using
our Corollary 6.2 (ii), which was already known to us at the time). This conjecture
turned out to be false, but two substitute digraphs for Kn in this position were found
and between these three they cover all cases. Thus, the Pspace-completeness follows
in all remaining cases.

As previously stated, the bulk of our work is in proving all smooth semicomplete
digraphs with more than one cycle have only essentially unary polymorphisms. It is
easy to see this is not true for semicomplete digraphs which have a source and/or a
sink; for each of which a simple ternary essential polymorphism may be given. Thus,
we give a classification of the semicomplete digraphs all of whose polymorphisms are
essentially unary. This could be the first part of a larger research program, beginning
with semicomplete digraphs, which may continue to larger classes. For example, it is
known precisely which smooth core digraphs have a weak near unanimity polymor-
phism [Barto et al. 2009] and which digraphs enjoy Mal’cev [Carvalho et al. 2011].

An extended abstract of this paper, omitting most of the proofs, appeared as [-Dapić
et al. 2014]. We have significantly simplified the proofs for this journal version. The
paper is organised as follows: After this introductory section, we give the definitions
and terminology in the second section. The third section proves the upper bounds of
complexity for all cases which are not Pspace-complete. The next three sections prove
that the remaining cases are Pspace-complete, by dealing first with the strongly con-
nected semicomplete digraphs in Section 4, then with smooth semicomplete digraphs
in Section 5, and finally with all semicomplete digraphs in Section 6.

2. PRELIMINARIES
Let [n] := {1, . . . , n}. All graphs in what follows are directed, that is just a binary
relation on a set. We denote digraphs by G, H, etc. and their vertex and edge sets by
V (.) and E(.), respectively, where we might omit the (.) if this is clear.

A digraphH is semicomplete if it is irreflexive (loopless) and for any two distinct ver-
tices i and j, at least one of ij and ji is an edge ofH. If E(H) never contains both ij and
ji, then it is furthermore a tournament. The equivalence relation of strong connected-
ness is defined in the usual way and its equivalence classes will be called strong com-
ponents. If the strong component has one element, it is trivial, otherwise nontrivial.
We start by noting that, just like in the case of tournaments, in semicomplete graphs
the strong components can be linearly ordered, so that there is an edge out of every
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vertex in a smaller strong component into every vertex of a larger strong component
(but never an edge going the other way, obviously).

The problems CSP(H) and QCSP(H) each take as input a sentence Φ, and ask
whether this sentence is true on H. For the former, the sentence involves the exis-
tential quantification of a conjunction of atoms – primitive positive (pp) logic. For the
latter, the sentence involves the arbitrary quantification of a conjunction of atoms –
positive Horn (pH) logic. It is well-known, for finite H, that CSP(H) and QCSP(H) are
in NP and Pspace, respectively.

The direct product G×H of two digraphs G andH has vertex set {(x, y) : x ∈ V (G), y ∈
V (H)} and edge set {((x, u), (y, v)) : x, y ∈ V (G), u, v ∈ V (H), xy ∈ E(G), uv ∈ E(H)}.
Direct products are (up to isomorphism) associative and commutative. The kth power
Gk of a graph G is G × . . .× G (k times). A homomorphism from a graph G to a graph H
is a function h : V (G) → V (H) such that, if xy ∈ E(G), then h(x)h(y) ∈ E(H). A k-ary
polymorphism of a graph H is a homomorphism from Hk to H. A polymorphism f is
idempotent when, for all x, f(x, . . . , x) = x. We write Pol(G) (Polid(G)) for the set of all
(idempotent) polymorphisms of G. A function f(x1, . . . , xn) depends on xi if there exist
a1, . . . , an, a

′
i such that f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, a

′
i, ai+1, . . . , an).

The essential arity of f is the number of variables on which it depends.
A digraph is a core if all of its endomorphisms are automorphisms. All finite semi-

complete digraphs are cores, for which all polymorphisms are surjective. For cores it
is well-known the constants are pp-definable up to automorphism. That is, if Hc is H
with all constants named, and H is a core, then CSP(H) and CSP(Hc) are poly time
equivalent; and the same applies to the QCSP. A similar argument, given in the alge-
braic language, is in our Proposition 4.2, and the implication is that we may as well
assume all the polymorphisms of a semicomplete digraph H are idempotent (because
this is true for Hc which is actually the structure we will be working on).

The now-celebrated algebraic approach to CSP rests on one half of a Galois corre-
spondence [Bodnarčuk et al. 1969a; 1969b; Geiger 1968], where it is observed that the
relations that are invariant under (preserved by) the polymorphisms ofH are precisely
the relations that are pp-definable in H. For QCSP, in [Börner et al. 2009], Theorem
3.16 and Proposition 3.12, was obtained a similar characterisation substituting sur-
jective polymorphisms for polymorphisms and pH for pp. The consequence of this is
that if the polymorphisms (resp., surjective polymorphisms) of H are a subset of those
of H′, then there is a poly time reduction from CSP(H′) to CSP(H) (resp., QCSP(H′)
to QCSP(H)); that is, the polymorphisms control the complexity. We will use another
well-known special case of [Bodnarčuk et al. 1969a; 1969b; Geiger 1968]: a relation
is invariant under all idempotent polymorphisms of H (i.e., it is invariant under all
polymorphisms of Hc, the digraph H augmented with all one-element unary relations)
iff it is pp-definable via the edge relation and the constants.

Certain types of polymorphisms are important in the algebraic approach, or are go-
ing to play a role in our paper, so we define them here. An operation t : V n → V ,
where n ≥ 3 is a near-unanimity operation if, for all x, y ∈ V , t(x, x, . . . , x, y) =
t(x, x, . . . , x, y, x) = . . . = t(y, x, x, . . . , x) = x. A ternary (n = 3) near-unanimity op-
eration is called a majority operation. An operation d : V 3 → V is a Mal’cev operation
if, for all x, y ∈ V , d(x, y, y) = d(y, y, x) = x. The main result of [Kazda 2011] proves
that digraphs which enjoy a Mal’cev polymorphism must also admit a majority poly-
morphism, a property of digraphs not true in finite relational structures with more
complicated language than digraphs. Finally, w : V n → V , where n ≥ 2 is a weak
near-unanimity operation if, for all x, y ∈ V , w(x, x, . . . , x, y) = w(x, x, . . . , x, y, x) =
. . . = w(y, x, x, . . . , x) and w(x, x, . . . , x) = x. If H is a core digraph with no weak near-
unanimity polymorphisms then CSP(H) is NP-complete [Bulatov et al. 2005; Maróti
and McKenzie 2008]. Note that a near-unanimity operation is a weak near-unanimity
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operation, so by the result of [Kazda 2011], if a digraph has no weak near-unanimity
polymorphisms, it has neither a Mal’cev nor near-unanimity polymorphisms. That
statement actually holds in all finite models, though we care only about digraphs here.
If the finite model has a Mal’cev polymorphism, then it has a weak near-unanimity
polymorphism, though it might have no near-unanimity polymorphism, by [Hobby and
McKenzie 1988] and [Maróti and McKenzie 2008].

We summarize the impact of existence and non-existence of various polymorphisms:

PROPOSITION 2.1. LetH be a core digraph. If H has a Mal’cev or a near-unanimity
polymorphism, then QCSP(H) is in P. IfH has no weak near-unanimity polymorphism,
then QCSP(H) is NP-hard and CSP(H) is NP-complete. IfH has only essentially unary
polymorphisms, then QCSP(H) is Pspace-complete. All these results also hold for Hc.

PROOF. All of these follow from [Börner et al. 2009; Bulatov et al. 2005; Maróti and
McKenzie 2008; Kazda 2011].

If Φ is an input for QCSP(H) with quantifier-free part ϕ, then with this we associate
the digraph Gϕ whose vertices are variables of ϕ and edges are given by the atoms in
ϕ. If Φ is existential, i.e. also an input to CSP(H), then the relationship between Φ and
GΦ is that of canonical query to canonical database [Kolaitis and Vardi 2005].

In a digraph, a source (resp., sink) is a vertex with out-degree (resp. in-degree) 0. A
digraph with no sources or sinks is called smooth. In a semicomplete graph, a source
s (resp., sink t) satisfies, for all x 6= s (resp., x 6= t), xs /∈ E(H) and sx ∈ E(H) (resp.,
tx /∈ E(H) and xt ∈ E(H)). A digraph may have multiple sources or sinks, but a semi-
complete may have at most one of each. If H is a digraph, then let H→j be H with,
iteratively, j sinks added (i.e. each time we add a sink we make it forward-adjacent
to each existing vertex). Let us label these added sinks, in order, t1, . . . , tj (thus tj is
the unique sink of H→j). Similarly, let H←j be H with j sources added. We write H→
(resp., H←) for H→1 (resp., H←1). We denote by a+ and a− the sets {x ∈ V : ax ∈ E}
and {x ∈ V : xa ∈ E}, respectively. Also, for S ⊆ V , we write S+ for the union⋃
{a+ : a ∈ S} and dually S− =

⋃
{a− : a ∈ S}. The notation S∀+ (resp. S∀−) will

stand for
⋂
{a+ : a ∈ S} (resp.

⋂
{a− : a ∈ S}). By �H we denote the relation on V

defined by x �H y iff x− ⊆ y−.

PROPOSITION 2.2. Let H = (V,→) be semicomplete. Then �H is a partial order, �H
has the largest element t iff t is a sink, and dually for least elements and sources.

PROOF. The relation �H is always reflexive and transitive since ⊆ is. In semicom-
plete graphs, if x, y ∈ V (H) are distinct, then we have x ∈ y− \ x− or y ∈ x− \ y−, so
x− 6= y− and �H is antisymmetric.

If t is a sink, then t− = V \ {t}, and t is in no set of the form x−, so t is clearly
the greatest element in �H. Conversely, if t → x, then t ∈ x− and since t /∈ t−, thus
¬x �H t, implying that t is not the largest element with respect to �H.

We mention some special semicomplete graphs that will appear in the paper. Kn is
the irreflexive complete graph (clique) on vertex set [n]. DC3 is the directed 3-cycle. Let
Tn be the transitive tournament on [n] with the natural order < corresponding to the
edge relation (i.e. ij ∈ E(Tn) iff i < j). Let Tn be Tn with the extant edge 1n augmented
by n1, i.e. this becomes a double-edge.

3. COMPLEXITY UPPER BOUNDS
The results of this section date back to the third author’s Ph.D. [Martin 2006] (avail-
able from his website) and are presented there combinatorially and in much fuller
detail. The first is very straightforward.
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PROPOSITION 3.1. Let H be a digraph with both a source s and a sink t, then
QCSP(H) is in NP.

PROOF. Let Φ be an input to QCSP(H) with quantifier-free part ϕ. Suppose ϕ has
an atom vivj so that Φ quantifies vi universally, then Φ is a no-instance since ϕ will
never be satisfied when vi is evaluated as t. Dually, we may assume ϕ has no atom
vivj so that Φ quantifies vj universally; and we find that Φ can not contain universally
quantified variables involved in atoms of ϕ. Thus, we may evaluate Φ as an input to
CSP(H) in NP.

We now turn our attention to the poly time cases. It is well-known that QCSP(K2) and
QCSP(DC3) are in P, and there are various ways to see this. One is to note that both
K2 and DC3 admit a majority polymorphism (which is the first projection in all non-
majority evaluations of variables) and then appeal to [Börner et al. 2009]. We are now
interested in the semicomplete graphs K→j2 , K←j2 , DC→j3 and DC←j3 (for j > 0).

PROPOSITION 3.2. For j ≥ 0, each of QCSP(K→j2 ), QCSP(K←j2 ), QCSP(DC→j3 ) and
QCSP(DC←j3 ), is tractable.

PROOF. For j ≥ 0, we will give polynomial time reductions from QCSP(K→j+1
2 )

to QCSP(K→j2 ) and for QCSP(DC→j+1
3 ) to QCSP(DC→j3 ). The general result for

QCSP(K→j2 ) and QCSP(DC→j3 ) follows by induction, and the arguments for the other
cases are clearly analogous.

We will make use of the game-theoretic interpretation of the QCSP. Let Φ be an
input for QCSP(H) with quantifer-free part ϕ; then the (Φ,H)-game pitches Universal
(male) against Existential (female). They play their own type of variables according to
the quantifier order of Φ, each evaluating those variables on H. Once all the variables
are evaluated, Existential wins iff the resulting assignment is true of ϕ onH. It is plain
to see that H |= Φ, i.e. Φ is a yes-instance of QCSP(H), iff Existential has a winning
strategy in the (Φ,H)-game.

(QCSP(K→j+1
2 ) to QCSP(K→j2 ).) Let Φ be an input for QCSP(K→j+1

2 ) and ϕ be its
quantifier-free part. Suppose that xi is universally quantified in Φ and that xi is not a
sink in Gϕ. Clearly, Φ is a no-instance of QCSP(K→j+1

2 ) (witnessed when xi is evaluated
as the sink). In this case we set Ψ to be a fixed no-instance of QCSP(K→j2 ) (e.g. stating
for all x, y there is an edge xy). Otherwise, from ϕ we will build ψ by removing all
atoms xixj where the vertex of Gϕ associated with xj is a sink and both xi and xj are
existentially quantified in Φ. We now return the quantifiers of Φ to ψ, omitting any
variable that has fully disappeared, to create Ψ. We claim K→j+1

2 |= Φ iff K→j2 |= Ψ and
we will use a game-theoretic argument to show this.

(Forwards: K→j+1
2 |= Φ implies K→j2 |= Ψ.) Recall from the definitions the vertices

t1, . . . , tj(, tj+1) which were added to K2 to make K→j2 (K→j+1
2 ) and that tj+1 is the sink

of K→j+1
2 and tj is the sink of K→j2 . Suppose Existential has a winning strategy in the

(Φ,K→j+1
2 )-game. We claim Existential may win with exactly the same strategy in the

(Ψ,K→j2 )-game, and to see this it is enough to see that any vertex x ∈ Gϕ for which
Existential played tj+1 in the (Φ,K→j+1

2 )-game was removed when building Ψ.
(Backwards: K→j2 |= Ψ implies K→j+1

2 |= Φ.) Here, Existential builds a winning strat-
egy in the (Φ,K→j+1

2 )-game by augmenting her winning strategy in the (Ψ,K→j2 )-game
with the rule that any existential variable that subsists in Φ but not in Ψ may be
played as tj+1.
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(QCSP(DC→j+1
3 ) to QCSP(DC→j3 ).) This case reads exactly as the previous with DC3

substituted everywhere for K2.

We will now prove which semicomplete digraphs are tractable and which are NP -
complete. The remainder of the paper proves that all other cases are Pspace-complete.

THEOREM 3.3. Let H be a semicomplete digraph. If H has at most one directed
cycle, then QCSP(H) is in P . If H has more than one directed cycle, but also a source
and a sink, then QCSP(H) is NP -complete.

PROOF. If H has both a source and a sink, in particular if it has no cycles, then
by Proposition 3.1, QCSP(H) reduces to CSP(H). The complexity of the CSP for semi-
complete digraphs was classified in [Bang-Jensen et al. 1988], and in the case when
H contains both a source and a sink it coincides with our assertion. Assuming that
H contains no sinks or no sources, it must contain at least one cycle. Note that any
nontrivial strong component has at least one cycle, the Hamiltonian cycle for that com-
ponent. Moreover, any cycle of length 4 or more has a diagonal by semicompleteness,
and therefore a smaller cycle inside it. So, ”at most one cycle” means ”at most one non-
trivial strong component, of size ≤ 3”. The only semicomplete digraphs with just one
cycle and without a source are K2, DC3, K→j2 and DC→j3 , while the only semicomplete
digraphs with just one cycle and a source, but without a sink are K←j2 and DC←j3 , all of
which were dealt with in Proposition 3.2 and the remarks preceding it.

4. STRONGLY CONNECTED CASE
This section proves that all strongly connected semicomplete digraphs not covered by
Theorem 3.3 induce Pspace-complete QCSP when they are templates. The section is di-
vided in three parts. The initial part establishes useful preliminary lemmas and states
the actual result on polymorphisms which we will prove and which will imply the de-
sired Pspace-hardness result. The first subsection is devoted to a subclass of strongly
connected semicomplete digraphs which we call the P-graphs. P-graphs will serve both
as a part of our inductive base in the main proof, and also in the second subsection we
will use various ways the assumption that the digraph under consideration is not a
P-graph, since those have been dealt with in the first subsection.

The following easy lemma will be used a few times in the paper. It was used in
[Barto et al. 2009], but probably is folklore. Before we state it, we define the following
notation for tuples: (xiyjzk) = (x, . . . , x︸ ︷︷ ︸

i

, y, . . . , y︸ ︷︷ ︸
j

, z, . . . , z︸ ︷︷ ︸
k

). Moreover, if f(x1, . . . , xn) is

an operation and 1 ≤ i ≤ n, then fi(x, y) will denote f(xi−1yxn−i).

LEMMA 4.1. Let a set C of idempotent operations on the set A, |A| > 1, be closed
under identification of variables and contain no near-unanimity nor Mal’cev operations
and only the two projections among its binary operations. Then for all f ∈ C with arity
n > 0, there exists precisely one i such that 1 ≤ i ≤ n and fi(x, y) = y (and thus,
fj(x, y) = x for all j 6= i, 1 ≤ j ≤ n).

PROOF. Assume n > 2. If no such i exists, then f is a near-unanimity operation. On
the other hand, if there were two such i′ < i′′, then m(x, y, z) := f(yi

′−1xyi
′′−i′−1zyn−i

′′
)

would be a Mal’cev operation, since m(y, x, x) = fi′(x, y) and m(x, x, y) = fi′′(x, y). The
case n = 1 is trivial. If n = 2, the opposite assumption yields x = y, contradicting
|A| > 1. The parenthesized remark follows from fj(x, y) = x or fj(x, y) = y for all j.

All finite semicomplete digraphs are cores, since any endomorphism must be injec-
tive by semicompleteness, and therefore an automorphism by finiteness. In the case
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of core digraphs, we can easily strengthen Theorem 5.2 of [Börner et al. 2009], which
states that for all finite digraphs G which have only essentially unary surjective poly-
morphisms, QCSP(G) is Pspace-complete.

PROPOSITION 4.2. For all finite core digraphs G which have no idempotent poly-
morphisms other than projections, QCSP(G) is Pspace-complete.

PROOF. If a core digraph has a k-ary polymorphism f , then α(x) := f(x, x, . . . , x)
is a unary polymorphism, so α is an automorphism (in particular, this means
that all polymorphisms of core digraphs are surjective). Define g(x1, . . . , xk) to be
α−1(f(x1, . . . , xk)). Clearly, g is an idempotent polymorphism of G. Moreover, g has the
same essential arity as f , since α is a bijective map, and thus any pair of n-tuples are
mapped to distinct elements f iff they are mapped to distinct elements by α−1 ◦ f = g.
Since g is a projection, which is essentially unary, then f is also essentially unary, so
by Theorem 5.2 of [Börner et al. 2009], QCSP(G) is Pspace-complete.

When G is smooth and semicomplete, we will investigate the idempotent polymor-
phisms of G and those are precisely the polymorphisms of Gc. So, the new structure we
will be working on is Gc, as announced in the Preliminaries section. From the polymor-
phisms side, the idempotent polymorphisms of G are the same as polymorphisms of Gc,
so it makes no difference whether we speak about one or the other. However, if we are
trying to compute relations compatible with all idempotent polymorphisms of G, those
are precisely the relations definable via primitive positive formulae (pp-definable) from
all one-element unary relations (constants) and the edge relation, i.e. from Gc.

In this section our goal is to prove

THEOREM 4.3. If G is a strongly connected semicomplete digraph with more than
one cycle, then QCSP(G) is Pspace-complete.

and we will do it by proving that all strongly connected semicomplete digraphs with
more than one cycle have no idempotent polymorphisms other than the projections and
then invoking Proposition 4.2.

We start by noting that, just like in the case of tournaments, in semicomplete di-
graphs the strong components can be linearly ordered, so that there is an edge out of
every vertex in a smaller strong component into every vertex of a larger strong compo-
nent (but never an edge going the other way, obviously). In case of strongly connected
digraphs, this seems like a non-issue since there is a single strong component, but
it will arise in some subgraphs. For the rest of this section, G = (V,E) is a strongly
connected semicomplete digraph which is not a cycle.

Definition 4.4. Let L be a subset of V . We define the relation ≡L on V by: u ≡L v iff

(1) u+ ∩ L = v+ ∩ L and u− ∩ L = v− ∩ L, or
(2) {u, v} ⊆ L.

The relation defined by just (1) is clearly an equivalence relation since the equality
is an equivalence relation. Thus, ≡L is the union of the relation defined by (1) and
L× L. To prove that ≡L is an equivalence relation, we need to prove that no elements
u ∈ L and v /∈ L can be ≡L-related. We know that uv ∈ E or vu ∈ E, so u is either
in v− ∩ L or in v+ ∩ L (or both), but u is in neither of the sets u− ∩ L and u+ ∩ L. In
particular, L is a ≡L-class, which will be useful presently.

LEMMA 4.5. Let L be a subset of V such that the induced subgraph on L is strongly
connected and let v be a vertex such that v+∩L 6= ∅ 6= v−∩L. If f is an n-ary idempotent
polymorphism of G which is the first projection on L, then f(v, a2, . . . , an) = v, where
ai ∈ L ∪ {v} for all 2 ≤ i ≤ n.
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PROOF. Assume that f(v, a2, . . . , an) 6= v and that v is selected to have maximal
|v−∩L|+ |v+∩L| among the vertices in V \L which satisfy that v+∩L 6= ∅ 6= v−∩L and
that there exist vertices ai ∈ L ∪ {v}, for all 2 ≤ i ≤ n, such that f(v, a2, . . . , an) 6= v.

So, let u = f(v, a2, . . . , an) 6= v. First we prove that u ≡L v. Let a ∈ L. If v → a,
then pick a′2, . . . , a

′
n ∈ L such that a′i = a if ai = v and ai → a′i if ai ∈ L. We get u =

f(v, a2, . . . , an) → f(a, a′2, . . . , a
′
n) = a. Similarly, if a → v, then pick a′2, . . . , a

′
n ∈ L such

that a′i = a if ai = v and a′i → ai if ai ∈ L. We get a = f(a, a′2, . . . , a
′
n)→ f(v, a2, . . . , an) =

u. So, we proved that v+ ∩ L ⊆ u+ ∩ L and v− ∩ L ⊆ u− ∩ L. Assume that one of those
subsets is proper. As we know u 6= v, and suppose that u→ v. Select b2, . . . , bn ∈ L such
that bi → ai for all 2 ≤ i ≤ n. Then f(u, b2, . . . , bn) → f(v, a2, . . . , an) = u, so we get
that f(u, b2, . . . , bn) 6= u. But this contradicts the choice of v, since ∅ 6= v+ ∩ L ⊆ u+ ∩ L,
∅ 6= v− ∩L ⊆ u− ∩L and |u− ∩L|+ |u+ ∩L| > |v− ∩L|+ |v+ ∩L|. The alternative is that
u− ∩ L = v− ∩ L and u+ ∩ L = v+ ∩ L. The case when v → u is proved dually.

Let v1 := f(v, a2, . . . , an) and we know from above considerations that v1 ≡L v, and
v1 6= v. So, we may assume without loss of generality that v → v1. We denote by U
the equivalence class v/ ≡L. Let us define a sequence v0, v1, v2, . . . of elements of U
recursively, and together with it n − 1 more auxiliary sequences a(i)

2 , a(i)
3 ,. . . , a(i)

n . We
start with setting v0 := v, fixing a Hamiltonian cycle C going through L, and define
a

(0)
i := ai for all 2 ≤ i ≤ n. We define vi+1 := f(vi, a

(i)
2 , . . . , a

(i)
n ), and once vi+1 is known,

the auxiliary sequences for each j, 2 ≤ j ≤ n, are defined like this:

— If a(i)
j = vi, then a

(i+1)
j := vi+1,

— if a(i)
j ∈ L ∩ v−, then a

(i+1)
j := vi+1 and

— if a(i)
j ∈ L \ v−, then we select a(i+1)

j to be the next element along the fixed Hamilto-
nian cycle for L, that is, the edge a(i)

j a
(i+1)
j is in the Hamiltonian cycle C.

To give a more informal idea of the proof in order to avoid getting lost in notation, we
are walking through U by the sequence v0, v1, ... while simultaneously walking through
L along the Hamiltonian cycle with the parameters until we get a chance to jump
with a parameter to the next v. We know that initially all positions are evaluated
as elements of L ∪ {v} (v = v0), and this property continues, at the ith iteration all
positions in f(x1, x2, ..., xn) are evaluated as elements of L or as vi. However, we grad-
ually make more and more of them equal to vi. Eventually, we are going to get that
vk+1 = f(vk, a

k
2 , a

k
3 , ..., a

k
n) = f(vk, vk, ..., vk) = vk, which is a contradiction since there

should be an edge between them.
Now more formally, we prove by the induction on i that vi ∈ U , that all a(i)

j ∈ L∪{vi}
and that vi → f(vi, a

(i)
2 , . . . , a

(i)
n ) = vi+1 (in particular, vi 6= vi+1). All three claims hold

for i = 0 by our choice of v and a2, . . . , an and from the fact that v → v1.
Now assume that vk ∈ U , that all a(k)

j ∈ L∪{vk} and that vk → vk+1. We see that the
proof of v1 ≡L v from the second paragraph applies in proving that v+

k ∩ L ⊆ v+
k+1 ∩ L

and v−k ∩L ⊆ v
−
k+1∩L, so vk+1 ∈ U . We need to prove that a(k)

j → a
(k+1)
j . If a(k)

j = vk, then
a

(k+1)
j = vk+1 and a

(k)
j → a

(k+1)
j follows from vk → vk+1 which is true by the inductive

assumption. If a(k)
j ∈ v− ∩ L, then from vk ∈ U (in other words, vk ≡L v) and from

v−k ∩ L ⊆ v−k+1 ∩ L it follows that a(k)
j ∈ v−k+1 ∩ L, hence a(k)

j → vk+1 = a
(k+1)
j . Finally,

if a(k)
j ∈ L \ v−, then by definition a

(k)
j → a

(k+1)
j along the Hamiltonian cycle. From

the assumption that f is a polymorphism, we obtain that vk+1 = f(vk, a
(k)
2 , . . . , a

(k)
n )→

f(vk+1, a
(k+1)
2 , . . . , a

(k+1)
n ) = vk+2. Therefore, vk+1 6= f(vk+1, a

(k+1)
2 , . . . , a

(k+1)
n ) = vk+2 by
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semicompleteness and since all ak+1
i ∈ L∪{vk+1}, then by the maximality of |v− ∩L|+

|v+ ∩ L| we get that v−k+1 ∩ L = v− ∩ L and v+
k+1 ∩ L = v+ ∩ L, so vk+1 ∈ U , which

completes the inductive proof.
We know that if ai 6= v, then the sequence a(0)

i , a
(1)
i , a

(2)
i , . . . will contain an element

a
(k)
i which is in v−∩L, as this sequence is initially moving along the Hamiltonian cycle

for L, and at some point it must reach elements of the nonempty subset L ∩ v−. Then
a

(k+1)
i = vk+1 and that auxiliary sequence will from that point on be equal to the main

sequence, that is a(j)
i = vj for all j > k. This will eventually happen with all auxiliary

sequences, with k at most |L| − 1 (as by that time all members of L will have occurred
in the Hamiltonian cycle). So, we know that a(|L|)

i = v|L| for all i. But then we derive
the final contradiction from v|L|+1 = f(v|L|, v|L|, . . . , v|L|) = v|L| by idempotence of f ,
which is impossible since we proved that v|L| → v|L|+1.

The following definition shortens our notation and makes terminology a little easier.

Definition 4.6. A subset L ⊆ V is nice if the induced subgraph on L is strongly
connected and all idempotent polymorphisms of G restrict to L as projections.

LEMMA 4.7. Let L be a nice subset of V and let v be a vertex such that v+ ∩L 6= ∅ 6=
v− ∩ L. Then L ∪ {v} is nice.

PROOF. It suffices to prove that if f is an n-ary idempotent polymorphism of G which
is the first projection on L, then f is the first projection on L ∪ {v}. From Lemma 4.5
we know that we only have to prove that f(a1, a2, . . . , an) = a1 where a1 ∈ L and the
other ai are in L∪{v}. We will denote f(a1, . . . , an) by u for shorter notation, and prove
that u = a1. Let b1 be any vertex in L ∩ a+

1 and b2, . . . , bn ∈ L be such that ai → bi (they
exist since the induced subgraph on L is strongly connected, hence smooth, and since
L∩ v+ 6= ∅). Therefore, f(a1, a2, . . . , an)→ f(b1, b2, . . . , bn) = b1, and hence ∅ 6= a+

1 ∩L ⊆
u+ ∩ L. Dually we prove that ∅ 6= a−1 ∩ L ⊆ u− ∩ L.

Now if u 6= a1, we already know that u is not equal to any other vertices of L, since
L\{a1} = L∩(a+

1 ∪a
−
1 ) = (L∩a+

1 )∪(L∩a−1 ) ⊂ (L∩u+)∪(L∩u−) ⊆ u+∪u−. From u 6= a1

we get that a1 → u or u → a1. If a1 → u, we select b2, . . . , bn ∈ L such that ai → bi,
and then we get u = f(a1, a2, . . . , an) → f(u, b2, . . . , bn) = u (the last equality holds by
Lemma 4.5, since u+ ∩ L 6= ∅ 6= u− ∩ L). This is a contradiction with the assumption
that G is loopless. The case when u→ a is dealt with dually.

LEMMA 4.8. Let L = {a, b} be compatible with (i. e. closed under) the idempotent
polymorphisms of G and let a ↔ b. If v ∈ V \ L is such that v+ ∩ L 6= ∅ 6= v− ∩ L then
{a, b, v} is nice.

PROOF. Let f be an n-ary idempotent polymorphism of G and let i ≤ n be such
that f(aibn−i) = a and f(ai−1bn−i+1) = b. Such an i must exist since, by idempotence,
f(anb0) = a and f(a0bn) = b. Since (aibn−i) → (bian−i) in the digraph Gn, and {a, b} is
closed under f , our assumption means also that f(bian−i) = b and f(bi−1an−i+1) = a.
Without loss of generality, we can assume that a→ v and v → b.

Claim 1: f(ai−1vbn−i) = v. Also, (dually) f(bi−1van−i) = v.
Let u := f(ai−1vbn−i). Notice that a = f(bi−1an−i+1) → f(ai−1vbn−i) = u and u =

f(ai−1vbn−i)→ f(bian−i) = b, so we have proved a→ u→ b. Let us consider cases:
Case 1: Let v → u. Define w := f(uian−i). We get u = f(ai−1vbn−i) → f(uian−i) = w

and a = f(aibn−i)→ f(uian−i) = w. Thus, w = f(uian−i)→ f(wn) = w, a contradiction.
Case 2: Suppose that u→ v. Define w := f(bi−1un−i+1). We get w = f(bi−1un−i+1)→

f(ai−1vbn−i) = u and also w = f(bi−1un−i+1)→ f(ai−1bn−i+1) = b. Hence, w = f(wn)→
f(bi−1un−i+1) = w, a contradiction.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 11, Publication date: January 2011.



QCSP on semicomplete digraphs 11:11

Since neither u → v nor v → u, it must be that u = v, that is v = f(ai−1vbn−i). If we
reverse all edges and transpose a and b, we obtain the proof of the other statement.

Claim 2: For any tuple c ∈ {b, v}i−1,

f(cban−i) = b. (1)

Denote u := f(cban−i). We know that a = f(aibn−i) → f(cban−i) = u and v =
f(ai−1vbn−i)→ f(cban−i) = u. Assume that u 6= b.

If b→ u, then u = f(cban−i)→ f(un) = u, a contradiction. The remaining possibility
is that u→ b. But then a→ u→ b and we can apply Claim 1 to u in place of v to obtain
u = f(ai−1ubn−i)→ f(cban−i) = u, again a contradiction.

Dually, we also have for all c ∈ {a, v}i−1 that

f(cabn−i) = a. (2)

Claim 3: For any tuple c ∈ {a, b}i−1,

f(cabn−i) = a and f(cban−i) = b. (3)

To see the first equation in (3), fix any c ∈ {a, b}i−1 and let d ∈ {b, v}i−1 be such that

d(j) = b whenever c(j) = a, while d(j) = v whenever c(j) = b. Now b
(1)
= f(dban−i) →

f(cabn−i), so from f(cabn−i) ∈ {a, b} follows f(cabn−i) = a. The proof of the second
equation in (3) is analogous, we just take the proof of the first equation, transpose a
and b, reverse all edges and use (2) in place of (1).

Claim 4: {a, b} is nice.
First note that if we take c = ai−1 in (3), then we obtain f(ai−1ban−i) = b. Then

take g(x1, . . . , xn) = f(x1, . . . , xi−1, xi+1, . . . , xn, xi) (g is obtained from f by cyclically
permuting the last n − i + 1 variables). g is also an idempotent polymorphism of G
and g(an−1b) = f(ai−1ban−i) = b, while g(an) = a by idempotence. Hence, by Claim 3
applied to g we get that for any c ∈ {a, b}n−1, g(ca) = a and g(cb) = b. In other words,
g restricts on {a, b} as the nth projection. But then, since f is obtained from g by a
permutation of coordinates, f restricts to {a, b} as the ith projection. Since f was an
arbitrarily chosen idempotent polymorphism of G, and since the induced subgraph on
{a, b} is strongly connected, this means that {a, b} is nice.

Now Lemma 4.8 follows from Claim 4, v+∩{a, b} 6= ∅ 6= v−∩{a, b} and Lemma 4.7.

4.1. P-graphs
We start with some well-known definitions. A tournament is an irreflexive digraph T
such that for all distinct vertices x and y, exactly one of x → y, y → x is an edge of
T . That is, a tournament is a semicomplete digraph without 2-cycles. A tournament
is transitive (or a chain) if the edge relation is a transitive relation, which means it
is a strict linear order on the set of all vertices. An intransitive tournament is locally
transitive if for every vertex v of the tournament the induced subgraphs on v+ and on
v− are transitive tournaments. We changed this definition from the standard one by
adding the word ”intransitive” (usually, but not in our paper, transitive tournaments
are locally transitive), since we are chiefly interested in the intransitive locally transi-
tive tournaments in this paper. A congruence of a tournament (V,→) is an equivalence
relation ρ on V such that for all (x1, x2), (y1, y2) ∈ ρ such that (x1, y1) /∈ ρ, x1 → y1 iff
x2 → y2. If ρ is a congruence of the tournament T = (V,→), then the factor tourna-
ment T /ρ is the tournament (V/ρ,⇒), where a/ρ ⇒ b/ρ iff a/ρ 6= b/ρ and a → b. More
generally, in all semicomplete digraphs, we will write A ⇒ B, where A,B are sets of
vertices, to denote that a→ b and ¬b→ a for all a ∈ A and b ∈ B.

We also introduce the interval notation for a digraph G = ({a1, a2, . . . , an},→) with
the fixed Hamiltonian cycle a1 → a2 → . . . → an → a1: [ai, aj ] is the set of all vertices
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that are traversed by the path which starts at ai, ends at aj and uses only the directed
edges of the Hamiltonian cycle, each edge at most once (it is not going the full circle or
more). For instance, [a2, a1] = {a1, a2, . . . , an}, while [a1, a2] = {a1, a2}. We also define
[ai, aj) := [ai, aj ] \ {aj}, (ai, aj ] := [ai, aj ] \ {ai} and (ai, aj) := [ai, aj ] \ {ai, aj}.

The following proposition can be found in [Brouwer 1980]:

PROPOSITION 4.9. If T is a locally transitive tournament and a, b are vertices of T
such that b ∈ a+, then b+ is a union of a terminal interval of the chain a+ and an initial
interval of the chain a−.

PROOF. Since a+ is a chain and b ∈ a+, then a /∈ b+ and b+ ∩ a+ is a terminal chain
in a+. If b+ ∩ a− = ∅, then we are done (empty set is an interval!). Otherwise, if there
exist c, d ∈ a− such that c → d, c ∈ b− and d ∈ b+, then a → b → d → a and a, b, d ∈ c+,
so T is not locally transitive.

LEMMA 4.10. Let T = ({b1, . . . , bn},→) be a locally transitive tournament. Then T
is strongly connected, there exists a Hamiltonian cycle C = a1 → a2 → . . . → an → a1,
where {a1, . . . , an} = {b1, . . . , bn} and there exists a function ϕT : {1, . . . , n} → {1, . . . , n}
such that (all intervals are with respect to the cycle C):

(i) For all i ∈ {2, 3, ..., n}, ϕT (i) 6∈ {i− 1, i} and also ϕT (1) 6∈ {1, n},
(ii) a+

i = (ai, aϕT (i)] and
(iii) aϕT (i+1) ∈ [aϕT (i), ai) and aϕT (1) ∈ [aϕT (n), an).

PROOF. First note that T must be smooth. If T has a sink bi, then {b1, . . . , bn} =
b−i ∪ {bi}. Since the induced subgraph on b−i is transitive, then T must be transitive,
too, because it is obtained from b−i by adding a new greatest element bi. An analogous
argument proves that the locally transitive tournaments can not have a source.

So assume that T is smooth. Let us define a1 = b1, then let b+1 = {a2, a3, . . . , ak} so
that the strict linear order induced by → on b+1 is a2 < a3 < . . . < ak (in particular,
a1 → a2 → . . . → ak). Finally, let b−1 = {ak+1, ak+2, . . . , an} and let the linear order
induced by → on b−1 be ak+1 < ak+2 < . . . < an (in particular, ak+1 → ak+2 → . . . →
an → a1). Since ak is not a sink, then a+

k is a nonempty initial segment of the chain
ak+1 < ak+2 < . . . < an, by Proposition 4.9. Therefore, ak → ak+1 and the ais form a
Hamiltonian cycle, as desired.

Now define ϕT : {1, . . . , n} → {1, . . . , n} so that aϕT (i) is the greatest element (sink)
in the transitive tournament on a+

i . Since ai−1 ∈ a−i and aϕT (i) ∈ a+
i , the condition (i)

of the statement of the Lemma holds. (ii) holds by our choice of ϕT . Finally, (iii) is a
consequence of (i) and the fact that (ai+1, aϕ(i)] ⊆ a+

i+1.

In particular, since the locally transitive strongly connected tournament T is semi-
complete and from the definition above, we get

(iv) aϕT (i)+1 → ai, ai → ai+1, ¬ aϕT (i) → ai+1, and a+
i \{ai+1} ⊆ a+

i+1

(where the addition here is modulo n, so n+ 1 = 1).
We will use the easier notation for a locally transitive tournament T when the vertex

set is {1, 2, . . . , n}, where we will understand, unless otherwise stated, that the fixed
Hamiltonian cycle is 1 → 2 → . . . → n → 1, and ai = i, so we will have (ϕT (i) + 1) → i
instead of aϕT (i)+1 → ai et cetera. We illustrate the locally transitive tournaments on
Figure 1.
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ϕT (i)ϕT (i) + 1

i− 1

i

i+ 1

i+i−

Fig. 1.

Definition 4.11. A locally transitive tournament T = ({1, . . . , n},→) is regular iff
n = 2k+1 for some positive integer k and for all 1 ≤ i < j ≤ 2k+1, i→ j iff j− i ≤ k+1
(otherwise j → i). In other words, in the unique (up to isomorphism) regular locally
transitive tournament with 2k+1 vertices, ϕT (i) = i+k if i ≤ k+1, and ϕT (i) = i−k−1
if i > k + 1.

LEMMA 4.12. Let T = ({1, . . . , n},→) be a locally transitive tournament such that
ϕT is a permutation of {1, . . . , n}. Then T is regular.

PROOF. We first claim that ϕT (i + 1) = ϕT (i) + 1 (in this proof we repeatedly use
the addition modulo n, that is n+ 1 is actually 1, et cetera). We know that ϕT (i+ 1) is
not in the interval [i, ϕT (i)] by Lemma 4.10 and since ϕT is a permutation. Therefore,
ϕT (i+ 1) ∈ (ϕT (i), i) from which we conclude (ϕT (i) + 1) ∈ (ϕT (i), ϕT (i+ 1)]. Moreover,
(i+ 1) /∈ (ϕT (i), i) since (i+ 1) ∈ (i, ϕT (i)], so (ϕT (i) + 1) ∈ ((i+ 1), ϕT (i+ 1)] and thus
(i+1)→ (ϕT (i)+1). Also, by (iv) proved after Lemma 4.10 we know that ϕT (i)+1→ i.
We just proved that ϕT (ϕT (i) + 1) = i. Analogously as above we get that ϕT (i) + 2 ∈
(ϕT (i) + 1, ϕT (ϕT (i) + 1)], but ϕT (ϕT (i) + 2) 6= ϕT (ϕT (i) + 1) = i, so ϕT (i) + 2→ (i+ 1).
Therefore, ϕT (i + 1) = ϕT (i) + 1, as desired. This implies that the out-degrees of all
vertices are the same number, say k, and since T is a tournament, the in-degree of any
vertex is therefore n− k − 1. Since the number of edges in any digraph is equal to the
sum of all out-degrees and also to the sum of all in-degrees, therefore to kn and also
to (n − k − 1)n, we get that k = n − k − 1, that is n = 2k + 1. Therefore, we get that
1+ = {2, 3, . . . , k + 1}, so from ϕS(1) = k + 1 and from ϕS(i+ 1) = ϕS(i) + 1 for all i we
get that S is the regular locally transitive tournament with 2k + 1 vertices.

Definition 4.13. The semicomplete digraph GT = (V,E) will be called a P-graph
parametrized by the locally transitive tournament T = ({1, . . . , n},→) if there exists a
partition ρ of the vertex set V into nonempty subsets A1, . . . , An such that for all i 6= j
and all a ∈ Ai and b ∈ Aj , ab ∈ E iff i→ j in T .

Informally, a P-graph is obtained from the locally transitive tournament T by ”ex-
panding” each vertex i into a semicomplete digraph Ai, where between vertices a and b
lying in distinct subgraphs Ai and Aj , respectively, the edge is a→ b iff i→ j. In case a
and b are in the same set Ai, no assumptions are taken (other than semicompleteness).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 11, Publication date: January 2011.
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LEMMA 4.14. Let T = ({1, . . . , n},→) be a locally transitive tournament. Then

— ρ := kerϕT is a congruence of T ,
— T /ρ is a regular locally transitive tournament T ′,
— T is a P-graph parametrized by T ′, and
— every P-graph parametrized by T is also a P-graph parametrized by T ′.

PROOF. ρ is an equivalence relation on {1, . . . , n} since it is the kernel of a function.
Let the equivalence classes of ρ be the sets A1, A2, . . . , Aw. From ϕT (i) 6= ϕT (ϕT (i))
follows that i/ρ 6= ϕT (i)/ρ, that is, ϕT (i) is always outside i/ρ.

Claim 1: Each Ai is [ai, bi] for some ai, bi ∈ {1, 2, . . . , n}.
Assume that i′ < j′ and (i′, j′) ∈ ρ, that is, ϕT (i′) = m = ϕT (j′). We may find an

isomorphic copy T0 = ({1, 2, . . . , n},⇒) by cyclically rotating the names of vertices of T
untilm becomes n, and the vertices {i′, j′} become {i, j}. We are in the case where i < j,
ϕT ′(i) = ϕT0

(j) = n, the new tournament is locally transitive and the Hamiltonian
cycle 1→ 2→ . . .→ n→ 1 still satisfies the conclusions of Lemma 4.10. We have thus
reduced the claim to proving for all integers k ∈ (i, j) that ϕT0

(k) = n, as this kind of
”convexity” of the ρ-classes implies that all those classes are intervals with respect to
the Hamiltonian cycle. From i < k < j and ϕT0

(i) = ϕT0
(j) = n follows that i ⇒ k ⇒ j

and therefore we know at least that ϕT0
(k) /∈ [i, j).

First assume for some integer k ∈ (i, j) that j ≤ ϕT0
(k) < n and let us select the

least such k. Then either ϕT0(k) < n = ϕT0(k− 1), or ϕT0(k− 1) < k− 1, either of which
implies that ϕT0(k) /∈ [ϕT0(k − 1), (k − 1)), contradicting Lemma 4.10 (iii). Now we
assume that 1 ≤ ϕT0(k) < i for some integer k ∈ (i, j), and select the greatest integer
k ∈ (i, j) for which this condition holds. Therefore, ϕT0(k+ 1) = n (since we just proved
that ϕT0

(k+ 1) /∈ (k, n)). But then ϕT0
(k+ 1) /∈ [ϕT0

(k), k), which once again contradicts
Lemma 4.10 (iii). This final contradiction finishes the proof of Claim 1.

Claim 2: If i→ j for some i, j ∈ {1, 2, . . . , n} and (i, j) /∈ ρ, then for all i′ ∈ i/ρ, i′ → j.
Indeed, from Claim 1 and ϕT (i) /∈ i/ρ we obtain for all i′ ∈ i/ρ that (i, ϕT (i)] \ (i/ρ) =

(i′, ϕT (i)] \ (i/ρ). Therefore, j ∈ (i, ϕT (i)] \ (i/ρ) implies that also j ∈ (i′, ϕT (i)] \ (i/ρ),
and since ϕT (i′) = ϕT (i), then i′ → j

Now we can prove that ρ is a congruence. If (i, j) /∈ ρ, and (i, i′), (j, j′) ∈ ρ, then
from Claim 2 follows that if i → j, we get i′ → j. Now if j′ → i′, by Claim 2 it would
follow that j → i′, which contradicts the assumption that T is a tournament, so the
only remaining possibility is that i′ → j′. Therefore, ρ is a congruence of T .

Next, from the fact that ρ is a congruence follows that ρ is a partition of the vertex
set {1, 2, . . . , n} which satisfies all requirements of Definition 4.13, except that we must
show that T /ρ is a locally transitive tournament. We prove that for any i, if ϕT (i)/ρ =
[a, b], then ϕT (i) = b, which follows from i→ ϕT (i), the fact that ρ is a congruence and
Lemma 4.10 (ii). From |{ϕT (i) : 1 ≤ i ≤ n}| = |T /ρ| and the just proved fact that any
class i/ρ contains at most one element of the form ϕT (j) follows that the restriction of
ϕT to S = ϕT ({1, 2, . . . , n}) is a permutation of the set S. In particular, the tournament
T /ρ is isomorphic to the subgraph induced by T on S.

Now, let Ai = [ai, bi], that is, Ai ∩ S = {bi} and S′ = {b1, b2, . . . , bw}. We want to
prove that the subtournament T ′ induced by T on S is a locally transitive tournament
which satisfies the conclusion of Lemma 4.10 with respect to the Hamiltonian cycle
b1 → b2 → . . .→ bw → b1. Clearly, b+i and b−i are transitive in T , and are thus transitive
in any subtournament. If ϕT (bi) = bj , we get that b+i ∩ S = (bi, bj ]∩ S which equals the
interval (bi, bj ] in T ′. Thus bi+1 is the least element of the chain b+i in T ′, in particular
bi → bi+1 for all 1 ≤ i ≤ w. Hence T ′ is strongly connected, and thus intransitive, so
T ′ is locally transitive. From the proof of Lemma 4.10, we get that Lemma 4.10 holds
with respect to the Hamiltonian cycle b1 → b2 → . . . → bw → b1. Finally, if i 6= j,
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then bi/ρ 6= bj/ρ and ϕT ′(bi) = ϕT (bi) 6= ϕT (bj) = ϕT ′(bj). Therefore, ϕT ′ is injective,
so it is a permutation, and T ′ is regular by Lemma 4.12. Finally, if G is a P-graph
parametrized by T which is in turn a P-graph parametrized by T ′, then ”compose” the
expansion of vertices of T ′ into T with the expansion of the vertices of T into G to prove
that G is a P-graph parametrized by T ′.

For proofs of the lemmas and theorem that follow till the end of the subsection, we
introduce the following convention: all additions and subtractions are taken modulo
n = 2k + 1, so whenever the result of an arithmetic operation is outside [1, n], just
add the appropriate integer multiple of n to put it back into that interval. The regular
locally transitive tournament T = ({1, 2, . . . , 2k + 1},→) is also assumed to have the
edge relation i→ j iff 0 < j − i ≤ k (and j → i otherwise).

We recall a definition from [Hell et al. 1996] and a most useful theorem from the
paper [Barto et al. 2009]. A sequence of directed edges in a digraph is an oriented path
when the undirected graph obtained from it by disregarding orientation is a path. For
any oriented path α we define the algebraic length al(α) to be |{edges going forward in
α}| − |{edges going backward in α}|. For a digraph G = (V, ) we put

al(G) = min {i > 0 : (∃ a closed path α) al(α) = i},

whenever the set on the right hand side is non-empty and∞ otherwise. Theorem 8.1 of
[Barto et al. 2009] (sometimes dubbed the ’Loop Lemma’) states: If a smooth digraph
has algebraic length one and admits a weak near unanimity polymorphism then it
contains a loop.

LEMMA 4.15. Every idempotent polymorphism f of a regular locally transitive tour-
nament T = ({1, 2, . . . , 2k + 1},→), where k > 1, is a projection.

PROOF. Let f be a binary idempotent polymorphism of T . {i, i+1}∀+ = {i+2, . . . , i+
k} and {i, i+1}∀− = {i−k+1, . . . , i−1} for all i, so {i, i+1} ⊆ {i+2, . . . , i+k}∀−∩{i−k+
1, . . . , i−1}∀+. The only elements outside {i−k+1, . . . , i−1}∪{i+2, . . . , i+k} are i, i+1
and i+k+1, and as i+k+1 /∈ {i+2, . . . , i+k}∀−, hence {i−k+1, . . . , i−1}∀+∩{i+2, . . . , i+
k}∀− = {i, i+1}. Hence, {i, i+1} is pp-definable in T c, so f({i, i+1}×{i, i+1}) ⊆ {i, i+1}.
Here the sets {i, i+ 1}∀+ and {i, i+ 1}∀− are nonempty since k > 1.

If we assume that f(1, j + 1) = i for some 1 < j ≤ 2k, then we get that f(k + 2, j −
k + 1) → f(k + 3, j − k + 2) → . . . → f(2k, j − 1) → f(2k + 1, j) and f(k + 2, j − k +
1), f(k+ 3, j− k+ 2), . . . , f(2k+ 1, j) ∈ f(1, j+ 1)− = i−. Since the induced subgraph on
i− is the strict linear order with only one directed path of length k, this implies that
f(m,m+ j) = m+ i− 1 for all m such that k+ 2 ≤ m ≤ 2k+ 1. An analogous argument
on i+ proves that f(m,m+j) = m+i−1 for all m such that 2 ≤ m ≤ k+1. So it remains
to find only f(1, j + 1) for all 0 < j ≤ 2k + 1.

We assume first that f(1, 2) = 1. As proved above, f(1, 2) = 1 implies that f(i, i+1) =
i for all i. Assume now that for some 2 ≤ j ≤ 2k, f(1, j+1) = i 6= 1 and that j is the least
such. Then 2k+1 = f(2k+1, j−1)→ f(1, j+1)→ f(3, j+2) = 3, so f(1, j+1) ∈ (2k+1, 3)
and we obtain f(1, j + 1) = 2 since we assumed that it is not equal to 1. But, then
2 = f(1, j + 1) → f(2, j + k + 1) → f(3, j + 2k + 1) = f(3, j). If j = 2, then we know
f(3, 2) ∈ {2, 3}, while if j ≥ 3, then f(3, j) = 3 by the inductive assumption. Either way,
from the fact that 2− ∩ 2+ = ∅ = 3− ∩ 2+ we derive a contradiction. Thus all binary
idempotent polymorphisms are projections. If f(1, 2) = 2, an analogous proof as above
works for g(x, y) := f(y, x), just starting from j = 2k and inductively decreasing j. By
proving that g is the first projection, we prove f is the second one.

Now let f be an m-ary polymorphism, m ≥ 3 and inductively assume that all poly-
morphisms of smaller arity are projections. We know that al(T ) = 1 and T has no
loops, so T has no weak near-unanimity polymorphisms. By Proposition 2.1, T has
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no near unanimity polymorphisms (therefore at least one fi(x, y) = y) and T has no
Mal’cev polymorphisms (therefore at most one fi(x, y) = y, or if fi(x, y) = fj(x, y) = y,
we would be able to make a derived Mal’cev polymorphism from f by treating the ith
and jth variable as x and z, respectively, and identifying all others as y). Without loss
of generality, assume f1(x, y) = y and fi(x, y) = x for all i 6= 1. For any evaluation
(a1, a2, . . . , am) where there is any identification ai = aj for some 2 ≤ i < j ≤ m, from
the inductive assumption we know that f(a1, a2, . . . , am) = a1.

Now take any tuple (a1, a2, . . . , am) and assume that there exist i, j such that 2 ≤ i <
j ≤ m and aj /∈ {ai + k, ai + k + 1}. Then there exists bi ∈ {ai, aj}∀+. Select b2, . . . , bm
such that bj = bi ∈ {ai, aj}∀+ and bl = al + 1 for all integers l ∈ [2,m] \ {i, j}. Then for
any x ∈ a+

1 , f(a1, a2, . . . , am)→ f(x, b2, . . . , bm) = x. We get that a+
1 ⊆ f(a1, a2, . . . , am)+,

and since T is regular, this means that f(a1, a2, . . . , am) = a1.
Finally, assume that for all integers i, j such that 2 ≤ i < j ≤ m, aj ∈ {ai+k, ai+k+1}.

This implies that m = 3, and that a3 ∈ {a2 +k, a2 +k+1}. Assume that a3 = a2 +k. But
then for any x ∈ a+

1 , f(a1, a2, a3)→ f(x, a3, a3 + 1) = x, where the equality follows from
the previous case, so a+

1 ⊆ f(a1, a2, a3)+ and this means that f(a1, a2, a3) = a1. In the
case when a3 = a2 + k + 1, the proof goes the same, except that we use f(a1, a2, a3) →
f(x, a2 + 1, a2).

LEMMA 4.16. Every automorphism f of a regular locally transitive tournament T =
({1, 2, . . . , 2k + 1},→) is of the form f(x) = x+ t for some fixed t.

PROOF. Clearly all such maps are automorphisms of T . On the other hand, if f is
an automorphism of T , then select t so that f(1) = t+1. f({2, . . . , k+1}) = f(1+) = (t+
1)+ = {t+2, . . . , t+k+1} and f({k+2, . . . , 2k+1}) = f(1−) = (t+1)− = {t+k+2, . . . , t+
2k + 1}. Since the induced subgraphs on the sets {2, . . . , k + 1}, {t + 2, . . . , t + k + 1},
{k + 2, . . . , 2k + 1} and {t + k + 2, . . . , t + 2k + 1} are all transitive touraments with k
elements, clearly there can be only one map which isomorphically maps the first onto
the second and the third onto the fourth subgraph, and that is f(x) = x+ t.

Definition 4.17. Let G = (V,→) be a digraph. The subset I ⊆ V is called a triangu-
lar ideal if for all a, b ∈ I such that a→ b, if c ∈ V is such that b→ c→ a, then c ∈ I. I
is trivial if |I| = 1 or I = V .

LEMMA 4.18. Any digraph G = (V,E) which contains a regular locally transitive
tournament on V as an edge-subgraph has only trivial triangular ideals.

PROOF. Assume that V = {1, 2, . . . , 2k + 1}, T = (V,→), → ⊆ E, I is a triangular
ideal of G and |I| ≥ 2. We will prove that for any a ∈ I, a + k ∈ I, too. This will imply
that I = {1, 2, . . . , 2k+1}, since the element k generates the additive cyclic group Z2k+1.

So, let b ∈ I, b 6= a. If b ∈ [a+ k + 1, a+ 2k], then a→ a+ k → b→ a, so a+ k ∈ I. On
the other hand, if b ∈ [a+1, a+k−1], then first a+k+1 ∈ I since b→ a+k+1→ a→ b,
and then from a→ a+ k → a+ k + 1→ a we get a+ k ∈ I.

From now until Theorem 4.25, we fix a finite P-graph GT = (V,E) parametrized by a
locally transitive tournament T and assume that GT is not a 3-cycle. Our goal is The-
orem 4.25 which says that GT has only trivial idempotent polymorphisms. According
to Lemma 4.14, we may assume that T is the regular locally transitive tournament
({1, 2, . . . , 2k+ 1},→). The partition from Definition 4.13 is denoted by ρ and we denote
by Ai the ρ-class corresponding to i in the parametrization of GT by T .

LEMMA 4.19. Let f be an m-ary idempotent polymorphism of GT , let j1, . . . , jm ∈
{1, . . . ,m}, let ai,t ∈ Aji+t for i = 1, . . . ,m and t = 0, . . . , 2k and denote at :=
f(a1,t, a2,t, . . . , am,t). Then there exists j ∈ {1, . . . , n} such that either at ∈ Aj for all
t = 0, . . . , 2k, or at ∈ Aj+t for all t = 0, . . . , 2k. (All additions are modulo 2k + 1).
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PROOF. Let V1 := {a0, . . . , a2k}. GT is parametrized by T , so s→ t in T iff (ai,s, ai,t) ∈
E for all i. Thus, s→ t implies (as, at) = (f(a1,s, . . . , am,s), f(a1,t, . . . , am,t)) ∈ E. Hence,
|V1| = 2k + 1 by irreflexivity of E, and the mapping ϕ : {1, . . . , n} → V1 given by
f(t) = at (an := a0, as usually) is a bijective homomorphism from T to the induced
subgraph V1 := (V1, E �V1

). Therefore, V1 contains an isomorphic copy of T as an edge-
subgraph. We observe that if x, y ∈ Aj and z ∈ V \ Aj , then either (x, z), (y, z) ∈ E, or
(z, x), (z, y) ∈ E and no double edges exist between z and {x, y}. So, if the restriction of
E to {x, y, z} contains the edges of a 3-cycle, then from {x, y} ⊆ Aj follows that z ∈ Aj ,
too. Therefore, the intersection of any Aj with the induced subgraph V1 is a triangular
ideal of the latter. Since V1 contains as an edge-subgraph a tournament isomorphic to
T , according to Lemma 4.18, either V1 ⊆ Aj for some j, or no two elements of V1 are
in the same ρ-class. The first possibility is one of the desired outcomes, so we assume
that V1 is a set of representatives for {A1, . . . , An}. In this case, if as ∈ Al and at ∈ Am,
since s 6= t iff l 6= m, then (as, at) ∈ E iff l → m. Thus the induced subgraph V1 is a
tournament, and the mapping ψ : V1 → {1, . . . , n} given by ψ(ai) = j iff ai ∈ Aj is an

isomorphism from V1 to T . Both V1 and T have
(
n

2

)
edges, so ϕ is also an isomorphism,

not just a bijective homomorphism. Hence, the composition ψ ◦ ϕ is an automorphism
of T . The only such, according to Lemma 4.16, are mappings of the sort f(x) = x + j
for some fixed j ∈ {0, 1, . . . , 2k}, so if a0 ∈ Aj , then at ∈ Aj+t, as desired.

LEMMA 4.20. The equivalence relation ρ is compatible with all idempotent poly-
morphisms (i. e. it is a congruence of the algebra of polymorphisms).

PROOF. For any ρ-classes Aj1 , . . . , Ajm we want to prove that there exists a ρ-class
Aj such that f(Aj1 , . . . , Ajm) ⊆ Aj . Let ai,0, a′i,0 ∈ Aji for i = 1, . . . ,m. Select ai,t ∈ Aji+t
for i = 1, . . . ,m and t = 1, . . . , 2k. Let at = f(a1,t, . . . , am,t), t = 0, 1, . . . , 2k and a′0 =
f(a′1,0, . . . , a

′
m,0). Let a0 ∈ Aj . The sets V1 = {a0, a1, . . . , a2k} and V ′1 = {a′0, a1, . . . , a2k}

are, according to Lemma 4.19 either both subsets of Aj , or both are sets of representa-
tives for {A1, . . . , An}. Either way, we obtain that a′0 ∈ Aj , as desired.

Now we know from Lemma 4.20 that any idempotent polymorphism f induces an
operation f̂ on T given by f̂(j1, j2, . . . , jm) = j iff f(Aj1 , . . . , Ajm) ⊆ Aj . In other words,
f(Aj1 , . . . , Ajm) ⊆ Af̂(j1,j2,...,jm). Given any j1, j2, . . . , jm ∈ {1, . . . , n}, from Lemma 4.19
follows that either f̂(j1 + t, j2 + t, . . . , jm + t) = f̂(j1, j2, . . . , jm) for all 0 ≤ t < n, or
f̂(j1 + t, j2 + t, . . . , jm + t) = f̂(j1, j2, . . . , jm) + t for all 0 ≤ t < n.

LEMMA 4.21. Let f ∈ Polid(GT ) bem-ary. For all 1 ≤ t ≤ 2k, if f(Aj1 , . . . , Ajm) ⊆ Aj ,
then f(Aj1+t, . . . , Ajm+t) ⊆ Aj+t.

PROOF. From the above considerations, we know that the alternative is that there
exist Aj1 , Aj2 , . . . , Ajm and Ai such that f(Aj1+t, Aj2+t, . . . , Ajm+t) ⊆ Ai for all t =
0, 1, . . . , 2k, so we assume that. We select and fix representatives ar ∈ Ar for r =
1, 2, . . . , 2k+1. We desire that f(aj1 , aj2 , . . . , ajm) ∈ Ai \{ai}. If this is the case we ignore
the rest of the paragraph, otherwise assume that f(aj1 , aj2 , . . . , ajm) = ai. Consider
a′i := f(aj1+1, aj2+1, . . . , ajm+1). By assumption a′i ∈ Ai and (f(aj1 , aj2 , . . . , ajm), a′i) ∈ E,
so a′i 6= ai. By substituting jl + 1 for jl, we get an idempotent polymorphism and ρ-
classes such that f(aj1 , aj2 , . . . , ajm) = a′i ∈ Ai \ {ai}.

Without loss of generality, assume that (ai, a
′
i) ∈ E. a′i is in a directed cycle within

Ai which consists of elements of the form f(aj1+t, aj2+t, . . . , ajm+t) for 0 ≤ t ≤ 2k. So,
there exists a′′i ∈ Ai such that (a′i, a

′′
i ) ∈ E.

Let bjl = a′i if jl ∈ [i + k + 1, i] and bjl = ai+k+1 if jl ∈ [i + 1, i + k]. Define as
b′i := f(bj1 , bj2 , . . . , bjm). From (ajl , bjl) ∈ E for all 1 ≤ l ≤ m follows that (a′i, b

′
i) ∈ E,
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while from (a′i, a
′′
i ), (ak+1, a

′′
i ) ∈ E follows that (b′i, a

′′
i ) ∈ E. Therefore, b′i ∈ a′+i ∩ a

′′−
i ,

so it must be that b′i ∈ Ai. Finally, from (a′i, b
′
i) ∈ E and (ak+1, b

′
i) ∈ E follows that

(bjl , b
′
i) ∈ E for all 1 ≤ l ≤ m, and therefore (f(bj1 , bj2 , . . . , bjm), f(b′i, b

′
i, . . . , b

′
i)) ∈ E. But

this is the same as saying that (b′i, b
′
i) ∈ E, a contradiction.

LEMMA 4.22. f̂ is a projection operation.

PROOF. We prove first that f̂ is a polymorphism of T . Suppose j1 → i1, . . . , jm → im.
Hence, i1 → (j1 + k + 1), . . . , im → (jm + k + 1). Let us pick elements a1 ∈ Aj1 , . . . , am ∈
Ajm , b1 ∈ Ai1 , . . . , bm ∈ Aim , c1 ∈ Aj1+k+1, . . . , cm ∈ Ajm+k+1. Also, let f̂(j1, . . . , jm) = j

and f̂(i1, . . . , im) = i. We know from Definition 4.13 and (f(a1, . . . , am), f(b1, . . . , bm)) ∈
E that i = j or j → i, that is, i ∈ [j, j+k]. Also, by Lemma 4.21, we know f(c1, . . . , cm) ∈
Aj+k+1, so from Definition 4.13 and (f(b1, . . . , bm), f(c1, . . . , cm)) ∈ E that i = j + k + 1
or i→ (j + k + 1), that is, i ∈ [j + 1, j + k + 1]. Therefore, i ∈ [j + 1, j + k], so j → i and
f̂ is a polymorphism of T , as desired.

Since f is an idempotent operation, thus f̂ is also an idempotent operation, so
by Lemma 4.15, either k = 1 or f̂ is a projection. So assume that k = 1 and
T = ({1, 2, 3},→). Note first that since GT is not a 3-cycle, at least one of the ρ-classes
is not a singleton. Without loss of generality, assume that a1, a

′
1 ∈ A1, a2 ∈ A2, a3 ∈ A3

and (a1, a
′
1) ∈ E. Since a′1, a2 ∈ a+

1 for any idempotent polymorphism g(x1, . . . , xs) we
have that g(b1, . . . , bs) ∈ a+

1 ⊆ A1 ∪A2 whenever for all i, bi ∈ {a′1, a2}. By Lemma 4.20,
this implies that A1 ∪ A2 is closed under all idempotent polymorphisms of GT . From
this and Lemma 4.21, we conclude that A2 ∪ A3 and A3 ∪ A1 are also closed under all
idempotent polymorphisms of GT .

Claim. If f(A1, A2, A2, . . . , A2) ⊆ A1, then for all Aj1 , Aj2 , . . . , Ajm ∈ {A1, A2, A3},
f(Aj1 , Aj2 , . . . , Ajm) ⊆ Aj1 .

We prove the claim by treating separately the cases m = 2, m = 3 and m > 3
(there in nothing to prove if m = 1 since then f(x) = x follows by idempotence). If
m = 2 then from idempotence and Lemma 4.21 follows that all that we have to prove is
f(A2, A1) ⊆ A2. From Lemma 4.21 and f(A1, A2) ⊆ A1 follows that b3 := f(a3, a

′
1) ∈ A3.

Thus (f(a2, a1), f(a3, a
′
1)) ∈ E and from the discussion preceding the Claim we infer

f(a2, a1) ∈ b−3 ∩ (A1 ∪A2) = A2. By Lemma 4.20, f(A2, A1) ⊆ A2, as desired.
In the case m = 3, from f(A1, A2, A2) ⊆ A1 and the binary case follow all cases where

Aj2 = Aj3 (using g(x, y) := f(x, y, y)). Since b1 := f(a3, a1, a1) ∈ A3 and f(a′1, a
′
1, a2) ∈

b+1 ∩ (A1 ∪ A2) ⊆ A1, we infer by Lemmas 4.20 and 4.21 that f(Ai, Ai, Ai+1) ⊆ Ai.
Moreover, since c1 := f(a1, a1, a2) ∈ A1 and f(a′1, a

′
1, a3) ∈ c+1 ∩ (A1 ∪ A3) ⊆ A1,

from Lemmas 4.20 and 4.21 we also infer that f(Ai, Ai, Ai+2) ⊆ Ai. By transpos-
ing the last two coordinates of f in the previous arguments we also conclude that
f(Ai, Ai+1, Ai) ⊆ Ai and f(Ai, Ai+2, Ai) ⊆ Ai. Finally, since c1 = f(a1, a1, a2) ∈ A1 and
f(a′1, a2, a3) ∈ c+1 we conclude f(a′1, a2, a3) /∈ A3, while from d1 := f(a′1, a3, a

′
1) ∈ A1 and

f(a1, a2, a3) ∈ d− we conclude f(a1, a2, a3) /∈ A2. These two by Lemma 4.20 imply that
f(A1, A2, A3) ⊆ A1 and thus by Lemma 4.21 follows f(Ai, Ai+1, Ai+2) ⊆ Ai. The proof
that f(Ai, Ai+2, Ai+1) ⊆ Ai is analogous, just transpose the last two coordinates of f .

Finally, let m > 3 and f(A1, A2, A2, . . . , A2) ⊆ A1. Fix a sequence Aj1 , Aj2 , . . . , Ajm
such that all Aji ∈ {A1, A2, A3}. Let u2, . . . , um, v2, . . . , vm ∈ {x, y, z} be such that ui = y
if Aji = Aj1 and ui = z if Aji 6= Aj1 , while vi = x if Aji = Aj1 , vi = y if Aji =
Aj1+1 and vi = z if Aji = Aj1+2. Let g(x, y, z) = f(x, u2, u3, . . . , um) and h(x, y, z) =
f(x, v2, v3, . . . , vm). From f(A1, A2, A2, . . . , A2) ⊆ A1 follows that g(A1, A2, A2) ⊆ A1. By
the case m = 3, h(A1, A2, A2) = g(A1, A1, A2) ⊆ A1. Again by the case m = 3 follows
that f(Aj1 , Aj2 , . . . , Ajm) = h(Aj1 , Aj1+1, Aj1+2) ⊆ Aj1 , so the Claim is proved.
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The Claim (with an appropriate permutation of variables) implies the Lemma is true
if there exists a position i is such that f(A2, A2, . . . , A2, A1, A2, A2, . . . , A2) ⊆ A1, where
A1 is in ith position (in particular, the Lemma is proved for m = 2, so we assume m >
2). Let fi(x, y, z) be f(x, x, . . . , x, y, z, z, . . . , z), where the first i variables are evaluated
as x. Moreover, let i be maximal among those that satisfy fi(A1, A2, A2) ⊆ A2 (by our
assumptions, 1 ≤ i < m− 1). Thus fi(A1, A1, A2) = fi+1(A1, A2, A2) ⊆ A1. By the Claim
applied to fi(x, y, y) and fi(x, x, y) we know that fi(Al, Aj , Aj) ⊆ Aj and fi(Al, Al, Aj) ⊆
Al for all j, l ∈ {1, 2, 3}. From fi(a1, a1, a2) ∈ A1 and fi(a′1, a2, a3) ∈ fi(a1, a1, a2)+ follows
that fi(a′1, a2, a3) /∈ A3. By Lemmas 4.20 and 4.21 we obtain that ¬ fi(A1, A2, A3) ⊆
A3 and hence that ¬ fi(A3, A1, A2) ⊆ A2. On the other hand, from fi(a2, a1, a1) ∈ A1

and fi(a3, a
′
1, a2) ∈ fi(a2, a1, a1)+ follows that fi(a3, a

′
1, a2) /∈ A3, and by Lemma 4.20

this implies ¬ fi(A3, A1, A2) ⊆ A3. The remaining possibility allowed by Lemma 4.20
is fi(A3, A1, A2) ⊆ A1. Therefore by Lemma 4.21 we obtain fi(A1, A2, A3) ⊆ A2, so
fi(a1, a2, a3) ∈ A2. Since fi(a

′
1, a3, a

′
1) ∈ fi(a1, a2, a3)+ ∩ (A1 ∪ A3) ⊆ A3 we get that

fi(A1, A3, A1) ⊆ A3. By the Claim applied to fi(x, y, x), this implies that fi(A2, A1, A2) ⊆
A1, so the Claim may be applied to prove f(Aj1 , Aj2 , . . . , Ajm) ⊆ Aji+1 .

Without loss of generality, we may assume that f̂ is the first projection, so now we
know that f(Aj1 , . . . , Ajm) ⊆ Aj1 for any m-tuple of ρ-classes (Aj1 , . . . , Ajm). Since we
will not use the tournament T in the remainder of the proof, from this point onwards
we change the notation to write u→ v instead of (u, v) ∈ E.

LEMMA 4.23. Let the induced subgraph on Ai contain a nontrivial strong compo-
nent C. Then f(C, V, . . . , V ) = C.

PROOF. We may consider the case when i = k + 1 to make the notation easier (we
use the isomorphic copy T ′ of T obtained by the cyclic automorphism which maps i
into k + 1 and parametrize G by T ′ instead of T ). Let c ∈ C and v2, v3, . . . , vm ∈ V .
• If v2, . . . , vm ∈

⋃k
j=1Aj , then from f(c, v2, . . . , vm)+ ⊇ Ak+1 ∩ c+ follows that

f(c, v2, . . . , vm) ∈ Ak+1 ∩C−. If it were f(c, v2, . . . , vm) ∈ Ak+1 ∩C∀− = (Ak+1 ∩C−) \C,
then Ak+1 ∩ C∀− 3 f(c, v2, . . . , vn) ← f(c′, a2k+1, . . . , a2k+1) ← f(c′′, c′′, . . . , c′′) = c′′ ∈ C
where c← c′ ← c′′ are vertices in C and a2k+1 ∈ A2k+1. However, (c′′+)+∩C∀−∩Ak+1 =
∅, which is a contradiction. Therefore,

f(C, (

k⋃
j=1

Aj)
m−1) ⊆ C.

• We can prove dually that

f(C, (

2k+1⋃
j=k+2

Aj)
m−1) ⊆ C.

• Now let v2, . . . , vm ∈ V \ Ak+1. Let c′ → c → c′′ in C, a1 ∈ A1 and a2k+1 ∈ A2k+1.
Since the first two cases hold also for a polymorphism obtained from f by identifying
some variables with x1, from a2k+1 →

⋃k
j=1Aj and c′ →

⋃2k+1
j=k+2Aj follows that C 3

f(c′, u2, . . . , um) → f(i, v2, . . . , vm), where uj = a2k+1 if vj ∈
⋃k
j=1Aj , while uj = c′

if vj ∈
⋃2k+1
j=k+2Aj . Similarly, from

⋃2k+1
j=k+2Aj → a1 and

⋃k
j=1Aj → c′′ follows that

f(c, v2, . . . , vm)→ f(c′′, w2, . . . , wm) ∈ C, where wj = a1 if vj ∈
⋃2k+1
j=k+2Aj , while wj = c′′

if vj ∈
⋃k
j=1Aj . So,

f(C, (V \Ak+1)m−1) ⊆ C.
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• From the previous inclusion follows that f(C, V m−1) ⊆ C similarly as in the proof
of the previous inclusion.

LEMMA 4.24. Let the induced subgraph on Ai contain a nontrivial strong compo-
nent C and let c ∈ C. Then f({c}, V, . . . , V ) = {c}.

PROOF. Again as in the previous proof we assume that j = k+1. Also, let us assume
v2, . . . , vm ∈ A∀−k+1 =

⋃k
j=1Aj and denote c′ := f(c, v2, . . . , vm). Then for any d ∈ c+ ∩ C,

c′ = f(c, v2, . . . , vm) → f(d, d, . . . , d) = d, so c+ ⊆ c′+. By semicompleteness, either c′ =
c, or c′ → c. Since we wish to prove c′ = c, assume instead that c′ → c. But then for any
a2k+1 ∈ A2k+1 follows that c′′ = f(c′, a2k+1, . . . , a2k+1) → f(c, v2, . . . , vm) = c′. Finally,
c′′ = f(c′′, c′′, . . . , c′′) → f(c′, a2k+1, . . . , a2k+1) = c′′ contradicting the irreflexivity of →.
Moreover, a dual argument proves that f(c, v2, . . . , vm) = c when v2, . . . , vm ∈ A∀+k+1.

Next assume that v2, . . . , vm ∈ V \ Ak+1. Then for any a1 ∈ A1, a2k+1 ∈ A2k+1 and
c′, c′′ ∈ C such that c′ → c → c′′, there exist u2, . . . , um ∈ {a2k+1, c

′} and w2, . . . , wm ∈
{a1, c

′′} such that ui → vi → wi for all 2 ≤ i ≤ m. To see this, denote first J1 = {j :
1 < j ≤ m and vj ∈ C−}, while J2 = {2, 3, . . . ,m} \ J1 = {j : 1 < j ≤ m and vj ∈ C+}.
Now just take uj = a2k+1 and wj = c′′ when vj ∈ J1, while uj = c′ and wj = a1 when
vj ∈ J2. From the previous case applied to the binary polymorphisms g and h which
are obtained from f by identification of the variables in {1}∪J1 and in J2, respectively
in {1} ∪ J2 and in J1, we get c′ = g(c′, a2k+1) = f(c′, u2, . . . , um) → f(c, v2, . . . , vm) →
f(c′′, w2, . . . , wm) = h(c′′, a1) = c′′. Since c′ and c′′ were arbitrarily chosen, this implies
that (c−∩C) ⊆ f(c, v2, . . . , vm)− and (c+∩C) ⊆ f(c, v2, . . . , vm)+, while from Lemma 4.23
follows that f(c, v2, . . . , vm) ∈ C, so together this implies that f(c, v2, . . . , vm) = c. We
proved now that f({c}, (V \Ak+1)m−1) = {c}.

The general case of the lemma follows now easily by the same argument as the case
above, as for any vi ∈ V it is easy to find ui and wi such that ui → vi → wi and that
ui ∈ {c′} ∪ (V \Ak+1) and wi ∈ {c′′} ∪ (V \Ak+1).

THEOREM 4.25. Every idempotent polymorphism f of a P-graph GT parametrized
by the locally transitive tournament T is a projection, except when GT is the 3-cycle.

PROOF. We may assume that f(Aj1 , . . . , Ajm) ⊆ Aj1 and after Lemma 4.24 is ap-
plied, we are left with proving that f(v1, v2, . . . , vm) = v1 when v1 ∈ Ai is the only
element of a trivial strong component of the induced subgraph on Ai. First let us de-
note by S the union of the maximal sequence of consecutive trivial strong components
of the induced subgraph on Ai which contains {v1}. Here the use of term ’consecutive’
is with respect to the linear order of strong components induced by →. S is bounded
from above either by the start of Ai, or by a nontrivial strong component I of Ai, and
from below either by the end of Ai or by the nontrivial strong component J of Ai. We
know that f(v1, v2, . . . , vm) ∈ Ai, so if S = Ai, then f(v1, v2, . . . , vm) ∈ S. Otherwise,
we select any uj → vj → wj for 2 ≤ j ≤ m. If a nontrivial strong component I of
the subgraph on Ai such that S ⊆ I∀+, then for all x ∈ I, from Lemma 4.24 we get
x = f(x, u2, . . . , um) → f(v1, v2, . . . , vm), so for all x ∈ I, f(v1, v2, . . . , vm) ∈ x+, i. e.
f(v1, v2, . . . , vm) ∈ I∀+. Dually, for any nontrivial strong component J of the subgraph
onAi such that S ⊆ J∀−, then for all y ∈ J , we get f(v1, v2, . . . , vm)→ f(y, w2, . . . , wm) =
y, so for all y ∈ J , f(v1, v2, . . . , vm) ∈ y−, i. e. f(v1, v2, . . . , vm) ∈ J∀−. We conclude that
f(v1, v2, . . . , vm) ∈ S, and by extension that f(S, V, V, . . . , V ) ⊆ S.

Now let S = {a1
1, a

2
1, . . . , a

|S|
1 }, where a1

1 → a2
1 → . . . → a

|S|
1 and v1 = aj1. More-

over, select any vertices atr ∈ V for 2 ≤ r ≤ m and 1 ≤ t ≤ |S| which satisfy that
atr → at+1

r for all r, t such that 2 ≤ r ≤ m and 1 ≤ t < |S|, and which also have
the property that ajr = vr for all 2 ≤ r ≤ m. Denote by bt = f(at1, a

t
2, . . . , a

t
m). We

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 11, Publication date: January 2011.



QCSP on semicomplete digraphs 11:21

get from compatibility that b1 → b2 → . . . → b|S|, while from the previous paragraph
follows that {b1, b2, . . . , b|S|} ⊆ S. However, the induced subgraph on S is the strict lin-
ear order (i. e. transitive tournament) in which the only directed path of length |S| is
a1

1 → a2
1 → . . . → a

|S|
1 , so it must be that at1 = bt for all 1 ≤ t ≤ |S|. In particular, for

t = j we get f(v1, v2, . . . , vm) = bj = aj1 = v1, as desired.

4.2. All strongly connected semicomplete digraphs
LEMMA 4.26. Let G = (V,→) be a strongly connected semicomplete digraph which

contains at least one 2-cycle. Then for each 2-cycle a ↔ b in G, the set {a, b} is closed
with respect to all idempotent polymorphisms of G and each binary idempotent poly-
morphism of G restricted to {a, b} is a projection.

PROOF. First, note that the 2-cycle has no idempotent binary polymorphisms other
than projections (the only other options are ∧ and ∨, and those two are clearly not
polymorphisms of the 2-cycle). So the second statement follows from the first one.

Given f ∈ Polid(G) of arity n > 1 and c ∈ {a, b}n, there is a binary g ∈ Polid(G)
(obtained from f by identification of variables) and d ∈ {a, b}2 such that f(c) = g(d).
So, it suffices to prove that any 2-cycle a ↔ b is closed under all binary f ∈ Polid(G).
There is nothing to prove for |V | = 2. Assume that it holds for all strongly connected
semicomplete digraphs with fewer than |V | vertices. In this proof we will call the 2-
cycles {a, b} ⊆ V which are not closed under all idempotent polymorphisms of G the
bad pairs of G. We are trying to prove no bad pairs exist and assume the opposite.

Claim 1: For a bad pair {a, b} of G, {a, b}∀+ = {a, b}∀− = ∅.
Assume not, and without loss of generality, let x ∈ {a, b}∀−. Then {a, b} ⊆ x+ and x+

is closed under all idempotent polymorphisms of G, since it is pp-definable with→ and
the constant x. Let G1 = (x+,→) be the induced subgraph on x+. The strong component
S of G1 which contains {a, b} is pp-definable within G1 using all constants from x+ \ S
and→, so it is also pp-definable within G using→ and constants. Therefore, S is closed
under all idempotent polymorphisms of G. The assumption that {a, b} is a bad pair of G
implies that {a, b} is a bad pair of the induced subgraph of G on the set S. Since x /∈ S,
thus |S| ≤ |V |−1 and the induced subgraph on S is a strongly connected semicomplete
digraph, contradicting the inductive assumption and proving Claim 1.

Another way to write Claim 1 is to say that for all bad pairs {a, b} of G and x ∈
V \ {a, b}, |x+ ∩ {a, b}| = |x− ∩ {a, b}| = 1.

Claim 2: Let {a, b} be a bad pair of G which is not closed under the idempotent
binary polymorphism f . Then {f(a, b), f(b, a)} is also a bad pair of G.

From the fact that f is a polymorphism, it follows that f(a, b) ↔ f(b, a). Moreover,
assuming that f(a, b) = c /∈ {a, b}, then from Claim 1 follows that {a, c} and {b, c} are
not 2-cycles, and so f(b, a) = d /∈ {a, b}. If {c, d} is not a bad pair, then it is closed
under all idempotent polymorphisms. Assume that c → a → d or d → a → c. Then
by Lemma 4.8, {a, c, d} is nice. Moreover, since the induced subgraph on {a, c, d} is
strongly connected and b+ ∩ {a, c, d} 6= ∅ 6= b− ∩ {a, c, d}, then {a, b, c, d} is also nice by
Lemma 4.7, which is a contradiction with the assumption that {a, b} is a bad pair. So,
{c, d} ⊆ a− or {c, d} ⊆ a+. We may assume without loss of generality that {c, d} ⊆ a+,
that {c, d} ∩ a− = ∅, and also that f restricts to {c, d} as the first projection. Now
we get that d = f(b, a) → f(a, c) → f(c, d) = c and from Lemma 4.8 follows that
the subset {c, d, f(a, c)} is nice and that f restricts to it as the first projection. More-
over, if it were a → f(a, c), then we would get that f(a, c) → f(f(a, c), d) = f(a, c)
(the equality follows since f is the first projection on {c, d, f(a, c)}), which is impossi-
ble. From d → f(a, c) follows that f(a, c) 6= a. The only remaining possibility is that
f(a, c)→ a. But together with Lemma 4.7, this implies that {a, c, d, f(a, c)} is nice and
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then again from Lemma 4.7 and b↔ a we get that {a, b, c, d, f(a, c)} is nice, which con-
tradicts the assumption that {a, b} is a bad pair. This final contradiction proves that
{c, d} = {f(a, b), f(b, a)} must be a bad pair.

Claim 3: The set B :=
⋃
{{a, b} : {a, b} is a bad pair of G} is closed under all binary

idempotent polymorphisms of V .
By Claim 1, if a ∈ V is a member of the bad pair {a, b}, then the only 2-cycle contain-

ing a is a ↔ b. Let a1, a2 ∈ B and let f be an idempotent polymorphism of G. We aim
to prove that f(a1, a2) ∈ B. This follows from idempotence if a1 = a2. If a1 ↔ a2, then
{a1, a2} is a bad pair, so f(a1, a2) ∈ B by Claim 2. So, we may assume without loss of
generality that a1 → a2, a1 ↔ b1 and a2 ↔ b2, where {a1, b1} and {a2, b2} are bad pairs,
and that |{a1, a2, b1, b2}| = 4. From a1 → a2 and Claim 1 applied to a1 ↔ b1, resp. to
a2 ↔ b2, we get a2 → b1, resp. b2 → a1, while Claim 1 applied to a2 ↔ b2 and a2 → b1
imply b1 → b2. The induced subgraph on {a1, a2, b1, b2} is:

b1

a1

b2

a2

Fig. 2.

Assume that c := f(a1, a2) /∈ B. Therefore, f(a1, a2) ↔ f(b1, b2) =: d and the pair
{c, d} is not a bad pair, and hence {c, d} is closed under all idempotent polymorphisms
of G. Now c = f(a1, a2) → f(a2, b1) → f(b1, b2) = d, so the subset {c, d, f(a2, b1)} is
nice by Lemma 4.8. Moreover, since f(a1, b2) ↔ f(a2, b1), thus {c, d, f(a2, b1), f(a1, b2)}
is also nice by Lemma 4.7. Since f(a2, b1) ↔ f(a1, b2), {f(a2, b1), f(a1, b2)} is not a bad
pair and elements of B are in precisely one 2-cycle, thus f(a2, b1) /∈ B and f(a1, b2) /∈ B.
Now, a1 = f(a1, a1) → f(a2, b1), and since f(a2, b1) /∈ B 3 b1, from Claim 1 follows
that f(a2, b1) → b1. Also, we know that b1 = f(b1, b1) → f(a1, b2), so from Lemma 4.7
follows that {c, d, f(a2, b1), f(a1, b2), b1} is nice. Finally, from this, Lemma 4.7 and a1 ↔
b1 follows that {c, d, f(a2, b1), f(a1, b2), a1, b1} is nice, which contradicts the assumption
that the pair {a1, b1} is bad. This finishes the proof of Claim 3.

Now we consider the case when B contains at least three distinct bad pairs. In
this case, we claim that there exist three distinct elements a1, a2, a3 ∈ B such that
{a1, a2, a3} contains no bad pairs and it is closed under all binary idempotent polymor-
phisms. We will obtain this set as an intersection of a pp-definable subset of V and B,
and therefore all binary polymorphisms will be compatible with it by Claim 3. Note
that for any b ∈ B, |b+ ∩ B| = |B|

2 , since b+ ∩ B contains the other half of the bad pair
which contains b and exactly one element of each other bad pair, according to Claim
1. So, b+ ∩ B = {a1, a2, . . . , an}, this is a set which contains no bad pairs, it is closed
under all idempotent binary polymorphisms of G and we assumed that n ≥ 3. Now
we inductively intersect this set with another pp-definable subset to make it smaller,
but still no less than 3. To do this, assume that the subset S = {a1, a2, . . . , am} ⊆ B is
closed under all idempotent binary polymorphisms and contains no bad pairs and let
m > 3. If m ∈ {2k, 2k+1} for some integer k, then we know that k ≥ 2. Now the induced
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subgraph on S is a tournament and since |S| ∈ {2k, 2k + 1}, then either |a+
m ∩ S| ≥ k or

|a−m∩S| ≥ k. Without loss of generality, let |a+
m∩S| ≥ k. The set T := a+

m∩S contains no
bad pairs since S doesn’t contain them, it is closed under all idempotent binary poly-
morphisms and since T ⊆ S \ {am}, thus |T | < m. If |T | ≥ 3, then this is our desired
set T . If |T | = 2, then for bm ∈ B such that am ↔ bm, i. e. that {am, bm} is a bad pair,
Claim 1 implies that b−m ∩ S = T ∪ {am} and so T ′ = |b−m ∩ S| = 3. As above, this set T ′
is also closed under all idempotent binary polymorphisms and contains no bad pairs.

So we have proved that there exist three distinct elements a1, a2, a3 ∈ B such that
{a1, a2, a3} is closed under all idempotent binary polymorphisms of G and contains no
bad pairs. In fact, from the proof in previous paragraph we know that there exists a
pp-formula ϕ(x) in the language of the pointed digraph Gc with one free variable x
such that {x : ϕG(x)}∩B = {a1, a2, a3}. Without loss of generality, we may assume that
a1 → a2 → a3 (no assumption is made on the edge between a1 and a3) and let ai ↔ bi,
i. e. {ai, bi} are bad pairs. This and Claim 1 force the situation depicted on Figure 3:

b1

a1

b2

a2 a3

b3

Fig. 3.

{b1, b2, b3} = {x : (∃y)(ϕG(y)&x ↔ y)} ∩ B, so {b1, b2, b3} is also closed under
all idempotent binary polymorphisms of G. Also since {a1, a2} = b+2 ∩ {a1, a2, a3},
{a2, a3} = b−2 ∩{a1, a2, a3}, {b1, b2} = a+

2 ∩{b1, b2, b3}, {b2, b3} = a−2 ∩{b1, b2, b3}, then the
sets {a1, a2}, {a2, a3}, {b1, b2} and {b2, b3} are all closed under idempotent binary poly-
morphisms of G. Let f be an idempotent binary polymorphism of G such that {a2, b2}
is not closed under f . We have the following cases:

Case 1: f(a1, a2) = a2. Since a2 = f(a1, a2)→ f(a2, a3) and {a2, a3} is closed under f ,
we get f(a2, a3) = a3. Then we have these two subcases:

Case 1a: f(a3, a2) = a2. Then a2 = f(a1, a2) → f(a2, b2) → f(a3, a2) = a2 and the
only element x ∈ V such that a2 ↔ x is b2, it follows that f(a2, b2) = b2. By Claim 2,
{f(a2, b2), f(b2, a2)} = {b2, f(b2, a2)} is a bad pair, so f(b2, a2) = a2, and from these and
idempotence of f follows that {a2, b2} is closed under f , contradicting the choice of f .

Case 1b: f(a3, a2) = a3. Now f(a2, b2)→ f(a3, a2) = a3 and f(b2, a2)→ f(a2, a3) = a3,
so a3 ∈ f(a2, b2)+∩f(b2, a2)+ and since {f(a2, b2), f(b2, a2)} is a bad pair by Claim 2, we
get a contradiction with Claim 1.

Case 2: f(a2, a1) = a2. This case is analogous to Case 1.
Case 3: f(a1, a2) = a1 and f(a2, a1) = a1. This case is analogous to Case 1b, with

all edges and the roles of a1 and a3 reversed, since the contradiction there was derived
only from f(a2, a3) = a3 = f(a3, a2), without using f(a1, a2) = a2 at all.

Finally, we deal with the case when B contains at most two bad pairs. By Claim 2
it cannot contain exactly one, so |B| = 4. Without loss of generality, B = {a1, a2, b1, b2}
and the induced subgraph onB is isomorphic to the one in Figure 2. Also, since b+1 ∩B =
{a1, b2}, the subset {a1, b2} is invariant under all idempotent binary polymorphisms of
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G. Let f be an idempotent binary polymorphism such that {a1, b1} is not closed with
respect to f . Then by Claim 2 {f(a1, b1), f(b1, a1)} is a bad pair distinct from {a1, b1},
so {f(a1, b1), f(b1, a1)} = {a2, b2} and without loss of generality we may assume that
f(a1, b1) = a2 and f(b1, a1) = b2 (if not, just replace f with g(x, y) := f(y, x)). Now
a2 = f(a1, b1) → f(a2, b2) → f(b1, a1) = b2, so f(a2, b2) = b1 and from f(a2, b2) ↔
f(b2, a2) follows that f(b2, a2) = a1 (see Figure 2). Since a1 = f(b2, a2) → f(a1, b2),
then f(a1, b2) ∈ a+

1 ∩ B = {a2, b1}, so {a1, b2} is not closed under f . This contradiction
establishes that B must be empty, as desired.

Definition 4.27. Let G = (V,→) be a strongly connected semicomplete digraph. We
say that L splits G if ∅ 6= L ( V is a subset with the following properties:

(1) {L,L∀+, L∀−} is a partition of V and
(2) for any 2-cycle a↔ b in G, {a, b} is contained in one of L, L∀+, or L∀−.

LEMMA 4.28. Let G = (V,→) be a strongly connected semicomplete digraph which
is not a cycle. Let L0 be either a 2-cycle or a nice subset of V . Then either all idempotent
polymorphisms of G are projections, or there exists an L such that L0 ⊆ L ⊆ V and that

—L splits G and
— either the induced subgraph on L is a 2-cycle, or L is nice.

PROOF. We inductively construct a sequence of subsets such that for all i, Li ⊆ Li+1,
and also such that Li are nice for all i > 0. We terminate our inductive construction if
Li splits G and make L := Li. We have two possibilities:

Case 1: If there exists an element v ∈ V \ Li such that v+ ∩ Li 6= ∅ and v− ∩ Li 6= ∅,
then select Li+1 := Li ∪ {v}. If i = 0 and the induced subgraph on L0 is a 2-cycle, then
from Lemmas 4.26 and 4.8 follows that Li+1 is nice. Otherwise, the same conclusion
follows from Lemma 4.7 since Li is nice.

Case 2: Assume that for all v ∈ V \ Li, either v+ ∩ Li = ∅, or v− ∩ Li = ∅. Thus
either v ∈ L∀−i or v ∈ L∀+i , but not both, and so {L,L∀+, L∀−} is a partition of V . Now
either Li splits G, in which case we put L := Li and terminate the sequence, or there
exists a 2-cycle c ↔ d such that c ∈ L∀− and d ∈ L∀+. We put Li+1 := Li ∪ {c, d}. The
induced subgraph on any subset of Li+1 which contains {c, d} is strongly connected as
any element is in a 3-cycle with c and d. Moreover if Li = {v1, v2, . . . , vk}, starting from
{c, d} by Lemmas 4.26 and 4.8 we get that {c, d, v1} is nice. From the assumption that
{c, d, v1, . . . , vj} is nice and Lemma 4.7 we get that {c, d, v1, . . . , vj , vj+1} is nice, hence
inductively Li+1 is nice.

LEMMA 4.29. Let G = (V,→) be a strongly connected semicomplete digraph which
is not a P -graph and let L split G. Then there exist vertices a0, a1, b0 ∈ V such that
a1 ← a0 → b0 → a1 and that either

(1) b0 ∈ L∀− and a0, a1 are in the same strong component, or two consecutive strong
components, of the induced subgraph on L∀+, or

(2) b0 ∈ L∀+ and a0, a1 are in the same strong component, or two consecutive strong
components, of the induced subgraph on L∀−.

PROOF. Firstly, if there were no elements a ∈ L∀− and b ∈ L∀+ such that b → a,
then G would not be strongly connected. On the other hand, if there were no elements
a ∈ L∀− and b ∈ L∀+ such that a → b, then G would be a P-graph parametrized by the
3-cycle into components L∀−, L and L∀+.

Let the strong components of the induced subgraphs on L∀− and L∀+ be, respec-
tively, A1 ⇒ A2 ⇒ . . . ⇒ Ak1

and B1 ⇒ B2 ⇒ . . . ⇒ Bk2
(here ⇒ indicates that all

edges between those subsets are in that direction and none in the other). If there is an
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element c ∈ L∀− and a strong component Bj of the induced subgraph on L∀+ such that
c+ ∩Bj 6= ∅ 6= c− ∩Bj , then consider the Hamiltonian cycle d0 → d1 → . . .→ dk−1 → d0

of Bj . There must be consecutive elements di → di+1 in this cycle (here we use addition
modulo k) such that di → c → di+1. Then take b0 := c, a0 := di and a1 := di+1 and the
case (1) is satisfied. Dually, if there exist any c ∈ L∀+ and a strong component Aj of the
induced subgraph on L∀−, such that c+ ∩Bj 6= ∅ 6= c− ∩Bj , then item (2) of the Lemma
would be true.

Now for any a ∈ Ai and b ∈ Bj , if a → b, then Bj ⊆ a+. Thus for any c ∈ Bj , also
a → c, so Ai ⊆ c−, and therefore Ai ⇒ Bj . Dually, if b → a then Bj ⇒ Ai. We proved
that G is parametrized by a tournament T into A1, A2, . . . , Ak1

, L,B1, B2, . . . , Bk2
. Since

G is not a P-graph, we know that T is not locally transitive. We know that A1 ⇒ A2 ⇒
. . . ⇒ Ak1

⇒ L ⇒ B1 ⇒ B2 ⇒ . . . ⇒ Bk2
⇒ A1, so T is strongly connected and by

definition, there exists a vertex v ∈ V (T ) such that either v− or v+ is not transitive.
Assume that v+ is not transitive. v is not the vertex which gets expanded into L,

since the subtournaments which expand into L∀− and L∀+ are both transitive (as Ai ⇒
Aj and Bi ⇒ Bj whenever i < j). If v expands into Ai, from the assumption that v+

is not transitive follows that there must be some j and k > i such that Bj ⊆ A+
i and

Bj ⇒ Ak. Let k be the least integer greater than i such that Bj ⇒ Ak. From Ai ⇒ Bj
follows that Ak−1 ⇒ Bj , so select any a0 ∈ Ak−1, a1 ∈ Ak and b0 ∈ Bj to fulfil the
requirements of (2). On the other hand, if v gets expanded into Bi from intransitivity
of v+ follows that there must be some j and k > i such that Aj ⊆ B+

i and Aj ⇒ Bk.
The proof of this case follows by permuting the letters A and B in the previous proof
and leads to fulfilment of (1). The case when v− is intransitive is dual.

The next lemma will be used only in the case when there are no 2-cycles in G, so we
assume that G is a tournament. It will help with the inductive base of the main proof.

LEMMA 4.30. If a strongly connected tournament G = (V,→) is not a P-graph and
for all v ∈ V , all strong components of the induced subgraphs on v+ and on v− are
of sizes 1 or 3, then there is a 3-cycle a → b → c → a in G such that all idempotent
polymorphisms of G restrict to {a, b, c} as projections.

PROOF. Claim 1: There exist five distinct vertices such that the induced subgraph
on them contains all edges of the partial tournament depicted on Figure 4, or of its
dual (the edge between a2 and b0 is missing since it doesn’t matter which way it goes).

a0

a2

a1

b0

v

Fig. 4.
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Since G is a tournament, each singleton {v} splits G, so V = {v} ∪ v− ∪ v+. First
assume that for some vertex v there exist strong components A of v+ and B of v−
such that neither A ⇒ B nor B ⇒ A. At least one of these components is of size 3,
say A. From the proof of Lemma 4.29 we get (1) or (2), with a0, a1 both in the same
component (the consecutive case arises when always A ⇒ B or B ⇒ A). If (2) holds
then the situation is like in Figure 4, while if (1) holds, then it is like in its dual.

Now assume that for all vertices v and all strong components A of v+ and B of v−,
either A⇒ B or B ⇒ A. Select L ( V to be maximal so that L is singleton or a strongly
connected proper subtournament, and that L splits G. Denote the strong components
of L∀− and L∀+, respectively, by A1 ⇒ A2 ⇒ . . . ⇒ Ak1

and B1 ⇒ B2 ⇒ . . . ⇒ Bk2
.

For any v ∈ L, Ai and Bj are strong components of the induced graph on v− and v+,
respectively, since Ai ⇒ (L ∩ v−) and (L ∩ v+)⇒ Bj , so by our assumptions |Ai|, |Bj | ∈
{1, 3}, and either Ai ⇒ Bj or Bj ⇒ Ai. Without loss of generality, assume that Lemma
4.29, item (2) holds, i. e. Ai+1 ⇐ Ai ⇒ Bj ⇒ Ai+1, (in particular, k1 > 1).

Let us show that we may assume that i = k1 − 1 and j = 1. If i < k1 − 1 then for
any ai ∈ Ai, a+

i contains a cycle of length at least 4, as Ai+1 ⇒ Ak1 ⇒ L⇒ Bj ⇒ Ai+1.
This is a contradiction with the conditions of the Lemma. Let Ai = ki − 1 and j > 1.
If Ai ⇒ B1, then for any ai ∈ Ai, a+

i contains a cycle of length 4 or more since Ak1 ⇒
L ⇒ B1 ⇒ Bj ⇒ Ak1

, and this again contradicts the conditions of the Lemma. On the
other hand, if B1 ⇒ Ai then select a0 ∈ Ai, a1 ∈ L, a2 ∈ B1, v ∈ Bj and b0 ∈ Ai+1. We
get the following edges: a0 → a1 → a2 → a0, then {a0, a1, a2} ∈ v−, v → b0 and finally
a0 → b0 → a1. In other words, the induced subgraph on these five vertices contains all
edges of the partial tournament depicted on Figure 4.

Now let i = k1 − 1 and j = 1. If there exists Al such that l < i, B1 ⇒ Al, then
select a0 ∈ Ak1 , a1 ∈ B1, a2 ∈ L, v ∈ Ak1−1 = Ai and b0 ∈ Al. Now we get that
a0 ← a1 ← a2 ← a0, that {a0, a1, a2} ⊆ v+, b0 → v and that a0 ← b0 ← a1. In other
words, the induced subgraph on these five vertices contains all edges of dual of the
partial tournament depicted on Figure 4.

The remaining case is when for all l < i, the strong components Al ⇒ B1. Also,
|Ak1 | = |L| = |B1| = 1, otherwise from Ak1 ∪ L ∪ B1 ⊆ A∀+k1−1 and Ak1 ⇒ L⇒ B1 ⇒ Ak1

would follow that for any v ∈ Ak1−1, v+ contains a cycle of length greater than 3.
Moreover, we know from strong connectedness of G that k2 > 1, otherwise there would
be no edge from Ak1 ∪ L ∪B1 into the rest of V (which is nonempty since k1 > 1).

Now we prove that also for all l > 1, Ak1 ⇒ Bl. Assume not, then select Bl such that
l > 1 and Bl ⇒ Ak1 . Now, if Ak1−1 ⇒ Bl, we would get that Ak1 ⇒ L⇒ B1 ⇒ Bl ⇒ Ak1

and for any v ∈ Ak1−1, Ak1 ∪ L ∪ B1 ∪ Bl ⊆ v+. This would imply that v+ contains a
4-cycle, a contradiction. On the other hand, if Bl ⇒ Ak1−1, then select a2 ∈ L, a0 ∈ Ak1

,
a1 ∈ B1, v ∈ Ak1−1 and b0 ∈ Bl. We get that a0 ← a1 ← a2 ← a0, that {a0, a1, a2} ⊆ v+,
b0 → v and that a0 ← b0 ← a1. As before, the induced subgraph on these five vertices
contains all edges of dual of the partial tournament depicted on Figure 4.

Finally, if for all l > 1, Ak1
⇒ Bl, then we get that Ak1

∪ L ∪B1 also splits G and it is
a proper subset of V . This contradicts the choice of L. Claim 1 is thus proved.

Note that {a0, a1, a2} ⊆ v− and {a1, b0, v} ⊆ a+
0 , hence each of those three-element

sets is closed under all idempotent polymorphisms of G (since they are 3-cycles, they
must be strong components of v− and a+

0 , respectively, so they are pp-definable in Gc).
Claim 2: Every idempotent binary polymorphism f ∈ Polid(G) is the same projection

on the sets {a0, a1, a2} and {a1, v, b0}.
Since a0 = f(a0, a0) → f(b0, a1) → f(a1, a2) → f(v, v) = v, it follows that

f(a1, a2) 6= a0 since there are no 2-cycles in G. From f(a0, a1) → f(a1, a2) 6= a0 and
f(a0, a1), f(a1, a2) ∈ {a0, a1, a2} follows f(a0, a1) ∈ {a0, a1}. By switching the coordi-
nates of f in the previous sentence we also get that f(a1, a0) ∈ {a0, a1}. By the same

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 11, Publication date: January 2011.



QCSP on semicomplete digraphs 11:27

argument, since v is not in a 2-cycle, we get that f(b0, a1) 6= v 6= f(a1, b0). Therefore,
also f(b0, a1), f(a1, b0) ∈ {a1, b0}. Let us assume that f(a0, a1) = a0. This implies that
a0 = f(a0, a1)→ f(a1, a2)→ f(a2, a0)→ f(a0, a1) = a0, so f(a1, a2) = a1 and f(a2, a0) =
a2. Since f(a0, a1) → f(b0, a2) → f(a1, a0) and there are no 2-cycles in G, therefore
f(a1, a0) 6= a0 and so f(a1, a0) = a1. Similarly as before, a1 = f(a1, a0) → f(a2, a1) →
f(a0, a2)→ f(a1, a0) = a1 implies f(a2, a1) = a2 and f(a2, a0) = a2, so f is the first pro-
jection on {a0, a1, a2}. Moreover, from {a1, b0} 3 f(b0, a1) → f(a1, a2) = a1 implies that
f(b0, a1) = b0. Thus from b0 = f(b0, a1) → f(a1, v) → f(v, b0) → f(b0, a1) = b0 we get
f(a1, v) = a1 and f(v, b0) = v. Finally, from a1 = f(a1, v) → f(a2, b0) → f(v, a1) follows
that f(v, a1) 6= a1 since there are no 2-cycles in G, while from a1 = f(a1, a0) → f(v, a1)
follows that f(v, a1) 6= b0 since b0 → a1 and not the other way round. So the remaining
possibility is that f(v, a1) = v and then from v = f(v, a1) → f(b0, v) → f(a1, b0) →
f(v, a1) = v we get f(a1, b0) = a1 and f(b0, v) = b0. So, f is the first projection both
on {a0, a1, a2} and on {a1, v, b0}. The proof that if f(a0, a1) = a1 then f is the second
projection both on {a0, a1, a2} and on {a1, v, b0} is analogous.

Claim 3: No idempotent polymorphism of G restricts to {a1, v, b0} as a Mal’cev or as
a near-unanimity operation.

Assume first that d(x, y, z) is a ternary idempotent polymorphism of G which restricts
to {a1, v, b0} as a Mal’cev operation, i. e. d(x, x, y) = y = d(y, x, x) holds identically on
{a1, v, b0}. Applying Claim 2 we get that d(x, x, y) = y = d(y, x, x) holds identically on
{a0, a1, a2}, as well. Thus, we get a1 = d(a1, a0, a0)→ d(v, v, a1) = a1, a contradiction.

On the other hand, assume that f(x1, x2, . . . , xn) is an idempotent polymorphism
of G which restricts to {a1, v, b0} as a near-unanimity operation, i. e. f(y, x, . . . , x) =
f(x, y, x, . . . , x) = . . . = f(x, x, . . . , x, y) = x is true for all x, y ∈ {a1, v, b0}. Applying
Claim 2 we get that f(y, x, . . . , x) = f(x, y, x, . . . , x) = f(x, x, . . . , x, y) = x holds identi-
cally on {a0, a1, a2}, as well. Let i be such that f(xiyn−i) = x, while f(xi−1yn−i+1) = y
for all x, y ∈ {a1, v, b0} (and consequently, for all x, y ∈ {a0, a1, a2}). From compatibility
of f with {a0, a1, a2} and

f(ai−1
0 a1a

n−i
2 )→ f(ai−1

1 a2a
n−i
0 )→ f(ai−1

2 a0a
n−i
1 )→ f(ai−1

0 a1a
n−i
2 )

we conclude that the triples(
f(ai−1

0 a1a
n−i
2 ), f(ai−1

1 a2a
n−i
0 ), f(ai−1

2 a0a
n−i
1 )

)
and (a0, a1, a2)

are cyclic permutations of each other. We have two cases:
Case 1: a2 → b0. Then f(ai−1

0 a1a
n−i
2 ) = a0 implies that f(ai−1

1 a2a
n−i
0 ) = a1, so

a1 = f(ai−1
1 a2a

n−i
0 ) → f(vi−1bn−i+1

0 ) = b0 → a1, which would be a double-edge, a con-
tradiction. On the other hand, if f(ai−1

0 a1a
n−i
2 ) = a2, then f(ai−1

2 a0a
n−i
1 ) = a1 and a1 =

f(ai−1
2 a0a

n−i
1 ) → f(bi0v

n−i) = b0 → a1, a contradiction. Finally, if f(ai−1
0 a1a

n−i
2 ) = a1,

then a1 = f(ai−1
0 a1a

n−i
2 )→ f(bi−1

0 vbn−i0 ) = b0 → a1, again a contradiction.
Case 2: b0 → a2. If f(ai−1

0 a1a
n−i
2 ) = a0, then a0 = f(ai−1

1 an−i+1
0 ) → f(ai−1

2 bn−i+1
0 ) →

f(ai−1
0 a1a

n−i
2 ) = a0, a contradiction. On the other hand, if f(ai−1

0 a1a
n−i
2 ) = a2, then

f(ai−1
1 a2a

n−i
0 ) = a0 and a0 = f(ai0a

n−i
1 ) → f(bi0a

n−i
2 ) → f(ai−1

1 a2a
n−i
0 ) = a0, again the

same contradiction. Finally, if f(ai−1
0 a1a

n−i
2 ) = a1, then f(ai−1

2 a0a
n−i
1 ) = a0 and there-

fore a0 = f(ai−1
2 a0a

n−i
1 ) ← f(bi−1

0 a2b
n−i
0 ) ← f(vi−1a1v

n−i) = v, again a contradiction
since (v+)+ = b+0 = {a1, a2}, so a0 /∈ (v+)+. Thus Claim 3 is proved.

Let f be an idempotent polymorphism of G. We deduce from Lemma 4.1 that there
exists a unique k such that fk(b0, v) = v. Without loss of generality, assume that
k = 1, so let f(v, bn−1

0 ) = v. By the binary case we proved in Claim 2, it follows that
f(a1, a

n−1
0 ) = a1. However, since f({v}, {a1, v, b0}n−1) ⊆ f(a1, a

n−1
0 )+ = a+

1 , we get that
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f({v}, {a1, v, b0}n−1) = {v}. It follows that f is the first projection on {a1, v, b0} by the
same ”going around the 3-cycle” argument we used several times in this proof.

THEOREM 4.31. A strongly connected semicomplete digraph which is not a cycle
has only trivial idempotent polymorphisms.

PROOF. We prove it by an induction on |V | = n. By Theorem 4.25, if G is a P-
graph, we are done, so we assume that G is not a P-graph. For n = 2 the only strongly
connected semicomplete digraph must be a cycle. If n = 3 and G is not a cycle, then
there is a 2-cycle a ↔ b in G, and the third vertex c must satisfy either a → c → b
or b → c → a (possibly even both!), so by Lemma 4.26 and Lemma 4.8 all idempotent
polymorphisms are projections. Also, if n = 4, then G is a P-graph parametrized by the
3-cycle if G is the only 4-element strongly connected tournament or in the case when
V = {a, b, c, d} has exactly one 2-cycle a ↔ b, c ∈ {a, b}∀+ and d ∈ {a, b}∀−. Otherwise,
from Lemmas 4.26, 4.8 and 4.7 follows that all idempotent polymorphisms of G are
projections.

Now assume that n > 4 and that the Theorem holds in all strongly connected semi-
complete digraphs with fewer than n vertices. We are going to prove that the maximal
nice subset of V is V itself. We would like to prove this by finding first a nice subset,
then going to the maximal nice subset which contains it and finally proving that this
maximal nice set is V . However, the actual argument we found is slightly murkier, we
may not be able to start off from a nice subset. Our starting point might be instead a
2-cycle, which may have a polymorphism (of arity greater than 2) which is nontrivial.
However, if not even Lemma 4.28 provides a nice subset which contains the 2-cycle,
then we are able to proceed inductively to a nice set which contains the 2-cycle by
Lemma 4.29.

First we need to prove that there exists a 2-cycle, or a nice subset with more than
one element. If there exists a 2-cycle a ↔ b, then we set L0 = {a, b}. Otherwise, G is
a tournament, and if there exists any vertex v ∈ V and a strong component L0 of the
induced subgraph on v− or on v+ such that |L0| > 3, then L0 is clearly pp-definable
with constants in G, so L0 must be nice by the inductive assumption. Finally, if G is a
tournament and for all v ∈ V all strong components of the induced subgraphs on v−

and on v+ have at most three elements, then G is either a P-graph, in which case we
are done by Theorem 4.25, or from Lemma 4.30 follows that there is a three element
subset L0 which is nice.

Let L be a maximal nice subset of V such that L0 ⊆ L. Assume that L 6= V . Either
L exists, so by Lemma 4.28 L splits G, or L0 is contained in no nice set, so L0 is a
2-cycle, so by Lemmas 4.26 and 4.8 L0 splits G (in this case we also set L := L0). From
Lemma 4.29 follows that either a strong component L′ of the induced subgraph on a+

0
contains L ∪ {a1, b0} (if Lemma 4.29 (2) holds), or that a strong component L′ of the
induced subgraph on a−1 contains L ∪ {a0, b0} (Lemma 4.29 (1) holds). Either way, L′ is
pp-definable in Gc, L ( L′ ( V and the induced subgraph on L′ is strongly connected, so
by the inductive assumption L′ is nice. This contradicts the assumed maximality of L
(or nonexistence of the nice set which contains L0, as the case may be). The remaining
alternative is L = V , but then the Theorem holds by niceness of L.

As we mentioned at the start of this section, by proving Theorem 4.31 and invoking
Proposition 4.2 we also proved Theorem 4.3.

5. SMOOTH SEMICOMPLETE DIGRAPHS WITH SEVERAL STRONG COMPONENTS
In this section we deal with the smooth semicomplete digraphs G and we will show that
QCSP(G) is PSPACE-complete whenever G is not a 2-cycle nor a 3-cycle (i.e. when G has
at least two cycles, cf. the proof of Theorem 3.3). The case when G has only one strong
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component was resolved in Theorem 4.3, so we may assume that G has at least two
strong components. Moreover, smoothness implies that the largest and smallest one in
the linear order of strong components induced by the edge relation are nontrivial.

5.1. Two strong components
Let us first deal with the case when the digraph G = (V,→) consists of exactly two
nontrivial strong components, U and L such that L⇒ U . Since they are nontrivial, the
induced subgraph on each of L and U is either a cycle (a 2-cycle or 3-cycle would be the
only semicomplete ones, but our proof would also work if there was a k-cycle instead!)
or a strongly connected semicomplete digraph with at least two cycles, for which we
know from Theorem 4.31 that the only idempotent polymorphisms of that subgraph
are projections. Recall the notation �G from Section 2. Note that a+ ⊆ b+ iff a �G∂ b,
where G∂ is the dual graph. Denote by x→k y the assertion that there exists a directed
path of length k from x to y.

LEMMA 5.1. Let a ∈ L and b ∈ U such that a is maximal in the poset (L,�G) and b is
maximal in (U,�G∂ ). Then {a, b} = (a−)∀+ ∩ (b+)∀−. In particular, {a, b} is pp-definable
in Gc, and thus compatible with any idempotent polymorphism of G.

PROOF. (⊆) follows the fact that L⇒ U .
(⊇): Let c be in the right hand side, but not in {a, b}. Assume first that c ∈ L. Then for
all x ∈ a−, x→ c, so a− ⊆ c−. Thus a �G c, and from maximality of a follows c = a. The
case when c ∈ U is dual.

The final sentence requires no proof.

Note that, in the case when L is a cycle, any of its elements satisfies the maximality
condition for a, and dually when U is a cycle.

LEMMA 5.2. Let f(x1, . . . , xn) be an idempotent polymorphism of G and 1 ≤ k ≤ n.

(i) For all (a, b2, . . . , bn) ∈ Lk×Un−k, if a− ⊆ f(a, b2, . . . , bn)− and U ⊆ f(a, b2, . . . , bn)+,
then f(a, b2, . . . , bn) = a for all (a, b2, . . . , bn) ∈ Lk × Un−k.

(ii) For all (a, b2, . . . , bn) ∈ Lk×Un−k, if a+ ⊆ f(a, b2, . . . , bn)+ and U ⊆ f(a, b2, . . . , bn)+,
then f(a, b2, . . . , bn) = a for all (a, b2, . . . , bn) ∈ Lk × Un−k.

(iii) Assume also that U is a cycle and that for all (a′, b′2, . . . , b
′
n) ∈ Lk × Un−k, (a′)− ⊆

f(a′, b′2, . . . , b
′
n)−. If (a, b2, . . . , bn) ∈ Lk × Un−k satisfy n− k ≥ 2, bk+1 6= bk+2, b+k+1 ⊆

f(a, b2, . . . , bn)+ and b+k+2 ⊆ f(a, b2, . . . , bn)+, then f(a, b2, . . . , bn) = a.

Remark: the above Lemma also implies its dual statement for (a, b2, . . . , bn) ∈ Uk ×
Ln−k (obtained by transposing U and L, + and −, etc.). Also, the order of variables may
be permuted arbitrarily and the same statements would hold.

PROOF. In all three cases we have that a �H f(a, b2, . . . , bn) with respect to some
graph H = G in (i) and (iii), while in (ii) we use H = G∂ . In (iii) from the assump-
tion that U is a cycle follows that |f(a, b2, . . . , bn)+ ∩ U | ≥ |b+k+1 ∪ b

+
k+2| = 2, hence

f(a, b2, . . . , bn) ∈ L, as |x+| = 1 for all x ∈ U . The same f(a, b2, . . . , bn) ∈ L can
be concluded from U ⊆ f(a, b2, . . . , bn)+ for the cases (i) and (ii). So let a be maxi-
mal in the poset (L,�H) such that there exist (b2, . . . , bn) ∈ Lk−1 × Un−k for which
e := f(a, b2, . . . , bn) ∈ L and a 6= e. The relations a �H e and a 6= e mean that a → e
in cases (i) and (iii), while they mean a ← e in (ii). Select (d2, . . . , dn) ∈ Lk−1 × Un−k
such that bi → di in cases (i) and (iii), respectively bi ← di in case (ii). Since bi and
di are in the same strong component of G, there exists some m such that, in cases (i)
and (iii), a → e →m a and bi → di →m bi, while in (ii) the same holds with ← in
place of→ (we take m+ 1 to be the least common multiple of several lengths of cycles).
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Since f(e, d2, . . . , dn)→m f(a, b2, . . . , bn) = e ∈ L (in (ii) replace→m with→), it follows
that f(e, d2, . . . , dn) ∈ L. From maximality of a follows that f(e, d2, . . . , dn) = e. But
this is a contradiction, as e = f(a, b2, . . . , bn) → f(e, d2, . . . , dn) = e (in case (ii) use ←)
contradicts the irreflexivity of→.

LEMMA 5.3. Let f(x, y) be a binary idempotent polymorphism of G. Then f is one of
the two projections.

PROOF. Fix a and b which fit the conditions of Lemma 5.1. According to Lemma 5.1,
without loss of generality, we may assume that f(a, b) = a. We claim first that f is the
first projection on L.

If L is not a cycle, then we get for any x ∈ a− that (x, a) → (a, b) in G2. We know
that f �L is one of the two projections, according to Theorem 4.31, and f(x, a) can’t
equal a as we would get a = f(x, a) → f(a, b) = a, which is impossible. Thus from
{x, a} ⊆ L and f(x, a) 6= a follows that f �L must be the first projection. In the case
when L is a k-cycle, a = ak ← ak−1 ← . . . ← a1 ← a0 = a, for each l, 0 < l < k, we get
f(ak−1, ak−l−1) → f(a, b) = a = ak, so f(ak−1, ak−l−1) = ak−1. Continuing like this we
inductively get that f(ai, ai−l) = ai for all 0 ≤ i ≤ k − 1, where the subtractions in the
last few sentences are modulo k, of course.

Now for some x ∈ a− we get (a, x)→ (b, a) in G2, so a = f(a, x)→ f(b, a), so f(b, a) 6= a,
and therefore f(b, a) = b. By the dual argument to that of the last paragraph, we get
that f is the first projection in the set U , as well.

It remains to prove that f is the first projection when one of the arguments is in L
and the other in U . For any x ∈ L and y ∈ U we get that for each u ∈ U and some v ∈ y+,
f(x, y) → f(u, v) = u, so U ⊆ f(x, y)+. Also, for each w ∈ x−, w = f(w, x) → f(x, y),
so f(x, y) ∈ w+. In other words, x− ⊆ f(x, y)−. Now, by Lemma 5.2 (i) it follows that
f(x, y) = x for all x ∈ L and y ∈ U . We prove f(x, y) = x for x ∈ U and y ∈ L using a
dual proof and the dual of Lemma 5.2 (i).

LEMMA 5.4. Let f be an idempotent polymorphism of G. There exists exactly one i
such that fi(x, y) = y, while for all other j, j 6= i, it is fj(x, y) = x.

PROOF. According to Lemma 5.3, each fi(x, y) is identically equal to one of x and y.
G is a smooth digraph of algebraic length 1 (witnessed by the induced subgraph on any
two elements of L and one element of U ) without loops, so it has not even a weak near-
unanimity polymorphism, according to the Loop Lemma of [Barto et al. 2009] (see the
remarks preceding Lemma 4.15), and therefore by Proposition 2.1 G has no Mal’cev
nor near-unanimity polymorphisms. Now apply Lemma 4.1 to Polid(G).

THEOREM 5.5. Let G be a smooth semicomplete digraph with precisely two strong
components. Then all idempotent polymorphisms of G are projections.

PROOF. Assume that f(x1, x2, . . . , xn) is an idempotent polymorphism of G with n ≥
2. Without loss of generality, we can assume from Lemma 5.4 that f1(x, y) = y for all
x, y ∈ V and that fi(x, y) = x for all x, y ∈ V and i > 1. This is for easier notation, if
the coordinate singled out by Lemma 5.4 is another, we just permute the coordinates
of f to reduce to another idempotent polymorphism which fits this case. We are going
to prove that f is the first projection.

We prove it by an induction on n. In the base case n = 2 there is nothing to prove.
Fix some a1, a2, . . . , an ∈ V . Without loss of generality, we assume that a1 ∈ L. Also,

we may assume for i and j all such that i 6= j and 2 ≤ i, j ≤ n, that ai 6= aj , or there
would exist some polymorphism g which is the substitution instance of f obtained by
identifying the ith and jth variables which satisfies g(y, x, . . . , x) = y and which has
arity n − 1, so it would hold that g is the first projection by the inductive assumption
and hence f(a1, a2, . . . , an) = a1. Also, if a1 = ai for some 2 ≤ i ≤ n, then define the
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idempotent polymorphism g of G from f by identifying the first and ith variables. Now
from Lemma 5.4 we get fl(x, y) = x for all 2 ≤ l ≤ n, and hence we get gj(x, y) = x for
all 2 ≤ j ≤ n−1. Then by Lemma 5.4 it follows that g(y, x, . . . , x) = g1(x, y) = y and the
inductive assumption implies that g is the first projection. Thus, again, f(a1, . . . , an) =
a1. So we are left with the case when |{a1, a2, . . . , an}| = n.

Case 1: Let |{a2, a3, . . . , an} ∩ L| 6= 0 and |{a2, a3, . . . , an} ∩ U | 6= 0. Without loss of
generality (by permuting the coordinates), let a2, . . . , ak ∈ L and ak+1, . . . , an ∈ U for
some 2 < k < n. Then for any d ∈ U and e ∈ a+

n we get that f(a1, a2, . . . , an) →
f(d, e, a′3 . . . , a

′
k−1, e) = d, where the elements a′i ∈ a

+
i for 3 ≤ i ≤ n− 1 and the equality

holds by the inductive assumption, thus U ⊆ f(a1, a2, . . . , an)+. Also, for any d ∈ a−1 and
e ∈ a−2 , d = f(d, e, a′3 . . . , a

′
k−1, e)→ f(a1, a2, . . . , an), where a′i ∈ a

−
i for 3 ≤ i ≤ n− 1 and

the equality holds by the inductive assumption, so a−1 ⊆ f(a1, a2, . . . , an)−. Now from
Lemma 5.2 (i) we get that f(a1, a2, . . . , an) = a1 for all (a1, a2, . . . , an) ∈ Lk × Un−k.

Case 2: Let (a1, . . . , an) ∈ Ln. There we get for any d ∈ a+
1 ∩L, a′i ∈ a

+
i ∩L for 1 < i < n

and a′n ∈ U that f(a1, a2, . . . , an) → f(d, a′2, . . . , a
′
n) = d (the last equality holds either

by the Case 1 or by the inductive assumption, since n > 2), so a+
1 ⊆ f(a1, a2, . . . , an)+.

Also, for all d ∈ U , f(a1, a2, . . . , an) → f(d, d, . . . , d) = d, so U ⊆ f(a1, a2, . . . , an)+. Now
by Lemma 5.2 (ii) we get f(a1, a2, . . . , an) = a1 for all a1, a2, . . . , an ∈ L.

Case 3: Let (a1, a2, . . . , an) ∈ L × Un−1. We have for each d ∈ a−1 that d =
f(d, d, . . . , d)→ f(a1, a2, . . . , an), so a−1 ⊆ f(a1, a2, . . . , an)−.

First assume that the induced subgraph on U is a cycle. Then a+
i = {a′i} for all

2 ≤ i ≤ n, and we get f(a1, a2, . . . , an) → f(a′2, a
′
2, . . . , a

′
n) = a′2 and f(a1, a2, . . . , an) →

f(a′3, a
′
2, . . . , a

′
n) = a′3, where the equalities hold by the inductive assumption, that is,

by the observations at the start of this proof. Since a2 6= a3 we have all the conditions
of Lemma 5.2 (iii) fulfilled, and so f(a1, a2, . . . , an) = a1.

Finally, let the induced subgraph on U be strongly connected and semicomplete with
at least two cycles. The restriction of f to Un is a projection, so it can only be the first
one, since f(y, x, . . . , x) = y for all x, y ∈ V . Therefore, for any d ∈ U , and any a′i ∈ a

+
i for

all 2 ≤ i ≤ n, we get f(a1, a2, . . . , an) → f(d, a′2, . . . , a
′
n) = d, so U ⊆ f(a1, a2, . . . , an)+.

Thus by Lemma 5.2 (i), f(a1, a2, . . . , an) = a1, completing the proof.

5.2. Several strong components, but just two nontrivial
We first generalize Theorem 5.5 to the case of smooth semicomplete digraphs with pre-
cisely two non-singleton strong components. The order of strong components is linear,
and if x, y ∈ V are in distinct strong components, x→ y and ¬y → x, then we say that
the component of x is below that of y. Since G is smooth, then the only two nontrivial
strong components must be the top and bottom one in the order of components.

We denote the strong components by L (the bottom one), U (the top one) and Mi =
{mi}, for 1 ≤ i < k, which are in between, where Mi is below Mj iff i < j.

LEMMA 5.6. U ∪ L is closed under any polymorphism of G.

PROOF. Both L and U have Hamiltonian cycles, being nontrivial strong components
in a semicomplete digraph. Let the lengths of those cycles be `1 and `2, respectively, and
let ` = lcm (`1, `2). Let f be a polymorphism of G of arity n. For any (a1, . . . , an) ∈ (U ∪
L)n we know that (a1, . . . , an)→` (a1, . . . , an) in the digraph Gn. Hence, f(a1, . . . , an)→`

f(a1, . . . , an), and therefore f(a1, . . . , an) can’t be in anyMi for 1 ≤ i < k, as any element
such that a directed path leads from mi to it must be in M+

i , therefore in a strong
component above Mi, and not equal to mi.

THEOREM 5.7. Let G be a smooth semicomplete digraph with exactly two non-trivial
strong components. Then all idempotent polymorphisms of G are projections.
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PROOF. According to Lemma 5.6 and Theorem 5.5, we may assume that f is the ith
projection on U ∪ V , i.e. that f(a1, . . . , an) = ai for all (a1, . . . , an) ∈ (L ∪ U)n. We will
prove that f is the ith projection on all of V n.

Case 1: Let ai ∈ M1 ∪ . . . ∪Mk−1. Then for each d ∈ L and e ∈ U there exist tuples
(b1, . . . , bn) ∈ Ln and (c1, . . . , cn) ∈ Un such that bi = d, ci = e and for all a ≤ j < n,
bj ∈ a−j and cj ∈ a+

j . Therefore, d = f(b1, . . . , bn) → f(a1, . . . , an) → f(c1, . . . , cn) = e,
and so L ⊆ f(a1, . . . , an)− and U ⊆ f(a1, . . . , an)+. This implies that f(a1, . . . , an) ∈
M1 ∪ . . . ∪Mk−1.

Let ai = mj . Define the tuples (a
(1)
1 , . . . , a

(1)
n ), . . . , (a

(k−1)
1 , . . . , a

(k−1)
n ) so that for all

s, t, a(t)
s → a

(t+1)
s , that a(j)

s = as and that a(t)
i = mt. These tuples exist because of the

structure of G and its smoothness. Now by the previous paragraph, all f(a
(t)
1 , . . . , a

(t)
n )

are in M1 ∪ . . . ∪ Mk−1 and f(a
(t)
1 , . . . , a

(t)
n ) → f(a

(t+1)
1 , . . . , a

(t+1)
n ) for all t. Since the

relation → on M1 ∪ . . . ∪Mk−1 is the strict partial order on a set with k − 1 elements,
the only path on that set of length k − 1 is m1 → m2 → . . . → mk−1, Therefore it must
be that f(a

(t)
1 , . . . , a

(t)
n ) = mt = a

(t)
i and the case is done.

Case 2: Let ai ∈ U ∪ L. Without loss of generality we may assume ai ∈ L (or we
would just reverse the edges). Now for each d ∈ V \ L, there exist some b1, . . . , bn
such that for all j, aj → bj , bi = d and bj ∈ U for all j 6= i. If d /∈ U , then
it follows from Case 1 that f(a1, . . . , an) → f(b1, . . . , bn) = d. On the other hand,
if d ∈ U , from the fact that f(b1, . . . , bn) = bi if all of bj are in U , again we get
f(a1, . . . , an) → f(b1, . . . , bn) = d. Thus, (V \ L) ⊆ f(a1, . . . , an)+. On the other hand, if
ci ∈ a−i , then there exist c1, . . . , ci−1, ci+1, . . . , cn ∈ Ln−1 such that cj → aj for all j ≤ n.
Hence ci = f(c1, . . . , cn)→ f(a1, . . . , an), so a−i ⊆ f(a1, . . . , an)−. The rest of the proof of
this case proceeds exactly like in the proof of Lemma 5.2 (i), with M1 ∪ . . . ∪Mk−1 ∪ U
playing the role of U this time, and L still being L.

5.3. More than two nontrivial strong components
Now we deal with the remaining smooth case, namely the case when there exist more
than two nontrivial strong components.

THEOREM 5.8. Let G be a smooth semicomplete digraph with at least two cycles.
Then G has no idempotent polymorphisms other than projections.

PROOF. Let the strong components of G, ordered by ⇒, be B1 < B2 < . . . < Bm.
Let all nontrivial strong components be B1, Bi1 , Bi2 , . . . , Bik−1

, Bm, where 1 < i1 <

i2 < . . . < ik−1 < m. Define subsets C1 =
i1⋃
j=1

Bj , Ck =
m⋃

j=ik−1

Bj and Cs =
is⋃

j=is−1

Bj for

1 < s < k. So, each Ci consists of exactly two consecutive nontrivial strong components,
one on the top, one on the bottom, and all trivial strong components between these
two nontrivial ones (if any). It is easy to show that each Cj is primitively positively
definable in Gc, as Cj = B∀+ij−1−1 ∩ B

∀−
ij+1 (in the case of C1 and Ck they are just B∀−i1+1

and B∀+ik−1−1, respectively). Therefore, each Cj , as well as any union
⋃̀
j=r

Cj , where 1 ≤

r ≤ ` ≤ k, is closed under all idempotent polymorphisms of G.
From Theorem 5.7 we get that the restriction of each idempotent polymorphism f to

each Cj is some projection, let us say it is the ith on C1. Since Cj and Cj+1 intersect
in the nontrivial strong component Bij on which f is (inductively) the ith projection
as this strong component is a part of Cj , then it must be the ith projection on the set
Cj+1, too, by Theorem 5.7. Thus the restriction of f to each Cj is the ith projection.
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We finish the proof by inductively showing for each tuple (a1, . . . , an) ∈ V n that
f(a1, . . . , an) = ai, where we use the induction on the minimal number ` such that
there exists some s so that {a1, . . . , an} ⊆ Cs ∪ . . .∪Cs+`. For ` = 0 we have proved it in
the previous paragraph.

If ` ≥ 1, we first consider the case when ai /∈ Cs ∪ Cs+`. Then we will show by the
inductive assumption that a+

i ⊆ f(a1, . . . , an)+ and a−i ⊆ f(a1, . . . , an)−, which can
only be satisfied in a semicomplete digraph if f(a1, . . . , an) = ai. More precisely, we
will prove that any element bi ∈ a+

i is equal to f(b1, b2, ..., bn), where (b1, b2, ..., bn) is a
properly selected tuple such that aj → bj for all 1 ≤ j ≤ n.

If aj is in a strong component which is below the strong component containing ai,
then we select bj to be equal to bi, since bi ∈ a+

i ⊆ a+
j . For all other j we select bj

to be any element of Cs+` ∩ a+
j . Then each bj ∈ Cs+1 ∪ . . . ∪ Cs+`, so by the inductive

assumption f(b1, b2, ..., bn) = bi, implying that bi ∈ f(a1, . . . , an)+, as desired. The proof
of a−i ⊆ f(a1, . . . , an)− is dual.

The remaining case is if ai ∈ Cs (the case ai ∈ Cs+` is dual to it with respect to
reversal of edges). If ai is in the top strong component of Cs, then ai ∈ Cs+1 and the
previous case applies. If ai is in one of the trivial components of Cs, then we imitate
the proof of Case 1 of Theorem 5.7, with L replaced by Bis−1 , Ml, . . . ,Mk−1 replaced
by the trivial strong components of Cs (i.e. Bt, where is−1 < t < is) and U replaced
by Cs+1 ∪ . . . ∪ Cs+`. Note that we used just the fact that L has no sources and U has
no sink in the proof of Case 1 of Theorem 5.7, together with the provisions that the
strong components (here, unions of the strong components in case of U ) are ordered by
L ⇒ M1 ⇒ . . . ⇒ Mk ⇒ U and that all Mi are trivial, so with the said replacement of
the meaning of L, U and Mi, the proof transfers verbatim.

Finally, let ai ∈ Bis−1
, but now by L we denote the set Bis−1

, while U is (Cs \ L) ∪
Cs+1 ∪ . . . ∪ Cs+`. We will just replicate the proof of Case 2 of Theorem 5.7, which is
in fact a reduction to the proof of Lemma 5.2 (i). For each bi ∈ U there exists a tuple
(b1, . . . , bn) ∈ Un, where in fact for all j 6= i, bj ∈ Cs+` such that aj → bj for all 1 ≤ j ≤ n.
If bi is in one of the trivial strong components of Cs, then f(b1, . . . , bn) = bi, using the
case which we proved in the last paragraph (this argument replaces our reference to
Case 1 in the proof of Case 2 of Theorem 5.7), and otherwise {b1, . . . , bn} ⊆ Cs+1 ∪ . . . ∪
Cs+` and by the inductive assumption on ` we obtain again that f(b1, . . . , bn) = bi. We
conclude that U ⊆ f(a1, . . . , an)+, and then we reduce it to a proof analogous to that of
Lemma 5.2 (i): Namely, note that for each ci ∈ a−i there exists a tuple (c1, . . . , cn) ∈ Ln
such that for all j, cj → aj , and therefore ci = f(c1, . . . , cn) → f(a1, . . . , an). So, (a−i ∩
L) ⊆ (f(a1, . . . , an)− ∩L). The rest of the proof of Lemma 5.2 (i) transfers verbatim.

By Proposition 4.2, Theorem 5.8 implies that

THEOREM 5.9. If G is a smooth semicomplete digraph with more than one cycle,
then QCSP(G) is Pspace-complete.

6. SEMICOMPLETE GRAPHS WITH ONE SINK AND NO SOURCES
The remaining class of semicomplete graphs whose complexity is not known by The-
orem 5.9 or Theorem 3.3 is those which have a sink and not a source, or vice versa.
As the two are symmetric, we assume that the graph has no sources, but has a sink
(which is unique by semicompleteness). The sink is labelled by t.

6.1. Some Pspace-hardness results
We recall some notation and terminology from basic logic. A formula is in prenex nor-
mal form, prenex form for short, if it starts with a sequence of quantifiers (the prefix),
each of which acts the remainder of the formula after it, followed by the quantifier-free

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 11, Publication date: January 2011.
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part (the matrix). The evaluation of variables of some formula into a model M is a
mapping τ of the set of all variables of that formula into M . The truth value of the
formula ϕ under evaluation τ is denoted by vτ (ϕ) and is defined in the usual inductive
way, starting from atomic formulae. When the formula in prenex form is a positive
Horn formula, then the matrix is essentially a model of its language on the set of its
variables. If ϕ is a positive Horn formula on a signature with a single binary relation,
then the matrix of ϕ is the graph Gϕ which we defined in Section 2. Note that there is
a homomorphism from Gϕ to H iff the existential quantification of ϕ is true on H.

Let K2→2 be the semicomplete graph built from disjoint copies H1 and H2 of K2 with
all edges added from H1 to H2 and none other.

PROPOSITION 6.1. QCSP(K2→2) and QCSP(K→2→2) are Pspace-complete.

PROOF. There is a fairly straightforward reduction from QCSP(K4), i.e Quantified
4-colouring, to QCSP(K2→2), but there is a problem translating it to QCSP(K→2→2) with
the encoding of universal variables. Let A = 〈{0, 1};RA〉, where RA is the not-all-
equal predicate. We give a reduction from QCSP(A) to our problems QCSP(K2→2) and
QCSP(K→2→2) (the same works for both). Our reduction is vaguely based on that for
QCSP(A) to QCSP(Kn) (n ≥ 3) in [Börner et al. 2009], Proposition 5.1.

Let ϕ be a positive Horn formula in the language {R}. We construct the correspond-
ing positive Horn formula ψϕ in the language of digraphs (in linear time) so that ϕ is a
sentence iff ψϕ is a sentence. For any evaluation τ of the variables of ϕ intoA we define
the corresponding evaluation τ ′ of variables of ψϕ into K→2→2. Note that the evaluation
in our setup is not merely a mapping of the set of all variables into the universe of the
model; the information of what is the model is a part of τ . We prove that vτ (ϕ) = > iff
vτ ′(ψϕ) = >. The case when ϕ is a sentence is the desired reduction.

We fix the template B which is a copy of K→2→2 with the universe {0, 1, 2, 3, t}, where
t is the sink, there are double-edges on {0, 1} and {2, 3} and also there is an edge from
any element of {0, 1} to any element of {2, 3}. For short we write just ψ for ψϕ when ϕ
is understood. We will define a few auxiliary graphs, beginning with the edge gadget
which combines two copies of K2→2:

x0

x3 x2

x1

•

• y0

y3 y2

y1

Fig. 5. Edge gadget

Each copy of K2→2 in the graph of ψ will be denoted by the same letter with in-
dices 0, 1, 2, 3 which correspond to the same elements of B. The graph of ψ will con-
sist of many such copies with some additional variables. Any evaluation µ of ψ into
B is immediately false (and thus not interesting) unless for all u, the mappings
µu : {0, 1, 2, 3} → {0, 1, 2, 3} given by µu(i) = µ(ui) are automorphism of K2→2. To
any evaluation of ψ we immediately associate all those automorphisms.

Also, the edge gadget depicted in Figure 5 enforces that µx and µy are distinct, oth-
erwise the middle copy of K2 ensures that vµ(ψ) = ⊥. On the other hand, if µx 6= µy,
then they must differ at the upper or at the lower copy of K2. The connecting copy of
K2 can evaluate at copy of K2 at which µx and µy differ and the edge gadget gets the
truth value >. The reason we care about this edge gadget is because we chain three of
them together to build a triangular clause gadget as drawn in Figure 6.
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x0

x3 x2

x1

•

• y0

y3 y2

y1

•

• z0

z3 z2

z1

•

•

Fig. 6. Clause gadget

The salient property of the clause gadget is that the restrictions of µx, µy and µz to
{0, 1} are not all equal, i.e. we can enforce the not-all-equal constraint. This follows
since vµ of the clause gadget is > iff µx, µy and µz are three distinct automorphisms of
K2→2, and only two distinct automorphisms of K2→2 restrict to {0, 1} in any fixed way.

Now we define a variable gadget and link variables to clauses. The variable gadget
corresponding to s is the subgraph on the vertices {s0, s1, s2, s3, s∀} of the graph in
Figure 7. The variable gadget links to a copy of K2→2 associated to x within some
clause gadget iff there is a double edge from s1 to x0, as drawn on Figure 7.

s0

s3 s2

s1

s∀

x0

x3 x2

x1

Fig. 7. Variable gadget corresponding to s connects to a position in the clause

We first define ψϕ when ϕ is quantifier-free, starting with its graph. For each occur-
rence of the predicate R(x, y, z) in ϕ we add a clause gadget and for each variable s of
ϕ we add a variable gadget. For any clause R(u, s, w) occurs in ϕ, we connect u1 ↔ x0,
s1 ↔ y0 and w1 ↔ z0. Now ψϕ is obtained by quantifying existentially all variables
with indices 2 and 3 in variable gadgets and also all variables in the clause gadgets.

Assume that τ is an evaluation of ϕ into A. When τ(s) = 0, we evaluate τ ′(s0) = 0
and τ ′(s1) = 1, while if τ(s) = 1, then τ ′(s0) = 1 and τ ′(s1) = 0. For any s, τ ′(s∀) = 2.

We claim vτ (ϕ) = vτ ′(ψϕ). Assume that vτ (ϕ) = >. We select to evaluate the ex-
istentially quantified variables in the variable gadgets vi as i and also for all clause
gadgets, we evaluate si as τ(vi), where i = 0, 1 and v is the unique variable which is
connected to the position s in that clause. As the three variables which appear in some
clause are not equally evaluated by τ , in that clause two of the bottom double edges
are evaluated equally, while the third one is evaluated differently. The considerations
after the definition of the clause gadgets prove that there exists some evaluation of the
remaining variables in the clause gadget which has the truth value >.
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On the other hand, if τ ′ is a truthful evaluation of ψ, we choose τ(s) = τ ′(s0) for all
variables s (of course, the only choices are 0 and 1, as ensured by s2 and s3). Whenever
there is a clause R(u, s, w), the corresponding clause gadget must have been evaluated
as τ ′(x0) = τ ′(u0), τ ′(y0) = τ ′(s0) and τ ′(z0) = τ ′(w0) (where u-gadget is linked to x and
so on). The considerations after the definition of clause gadgets showed that τ ′(x0) =
τ ′(y0) = τ ′(z0) is impossible since τ ′ is truthful. Therefore, τ ′(u0) = τ ′(s0) = τ ′(w0) is
not true either, and thus RA(τ(u), τ(s), τ(w)) holds.

Now we define the general case of ψϕ inductively on the number of quantifiers of ϕ
and simultaneously prove our claims about ψϕ. Assuming that ϕ = (∃s)ϕ′, we define
ψϕ = (∃s∀)(∃s0)(∃s1)ψϕ′ . If ϕ = (∀s)ϕ′, we define ψϕ = (∀s∀)(∃s0)(∃s1)ψϕ′ .

We are proving vτ (ϕ) = vτ ′(ψϕ) by induction on the number of quantifiers of ϕ. The
base case is proved above. Denote by τ1 the evaluation of the variables of ϕ which
equals τ at all variables except at s, where τ(s) 6= τ1(s) and let the corresponding
evaluations of the variables of ψϕ be τ ′ and τ ′1.

If ϕ = (∃s)ϕ′, then vτ (ϕ) = > iff vτ (ϕ′) = > or vτ1(ϕ′) = > iff (by the inductive
assumption) vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >, which implies vτ ′(ψϕ) = >. We also need the
other direction, so assume that vτ ′(ψϕ) = >. Hence there exists an evaluation τ2 of the
variables of ψϕ which differs from τ ′ only perhaps at s∀, s0 and s1 such that vτ2(ψϕ′) =
>. Since τ2(s0) ∈ {0, 1}, if τ3(s∀) = 2 and otherwise τ3 equals τ2, then from vτ2(ψϕ′) = >
follows vτ3(ψϕ′) = >. But since {τ3(s0), τ3(s1)} = {0, 1}, then τ3 = τ ′ or τ3 = τ ′1. By the
inductive assumption, vτ (ϕ′) = > or vτ1(ϕ′) = >, so vτ (ϕ) = vτ ((∃s)ϕ′) = >, as desired.

If ϕ = (∀s)ϕ′, then vτ (ϕ) = > iff vτ (ϕ′) = vτ1(ϕ′) = > iff (by the inductive assump-
tion) vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >. Now, let τ2 be any evaluation of the variables of ψϕ
which equals τ ′ at all variables except possibly s∀. If τ2(s∀) ∈ τ ′(s0)−, then vτ2(ψϕ′) =
vτ ′(ψϕ′) = >, so vτ2((∃s0)(∃s1)ψϕ′) = >. Otherwise, tau2(s∀) = τ ′(s0) ∈ τ ′1(s0)−. Then
we select τ3 to be equal to τ2, except τ3(s0) = τ ′(s1) = τ ′1(s0) and τ3(s1) = τ ′(s0) = τ ′1(s1).
Here τ3(s∀) ∈ τ3(s0)−, so vτ3(ψϕ′) = vτ ′1(ψϕ′) = >, and hence vτ2((∃s0)(∃s1)ψϕ′) = >. In
all cases we get vτ2((∃s0)(∃s1)ψϕ′) = >, hence vτ ′(ψϕ) = vτ ′((∀s∀)(∃s0)(∃s1)ψϕ′) = >. In
the other direction, assume vτ ′(ψϕ) = vτ ′((∀s∀)(∃s0)(∃s1)ψϕ′) = >. Let τ2 and τ3 be the
evaluations of ψϕ which differ from τ ′ only at τ2(s∀) = 0 and τ3(s∀) = 1. Our assump-
tion implies vτ2((∃s0)(∃s1)ψϕ′) = vτ3((∃s0)(∃s1)ψϕ′) = >. Let τ ′2 and τ ′3 be the evalua-
tions which equal τ2 and τ3, respectively, on all variables except possibly s0 and s1 and
such that vτ2(ψϕ′) = vτ ′3(ψϕ′) = >. We know that τ ′2(s0), τ ′2(s1), τ ′3(s0), τ ′3(s1) ∈ {0, 1}
since they are all in {2, 3}∀−. From τ ′2(s0) 6= τ ′2(s∀) = 0 and τ ′3(s0) 6= τ ′3(s∀) = 1
we get τ ′2(s0) = τ ′3(s1) = 1 and τ ′2(s1) = τ ′3(s0) = 0. But then τ ′2 and τ ′3 are equal
to τ ′ and τ ′1 in some order, except at s∀. From vτ2(ψϕ′) = vτ ′3(ψϕ′) = > we obtain
vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >, since evaluating s∀ as 2 can only help, and hence vτ (ϕ) = >.

COROLLARY 6.2. Let G = (V,→) be a finite loopless digraph. Let G contain either

(i) a copy of K2→2 where a ↔ b → c ↔ d such that any automorphism of this copy
extends by the identity map to an automorphism of G and moreover, a+ ∪ b+ = V , or

(ii) a copy of K3, a ↔ b ↔ c ↔ a such that any permutation of {a, b, c} extends by the
identity map to an automorphism of G and also a+ ∪ b+ = a+ ∪ c+ = b+ ∪ c+ = V ,

then QCSP(G) is Pspace-complete.

PROOF. We first prove the case (i). Let the subgraph H be induced by G on
V \ {a, b, c, d}. We modify the proof of Proposition 6.1 by adding variables which are
connected in Gψ as an isomorphic copy of H. Call these added variables the set H.
First we connect the variables in H to the other variables so that for all variable gad-
gets on variables s0, s1, s2, s3 and for all clause gadgets which have copies of K2→2

induced by Gψ on x0, x1, x2, x3, on y0, y1, y2, y3 and on z0, z1, z2, z3, Gψ induces on each
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of H ∪ {s0, s1, s2, s3}, H ∪ {x0, x1, x2, x3}, H ∪ {y0, y1, y2, y3} and H ∪ {z0, z1, z2, z3} an
isomorphic copy of G. Basically we make an amalgam of a lot of copies of G over H. We
quantify all variables in H existentially as the outermost quantifiers of the instance.

Whichever evaluation τ of vertices in H is selected, in order to complete τ to a true
evaluation of Gψ, τ together with any one of the variable gadgets must induce an auto-
morphism α of G which maps {a, b, c, d} onto another (possibly different) copy of K2→2.
Denote by K this copy of K2→2 on {α(a), α(b), α(c), α(d)}. Any automorphism of K ex-
tends by identity to an automorphism of G and also α(a)+ ∪ α(b)+ = V (since (i) is
preserved by the automorphism α). The evaluation τ of H is fixed throughout the eval-
uation of the instance since the variables in H are quantified existentially outermost.
Since any automorphism of K extends by identity to an automorphism of G, this means
that the choice of τ does not affect our freedom to evaluate each variable gadget and
clause gadget as we will into {α(a), α(b), α(c), α(d)}, just as if our template was K→2→2.
On the other hand, the property α(a)+ ∪ α(b)+ = V allows us to select any value for
the universally quantified variables s∀ without creating a contradiction. The selection
of s∀ may still limit our choice of the evaluation of the variables s0 and s1 to one of
the two options, if we evaluate s∀ as α(a) or as α(b). Now the reduction from QCSP(A)
follows analogously as in Proposition 6.1.

The case (ii) goes similarly; here we modify in the same way the construction of
Proposition 5.1 of [Börner et al. 2009], proving that QCSP(K3) is Pspace-complete. Let
the subgraph H be induced by G on V \ {a, b, c}. We modify the proof found in [Börner
et al. 2009] by adding variables which are connected in the graph Gψ of the formula
as an isomorphic copy of H. Call these added variables the set H. First we connect the
variables in H to the other variables so that for all i, Gψ induces on H ∪ {w, xi, yi} an
isomorphic copy of G. Next, we connect variables in H to each clause gadget used in
the proof in [Börner et al. 2009] to make a copy of G again. Finally, change the edges
between yi and zi to yi → zi for all i (in their proof they were undirected). An analogous
argument as the one in [Börner et al. 2009], with modifications just like in the case (i)
of this Corollary gives us Pspace-completeness.

Recall the transitive tournament with an extra edge Tn defined at the end of Sec-
tion 2. Tn and Tn

→ are depicted in Figure 8.

1

• • · · · • •

n 1

• • · · ·

•

• •

n

Fig. 8. Drawing of Tn with Tn
→

.
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PROPOSITION 6.3. For all n ≥ 3, QCSP(T n) and QCSP(T →n ) are Pspace-complete.

PROOF. The reductions in all cases are exactly the same and so we will prove
them as one, referring to Mn instead of T n or T →n specifically. The reduction is from
Quantified-1-in-3-Sat and again owes something in philosophy to the proof of Propo-
sition 5.1 of [Börner et al. 2009], though they use a reduction from QCSP(A), see the
proof of Proposition 6.1. Let R be the ternary Boolean operation which is true iff ex-
actly one of its entries is. A literal is a variable or its negation and a clause is R ap-
plied to three literals. An instance of Quantified-1-in-3-Sat (1/3-Q-SAT) is a sentence
in prenex form whose matrix is a conjunction of clauses. 1/3-Q-SAT is known to be
Pspace-complete after, for example, [Schaefer 1978] (see [Papadimitriou 1994]).

Let ϕ be a formula in prenex form whose matrix is a conjunction of clauses. We
construct the corresponding positive Horn formula ψϕ in the language of graphs so
that ϕ is a sentence iff ψϕ is a sentence. For any evaluation τ of the propositional
variables of ϕ we define the corresponding evaluation τ ′ of variables of ψϕ into Mn.
We prove that ϕ is true in τ iff ψϕ is true in τ ′. The case when ϕ is a sentence is the
desired reduction.

First we define ψϕ when ϕ is quantifier-free. For each variable of ϕ we introduce a
variable gadget and for each occurrence of R in ϕ we introduce a clause gadget. These
are depicted in Figure 9, and the third graph corresponds to the clause R(¬s1, s2, s3).

v

¬v

v∀

l1

l3

l2

s1

¬s1

s∀1 s2

¬s2

s∀2 s3

¬s3

s∀3 l3

l1

l2

Fig. 9. Variable gadget, clause gadget; and their marriage together

Two vertices in the variable gadget correspond to literals of ϕ with the same names
(call them literal vertices), the third vertex (universal vertex) having a special purpose
to be explained later. Note that we will use (∃¬s) in ψϕ, which should not create confu-
sion since ψϕ uses only ∧ of logical connectives. The dashed edges should not be seen
as different from the solid edges, they are merely drawn differently to emphasise that
they connect the respective gadgets. In particular, the dashed edges are of length 1.

Given a clause C of ϕ, we draw a directed edge from each of the three literal vertices
corresponding to literals of C into a distinct vertex in the clause gadget corresponding
to C (each vertex in any clause gadget receives exactly one edge from literal vertices).
Now we quantify existentially all variables in the clause gadgets and ψϕ is defined.
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It is clear that the literal vertices in each variable gadget must evaluate to the
unique double edge in Mn. The two evaluations it can take will correspond to the
literal being evaluated to false (1) or true (n). Thus, if τ(s) = >, we assign τ ′(s) = n,
τ ′(¬s) = τ ′(s∀) = 1, while if τ(s) = ⊥, we assign τ ′(s) = 1, τ ′(¬s) = τ ′(s∀) = n. A clause
is true in τ iff precisely one of the literals is true iff precisely one of the corresponding
literal vertices is evaluated as n and the other two as 1 in τ ′. Now note that any 3-cycle
inMn contains no t, and has to contain the edge n → 1. Thus, any 3-cycle inMn is of
the form 1→ k → n→ 1, for some 1 < k < n. Since 1+ = Mn \ {1}, and n+ \ {t} = {1},
there exists a way to evaluate correctly the three clause vertices iff one of the corre-
sponding three literal vertices has τ ′-value n, and the other two 1. This proves that
vτ (ϕ) = vτ ′(ψϕ) when ϕ is quantifier-free.

As in the proof of Proposition 6.1, we proceed by an induction on the number of
quantifiers in ϕ. For the remainder of the proof we fix an evaluation τ of the variables
of ϕ, a variable s, the evaluation τ1 which differs from τ only at s and we assume that
ϕ = (Qs)ϕ′, where Q is one of the quantifiers. We insert a table which should help the
reader follow the proof below.

ϕ = (∃s)ϕ′, (⇐) ϕ = (∀s)ϕ′, (⇒) ϕ = (∀s)ϕ′, (⇐)
(s) (¬s) (s∀) (s) (¬s) (s∀) (s) (¬s) (s∀)

τ ′ 1 or n n+ 1− τ ′(s) τ ′(¬s) same as ϕ = (∃s)ϕ′
τ ′1 τ ′(¬s) τ ′(s) τ ′(s) same as ϕ = (∃s)ϕ′
ρ 1 or n n+ 1− ρ(s) ? τ ′(s) τ ′(¬s) ? τ ′(s) τ ′(¬s) 1
ρ′ ρ(s) ρ(¬s) ρ(¬s) 1 n ρ′(s∀) τ ′(s) τ ′(¬s) n
σ does not apply n 1 1
σ′ does not apply 1 n n

If ϕ = (∃s)ϕ′, then we define ψϕ = (∃s∀)(∃s)(∃¬s)ψϕ′ . Assume that vτ (ϕ) = >. Thus
vτ (ϕ′) = > or vτ1(ϕ′) = >. By the inductive assumption, vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >.
In the first case, there is nothing to prove, while if vτ ′1(ψϕ′), we only need note that
τ ′1 and τ ′ differ exactly at s, ¬s and s∀. Thus vτ ′(ψϕ) = vτ ′((∃s∀)(∃s)(∃¬s)ψϕ′) = >.
Now assume that vτ ′(ψϕ) = vτ ′((∃s∀)(∃s)(∃¬s)ψϕ′) = >. Let ρ be the evaluation of
variables of ψϕ such that vρ(ψϕ′) = > and ρ equals τ ′ at all variables except possibly
{s,¬s, s∀}. Since s ↔ ¬s, we still know that {ρ(s), ρ(¬s)} = {1, n}, so ρ = τ ′ or ρ = τ ′1
for all variables except possibly s∀. But the only relation s∀ has in the graph Gψϕ

is
s → s∀. Since we also know that ρ(s) → ρ(¬s), we may as well change ρ(s∀) to ρ(¬s),
and the new evaluation ρ′ will still satisfy vρ′(ψϕ′). But, since τ ′(s∀) = τ ′(¬s) and
τ ′1(s∀) = τ ′1(¬s), we know ρ′ = τ ′ or ρ′ = τ ′1. We obtain vτ ′(ψϕ′) = > or vτ ′1(ψϕ′) = >.
By the inductive assumption, vτ (ϕ′) = > or vτ1(ϕ′) = >, which is tantamount to saying
vτ (ϕ) = vτ ((∃s)ϕ′) = >.

If ϕ = (∀s)ϕ′, then we define ψϕ = (∀s∀)(∃s)(∃¬s)ψϕ′ . If vτ (ϕ) = >, then vτ (ϕ′) = >,
and vτ1(ϕ′) = >. By the inductive assumption, vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >. Choose any
evaluation ρ of the variables of ψϕ which equals τ ′ everywhere except possibly at s∀.
Assume first that ρ(s∀) = 1, then ρ = τ ′ if τ ′(s) = n, or otherwise ρ = τ ′1 for all
variables except s and ¬s. Since vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >, then in either case we obtain
that vρ((∃s)(∃¬s)ψϕ′) = >. Now assume that ρ(s∀) 6= 1. Let ρ′ be the evaluation of the
variables of ψϕ′ such that ρ′(s) = 1, ρ′(¬s) = n and otherwise ρ′ = ρ. We see that,
except at s∀, either ρ′ = τ ′, or ρ′ = τ ′1 everywhere else. From 1+ = Mn \ {1} and since
the only relation s∀ has in the graph Gψϕ is s → s∀, follows that if ρ′ were changed
to ρ′(s∀) = n, the truth value vρ′(ψϕ′) would stay unchanged. But since vτ ′(ψϕ′) =
vτ ′1(ψϕ′) = >, it follows that vρ′(ψϕ′) = >. Since ρ and ρ′ are equal on Mn \ {s,¬s},
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thus vρ((∃s)(∃¬s)ψϕ′) = >. So for all evaluations ρ which equal τ ′ on Mn \{s∀} we have
vρ((∃s)(∃¬s)ψϕ′) = >, so vτ ′(ψϕ) = vτ ′((∀s∀)(∃s)(∃¬s)ψϕ′) = >.

Now assume vτ ′(ψϕ) = >. Let the evaluations ρ, ρ′ satisfy ρ(s∀) = 1, ρ′(s∀) = n, and
ρ = ρ′ = τ ′ on all other variables of ψϕ. From vτ ′(ψϕ) = vτ ′((∀s∀)(∃s)(∃¬s)ψϕ′) = >
follows that vρ((∃s)(∃¬s)ψϕ′) = vρ′((∃s)(∃¬s)ψϕ′) = >. Therefore, there exist evalu-
ations σ, σ′ such that σ = ρ and σ′ = ρ′ on all variables of ψϕ, except possibly for
{s,¬s}, and such that vσ(ψϕ′) = vσ′(ψϕ′) = >. Since s ↔ ¬s in Gψϕ , it follows that
{σ(s), σ(¬s)} = {σ′(s), σ′(¬s)} = {1, n}. Also, from σ(s∀) = ρ(s∀) = 1 and s → s∀ in
Gψϕ , we obtain that σ(s∀) = σ(¬s) = 1 and σ(s) = n. Analogously we obtain σ′(s∀) =
σ′(¬s) = n and σ′(s) = 1. Therefore, {σ, σ′} = {τ ′, τ ′1}, so vσ(ψϕ′) = vσ′(ψϕ′) = > im-
plies that vτ ′(ψϕ′) = vτ ′1(ψϕ′) = >. We have that vτ (ϕ′) = vτ1(ϕ′) = > by the inductive
assumption, and thus vτ (ϕ) = vτ ((∀s)ϕ′) = >. This finishes the inductive proof.

We fix some notation now. For H a digraph and H1, H2 ⊆ V (H), let QCSP[∃/H1](H)
be as QCSP(H) except all existential variables are relativised to the set H1. Also, let
Φ[∃/H1,∀/H2] be Φ with the existential variables relativised to H1 and the universal
variables relativised to H2. Finally, for a sets of variables X and Y , let Φ[X/H1, Y/H2]
be Φ with all variables in the set X relativised to H1 and all variables in the set Y
relativised to H2 and so on. We will need the following propositions:

PROPOSITION 6.4. For any digraph H, QCSP(H→) and QCSP[∃/H](H→) are equiv-
alent modulo polynomial-time reductions.

PROOF. Let us first prove that QCSP(H→) reduces to QCSP[∃/H](H→). Let the sink
of H→ be t. Take an instance Φ (with its unquantified part ϕ) of QCSP(H→). Call all
those existentially quantified variables in Φ which are sinks in Gϕ the set XΦ, the
existentially quantified variables in Φ which are not sinks in Gϕ the set YΦ, and the
universally quantified variables of Φ the set ZΦ (all those better be sinks in Gϕ, or Φ is
a no-instance immediately).

Now, Φ is equivalent to the instance of Φ′ of QCSP[XΦ/{t},YΦ/H](H→) which is the
same instance as Φ, just with restricted universal and existential quantifiers replacing
the usual quantifiers at all variables in XΦ and in YΦ, respectively. This follows from
the fact that each of these atomic formulae involving variables in XΦ are in fact of the
form yj → xi for some xi ∈ XΦ and yj ∈ YΦ, and they are all true if xi is evaluated as
t and yj is evaluated as any element of H. Moreover, since all y ∈ YΦ are not sinks in
Gϕ, they can’t be evaluated as the sink.

Next, the instance Φ′ is equivalent to the instance of QCSP[∃/H](H→) where we
delete all the atomic formulae involving variables in XΦ and the quantifiers involving
those variables from Φ′. These atomics are all true no matter what and the instance’s
truth or falsity is decided on the merits of the rest of the formula. All remaining exis-
tentially quantified variables are the ones in YΦ which are relativised to H.

On the other hand, any instance Φ with the unquantified part ϕ of QCSP[∃/H](H→)
reduces to QCSP(H→) by just adding a new variable t quantified existentially outer-
most, and adding x→ t to ϕ for any x which is existentially quantified in Φ.

PROPOSITION 6.5. Let H be a digraph. For each j > 1 there exists a polytime re-
duction from QCSP[∃/H](H→) to QCSP(H→j).

PROOF. Let t1 be the sink added in H→ and let t1, . . . , tj be the sinks iteratively
added in (H→j) (say in the order that makes tj the true sink).

Let Φ be a positive Horn sentence, ϕ its unquantified part and Gϕ the graph of ϕ.
It is not hard to see that H→ |= Φ[∃/H] iff H→j |= Φ[∃/H,∀/H→] iff H→j |= Φ[∃/H].
The second equivalence follows since any evaluation which evaluates a universally
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quantified variable v to one of ti may be modified by evaluating v to t1 without changing
correctness (v is a sink in Gϕ connected just to some existentially quantified variables,
which are restricted to H). Applying Proposition 6.4 to H→(j−1) finishes the proof.

The following two corollaries follow directly.

COROLLARY 6.6. For any j > 1 and digraphH, QCSP(H→) reduces to QCSP(H→j).

PROOF. This just combines Propositions 6.4 and 6.5.

COROLLARY 6.7. For each j > 0, QCSP(T →jn ) and QCSP(K→j2→2) are both Pspace-
complete.

PROOF. This combines Proposition 6.1, Proposition 6.3 and Corollary 6.6.

6.2. The algebraic part
We will denote the ith projection function on m variables by pmi . We may drop the
superscript if we deem it unnecessary.

LEMMA 6.8. Let G = (V,→) be a semicomplete graph without sources, but with
the sink t. Let f : V m → V be any idempotent mapping such that f �V \{t} is the first
projection. f is a polymorphism of G iff for all b1, b2, . . . , bm ∈ V , b1 �G f(b1, b2, . . . , bm).

PROOF. Let f be a polymorphism of G. If f(b1, b2, . . . , bm) = b1, then there is nothing
to prove, thus we may assume that f(b1, b2, . . . , bm) = a1 6= b1. Since G has no sources,
we may select a2, . . . , am such that ai → bi for all 1 < i ≤ m. In particular, this implies
that ai 6= t for all 1 < i ≤ m. If c ∈ b−1 , i. e. if c → b1, then from the assumption
that f is a polymorphism and t /∈ {c, a2, . . . , am} follows that c = f(c, a2, . . . , am) →
f(b1, b2, . . . , bn) = a1, which implies that c ∈ a−1 . (In particular we proved that ¬a1 →
b1.) By definition, this means b1 �G a1 = f(b1, b2, . . . , bm), as desired.

Now assume that f : V m → V is an idempotent mapping which satisfies
b1 �G f(b1, b2, . . . , bm) for all b1, b2, . . . , bm ∈ V , and that f(b1, b2, . . . , bm) = b1 if
t /∈ {b1, b2, . . . , bm}. Let ai → bi in G for all 1 ≤ i ≤ m. Then t /∈ {a1, a2, . . . , am}
and, consequently, f(a1, a2, . . . , am) = a1. Now we know that a1 ∈ b−1 and from
b1 �G f(b1, b2, . . . , bm) follows that a1 ∈ f(b1, b2, . . . , bm)−, i. e. f(a1, a2, . . . , am) = a1 →
f(b1, b2, . . . , bm). Therefore, f is a polymorphism of G.

Definition 6.9. Let G = (V,E) be a digraph. We define the partition of the vertex
set V into V Gmin, V Gmax, V Gboth and V Gnone so that all vertices in V Gmin are minimal, but not
maximal, in the order �G , all vertices in V Gmax are maximal, but not minimal, in the
order �G , all vertices in V Gboth are both minimal and maximal in the order �G , while
vertices in V Gnone are neither minimal nor maximal in the order �G . When the digraph
G is understood, we will omit the superscript G .

Definition 6.10. Given a digraph G = (V,E), S(G) = (V,→) is a digraph given by:

(1) For all x, y ∈ Vmax ∪ Vboth, x↔ y,
(2) For all x, y ∈ Vmin, x↔ y,
(3) For all x, y ∈ Vnone, x→ y iff E(x, y).
(4) For all x ∈ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,
(5) For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,
(6) For all x ∈ Vboth and y ∈ Vnone ∪ Vmin, x→ y, but ¬y → x.
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complete
graph

Vmax(G)

same as
G

Vnone(G)

complete
graph

Vmin(G)

complete
graph

Vboth(G)

Fig. 10. An illustration of S(G)
.

PROPOSITION 6.11. V
S(G)
min = V Gmin, V S(G)

max = V Gmax, V S(G)
both = V Gboth and V

S(G)
none = V Gnone.

Consequently, S(S(G)) = S(G).

PROOF. Using Definition 6.10, we compute the sets x− with respect to S(G) for x in
V Gmin, V Gmax, V Gboth and V Gnone.

— If x ∈ V Gmin, then x− = (V Gboth ∪ V
G
min) \ {x}.

— If x ∈ V Gnone, then V Gboth ∪ V
G
min ⊆ x− ⊆ (V Gboth ∪ V

G
min ∪ V Gnone) \ {x}.

— If x ∈ V Gmax, then x− = V \ {x}.
— If x ∈ Vboth, then x− = (V Gboth ∪ V Gmax) \ {x}.
Now the statements follow by Definition 6.9.

We prove the following trivial proposition for the sake of completeness.

PROPOSITION 6.12. A permutation α of the vertex set V of the digraph G = (V,→)
(more generally, universe A of a finite model A) is an automorphism iff it is structure-
preserving.

PROOF. We need to prove that α−1 is also structure preserving. The permutation α
applied pointwise induces a permutation α of the set V 2 (resp. Ak) which maps injec-
tively the relation→ (resp. each relation R of A) into itself. Thus the restriction of α to
the set of pairs→ (resp. set of k-tuples R) is a permutation since V is finite, hence α−1

must also be structure-preserving.

LEMMA 6.13. The following statements hold for any digraph G:

(i) Aut(G) ⊂ Aut(V,�G),
(ii) Aut(G) ⊆ Aut(S(G)),

(iii) �G ⊆ �S(G),
(iv) If G is semicomplete, then so is S(G),
(v) If G is smooth and semicomplete, then so is S(G) and

(vi) If G is semicomplete and is not a cycle, then S(G) is also.
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PROOF. (i) Let α be an automorphism of G and let x �G y. This implies x− ⊆ y− in
G, and since α is an automorphism of G, we get that α(x)− = {α(z) : E(z, x)} ⊆ {α(z) :
E(z, y)} = α(y)−, so α(x) �G α(y). According to Proposition 6.12, α is an automorphism
of the poset (V,�G). In particular, α restricts to each of the sets Vmin, Vmax, Vboth and
Vnone as a permutation which we will use presently (there is no need to specify the
superscript by Proposition 6.11).

(ii) Let α be an automorphism of G and x → y in S(G). If x and y are not both in
the same class of the partition {Vmin, Vmax, Vboth, Vnone} of V , then according to Propo-
sition 6.11, the previous paragraph and Definition 6.10, α(x) → α(y), since all edges
between vertices in different classes of that partition are drawn the same way. Sim-
ilarly, if x and y are both in one of the sets Vmin, Vmax and Vboth, then by the pre-
vious paragraph, α(x) and α(y) are also in that set, and the fact that the subgraph
induced by S(G) on each of these sets is the complete graph, while α is bijective, proves
α(x)→ α(y). Finally if x, y ∈ Vnone, since the subgraphs induced on Vnone by S(G) and G
are the same graphs, the fact that α is an automorphism of G implies that α(x)→ α(y).
Now Proposition 6.12 proves (ii).

(iii) We assume that x �G y and we may as well assume that x 6= y. This implies that
x ∈ Vmin ∪ Vnone and y ∈ Vnone ∪ Vmax. For the rest of this proof, by x− we will always
mean the set of in-neighbours of xwith respect to S(G), rather than G. If y ∈ Vmax, then
y− = V \{y}, while y /∈ x− since x /∈ Vmax∪Vnone, so x− ⊆ y−. If x ∈ Vmin and y ∈ Vnone,
then x− = Vboth ∪ Vmin \ {x}, while y− ⊇ Vboth ∪ Vmin, so again x− ⊆ y−. Finally, if
x, y ∈ Vnone, then x− = Vboth ∪ Vmin ∪ (x− ∩ Vnone) ⊆ Vboth ∪ Vmin ∪ (y− ∩ Vnone) = y−,
where the ⊆ in the middle holds from x �G y and the fact that on Vnone both G and
S(G) restrict the same way.

(iv) If G is semicomplete, then so is the subgraph induced by G on Vnone. More-
over, S(G) is semicomplete iff the subgraph induced by S(G) on Vnone is semicomplete.
Thus, the semicompleteness of S(G) follows from the semicompleteness of G and Defi-
nition 6.10 (3).

(v) We may assume that both G and S(G) are semicomplete by (iv). S(G) has a source
iff Vboth = ∅ and |Vmin| = 1 iff G has a source, and analogously for the sinks. (See
Proposition 6.11.)

(vi) We may assume that both G and S(G) are semicomplete by (iv). By contraposi-
tion, if S(G) is a cycle, then V = V

S(G)
both = V Gboth (the last equality follows from Proposi-

tion 6.11), and so S(G) is the complete graph. But then |V | = 2, otherwise S(G) could
not be at the same time a cycle and a complete graph. Thus G is a 2-element semicom-
plete digraph with V = V Gboth, so G is a 2-cycle.

COROLLARY 6.14. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(G→) ⊆ Pol(S(G)→).

PROOF. Let us assume that f ∈ Pol(G→). Define g ∈ Aut(G→) by g(x) =
f(x, x, . . . , x) and h ∈ Polid(G→) by h = g−1 ◦ f . Now, according to Theorem 5.8, h
restricts to V as some projection. Without loss of generality, assume that h �V = p1.
Now, from Lemma 6.13 (v) and (vi) we know that S(G) is also a semicomplete smooth
digraph which is not a cycle. According to Lemma 6.8, for all b1, b2, . . . , bm ∈ V ∪ {t},
b1 �G→ f(b1, b2, . . . , bm). Since for any digraph H, �H→ = �H ∪(V (H→) × {t}) and
Lemma 6.13 (iii) guarantees that �G ⊆ �S(G), thus for all b1, b2, . . . , bm ∈ V ∪ {t},
b1 �S(G)→ f(b1, b2, . . . , bm). Again, by Lemma 6.8, h ∈ Polid(S(G)→). Moreover, g(t) = t,
and from Lemma 6.13 (ii) we know that the restriction of g to V is in Aut(S(G)). There-
fore, g ∈ Aut(S(G)→), and we get that f = g ◦ h ∈ Pol(S(G)).

Definition 6.15. Let G = (V,E) be a digraph. We define the digraph L(G) on the set
V in the following way:
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(1) For all x ∈ Vboth ∪ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,
(2) For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,
(3) For all x, y ∈ Vmin ∪ Vboth, x↔ y,
(4) For all x, y ∈ Vnone, x→ y iff E(x, y),
(5) For all x, y ∈ Vmax, x↔ y.

complete
graph

Vmax(G)

same as
G

Vnone(G)

complete
graph

Vmin(G)

complete
graph

Vboth(G)

Fig. 11. An illustration of L(G)
.

LEMMA 6.16. Let G be a digraph. Either V = V Gboth = V
L(G)
both , or V L(G)

min = V Gboth∪V
G
min,

V
L(G)
none = V Gnone, V

L(G)
max = V Gmax and V

L(G)
both = ∅.

PROOF. The Lemma follows directly from Definition 6.15.

COROLLARY 6.17. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(S(G)→) ⊆ Pol(L(G)→).

PROOF. Let us denote the sink of G→ by t and assume that f ∈ Pol(S(G)→). De-
fine g ∈ Aut(S(G)→) by g(x) = f(x, x, . . . , x) and h ∈ Polid(S(G)→) by h = g−1 ◦ f .
By Lemma 6.13 (v) and (vi), our conditions imply that S(G) is a smooth semicomplete
digraph which is not a cycle. According to Theorem 5.8, h restricts to V as some pro-
jection. Without loss of generality, assume that h �V = p1.

Let us prove that L(G) is also a smooth semicomplete digraph which is not a cycle.
From Definition 6.15 follows that L(G) is semicomplete iff the induced subgraph by
L(G) on V Gnone is semicomplete, which is true since it is equal to the induced subgraph
by G on V Gnone. It has no source since |V L(G)

max | = |V Gmax| 6= 1 (in both cases of Lemma 6.16)
and no sink since either |V L(G)

min | = |V Gmin ∪ V
G
both| > 1, or V = V

L(G)
both and so |V L(G)

min | = 0.
Finally, if L(G) were a cycle, then V = V

L(G)
both which would imply that V = V

S(G)
both and so

that S(G) = L(G), and we know that S(G) is not a cycle.
From Definition 6.15 follows that the subgraphs induced by S(G) and L(G) on the set

V \ V Gboth = V
S(G)
min ∪ V

S(G)
none ∪ V S(G)

max are the same. This implies that �S(G) ⊆ �L(G), and
according to Lemma 6.8, we get that h ∈ Polid(L(G)→).
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Moreover, from g ∈ Aut(S(G)→) follows that g ∈ Aut(V ∪{t},�S(G)→) by Lemma 6.13
(ii). Thus, Definition 6.10 implies that g acts independently on {t}, V Gboth ∪ V

G
min, V Gnone

and V Gmax (each is a union of g-orbits). By Definition 6.15, the subgraphs induced by
L(G) on V Gboth∪V

G
min and on V Gmax are complete, so any permutation is an automorphism.

Since L(G), S(G) and G induce on V Gnone the same digraph, we get that g ∈ Aut(L(G)→).
Finally, we get that f = g ◦ h ∈ Pol(L(G)→).

THEOREM 6.18. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then QCSP(G→j) is Pspace complete for all j > 0.

PROOF. According to Corollary 6.6, it suffices to prove this Theorem for j = 1, i. e.
for QCSP(G→). By Corollary 6.14, the fact that all polymorphisms of core digraphs (in
particular, semicomplete digraphs) are surjective and Theorem 3.16 of [Börner et al.
2009], we get that we only need to prove that QCSP(S(G)→) is Pspace complete. Ac-
cording to Corollary 6.17, it suffices to prove that QCSP(L(G)→) is Pspace complete.

Now if |V Gboth ∪ V
G
min| ≥ 3, we can use Corollary 6.2 (ii) to prove Pspace-completeness

of L(G)→. V Gboth = ∅ implies that |V Gmax| ≥ 2 and |V Gmin| ≥ 2, or G would have a source
or a sink. However, if |V Gboth ∪ V

G
min| = 2 ≤ |V Gmax|, then we can use Corollary 6.2 (i) on

L(G)→. Moreover, if V Gmax = ∅ or V Gmin = ∅, this implies that V Gmax = V Gmin = V Gnone = ∅
and V = V Gboth. Since |V Gboth| = 2 would imply that G is the 2-cycle, it must be that
|V Gboth| = n ≥ 3, and therefore S(G) = Kn and QCSP(S(G)→) is Pspace complete.

So we are down to the case when |V Gboth| = |V
G
min| = |V Gmax| = 1. Denote V Gboth = {b} and

V Gmin = {m}. In this case, the subgraphs induced by S(G) and by G on the set V \ Vboth
are the same, and the only elements of Vmin and Vmax are the source and the sink of
the induced subgraph on the set V \ Vboth, respectively.

Let us denote by G′ the subgraph induced by G on V Gnone. We have two subcases: if
each strong component of G′ is a one-element strong component (i. e. if G′ is a transitive
tournament), then S(G) is isomorphic to the graph Tn (where |V | = n) and we can apply
Proposition 6.3 to prove that QCSP(S(G)→) is Pspace complete.

On the other hand, assume that G′ has a nontrivial strong component. All strong
components of G′ are at the same time strong components of L(G), but L(G) has two
more strong components, the singleton V Gmax containing its sink, and {b,m}. In partic-
ular, L(G) has a nontrivial strong component other than {b,m}. The strict linear order
⇒L(G) on the set of strong components of L(G) has the least element {b,m}, and let C
be the maximal nontrivial strong component of L(G) in this order. Let W ⊆ V be the
union of C and all strong components of L(G) below it. It follows that the subgraph
H induced by L(G) on W is smooth since the minimal strong component of H in the
order v is {b,m} while the maximal one is C. Furthermore, L(G) = H→j for some
j > 0. Now L(G)→ = H→(j+1). We have |V Hmin ∪ V Hboth| = 2 ≤ |V Hmax|, so QCSP(H→) is
Pspace-complete by the earlier case of this proof. By Corollary 6.6, this implies that
QCSP(H→(j+1)) = QCSP(L(G)→) is Pspace-complete, and the result follows.

Now we have proved all cases of our main theorem which we restate here:

THEOREM 6.19. If H is a semicomplete digraph then either
– H contains at most one cycle and QCSP(H) is in P, or
– H contains at least two cycles, a source and a sink and QCSP(H) is NP-complete, or
– H contains at least two cycles, but not both a source and a sink, and QCSP(H) is
Pspace-complete.
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7. FINAL REMARKS
Since the conference version of this paper, some companion results, making use of sev-
eral of our constructions, have appeared in [Carvalho et al. 2015]. These new results
on algebraic dichotomies, pertaining to growth rates of generating sets of algebra di-
rect powers, are directly motivated by the complexity-theoretic trichotomy we have
derived here. Thus the polymorphism classification we give engenders new classifi-
cations, both complexity-theoretic and algebraic. Moreover, a good reference on the
importance of reflexive digraphs with only projections among their idempotent poly-
morphisms is [Larose 2006] and the references found therein (the property is called
idempotent-trivial there).

We were not able to find any purely algebraic criterion to replace the ad-hoc argu-
ments in Section 6. For a while, there was a conjecture attributed to H. Chen that
Pspace completeness of a template A was equivalent to the algebra A of polymor-
phisms of A having the exponentially generated powers property (EGP property). D.
Zhuk was recently [Zhuk 2015] able to prove that all finite algebras have either the
polynomially generated powers (PGP) or the EGP property, and that PGP of A implies
that QCSP(A) reduces to CSP(A).

We thank the referees for their many useful remarks. Referee 1’s comments helped
with presentation and made the paper more palatable, also he/she found a mistake.
Referees 2 and 3 have delved very deeply indeed into our arguments, finding several
mistakes, some of which were quite serious. Referee 2 also found a way to simplify our
definitions by moving a part which was originally in Section 6 into Section 2. All in all,
the referees’ efforts greatly improved this paper, much more so than usually.
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