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Abstract

We consider broadcasting in random d-regular graphs by using a simple modification of
the random phone call model introduced by Karp et al. [25]. In the phone call model, in
every time step, each node calls a randomly chosen neighbour to establish a communication
channel to this node. The communication channels can then be used bi-directionally to transmit
messages. We show that, if we allow every node to choose four distinct neighbours instead of one,
then the average number of message transmissions per node required to broadcast a message
efficiently decreases exponentially. Formally, we present an algorithm that has time complexity
O(log n) and usesO(n log log n) transmissions per message. In contrast, we show for the standard
model that every distributed algorithm in a restricted address-oblivious model that broadcasts
a message in time O(log n) requires Ω(n log n/ log d) message transmissions.

Our algorithm efficiently handles limited communication failures, only requires rough esti-
mates of the number of nodes, and is robust against limited changes in the size of the network.
Our results have applications in peer-to-peer networks and replicated databases.

1 Introduction

We consider the problem of dynamic broadcasting in random networks with small degree. Broad-
casting is one of the most useful, versatile and well-studied communication primitives in distributed
computing with many applications, e.g., the maintenance of replicated databases [7], where updates
made at some of the nodes need to be propagated to all the nodes in the network. To ensure that all
copies of the database converge to the same content, efficient broadcasting algorithms are crucial.
Our interest in random regular networks is motivated by peer-to-peer (P2P) systems. The idea of
using random graphs to build overlays for P2P systems appears in e.g. the Gnutella network [21]
and JXTA of Sun Microsystems [2]. Important properties of P2P networks include connectivity, low
degree, high expansion and small diameter. These properties are perfectly fulfilled by the random

∗Preliminary version published in the Proceedings of the Twenty-Seventh Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing (PODC 2008).
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regular graphs considered in this paper. Random topologies with small degree naturally arise in
P2P systems, in which overlays are generated according to a Markov process intended to construct
and maintain a network with the properties described above (e.g. [32]). Several research groups
have recently designed a variety of “random-like” networks for P2P systems (e.g. WARP of [24]),
and there is a considerable amount of work devoted to the generation and maintenance of random
regular graphs (e.g. [5, 16, 27, 29]).
Since P2P networks are important decentralised platforms for sharing data and computing re-
sources, it is extremely important to provide efficient, simple and robust broadcasting algorithms
for P2P overlays. One of the simplest communication models for broadcasting is the so-called ran-
dom phone call model introduced in [25]. In this model a graph is given. In any discrete time step
the nodes of the graph can create messages each of which needs to be transmitted to all nodes of
the graph. Then (again in every step) each node v calls a randomly chosen neighbour w to establish
a communication channel to w. The channel can be used for bi-directional communication during
that step, meaning that v can send messages to w and vice versa. The nodes can combine messages,
and they can also transmit via several open channels in one step. At the end of the step all open
channels are closed. The major drawback of the phone call model is that a node establishes com-
munication channels without knowing if there is any (as yet unknown) message in the system, and
which of the messages received so far by this node are already known to its neighbours. This means
that many unnecessary communication channels will be established between the nodes if only very
few messages are created in a step. This model is therefore of particular interest in situations
where messages are generated with high frequency. Then the cost of establishing communication
amortises nicely over all transmissions. This, in turn, means that for the analysis it is possible to
consider the number of transmissions for each single message separately (see [25]).

In the phone call model we distinguish between push and pull transmissions, depending on the
direction in which the message is forwarded (cf. [25]). In the case of push transmissions, calling
nodes send their messages to their neighbours, whereas in the pull model messages are transmitted
from the called node to the calling one [7]. Karp et al. [25] noted that, in complete networks, the
pull model is inferior to the push model until roughly n/2 nodes are informed (i.e. received the
message), and then the pull model becomes more effective. As we will see in the next paragraph,
the combined push and pull model of [25] is able to broadcast in time log3 n + O(log log n) with
O(n log log n) message transmissions, whereas the push algorithm from e.g. [7, 33] uses Θ(log n)
time and Θ(n log n) message transmissions.
To compare the push and pull approaches in more detail, let us for a moment consider the dis-
tribution of a single message in a complete graph. In the push model, the number of informed
nodes grows exponentially in the first phase, that is, as long as fewer than n/2 nodes are informed.
From then on, in the second phase, the number of non-informed nodes decreases by a constant
factor during every round. In the first phase, O(n) messages are transmitted. The second phase
requires time Θ(log n) and thus Θ(n log n) message transmissions, w.h.p.1 Hence, the push model
requires Θ(log n) steps and Θ(n log n) message transmissions in complete graphs (cf. [25]). In the
pull model, in the second phase messages are spread faster. As soon as n/2 nodes of a complete
graph are informed, every node becomes informed within O(log log n) additional rounds ([25]) and
thus only O(n log log n) messages are needed. The drawback of the pull model is that in the first
phase the node creating a message may have to wait for some number of rounds until it is called
for the first time. However, the first phase takes time O(log n) and uses O(n) messages until n/2
nodes are informed, which is asymptotically still the same as in the push model. This implies that
a total of at most O(n log logn) transmissions is sufficient if broadcasting is stopped at the right

1By w.h.p. or with high probability we mean with a probability of at least 1− 1/nΩ(1).
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time.

In this paper we consider broadcasting in d-regular graphs. We are especially interested in graphs
with small degrees, and we consider the number of steps and the number of transmissions induced
by a broadcast message. Our goal is to develop time-efficient broadcasting algorithms which can
handle (limited) communication failures in the network, as well as changes of the network’s size
and topology, and which produce a minimal number of message transmissions. The first point is
important as the structure of P2P networks changes dynamically due to clients joining or leaving the
network. Message minimisation is important for applications such as the maintenance of replicated
databases where often huge amounts of broadcasts are necessary to deal with frequent updates in
the system.

1.1 Related Work

Most papers dealing with randomised broadcasting analyse the run-time of the push algorithm in
different graph classes. Frieze and Grimmett show that, with probability 1 − o(1), it is possible
to broadcast a message in a complete graph on n nodes in time log2(n) + ln(n) + o(log n) [19].
Later, Pittel improves this bound to log2(n) + ln(n) + O(1) [33]. In [17], Feige et al. determine
asymptotically optimal upper bounds for the run-time of the push algorithm in Gn,p graphs (the
traditional Erdös-Rényi random graphs [14, 15]), bounded degree graphs, and Hypercubes. In [20]
Fountoulakis and Panagiotou show that the push model broadcasts the message to all nodes of a
random d regular graph within (1+o(1))·Cd ·lnn rounds, where Cd = 1/ ln(2(1−1/d))−1/(d·ln(1−
1/d)). In [26], Kempe et al. consider a push type algorithm among uniformly distributed points
in RD and prove that, if each informed node contacts a neighbour in a step according to a certain
distribution depending on the distance between the two nodes, then any piece of information is
spread to vertices at distance t within O(log1+ε t) steps, with high probability.
Upper bounds on the running time of the push algorithm in arbitrary networks and especially Cayley
graphs are considered in [12]. It is shown that in arbitrary graphs of size n the broadcasting time is
bounded, up to a log n factor, by the mixing time of a corresponding Markov chain. Additionally,
a new class of Cayley graphs is introduced on which the push algorithm has optimal performance.
Boyd et al. consider the combined push&pull model in arbitrary graphs of size n, and show that the
running time is asymptotically bounded by the mixing time of a corresponding Markov chain plus an
O(log n) term [3]. This result is extended to the push model (without allowing pull transmissions)
in [35].
In [25], Karp et al. consider the basic random phone call model in complete graphs on n nodes.
They present a termination mechanism which, w.h.p., reduces the number of total transmissions
to O(n log logn), and show that this result is asymptotically optimal. They also consider commu-
nication failures and analyse the performance of their method in cases where the connections are
established using arbitrary probability distributions. Their results improve a result from [7], which
shows a bound of O(log n) time steps and O(n 3

√
log n) message transmissions.

In [11], Elsässer develops an algorithm for the phone call model in random Gn,p graphs with
p > 1

n logδ n, where δ > 2 is a constant. The algorithm broadcasts a message to all nodes, using time
O(log n) and O(n(log log n+ log n/ log(pn))) transmissions, w.h.p. The algorithm has optimal run-
time and optimal communication overhead. In [13], the authors consider two simple modifications
of the basic random phone call model for Gn,p graphs. The first modification allows each node to
call four different randomly chosen neighbours in every time step, akin to what is phrased power
of multiple choices elsewhere. The second modification sequentialises this approach and allows the
nodes to remember the addresses of the nodes called in the most recent three time steps; these
neighbours will not be considered in the current step. Both modifications reduce the number of
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transmissions to O(n log logn), w.h.p. Furthermore, the idea of avoiding a neighbour contacted in
the previous step also leads to sub-logarithmic running time in preferential attachment graphs, see
[8]. The proofs use a so called “deconditioning lemma” w.r.t. the distribution of the neighbours of
a node after it has randomly chosen O(log n) neighbours. The proof also integrates some structural
properties of Gn,p graphs into the dynamical behaviour of randomised broadcasting. However,
the deconditioning lemma holds only if the (expected) degree of the graph is large enough (i.e.,
Ω(log n)), and the structural integration techniques fail if d = o(log n). Therefore, it would appear
as though the techniques of [13] cannot be generalised to random graphs with sub-logarithmic
degrees.
In [9] Doerr et al. propose and analyse a quasi-random analogue to the classical push model where
each node has a (cyclic) list of its neighbours, given by an adversary. Once informed, it starts at a
random position of the list, but from then on informs its neighbours in the order of the list. For
hypercubes or random graphs Gn,p they show that O(log n) rounds suffice to inform every node.
These bounds are similar to those in the classical random model. In addition, they prove a O(log n)
bound for sparsely connected random graphs Gn,p with p = (log n+f(n))/n, where f(n)→∞ and
f(n) = O(log log n). Here, the classical push model needs Θ(log2(n)) steps.

1.2 Models and Results

In this paper we consider d-regular random and undirected graphs Gn,d on n vertices, with δ ≤
d ≤ δ log n for some sufficiently large constant δ. We will use (v, w) to name the undirected edge
between node v and node w. Note that for this choice of d, Gn,d is connected w.h.p. [1]. We should
also note that the results of [13] can be extended to d-regular random graphs with d ≥ δ log n. Our
results can be generalised to a non-regular setting in which the degree of every node is between d
and c · d for a constant c. However, for ease of presentation we focus on the truly regular model.
We assume that every node knows d, and that it has an estimate of n which is accurate to within
a constant factor. We also assume that all nodes have access to a global clock, and that they work
synchronously.
In each step every node can create an arbitrary number of messages to be broadcast. Furthermore,
in each step every node establishes a channel to four distinct neighbours2. Once a channel is
established between a pair of nodes it may be used bi-directionally. Then, the nodes have to decide
which of the established channels to use, and which messages to send over the channel. We assume
that they do not know which of their neighbours are aware of a certain message and which are not.
We assume that the size of the messages exchanged between a pair of nodes is not limited in any
way. The algorithm presented in this paper is distributed and address-oblivious. An algorithm is
called distributed (see [25]) if nodes use only local knowledge to make the decisions as to whether
or not to send a message over an open channel. This local information can be e.g. the age and
number of broadcast messages they have got, the time the messages arrived, or their own identifier.
An algorithm is called address-oblivious if decisions do not depend on the IDs of the nodes which
they are connected to via open channels in the current step. Furthermore, in the random phone
call model the nodes are not allowed to remember which nodes they communicated with in the
previous steps when they choose their next neighbour to exchange messages with (see [25] again).
The lower bound we present (see Section 2) unfortunately only applies to a stricter distributed
address-oblivious model, where we additionally assume that the decisions only depend on the time

2Note that in a sequentialised version of our model, in each step every node v i.u.r. chooses one neighbour from
the set of neighbours not chosen by v during the last 3 time steps [13]. Clearly, four steps of this sequentialised model
can be viewed as one step in the model considered in this paper, and thus, our results can easily be extended to the
sequentialised version of our model.
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at which the nodes received a message. We refer to this model as strictly oblivious. Note that
our algorithm also falls into this model. Since in the random phone call model the choices of the
communication partners are not allowed to depend on previous steps, we believe that our restricted
model is still quite natural (i.e., due to their limited memory, nodes do not remember their previous
communication partners, or the history of previous communications).
Our algorithm has time complexity O(log n) and requires only O(n log logn) transmissions per
message, a.a.s.3 In Section 2, we also show a lower bound on the number of transmissions for the
standard model of [25]. More precisely, we prove that any distributed strictly oblivious algorithm
in the random phone call model needs Ω(n log n/ log d) transmissions in order to inform all nodes
of a d-regular random graph in an expected time of O(log n) steps. Our results also imply that
the ability to avoid recently chosen neighbours decreases exponentially the expected number of
transmissions per message. The authors believe that choosing 3 pairwise distinct neighbours will
be sufficient to reduce the number of submissions to O(n log logn), but the question is open for two
pairwise distinct neighbours.
Several parts of our analysis assume that the input graph is generated by the so-called configuration
model (also referred to as pairing model, see [31] and references therein). In this model, a d-regular
random graph is constructed as follows. We start with an empty graph on n nodes, each of which
has d stubs. In the first step, we i.u.r. choose two stubs and connect the corresponding nodes with
an edge. These two stubs are called matched thereafter. In each of the next dn/2 − 1 steps, we
i.u.r. select two unmatched stubs, connect the corresponding nodes with an edge, and these stubs
are considered to be matched in any subsequent step.
An alternative description of the process is as follows. We assume the stubs are numbered 1, . . . , nd.
We pair the first stub with an i.u.r. chosen stub, then we match the next unmatched stub with an
i.u.r. chosen unmatched stub, and so on. Note that this process can generate graphs with self-loops
and multiple edges with a probability 1 − e−O(d2) [30] (notice that this is the probability of the
“bad event”), however, every simple d-regular graph will be generated with equal probability. Also
note that it is sufficient to analyse the algorithm for graphs generated with this process (even if
the resulting graph is not simple), as long as the failure probability is small enough.

2 Lower Bound

In this section we show the following lower bound for models where each node is allowed to choose
one single neighbour in a round. We show that any strictly oblivious, distributed, and time efficient
Monte Carlo broadcasting algorithm produces Ω(n log n/ log d) message transmissions if, in expec-
tation, less than one node remains uninformed. Recall that a Monte Carlo [28] broadcast algorithm
is an algorithm whose running time is upper bounded by some given value, but that might fail (to
finish the broadcast) with a certain probability. Note that the algorithms presented in this paper
are also Monte-Carlo algorithms with guaranteed running time O(log n).

Theorem 1. Let Gn,d be a d-regular random graph and assume that a message M has to be
distributed to all nodes of Gn,d. Let A be a strictly oblivious and distributed broadcast O(log n)-
time Monte Carlo algorithm in the random phone call model that finishes the broadcast so that in
expectation less than one node remains uninformed. Then A requires at least Ω(n log n/ log d) many
transmissions of M.

Proof. Let G = (V,E) be a d-regular random graph. Let I(t) be the set of nodes that are informed
by the end of round t, and H(t) the set of uninformed nodes V \ I(t) at the end of round t. Assume

3A.a.s. means almost always surely, i.e., with probability 1− log−Ω(1) n
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the broadcast is finished in time c log n for some arbitrary positive constant c. We will show that
εn log n/(2 · 1282c3 log d) many messages are not sufficient, for ε = 1/(512c2) + d/n.
The idea of the proof is as follows. We consider the first time round t in which a constant fraction
of the nodes is informed. Note that for any of the informed nodes v and for all rounds t′ ≥ t we
can assume that v’s communication pattern in round t′ is fixed. Then we show that the informed
nodes can not inform all the remaining nodes with the remaining messages.
We assume in the following that at most εn log n/(2 · 1282c3 log d) messages are sent. Let t =
min{t′ : |I(t′)| ≥ (1− ε)n and |H(t′)| ≤ εn}. Then,

(1− ε)n ≤ |I(t)| < (1− ε)n+ d = (1− 1/(512c2))n.

For the analysis, we assume that every round is divided into n sub-steps. In sub-step i only the
ith node is allowed to send all its messages to its neighbours. Nodes may not send messages that
they receive in earlier sub-steps of this round. Obviously, this sequentialisation does not change
the outcome of the algorithm. We wish to make the presentation of the remainder of the proof as
simple as possible, but this requires a minor abuse of notation and model. Specifically, suppose
that in this “microscopic” sub-step timing model it is sub-step i of round t that gets the condition
on |I(t)| fulfilled for the first time. We now (just as a thought experiment) split round t into two
sub-rounds t1 and t2, with t1 comprising sub-steps 1, . . . , i, and t2 comprising sub-steps i+1, . . . , n.
For the remainder of the proof we pretend that t1 and t2 are complete rounds, so that the order
of rounds now is 1 . . . , t − 1, t1, t2, t + 1, . . . So as not to have to carry these notational anomalies
around, we rename the rounds to 0, 1, . . . , t− 1, t, t+ 1, . . . with (the new) t− 1 = t1 and (the new)
t = t2.

For our fixed t let V (+) denote the subset of nodes in I(t) that transmit in at least log n/(128c log d)
many rounds t′ with t′ > t, and let V (−) = I(t) \ V (+). By the pigeonhole principle,

|V (+)| ≤ ε · n
2 · 128c2

=
ε · n

256c2
.

Let

N = {v ∈ H(t) : v has fewer than d/(64c) neighbours in V (+)}

Claim 1: |N | ≥ (1 − 1
4c) · |H(t)| = (1 − 1

4c) · εn. Suppose not, that is, |H(t) \ N | ≥ εn
4c (the set

H(t) \N contains only nodes with fewer than (1− 1
64c)d neighbours in V (−) ∪ H(t), and thus more

than d/(64c) neighbours in V (+)). This would imply that these nodes alone were to use more than

εn

4c
· d

64c
=

εnd

256c2

stubs of nodes in V (+), which contradicts the above upper bound on |V (+)| (there are d · |V (+)|
many stubs).

According to the Expander-Mixing Lemma [23], we have∣∣∣∣|E(I(t), H(t))| − d · |I(t)| · |H(t)|
n

∣∣∣∣ =

∣∣∣∣|E(I(t), H(t))| − d · εn · (1− ε)n
n

∣∣∣∣
≤ 2

√
d− 1 · (1 + o(1)) ·

√
(1− ε) · n · εn,

where we used that the second eigenvalue of a random regular graph is at most 2
√
d− 1(1 + o(1))

with probability at least 1−1/n2 [18]. Thus, the number of edges between H(t) and I(t) is bounded
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from below by

ε(1− ε)dn

(
1− 2√

ε(1− ε)d

)
,

with probability 1−n−Ω(1) [18]4. Then, the number of inner edges in H(t) (meaning edges between
nodes of H(t)) is upper bounded by ε2nd · (1 + ε2)/2 if d is large enough. Let

N ′ = {v ∈ H(t) : v has at most 1
64cd neighbours in H(t) }.

Claim 2: |N ′| ≥ (1 − ε128c) · |H(t)|. Suppose not, that is, |H(t) \ N ′| ≥ ε2128cn (H(t) \ N ′ is
the set of nodes with more than d

64c neighbours in H(t)). This would imply that these nodes alone
were to use more than

ε2128cn · d

64c
= 2ε2nd

stubs of nodes in H(t), which contradicts the above upper bound on the number of inner edges in
H(t).

Claims 1 and 2 together imply that there are at least(
1− 1

4c
− ε128c

)
· |H(t)| (1)

nodes S ⊂ H(t) having at most d/(64c) neighbours in V (+) or in H(t), w.h.p. Applying Equation
(1) yields

|S| ≥
(

1− 1

4c
− ε128c

)
· |H(t)| > |H(t)|/2 = εn/2.

We show that S contains a matching of size ε2n/9. We apply the Expander-Mixing Lemma to the
set of edges E(S, S) between S and V \ S and obtain that the number of inner edges in S is lower
bounded by ε2nd/4 · (1 − ε2), whenever d is large enough. We compute a matching by repeatedly
removing arbitrary edges (and adding them to our matching) as well as all at most 2d − 2 edges
incident to either endpoint.
Of the ε2n/9 many pairs, each of the two nodes has at least (1 − 1

32c)d many neighbours in V (−).
Let P ′ denote those nodes. Fix v ∈ P ′, and consider table (av)t,i with 1 ≤ t ≤ c log n and
1 ≤ i ≤ (1− 1

32c)d, that is, we have one row for each time step, and one column for each of v’s first

(1 − 1
32c)d many neighbours in V (−). Let avt,i = 1 if v’s i-th neighbour in V (−) is quiet in step t,

and avt,i = 0 otherwise.

Since those neighbours are in V (−), they transmit in fewer than log n/(128c log d) many steps, that
is, are quiet in at least

c log n− log n

128c log d
=

(
c− 1

128c log d

)
· log n

many steps. Therefore, each column in our table has at least (c − 1/(128c log d)) · log n many 1
entries, and the total number of 1 entries is at least

T
def
=

(
1− 1

32c

)
· d ·

(
c− 1

128c log d

)
· log n. (2)

4To apply this result for simple graphs, the degree should be independent of n. For higher degrees, some more
probabilistic analysis is needed which is omitted in the lower bound case.

7



Now we use yet another pigeonhole argument to show that most of the rows are mostly filled with
1 entries. These steps are called quiet steps in the following.

Claim 3: At least (c − 1
4 log d) log n of the rows are quiet, i.e. have at least a (1 − 1

32c)-fraction of

1 entries. Suppose this was not true, i.e., fewer than (c− 1
4 log d) log n rows had at least (1− 1

32c)
2d

many 1 entries, i.e., a (1− 1
32c)-fraction of the width of the table, which itself is (1− 1

32c)d. In this
case, there would be strictly fewer than

rows assumed full︷ ︸︸ ︷(
c− 1

4 log d

)
log n ·

(
1− 1

32c

)
d+

remaining rows︷ ︸︸ ︷(
log n

4 log d

)
·
(

1− 1

32c

)2

d

=

(
1− 1

32c

)
d log n ·

[(
c− 1

4 log d

)
+

(
1− 1

32c

4 log d

)]

=

(
1− 1

32c

)
d log n ·

(
c− 1

128c log d

)
= T

in total, contradicting bound (2).

Our goal now is to show that the expected number of P-pairs that do not receive the message is
larger than one. Let (u, v) be an arbitrary P-pair that has both nodes in S. In the following we
consider first pull transmissions and then push transmissions.

Pull: In the following we calculate a lower bound pu on the probability that u opens a channel to
v in the at most log n/(4 log d) non-quiet steps and that in the other steps u opens channels only
to neighbours in V (−), which do not transmit in these steps. The bound pv is defined accordingly.
The probability that u opens a channel to v in the non-quiet steps can be lower bounded by
d− logn/(4 log d). In the quiet steps u is only to open channels to neighbours in V (−) that do not
transmit. This probability can be lower bounded by (1 − 1/(32c))2(c−1/(4 log d)) logn. Observe that
(1− 1

z )z ≥ 1
4 for z ≥ 2. Then

(
1

d

) logn
4 log d

·

[(
1− 1

32c

)2
](c− 1

4 log d
) logn

=

(
1

d

) logn
4 log d

·
(

1− 1

32c

)2(c− 1
4 log d

) logn

=

(
1

n

) 1
4

·
(

1− 1

32c

)32c

(
(c− 1

4 log d
)

16c
logn

)

>

(
1

n

) 1
4

·
(

1

4

) c− 1
4 log d
16c

logn

=

(
1

n

) 1
4

·
(

1

n

)2
c− 1

4 log d
16c

=

(
1

n

) 1
4

·
(

1

n

) 1
8
− 1

32c log d

=

(
1

n

) 3
8
− 1

32c log d

=: pu.
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Of course, the same probability bounds hold for node v. Thus, the probability that both u and v
do only communicate with each other in non-quiet steps and with nodes that do not transmit in
quiet steps can be lower bounded by pu · pv.

Push: Now we calculate qv as a bound on the probability that v does not receive the message
due to a push transmission. The value qv covers the cases that v neither receives a push(M)

transmission from a neighbour in V (+) (or from an informed node of H(t)), nor a node w ∈ V (−)

directs a channel to v in a step in which w transmits a message. The probability of the first event
can be lower bounded by (1 − 1/d)c logn·d/32c = (1 − 1/d)d logn/32. The probability of the second
event can be lower bounded by (1− 1/d)d logn/(128c log d). Hence

(
1− 1

d

) d logn
32

+ d logn
128c log d

=

(
1− 1

d

)d log(n)·
(

1
32

+ 1
128c log d

)

>

(
1

4

)log(n)·
(

1
32

+ 1
128cd log d

)

=

(
1

n

)2·( 1
32

+ 1
128cd log d

)

>

(
1

n

) 1
16

+ 1
64cd log d

=: qv.

Now we calculate a lower bound q′u on the probability that u does not receive the message due to
a push transmission, under the condition that v neither receives a push(M) transmission from a
neighbour in V (+) (or in H(t)), nor that a node w ∈ V (−) directs a channel to v in a step in which
w transmits a message. Similar to the calculation above we get

(
1− 1

d− 1

) d logn
32

+ d logn
128c log d

>

(
1

n

) 1
16

+ 1
64cd log d

=: q′u.

The probability that u and v do not receive the message at all is at least

pu · pv · q′u · qv =

[(
1

n

) 3
8
− 1

32c log d

]2

·

[(
1

n

) 1
16

+ 1
64cd log d

]2

=

[(
1

n

) 3
4
− 1

16c log d

]
·

[(
1

n

) 1
8

+ 1
32cd log d

]

=

(
1

n

) 7
8
− 1

16c log d
+ 1

32cd log d

>

(
1

n

)8/9

for d large enough. Since P ′ ≥ ε2n/9, the expected number of uninformed pairs is at least(
ε2n

9

)
· n−8/9 =

(
ε2

9

)
· n1/9 > 1

for n large enough. Hence, we can assume that the expected number of uninformed nodes is at
least two.
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3 Broadcasting Algorithm

In the modified model described in the introduction, in each step every node chooses four distinct
neighbours instead of one. In each time step, whenever a communication channel is established
between two nodes, each of them has to decide which messages to transmit, or whether to transmit
a message at all, without knowing if the node at the other end of the edge has already received a
given message or not. In other words, opening a channel does not, in general, imply transmission
of a message. In the following we define some procedures which are frequently used by each node
of the graph.

open: Choose four distinct neighbours uniformly at random and establish communication channels
to them. These channels are called outgoing in the following. The procedure also establishes
communication channels with all nodes which call the corresponding node. Those channels
are called incoming.

push(M): Send message M over all outgoing channels.

pull(M): Send message M over all incoming channels.

receive: Receive and store all messages coming over open channels in M (if any).

close: Close all channels opened in the current round.

In each step t, every node u ∈ V executes the procedure given in Algorithm 1 or Algorithm 2,
depending on the degree of the graph (which we assumed the nodes to be aware of). The algorithm
will be run for every message. The nodes decide if a message has to be transmitted via push or pull,
depending on the time at which the message has been generated. When more than one message
is considered, the node combines to a single message all messages which should be transmitted via
push (pull), and forwards this combined message over all open outgoing (incoming) channels. In
the following we state the algorithm (w.l.o.g.) for one fixed message M and we assume that the
message is created in time step 0. Hence, the age of the message is nothing else than the current
time step (both denoted by t).
Algorithm 1 depicts the algorithm for δ ≤ d ≤ δ log log n.
In Algorithm 1 the parameter α is a sufficiently large constant, and the nodes are initially not in
state active. The algorithm has four distinct phases, and each of these phases comprises several
steps. In the first phase every informed node transmits the message exactly once. At the end of
the phase a constant fraction of the nodes are informed. In the second phase the informed nodes
perform push transmissions during all steps of this phase. At the end of the phase we have at most
O(n/ log5 n) uninformed nodes. The third phase consists only of one step in which every informed
node sends out the message over all incoming channels (pull(M)). All nodes which received the
message for the first time in this step will be in state active. In the last phase, in each step
all newly informed nodes become active as well, and all active nodes transmit the message via
push(M) during all subsequent steps of this phase.

For δ log logn ≤ d ≤ δ log n we have to modify the algorithm slightly. We refer to the modified
version as Algorithm 2. In Algorithm 2, Step 6 (Phase 3) is replaced by “if dα log n+log log ne+1 ≤
t ≤ dα log n+ 2α log logne then”, and Steps 8, 9 and 10 are removed.
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Algorithm 1
1: open

2: if t ≤ dα log ne then {Phase 1}
3: if the message is created or received for the first time in the previous step then push(M).

4: if dα log ne+ 1 ≤ t ≤ dα(log n+ log log n)e then {Phase 2}
5: if the node is informed then push(M).

6: if t = dα(log n+ log log n)e+ 1 then {Phase 3}
7: if the node is informed then pull(M).

8: if dα(log n+ log log n)e+ 2 ≤ t ≤ 2 · dα log ne+ dα log log ne then {Phase 4}
9: if the message is received for the first time in the previous step (Phase 3 or 4) then go to

state active.
10: if active then push(M).

11: receive

12: close

Algorithm 2
1: open

2: if t ≤ dα log ne then {Phase 1}
3: if the message is created or received for the first time in the previous step then push(M).

4: if dα log ne+ 1 ≤ t ≤ dα(log n+ log log n)e then {Phase 2}
5: if the node is informed then push(M).

6: if dα(log n+ log log n)e+ 1 ≤ t ≤ dα log n+ 2α log logne then {Phase 3}
7: if the node is informed then pull(M).

8: receive

9: close

11



4 Analysis of the Algorithm

In this section we analyse the behaviour of Algorithm 1 on G. We assume that α log n and α log log n
are integers, and hence dα log ne = α log n and dα log logne = α log logn.
Note that Phase 1 and Phase 2 are the same for both Algorithm 1 and Algorithm 2. In Section
4.1 we analyse Phase 1 and show that by the end of Phase 1 a constant fraction of the nodes is
informed. In Section 4.2 (Lemma 3) we analyse Phase 2 and show that by the end of the phase
there are at most O(n/ log5 n) uninformed nodes. In Section 4.3 we analyse the remaining phases
and show our main results for large and small degrees.
We first need a few more definitions.

• I(t) is the set of informed nodes after step t but before step t+ 1.

• Let I+(t) = I(t) \ I(t− 1), that is, the nodes that become informed in step t.

• H(t) is the set of uninformed nodes V \ I(t) at the end of step t, with h(t) = |H(t)|.
• We call an edge used before step t if one of the nodes incident to this edge transmitted the

information along this edge before step t. Let U(t) ⊆ V be the set of nodes incident to at
least one edge which is not used before step t+ 1. Notice that H(t) ⊆ U(t).

• IC(t) = {v ∈ I(t) | ∃u ∈ H(t) : (u, v) ∈ E} is the set of informed nodes connected to an
uninformed node.

• HC(t) = {u ∈ H(t) | ∃v ∈ I(t) : (u, v) ∈ E} is the set of uninformed nodes connected to an
informed one.

• E(S, S) is the set of edges between S and S, where S, S ⊂ V .

• For 1 ≤ i ≤ 5, let Hi(t) denote the set of nodes in H(t) with at least i neighbours in H(t) at
the beginning of round t, with hi(t) = |Hi(t)|.

4.1 Phase 1

In the next two lemmas we prove that within the first α log n steps at least n/8 nodes of Gn,d
become informed, w.h.p., whenever α is large enough.
Recall that Phase 1 consists of α log n many steps. Every node that receives the message for the
first time in step t performs a push transmission in the next step. In Lemma 1 we show that
w.h.p. the set of informed nodes grows by a constant factor in each of the first α log log n steps.
Lemma 2 shows the same for the remaining steps of the phase.

Lemma 1 (Phase 1). Assume t < α log log n.

1. If d < 3
√

log n then we have w.h.p. that |I+(t+ 1)| > 2 · |I+(t)|.

2. If d ≥ 3
√

log n and |I+(t)| ≤ d/ 10
√

log n, then a.a.s. we have |I+(t+ 1)| > 2 · |I+(t)|.

Proof. First of all, note that for t < α log n all newly informed nodes perform exactly one push
transmission in the first phase of the algorithm.

Case 1: d < 3
√

log n. We shall apply the principle of deferred decisions: we pretend that the
random choices of our algorithm actually construct (part of) the graph Gn,d under consideration.
At time 0 we are given n nodes with d unmatched stubs each. In round t+ 1, each newly informed
node, that is, each v ∈ I+(t), selects four of its (matched or unmatched) stubs i.u.r. without
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replacement. For each vertex, every unmatched among the selected four stubs will now be matched
(connected) with one i.u.r. chosen unmatched stub. Notice that there is always a sufficient number
of stubs available as we allow for two nodes in I+(t) to match their stubs selected in this step. In
the following we call the set of edges created in the first t steps Et.

To prove the result we show by induction that the following holds with a probability of 1 −
logO(1)(n)/n:

1. None of the nodes of I+(t+ 1) are incident to more than one edge in Et+1.

2. |I+(t+ 1)| > 2 · |I+(t)|.

For t = 0, the probability that two of the four edges chosen by the only node in I(0) are directed
to the same node u ∈ V is at most (

4

2

)
· 4d

dn
=

6

n
.

Hence, with a probability of at least 1− logO(1)(n)/n there will be at least two nodes in I(1).

For t ≥ 1 we can assume (due to the induction hypothesis) that with a probability of 1−logO(1)(n)/n
we have |I+(t)| > |I+(t − 1)|, and none of the nodes of I+(t) has more than one neighbour in
I+(t − 1). Now we show that, under this condition, the invariant is still fulfilled for step t. The
lemma then follows using the union bound over all steps of Phase 1.
Recall that I+(t) is the set of nodes that became informed during step t by some node(s) of I+(t−1),
i.e., they were not informed before but are informed after step t – the construction is iterative, and
only nodes newly informed in some step pick other nodes in the next step. (It may be helpful to
visualise the process in terms of layers of an onion.) Recall that in every step of the algorithm every
node opens a channel to four distinct (randomly chosen) of its d many neighbours. Then, due to
the induction hypothesis, each node chooses at least three unmatched stubs. Now, divide step t+ 1
into 4|I+(t)| sub-steps. Let u1, . . . , u|I+(t)| be the elements of I+(t) ordered in this way. In sub-step
4(t′ − 1) + i + 1, 0 ≤ i ≤ 3, node ut′ chooses one of its stubs, and pairs this stub (if not matched
yet) with some unmatched stub in the graph. Since t ≤ α log log n we have that |I(t)| = logO(1) n.
Thus, if the stub chosen by node ut′ in sub-step 4(t′− 1) + i+ 1 is itself unmatched, then this stub
is paired with the stub of a node which has only unmatched stubs at this time with probability
larger than

dn− (d · |I(t)|+ d · (4(t′ − 1) + i+ 1))

dn
≥ 1− logO(1)(n)/n,

regardless of the matchings established so far. dn is the total number of stubs of all the nodes
in G. From that number we subtract all stubs to nodes in I(t) as well as the stubs to the nodes
u1, . . . , ut′ . Thus, a node of I+(t+1) has more than one neighbour in I+(t) with probability smaller
than logO(1) n/n. Since |I+(t + 1)| = logO(1) n, the union bound implies that, given the induction
hypothesis holds for t − 1, there is no node in |I+(t + 1)| with more than one neighbour in I+(t)
with conditional probability at least 1 − logO(1)(n)/n. This shows the first invariant. Moreover,
each node of I+(t) has at least 3 neighbours in I+(t + 1) with the same conditional probability.
Hence, the second invariant is maintained, too.
Recall that this pairing process generates graphs with self-loops and multiple edges with a proba-
bility 1− e−O(d2) (see [30]). (This bound on the simplicity of the generated graph is precisely what
requires us to follow a different approach for larger degrees – recall that the 1− e−O(d2) is the prob-
ability for the bad event happening.) Since t = O(log log n) we can assume that the probabilities
calculated above also hold for standard random d-regular graphs without self loops.
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Case 2: d ≥ 3
√

log n. Again, we show the claim by induction. However, this time we assume
that a simple graph is chosen uniformly at random from the space of all d-regular graphs. Since
|I+(t)| ≤ d/ 10

√
log n, and 2 · |I+(t′ − 1)| ≤ |I+(t′)| for any t′ ≤ t, each node of I+(t) can have at

most O(d/ 10
√

log n) neighbours in I(t+ 1).
Let step t be divided into |I+(t)| many sub-steps. Let u1, . . . , u|I+(t)| be the nodes of I+(t). We
perform our induction over the sub-steps. In sub-step i, node ui chooses four distinct neighbours
and sends a copy of the information to these neighbours as described in Algorithm 1. Let Hi(t) be
the set of uninformed nodes in sub-step i of step t. Then, in sub-step i a node ui chooses neighbours
exclusively fromHi−1(t) with probability at least (1−O(1/ 10

√
log n))4 = 1−O(1/ 10

√
log n), regardless

of the push transmissions performed by the nodes of I(t − 1) ∪ {u1, . . . , ui−1}. Define p as the
probability that in sub-step i a node chooses neighbours exclusively from Hi−1(t). Then p =
O(1/ 10

√
log n) and

Pr[|I+(t+ 1)| < 2|I+(t)|] ≤
|I+(t)|∑
i=
|I+(t)|

2

(
|I+(t)|
i

)
· pi · (1− p)|I+(t)|−i.

To bound this binomial distribution we apply Lemma 9 (in the appendix) and obtain that

Pr[|I+(t+ 1)| < 2|I+(t)|] ≤ (2p)
|I+(t)|

2 · (2 · (1− p))
|I+(t)|

2 =
1

logΩ(1) n
.

Thus, |I+(t+ 1)| ≥ 2 · |I+(t)| a.a.s.

According to Lemma 1 the number of newly informed nodes in step t = α log logn becomes larger
than logq n for d < 3

√
log n and an appropriate constant q. On the other side, the amount of newly

informed nodes becomes at least d/ 10
√

log n for d ≥ 3
√

log n. In the following lemma we consider
two cases separately:

1. d ≥ 3
√

log n and |I+(t)| ∈ {d/ 10
√

log n, . . . , logq n}

2. |I+(t)| ≥ logq n

We show by induction that, for d ≥ 3
√

log n, within the next 2α log log n steps we have a.a.s. that
|I+(t)| ≥ logq n, whenever α is large enough. Then we consider the case |I+(t)| ≥ logq n for
arbitrary values of d.

Lemma 2 (Phase 1). Assume α log logn ≤ t < α log n. There exists a constant c > 1 such that
the following hold.

1. Assume d ≥ 3
√

log n and logq n ≥ |I+(t)| > d/ 10
√

log n. Then |I+(t + 1)| > c · |I+(t)| with

probability 1− e− logΩ(1) n.

2. Assume logq n ≤ |I+(t)| ≤ n/8, where q is a (large) constant. Then w.h.p. |I+(t + 1)| >
c · |I+(t)|.

Proof. We first consider small values of I+(t).
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1. In step t+ 1 each vertex of I+(t) chooses four of its stubs. The unmatched but chosen stubs
are now matched with some other i.u.r. chosen unmatched stubs. Let u1, . . . , u|I+(t)| be the
nodes in I+(t). We divide step t+ 1 into 4|I+(t)| sub-steps. In sub-step 4(i− 1) + j + 1 we
connect the (j + 1)-st stub of node ui, where i ≤ |I+(t)| and 0 ≤ j ≤ 3.

We denote by I+
>20(t) and I+

≤20(t) the subsets of nodes of I+(t) with more than 20 and at
most 20 matched stubs, respectively. We first show that there are at most |I+(t)|/5 nodes
with more than 20 matched stubs by the end of step t.

Using the pigeonhole principle it is easy to argue there are at most |I+(t)|/5 nodes in I+(t)
with at least 20 matched stubs by the end of step t. If there were more, this would imply

4|I+(t− 1)| ≥ |I
+(t)|
5

· 20,

equivalent to |I+(t− 1)| ≥ |I+(t)|. Then we have I+
>20(t) ≤ |I+(t)|/5 and

I+
≤20(t) ≥ 4 · |I+(t)|

5
≥ 4d

5 10
√

log n
.

W.l.o.g. let u1, . . . , u|I+
≤20(t)| be the elements of I+

≤20(t). Let Hi(t) be the set of uninformed

nodes in step t + 1 after sub-step i. According to the pairing model, ui+1 has at most 4/5
of its neighbours in Hi(t) (or at least 1/5th of the neighbours in V \Hi(t)) with probability
upper bounded by

d−20∑
i= 4d

5

(
d− 20

i

)
pi(1− p)d−20−i ≤

(
5p

4

) 4d
5

(5(1− p))
d
5 ≤

(
10p

4

) 4d
5

=

(
logO(1) n

n

) 4d
5

,

where p = logO(1)(n)/n. This holds independently of the push transmissions performed in
steps 1, . . . , t and sub-steps 1, . . . , 4i of step t+ 1.

We define random variables Xi, 1 ≤ i ≤ I+
≤20(t), with Xi = 1 if ui has at most 4/5th of its

neighbours in Hi(t) and Xi = 0 otherwise. For

X =

|I+
≤20(t)|∑
i=1

Xi

we have

E[X] = |I+
≤20(t)| ·

(
logO(1) n

n

)4d/5

≥ 4d

5 10
√

log n
·

(
logO(1) n

n

)4d/5

.

To bound the tails of X we apply the Chernoff bound from Lemma 10 in the appendix and
obtain

Pr

[
X ≥ 1

5
· |I+
≤20(t)|

]
≤

5e

(
logO(1) n

n

)d|I
+
≤20(t)|/5

=

(
logO(1) n

n

)Θ(d|I+
≤20(t)|)

= 1/ed
2+Ω(1)

.
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Hence, with a probability of 1/ed
2+Ω(1)

we have that 4/5 of the nodes of I+
≤20(t) will have more

than 4/5 of their neighbours in Hi(t). Let us refer to these nodes as J+
≤20(t) in the following,

and assume |J+
≤20(t)| ≥ 4/5 · |I+

≤20(t)|. The probability that in step t+ 1 one of the nodes in

J+
≤20(t) chooses four distinct neighbours in Hi(t) is (4/5)4. This probability is independent

for different nodes in J+
≤20(t). Thus, the Chernoff bound from Lemma 10 implies that the

probability that a fraction of more than 2/3 of the nodes of J+
≤20(t) chooses fewer than 4

distinct neighbours from Hi(t) is

exp(−Θ(|J+
≤20(t)|)) ≤ exp(−Θ(|I+

≤20(t)|)).

Hence,

Pr[|I+(t+ 1)| ≥ 4 · 4

5
· 1

3
· |I+
≤20(t)|] ≥ 1− e−Θ(I+

≤20(t)) − 1/ed
2+Ω(1)

= 1− 1/eΘ(|I+(t)|),

and the claim follows.

2. The claim is shown using an induction. Recall that we inherited the case distinction from
Lemma 1. As in the proof of Lemma 1, we base our analysis on the so-called configuration
model for generating random regular graphs and apply the principle of deferred decisions.
Again, we start with an empty graph on n nodes and d stubs per node. In round t+ 1, each
newly informed node selects four of its stubs i.u.r. without replacement and these stubs will
now be matched (connected) with i.u.r. chosen unmatched stubs.

First we state the following technical statement.

Claim 1. Assume t < α log n and |I(t)| ≤ n/8. With probability 1 − e−ω(log3 n), the number
of edges generated so far between I+(t) and H(t) is at least (83/40) · |I+(t)|.

Proof. Recall that a stub s of a node v ∈ I+(t) is called matched if s was paired with a stub
chosen by a node in I+(t − 1) in step t − 1. Notice that step t − 1 is the only possibility as
otherwise v /∈ I+(t). Due to the induction hypothesis we may assume |I+(t)| > |I+(t − 1)|
and that I+(t) is the set of nodes that become informed during step t by some node(s) of
I+(t− 1).

Recall that there are at most |I+(t)|/5 nodes in I+(t) with at least 20 matched stubs by the
end of step t.

Now back to the algorithm (as a side note, it may be helpful to consider the following as
some sort of “fusion” of graph-generation process and broadcasting algorithm, with the focus
being on making both “match”). Recall that a node chooses four out of its d many edges. For
nodes v ∈ I+

≤20(t), with probability at least (1− 20/(d− 2))3 at least three out of these four

edges correspond to unmatched stubs. Now we define random variables Xi, 1 ≤ i ≤ I+
≤20(t)

with Xi = 1 if the ith node of I+
≤20(t) chooses at least 3 of its unmatched stubs and Xi = 0

otherwise. For

X =

|I+
≤20(t)|∑
i=1

Xi
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we have

E[X] = |I+
≤20(t)| · (1− 20/(d− 2))3.

Since the choices of different nodes are independent we may apply the Chernoff bound from
Lemma 10 for bounding the tails of X.

Pr[X ≤ (1− o(1)) · E[X]] ≤ e−(1−o(1))2·|I+
≤20(t)|·(1−20/(d−2)3)/2.

Hence, at least |I+
≤20(t)|·(1−20/(d−2))3 ·(1−o(1)) nodes will choose at least three unmatched

stubs with probability

1− e−o(1)·|I+
≤20(t)|·(1−20/(d−2)3) = 1− o(e− log3 n).

The last equality holds since |I+
≤20(t)| ≥ 4 logq n/5. Thus, if Y denotes the number of edges

between I+(t) and H(t), then

E[Y ] ≥ 3 · 4

5
· |I+(t)| ·

(
1− 20

d− 2

)3

· (1− o(1)) · |H(t)| · d− 2

nd− 2

≥ 3 · 4

5
· |I+(t)| ·

(
1− 20

d− 2

)3

· (1− o(1)) · 7n/8 · d− 2

nd− 2

≥ |I+(t)| ·
(

1− 20

d− 2

)3

·
(

84

40
· (1− o(1))

)
= |I+(t)| ·

(
84

40
· (1− o(1))

)
,

which is larger than 83.5 · |I+(t)|/40 whenever d is large enough.

To conclude the proof, let I+
≤20(t) = {v1, . . . , vk}. LetG′0 be the graph with nodes {v1, . . . , vk}∪

H(t) and no edges. Let G′i be the graph with node set {v1, . . . , vk} ∪H(t) that contains all
edges from Gi and an edge from vi to u ∈ H(t) if vi has an edge to node u. For every
i ∈ [k] let Yi = E[Y | G′i]. Then E[Yi | Y0, . . . , Yi−1] = Yi−1 for any i ≥ 0, and (Yi)i∈[k] is
a Martingale sequence. Since every node vi has at most 4 edges, the Martingale sequence
satisfies the bounded difference condition with value 4. We can apply the Azuma-Hoeffding
inequality (see Lemma 11 in the appendix). Hence,

Pr[|Y − E[Y ]| ≤ (0.5/80) · |I+(t)|] ≤ e−ω(log3 n).

This finishes the proof of the claim.

To continue the proof of the lemma we show that at least half of these edges between I+(t)
and H(t) are connected to distinct vertices of H(t). Let ` = 83|I+(t)|/40. Let {si | i ∈ [`]}
represent the first ` stubs in I+(t) which are connected to some vertices of H(t). Again, we
define a graph by adding the edges (defined by these stubs) one by one. Let G′′0 be the graph
with the nodes {s1, . . . , s`} ∪H(t) and no edges. Let G′′i be the graph that contains all edges
from G′′i−1 and the edge defined by the ith stub. Let Y be the number of vertices of H(t) that

17



are connected to at least one of the stubs {s1, . . . , s`}. Clearly, the `th stub is connected to a
node in H(t), which is not connected to any stub sj with j ∈ {1, . . . , `− 1}, with probability
at least (1− d/(|H(t)| · d− (`− 1))`−1. Here, d/(|H(t)|d− (`− 1)) represents an upper bound
on the probability that the `-th stub connects to a node, which has already been matched
to some sj . The ` − 1 in the exponent is an upper bound on the number of nodes already
matched with some previous stub sj . Then

E[Y ] ≥ ` ·
(

1− d

|H(t)| · d− (`− 1)

)`−1

>
`

2
=

83

80
· |I+(t)|.

We again define a sequence Yi = E[Y | G′′i ]. It is easy to verify that Yi is a Martingale
sequence. Since every node vi has at most 4 edges, the Martingale sequence satisfies the
bounded difference condition with value 4. We can apply the Azuma-Hoeffding inequality
(Lemma 11) to obtain

Pr[|Y − E[Y ]| ≥ (1/80) · |I+(t)|] ≤ e− logΩ(1) n.

This concludes the proof of Lemma 2.

Corollary 1. At the end of Phase 1 there are at least n/8 informed nodes, a.a.s.

Proof. In Lemmas 1 and 2 we show that the number of informed nodes increases by a constant
factor in every round. Hence, for suitable chosen α, n/8 nodes are informed after the α log n steps
of Phase 1.

4.2 Phase 2

Recall that Phase 2 consists of α log log n many steps. In each step of the phase every informed node
performs a push transmission. Lemma 3 shows that the number of uninformed nodes decreases
by a constant factor in every round. Hence, at the end of Phase 2 there are at most n/ log5 n
uninformed nodes. In this section we also present Lemma 4 which estimates, for any step of Phase
2, the number of nodes which are incident to at least one unused edge. This lemma will be used in
the proof of our main results (see Sections 4.3.2 and 4.3.3).

Lemma 3 (Phase 2). Assume α log n ≤ t < α(log n+ log log n) and 7n/8 ≥ |H(t)| ≥ n/(log n)7α.
Then there exists a constant c > 1, independent of d and n, such that, w.h.p.,

|H(t+ 1)| ≤ |H(t)|/c.

Proof. Since Gn,d is a random d-regular graph we can assume (see [1]) that for any S ⊂ V with
|S| ≤ n/2 w.h.p. there exist two constants γ1, γ2 (depending on the size of S) with

γ1d · |S| ≤ |E(S, S)| ≤ γ2d · |S|.

Let IC(t) = {v1, v2, . . . , vk} and HC(t) = {u1, u2, . . . , u`}, and let di denote the number of edges in
E(H(t), I(t)) incident to ui. Note that for α log n ≤ t ≤ α(log n + log log n) every informed node
performs only push transmissions (see Algorithm 1). Let us assume that every informed node only
chooses one single neighbour in a step, and pushes the information to this neighbour only (as in
the traditional push model). Let X = |I+(t)| = |H(t) \H(t+ 1)| in the case when every informed
node pushes the information to one single neighbour in a step. Then we have
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E[X] =
∑

j∈|HC(t)|

1−
(

1− 1

d

)dj
=

∑
j∈|HC(t)|,dj<d/2

1−
(

1− 1

d

)dj
+

∑
j∈|HC(t)|,dj≥d/2

1−
(

1− 1

d

)dj
≥

∑
j∈|HC(t)|,dj<d/2

dj
2d

+
∑

j∈|HC(t)|,dj≥d/2

1− 1√
e

≥
(

1− 1√
e

) ∑
j∈|HC(t)|

dj
d
≥ |E(H(t), I(t))|

4d
≥ γ1 · |H(t)|/4.

Here the first equality holds due to the fact that every edge in E(H(t), I(t)) is chosen for transmis-
sion with probability 1/d (we consider the traditional push model, not the push transmissions over
four incident edges) and, hence, a node ui ∈ HC(t) becomes informed with probability 1−(1−1/d)dj .
The first inequality holds due to the simple observation that for 1 ≤ j ≤ d/2 we have

1−
(

1− 1

d

)j
≥ j

2d
.

The second-to-last inequality holds since
∑

j∈|HC(t)| dj = |E(H(t), I(t))|.
Let G′0 be the empty graph with vertex set {v1, . . . , vk} ∪ H(t). For 1 ≤ i ≤ k let G′i denote the
graph G′i−1 together with the edge used by vi. Note that

k = |IC(t)| ≤ |H(t)| · d = O(|H(t)| · log n).

Define Xi = E[X | G′i]. It is easy to verify that the sequence Xi is a Martingale, implying X =
X0 = E[Xk].
Now, since |Xi−Xi−1| ≤ 1, this Martingale satisfies the bounded difference condition with value 1.
Thus, we can apply the Azuma-Hoeffding inequality (Lemma 11) and obtain, for α large enough,

Pr[|Xk − E[Xk]| > α
√
E[Xk] · log n] ≤ 2e

−
(
α2E[Xk] log2 n

2k

)
= o(n−2).

It remains to show that for t = α(log n + log log n) the number of uninformed nodes is at least
n/(log n)7α. Note that in Phases 1 and 2, each node contacts four neighbours in at most α log log n+
1 steps (at most once in Phase 1 and at most α log log n times in Phase 2). Thus, we consider the
following procedure. For α log logn + 1 steps every node chooses 4 distinct neighbours in each of
these steps, and marks these nodes. Define Z as the number of unmarked nodes at the end of the
above process. Note that for this process the number of marked nodes is larger than the number of
informed nodes in the case of our protocol since we allow every node to mark neighbours. Hence
Z ≤ |H(t+ 1)|.
A node remains unmarked after one single step with probability (1− 4/d)d. Thus, a node remains
unmarked after α log log n+ 1 steps with a probability of

(1− 4/d)dα(log logn+1) ≥ (log n)−6.9α.

This implies that E[Z] ≥ n/(log n)−6.9α.
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We assume that the nodes for Gn,d are numbered from 1 to n. Let G0 be our original network with
the unmarked nodes. Let Gi be the graph where all nodes are marked which are also marked in
Gi−1, plus the nodes marked by the ith node with the process above. Define Zi = E[Z | Gi]. Again,
is easy to verify that the sequence Zi is a Martingale and Z = Z0 = E[Zn]. This Martingale satisfies
the bounded difference condition with value 4. We can apply the Azuma-Hoeffding inequality from
Lemma 11 and obtain

Pr[|Zk − E[Zn]| > n/(log n)8α] = o(n−2).

Corollary 2. Assume α > 5 logc 2. At the end of Phase 2 all but at most n/(log n)5 nodes are
informed, w.h.p.

The next lemma estimates the size of the set U(t) ⊆ V , which is defined as the set of nodes incident
to at least one edge which is not used before step t + 1. This lemma will be used in the proofs of
both of our main theorems.

Lemma 4. (Phase 2) Let α log n ≤ t ≤ α(log n+ log log n). Then it holds w.h.p. that

|U(t)| = Ω

(
n

(
1− 1

d

)10(t−α logn+1)
)
.

Proof. Recall that any node v having received the message during phase 1 will push the message
exactly once during the α log n steps of phase 1 (namely in the step immediately after it has received
it), and it will push it during each of the α log logn steps of phase 2. Recall further than whenever
a node pushes its message, it will select four nodes i.u.r. without replacement.
Consider values of t as specified in the statement of the lemma. We call an edge t-busy if it has
been used at least once until step t; we call it t-lazy otherwise. We call a node t-helpful if it has at
least one t-lazy edge (the rationale for naming it in such an apparently counter-intuitive way will
become clear later).
We will estimate the number of t-helpful nodes. Unfortunately we cannot apply standard Chernoff
bounds (like the one from Lemma 9 or Lemma 10) because the fact that a node is t-helpful is not
independent of the helpfulness of other nodes (if we know that a node is t-helpful, i.e., it has at
least one t-lazy edge, this implies a larger probability for its neighbours to be t-helpful as well).
Rather than arguing directly about nodes we shall consider edges first. In a single step, the prob-
ability for an arbitrary edge to be selected by one given neighbour during a single push operation
is 4/d. Thus the probability for it to be t-lazy, i.e., for never being used until step t, is at least
(1 − 4/d)2(t−α logn+1). Unfortunately we cannot simply add these probabilities: there are depen-
dencies between edges connected to the same node as well. We shall therefore focus on each node’s
first edge (first w.r.t. any arbitrary but fixed ordering). If the first edge of a node is t-lazy, then
the node itself is helpful, and we obtain

E[|U(t)|] ≥ n ·
(

1− 4

d

)2(t−α logn+1)

= n ·
(

1− 1

d

)2(t−α logn+1)· log(1−4/d)
log(1−1/d)

≥ n ·
(

1− 1

d

)10(t−α logn+1)

.
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(Notice that 4 ≤ (log(1 − 4/d))/(log(1 − 1/d)) ≤ 5 for d large enough.) In order to conclude the
proof, we again apply simple Martingale techniques. Let V = {v1, . . . , vn} and let G′′i = (V,E′′i )
with E′′i = {(vj , v`) ∈ E | 1 ≤ j ≤ i or 1 ≤ ` ≤ i}. That is, G′′i consists of the graph of all nodes
of V and all edges incident to the first i nodes of G. Then, Xi = E[|U(t)| | G′′i ] is a Martingale.
Since each node has d edges, the sequence (Xi)

n
i=0 satisfies the (d + 1)-Lipschitz condition. Since

E[|U(t)|] = n/ logO(1) n for any t < α(log n + log log n) + 1 and d ≤ δ log n, the Azuma-Hoeffding
inequality from Lemma 11 yields the lemma.

4.3 Remaining Phases

In this section we prove our main results for graphs with large degrees (δ log log n ≤ d ≤ δ log n) or
with small degrees (δ ≤ d ≤ δ log log n). To show the main results we will first apply the results of
the previous section which estimate the number of uninformed nodes at the end of Phase 2 and the
number of unused edges connected to these nodes. Then we will analyse the remaining phases of
the algorithm. Recall that the remaining part of the algorithm (Phase 3 and Phase 4) is different
for graphs with large or small degrees.
In the next section we first show some structural properties that we need for the analysis in Sections
4.3.2 and 4.3.3.

4.3.1 Structural Properties

To analyse the number of steps required to inform all nodes of the graph Gn,d we use the following
lemma whose proof is similar to the proof of Lemma 2.5 in [13]. The main purpose of the lemmas is
to show that we can assume that the graph induced by the uninformed nodes can still be regarded
as a random graph.
Before we state the lemma we need some additional definitions. We define G(d1, . . . , d`) as the
probability space of all graphs with ` nodes and degree sequence (di) with di ≤ d. Hence, the
ith node of any G ∈ G(d1, . . . , d`) has degree di, i ∈ {1, . . . , ` − 1}. Recall that Gn,d = (V,E)
is random, i.e., the entries in its adjacency matrix are random variables taking values 0 or 1,
according to the definition of d-regular random graphs with n vertices. For a fixed time step t, let
G(t) = (H(t), E(t)) be the graph defined over the nodes H(t) that are not informed in step t. We
define E(t) = {(v, w) | (v, w) ∈ E and v, w ∈ H(t)}. Note that G(t) can be regarded as a random
variable. For a fixed S ⊂ V we define GS as the random sub-graph of Gn,d induced by the nodes
of S, i.e. GS = (S,E ∩ (S × S)). For fixed S we define GS̄ = (V,ES̄) as a fixed sub-graph of Gn,d
that does not have any edges connecting two nodes in S, i.e., ES̄ = E \ (S × S). Note that GS is
still a random graph, while GS̄ is fixed. Finally, we define Gn,d \ G(t) as the graph (V,E \ E(t)).
Note that Gn,d \G(t) = GH̄(t), the graph induced by the informed nodes.

For fixed t, S ⊂ V and GS̄ , let A(t, S,GS̄) be the event defined as (H(t) = S) ∧ (Gn,d \GS = GS̄).
A(t, S,GS̄) is the event that the set S equals the set of uninformed nodes and that the original
graph without the subgraph induced by the nodes of S equals GS̄ . Note that GS̄ is a fixed graph
over V \ S. If H(t) = S then GS = G(t) and Gn,d \ GS = GH̄(t). Hence, A(t, S,GS̄) indicates if
the set S equals the set of uninformed nodes and the graph induced by the informed nodes equals
Gs̄. G(d1, d2, . . . , dh(t)) is a random graph with degree sequence d1, d2, . . . , dh(t), which is the degree
sequence of the graph induced by the uninformed nodes. The following lemma now shows that we
can assume that the graph G(t) induced by the uninformed nodes is a random graph with respect
to the degrees of these nodes.

Lemma 5. If Pr [A(t, S,Gs̄)] 6= 0, then for any fixed G(d1, d2, . . . , dh(t)) ∈ G(d1, . . . , dh(t)),
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Pr
[
G(t) = G(d1, d2, . . . , dh(t)) | A(t, S,GS̄)

]
=

1

|G(d1, . . . , dh(t))|
.

Proof. We assume w.l.o.g. that the vertices v1, . . . , vn ∈ V are ordered so that v1, . . . , vh(t) ∈ S.
For 1 ≤ i, r ≤ n we call an edge (vi, vr) ∈ E the jth edge of vi if there are exactly j − 1 edges
(vi, vk) ∈ E with k < r. For 1 ≤ i ≤ n we define the event

B(vi, j, `) = {node vi chooses its jth neighbour in step ` ≤ t}.

We define U ⊂ V × {1, . . . , n} × {1, . . . , t} such that |U ∩ {(vi, j, `) | 1 ≤ j ≤ d|}| ∈ {0, 4} for any
vi ∈ V and ` ≤ t (every node opens a channel to 4 or zero neighbours). Now we define

B(t) =
∧

(vi,j,`)∈U

B(vi, j, `).

Our goal is to show that for all G′ the following probability is the same:

Pr[G(t) = G′ | (H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)].

This holds as long as
Pr[Gn,d \GS = GS̄ ∧B(t)] 6= 0.

We know that

Pt = Pr[G(t) = G′ | (H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)]

=
Pr[(G(t) = G′) ∧ (H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)]

Pr[(H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)]
.

Assume that G′ and G′′ are two arbitrary graphs with G′, G′′ ∈ G(d1, . . . , dh(t)).
Now we show that if

(Gn,d \GS = GS̄) ∧ (GS = G′) ∧B(t)

results in H(t) = S, then the same holds for G′′.
We prove by induction on i that H(i) is the same in both G′ ∪GS̄ and G′′ ∪GS̄ for any i ≤ t.
For i = 0 the assumption is trivially fulfilled. Now assume that the claim holds for i − 1. If now
a node v in the graph Gn,d = G′ ∪GS̄ becomes informed in step i, then there must be some event
B(u, j, i) or B(v, j′, i) such that the jth edge of u ∈ I(i− 1) is adjacent to v, or the (j′)th edge of v
is adjacent to a node u′ ∈ I(i−1). In both cases the corresponding event implies that v in G′′∪GS̄
becomes informed as well, since both edges (jth edge of u and (j′)th edge of v) are contained in
GS̄ .
On the other hand, if a node v of G′ ∪ GS̄ is in H(i), then for all events B(u, j, i), for which the
jth edge of u is adjacent to v, it holds that u ∈ H(i− 1). Similarly, for B(v, j′, i) we conclude that
the (j′)th edge of v is adjacent to some node u′ ∈ H(i− 1). If now u′ ∈ V \ S, then the (j′)th edge
of v is still adjacent to u′ in G′′ ∪GS̄ , and v cannot be informed.
If the (j′)th edge of v is adjacent to some u′ ∈ S in G′∪GS̄ , then v has fewer than d−j′ neighbours
in V \ S, and the (j′)th edge of v in G′′ ∪GS̄ will be in G′′. This finishes our induction.

Now assume
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(Gn,d \GS = GS̄) ∧ (GS = G′) ∧B(t)

leads to H(t) = S. Then,

Pt =
Pr[(G(t) = G′) ∧ (H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)]

Pr[(H(t) = S) ∧ (Gn,d \GS = GS̄) ∧B(t)]

=
Pr[(GS = G′) ∧ (Gn,d \GS = GS̄)] · Pr[B(t)]

Pr[(Gn,d \GS = GS̄)] · Pr[B(t)]

=
Pr[(GS = G′) ∧ (Gn,d \GS = GS̄)]

Pr[(Gn,d \GS = GS̄)]

= Pr[(GS = G′) | (Gn,d \GS = GS̄)]

=
1

|G(d1, . . . , dh(t))|
.

Since the set of uninformed nodes H(t) induces G(t), Lemma 5 implies that G(t) equals any graph
with its (G(t)’s) degree distribution with the same probability. The proof of the next lemma is
obtained from Lemma 5. Recall that A(t, S,Gs̄) indicates that the set S equals the set of uninformed
nodes and the graph induced by the informed nodes equals GS̄ . G(d1, d2, . . . , dh(t)) is a random
graph with the same degree sequence as that of the graph induced by the uninformed nodes. The
next lemma shows that, once the degree distribution of the uninformed nodes in H(t) is given, the
concrete position of the edges between the nodes in H(t) is independent of the set of nodes H(t+1)
(which is the set of nodes that remain uninformed after one additional step).

Lemma 6. Fix any S′ ⊂ S. Then,

Pr
[
G(t) = G(d1, d2, . . . , dh(t)) | A(t, S,GS̄) ∧H(t+ 1) = S′

]
=

1

|G(d1, . . . , dh(t))|
,

as long as
Pr
[
G(t) = G(d1, d2, . . . , dh(t)) ∧A(t, S,GS̄) ∧H(t+ 1) = S′

]
6= 0.

Proof. Recall that in step t+ 1 all nodes perform a pull operation. We define the event C(t+ 1, S′)
as follows.

C(t+ 1, S′) = (In step t+ 1, each v′ ∈ S′ does not choose any stub connecting to e ∈ GS̄ , and

all nodes v ∈ S \ S′ choose at least one stub connecting e ∈ GS̄) ∧A(t, S,GS̄)

Thus,

Pr
[
G(t) = G(d1, d2, . . . , dh(t)) | A(t, S,GS̄) ∧H(t+ 1) = S′

]
(3)

= Pr
[
G(t) = G(d1, d2, . . . , dh(t)) | A(t, S,GS̄) ∧ C(t+ 1, S′)

]
.

Since the choices of the nodes in step t+ 1 are independent of the events G(t) = G(d1, d2, . . . , dh(t))
and A(t, S,GS̄), we can remove C(t+ 1, S′) from (3), and the lemma follows.
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Let H(t+1)∩N(v) 6= ∅ denote the event that v has at least one neighbour in H(t+1). Furthermore,
let h1(t) denote the number of nodes in H(t) adjacent to at least one other node in H(t). The
lemma states that once h1(t) and h(t) are given, a node in H(t+ 1) has at least one neighbour in
H(t+ 1) with the same probability as in a random graph of size h(t), where the random graph has
the same degree distribution as H(t).

Lemma 7. For any node v ∈ V the conditional probability

Pr [H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧ h1(t) = x ∧ h(t+ 1) = y]

is in the range [
y

d · x
,
d2 · y
x

]
.

Proof. Let C(d1, . . . , d|S|) denote the event that in some arbitrary but fixed set S the degree distri-
bution of the nodes is given by (d1, . . . , d|S|). Furthermore, we call two events A and B compatible
if Pr[A ∧B] 6= 0. We define the following events.

B(S, S′, S′′′) = (H1(t) = S ∧H(t+ 1) = S′ ∧H(t) = S′′)

H(x, y) = (h1(t) = x ∧ h(t+ 1) = y)

We define
A(S, S′, S′′, GS̄ , (d1, . . . , d|S′′|), G(d1, . . . , d|S′′|)

as the union of the following events:

• B(S, S′, S′′′),

• C(d1, . . . , d|S′′|),

• G(t) = G(d1, . . . , d|S′′|), and

• Gn,d \GS = GS̄ .
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Then we have

Pr [H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧H(x, y)]

=
∑
|S′′|≥x

∑
|S|=x

∑
|S′|=y

∑
GS̄

∑
(d1,...,d|S′′|)

∑
G(d1,...,d|S′′|)

Pr
[
H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧ A(S, S′, S′′, GS̄ , (d1, . . . , d|S′′|), G(d1, . . . , d|S′′|)

]
·

Pr[v ∈ H(t+ 1) ∧ A(S, S′S′′, GS̄(d1, . . . , d|S′′|), G(d1, . . . , d|S′′|) | H(x, y)]

=
∑
|S′′|≥x

∑
|S|=x

∑
|S′|=y

∑
GS̄

∑
(d1,...,d|S′′|)

∑
G(d1,...,d|S′′|)

Pr
[
H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧ A(S, S′, S′′, GS̄ , (d1, . . . , d|S′′|), G(d1, . . . , d|S′′|)

]
·

Pr
[
G(t) = G(d1, . . . , d|S′′|) | B(S, S′, S′′′) ∧ C(d1, . . . , d|S′′|) ∧Gn,d \GS = GS̄

]
·

Pr[B(S, S′, S′′′) ∧ C(d1, . . . , d|S′′|) ∧Gn,d \GS = GS̄ | H(x, y)]

=
∑
|S′′|≥x

∑
|S|=x

∑
|S′|=y

∑
GS̄

∑
(d1,...,d|S′′|)

∑
G(d1,...,d|S′′|)

Pr
[
H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧ A(S, S′, S′′, GS̄ , (d1, . . . , d|S′′|), G(d1, . . . , d|tS′′|)

]
·

Pr
[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS = GS̄

]
·

Pr[B(S, S′, S′′′) ∧ C(d1, . . . , d|S′′|) ∧Gn,d \GS = GS̄ | H(x, y)]

≥ y

d · x
·
∑
|S′′|≥x

∑
|S|=x

∑
|S′|=y

∑
GS̄

∑
(d1,...,d|S′′|)

Pr[B(S, S′, S′′′) ∧ C(d1, . . . , d|S′′|) ∧Gn,d \GS = GS̄ | H(x, y)] =
y

d · x
.

In all the above sums we only sum up over compatible events. On the RHS of the first equality one
can remove the term v ∈ H(t+ 1) since the events are compatible, and

A(S, S′S′′, GS̄(d1, . . . , d|S′′|), G(d1, . . . , d|S′′|) =⇒ v ∈ H(t+ 1).

The third equality (before the first inequality) holds since the event H(t) = S′′ together with
Gn,d \ GS = GS̄ completely defines the set of nodes in H1(t) as well as the degree distribution of
the nodes in H(t) (i.e., the event C(d1, . . . , d|S′′|)).
Concerning the term

Pr
[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS = GS̄

]
,

we know that all nodes in S′′ \ S do not have any neighbours in H(t) and thus

Pr
[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS = GS̄

]
= Pr

[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS′′ = GS̄′′

]
,

where GS̄′′ = GS̄ . According to the definition, A(t, S′′, GS̄′′) = (H(t) = S′′ ∧ Gn,d \ GS′′ = GS̄′′),
and hence Lemma 6 implies

Pr
[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS = GS̄

]
=

1

|G(d1, . . . , dh(t))|
.

Then,∑
G(d1,...,d|S′′|)

Pr
[
H(t+ 1) ∩N(v) 6= ∅ | v ∈ H(t+ 1) ∧ A(S, S′, S′′, GS̄ , (d1, . . . , d|S′′|), G(d1, . . . , d|S′′|)

]
·

Pr
[
G(t) = G(d1, . . . , d|S′′|) | H(t+ 1) = S′ ∧H(t) = S′′ ∧Gn,d \GS = GS̄

]
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is the probability that a node in S′ = H(t+1) has a neighbour in S′ in a random graph with degree
distribution (d1, . . . , d|S′′|) defined over the vertices of S′′. Since each node in H1(t) has at most d
and at least 1 neighbour in H(t), the probability above is at least y/(d · x).
The last equality follows from the fact that all the sums add up to 1. The upper bound is shown
by replacing y/(d · x) with d2 · y/x in the inequality.

4.3.2 Phase 3 and Phase 4 for Graphs with Small Degrees

In this section we prove our main result for graphs with small degree (see Theorem 2).
In Phase 3 every informed node performs a pull transmission. Note that after that phase all nodes
with fewer than four uninformed neighbours will themselves be informed. In Phase 4 all nodes that
receive the message for the first time perform a push transmission. We will show that every node
v that has (at the beginning of Phase 3) more than four uninformed neighbours is connected via a
path of length O(log n/ log log n) to a node itself informed during Phase 3. The path only contains
nodes which have more than 4 uninformed neighbours at the beginning of Phase 4. This path can
be used by the algorithm to inform node v in Phase 4.

Theorem 2. Let δ be an arbitrary constant and let δ ≤ d ≤ δ log log n. Algorithm 1 informs
all nodes of Gn,d within O(log n) steps, a.a.s. Moreover, the number of message transmissions is
bounded by O(n log logn), a.a.s.

Proof. Corollary 1 shows that, for α large enough, Algorithm 1 informs at least n/8 nodes during
the first α log n steps, w.h.p. Corollary 2 shows that, after an additional number of α log logn steps,
all but at most n/(log n)5 nodes are informed whenever α > 5 logc 2, where c is the constant defined
in Lemma 3. Moreover, combining Lemma 3 with Lemma 4, we obtain

|U(t)| = Ω(n(1− 1/d)10(α log logn)) =
(

log3+Θ(1) n
)
· h(t)

at time t = α(log n + log log n), whenever d and α are large enough. (That is, c(1 − 1/d)10 > 1
where c is the constant defined in Lemma 3, and
α > 3 logc(1−1/d)10 2. Notice that by letting d be large enough, we have c(1− 1/d)10 > 1 since c is
a constant which is independent of d.) According to Algorithm 1, in step α(log n + log log n) + 1
any informed node v sends the message to all the nodes calling v in this step (pull transmissions,
Phase 3).
In order to prove the theorem, we build the graph Gn,d by the following procedure. In each step
t ≤ α(log n+ log log n), any node which performs a push transmission chooses four of its stubs and
pairs them (if not paired yet) with unpaired stubs as per the configuration model [30]. Additionally,
due to the definition of our algorithm, the uninformed vertices connected to these stubs become
informed. In step α(log n + log log n) + 1, we pair all remaining stubs with each other. Let S(t)
denote the set of unpaired stubs at time t, and let

s(t) = |S(t)| ≥ |U(t)|.

The outline of the proof is as follows. For t = α(log n + log log n) (end of Phase 2) we show
(see Lemma 8) that h1(t) = Θ(h(t)2d2/s(t)) and h4(t) = Θ(h(t)(h(t) · d2/s(t))4), with probability

1 − e−ω(log3 n). Then we use that lemma and show below that with probability 1 − o(n−3) each
node of H4(t) can be reached by a node of H1(t) \ H4(t) via a path of length O(log n/ log logn),
using nodes of H4(t) only. Note that H(t+ 1) ⊆ H4(t) since in step t+ 1, nodes participate in pull
transmissions, and only nodes with at least four uninformed neighbours can remain uninformed.
Hence, nodes in H(t+1) ⊆ H4(t) will be informed by the end of Phase 3. Then we apply techniques
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from e.g. [17] to consider the flow of information along one of the paths connecting nodes of H4(t)
to nodes in H1(t) \ H4(t). We conclude that within an additional O(log n) steps all nodes of the
graph become informed, w.h.p. (Phase 4).

First we show that every node of H1(t) \H4(t) can be reached from a node of H1(t) via a path of
length O(log n/ log log n) containing only nodes from H4(t).
We know that every node of H4(t) has at least four neighbours in H(t). We know from Lemma

8(2) and Lemma 8(1) that with probability 1− 2−ω(log3 n),

h4(t) = Θ

(
h(t) ·

(
h(t) · d2

s(t)

)4
)

= Θ

(√(
h1(t) · s(t)

d2

)
·
(

(h1(t))2 · (s(t))2 · d8

d4 · (s(t))4

))

= Θ

(
(h1(t))2.5 · d3

(s(t))1.5

)
= Θ

(
h1(t)

(log n)9+O(1)

)
.

If vi(1), . . . , vi(4) denote four neighbours of node vi ∈ H4(t), then according to Lemma 5 all of these
neighbours themselves are in H4(t) with probability at most(

h4(t) · d
h1(t)

)4

≤ 1

(log n)36
.

Claim: Let L = O(log n/ log logn), and let u be a node at some distance j ≤ L from a node
v ∈ H4(t) in the graph induced by the nodes of H(t). Furthermore, let (v = u0, u1, . . . , uj = u) be
a shortest path between u and v in H(t). Then with a probability of 1− n−1−Ω(1) it holds that

1. there is some u` with ` ≤ j which has a neighbour in H1(t) \H4(t), or

2. each u`, ` ≤ j has a set of neighbours Nu` = {u`+1, w
1
` , w

2
` , . . . } in H4(t). There is at least

one node in Nu` (one of them is denoted by u`+1) with the property that the distance in H(t)
between v and such a node is exactly `+ 1. Additionally, there are at most two nodes in Nu`

with a distance (in H(t)) of `− 1 from v.

Note that the claim above can also be shown by extending a result of [6], which states that the
nodes being at distance O(log log log n) from a node in a sparse random graph form either a tree
or a uni-cyclic component. We first prove the following slightly reformulated claim and then we
show how the original claim follows from the reformulated one. The reformulated claim is very
similar to the original one, the only difference is the last sentence of Case 2, which now reads as
follows: “Additionally, each such node in Nu` (i.e., with the property described above) has at most
2 neighbours in H4(t) at distance ` from v.”
This reformulated claim is proved using induction on the distance j between u and v, where
j ≤ L+1. For j = 0 we have to consider v itself. Then, v either has a neighbour in H1(t)\H4(t), or it
is connected with at least 4 stubs to some (not necessarily distinct) nodes of H4(t). Such a neighbour
of v is connected with two more stubs to v with probability at most (O(log log n)/(n/ logO(1) n))2 =
n−1−Ω(1), and the claim holds for j = 0.
Now we consider the inductive step from j − 1 to j. Let u be a node at distance j from v.
Then, according to the induction hypothesis, either a node u` with ` ≤ j − 1 has a neighbour in
H1(t) \H4(t), or all nodes u`, ` ≤ j, have at most two neighbours in H4(t) at distance `− 1 from v.
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In the first case we are done. Let us now concentrate on the second case. Since u ∈ H4(t), u
has at least 2 additional neighbours in H(t). Moreover, since d = O(log log n), there are at most
(log log n)O(logn/ log logn) nodes at distance O(log n/ log logn) from v (each having at most d stubs
pointing to nodes in H(t)) and we know that h1(t) = n/ logO(1) n. Thus, with probability(

(log log n)O(logn/ log logn)

n/ logO(1) n

)2

= n−1−Ω(1),

u has all of its neighbours from H(t) at distance at most j from v. If now w ∈ H(t) denotes
a neighbour of u, where w is at distance j + 1 from v, then w has two additional neighbours at
distance j in H(t) (and thus in H4(t)) with probability at most(

(log log n)O(logn/ log logn)

n/ logO(1) n

)2

= n−1−Ω(1).

If now w ∈ H1(t) \H4(t), then the first case of the reformulated claim holds, otherwise the second
one holds. Hence, the reformulated claim follows.

It remains to show how the original claim follows from the reformulated claim. Let the sequence
(v = u0, u1, . . . , uj = u) denote a shortest path from u to v in the graph induced by the nodes of
H(t). According to the reformulated claim, there either is some u`, ` ≤ j, with a neighbour in
H1(t) \H4(t), or all u` with 1 ≤ ` ≤ j have at most two neighbours in H4(t) at distance `− 1 (this
statement also holds for some neighbour wj of uj , which is at distance j + 1 from v; however, this
is not needed for the original claim). Moreover, each u` with 0 ≤ ` ≤ j has at least one neighbour
in H4(t) at distance `+ 1 from v. This finishes the proof of the original claim.

Consider a path of length β log n/ log logn with one endpoint in v. Then, each of the nodes on the
path have all their neighbours in H4(t) with a probability of at most log−36·β logn/ log logn n = o(n−3),
whenever β is large enough.
It remains to show that the information traverses the path within α log n steps for a constant α
large enough with α > β. Let v be a node of H4(t), and let u ∈ H1(t) \ H4(t) such that v and
u are connected by a path Pu,v = (u, v1, . . . , vk−1, vk = v) of length k = α log n/ log log n with
vi ∈ H4(t) for all i ≤ k − 1. Given that node vi has the information at some time t, vi transmits
the information to vi+1 with probability 1/d ≥ 1/O(log log n). Let now Xt denote the Bernoulli
random variable which is 1 if and only if vertex vi with

i = max{j | vi is informed and vj+1 does not have the information at time t}

transmits the information to vi+1 in step t. If v is already informed in step t then Xt = 1. We define
Y1, . . . , Yα logn as Bernoulli random variables with Pr[Yi = 1] = 1/d. We define Y =

∑α logn
t=1 Yt.

Then E[Y ] = α log n/d. Clearly, the Yt are independent and we may apply a Chernoff bound
(Lemma 10):

Pr [v is not informed] ≤ Pr

[
α logn∑
t=1

Xt ≤ k

]
≤ Pr

[
α logn∑
t=1

Yt ≤ k

]
≤ e

−α logn
2d
·(1− βd

α log logn
) ≤ o(n−3/ log logn).

The last inequality holds for α log log n > βd. Thus, v receives the information within α log n steps,
a.a.s. Note that with a more careful analysis the result can also be shown w.h.p.
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To prove Theorem 2 it remains to bound the total number of messages. In Phase 1 every newly
informed node performs a push transmission. The length of the phase is dα log ne, resulting in at
most O(n) many messages. Phase 2 has a length of α log log n steps, Phase 3 of one step, resulting
in at most n log log n many messages. Phase 4 takes α log n many steps. Since only newly informed
nodes communicate in that phase, and at the end of Phase 3 we have at O(n/ log5 n) uninformed
nodes, the total number of messages is O(n), resulting in a total of O(n log log n) many messages.
This finishes the proof of Theorem 2

In the remainder of this section we bound the sizes of the sets Hi.

Lemma 8. With probability 1− e−ω(log3 n), for t = α(log n+ log log n) we have:

1. h1(t) = Θ
(

(h(t))2·d2

s(t)

)
,

2. h4(t) = Θ

(
h(t) ·

(
h(t)·d2

s(t)

)4
)

, and

3. h5(t) = Θ

(
h(t) ·

(
h(t)·d2

s(t)

)5
)
.

Proof. Size of H1(t). We first calculate the expected number of these nodes and then apply
Martingale techniques to prove the claim. We know that with probability (h(t) · d− 1)/s(t) a stub
of a node v ∈ H(t) is paired with a stub of a node of H(t). Hence, the probability that there is a
stub of v paired with a stub of H(t) is

Θ

((
d

1

)
·
(

(h(t) · d− 1

s(t)

))
·Θ
(
h(t) · d2

s(t)

)
.

Thus, if X is the random variable denoting the number of nodes in H(t) which have a neighbour
in H(t), then

E[X] = Θ

(
h(t)2 · d2

s(t)

)
=

n

(log n)O(1)
.

If H(t) = {v1, . . . , vh(t)}, let G′i be the graph induced by the vertices {v1, . . . , vi} ∪
⋃i
j=1N(vj),

where N(vj) is the set of neighbours of vj . Furthermore, let Xi = E[X | G′i] be the corresponding
Martingale sequence. It is easy to verify that Xi satisfies the (d+ 1)-Lipschitz condition. Applying
the Azuma-Hoeffding inequality (Lemma 11) we obtain

Pr[|X − E[X]| ≥ E[X]/2] ≤ e−Θ((h(t)2d2/s(t))2/(d2h(t))) ≤ 2−ω(log3 n)

since h(t) ≤ n/ log2+Θ(1) n and d ≤ δ log n.

Size of H4(t). This proof is similar to the one for H1(t). Assume again that v ∈ H(t).
With probability

Θ

((
d

4

)
·
(

(h(t) · d− 1

s(t)

)
·
(

(h(t) · d− 2

s(t)− 1

)
·
(

(h(t) · d− 3

s(t)− 2

)
·
(

(h(t) · d− 4

s(t)− 3

))
= Θ

((
(h(t) · d2

s(t)

)4
)
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there are four stubs of v paired with stubs of nodes in H(t). Thus, if Y is the random variable
denoting the number of nodes in H(t) which have at least four neighbours in H(t), then

E[Y ] = Θ

(
h(t) ·

(
h(t) · d2

s(t)

)4
)

=
n

(log n)O(1)
.

Similar to the analysis of H1(t), define the Martingale sequence Yi = E[Y | G′i]. The Yi satisfy the
(d+ 1)-Lipschitz condition, and the claim follows from an application of Azuma-Hoeffding bounds
(Lemma 11), as in the previous case.

Size of H5(t): With probability

Θ

(
(h(t) · d2

s(t)

)5

,

there are five stubs of v paired with stubs of H(t). Thus, if Y is the random variable denoting the
number of nodes in H(t) which have at least four neighbours in H(t), then

E[Y ] = Θ

(
h(t) ·

(
h(t) · d2

s(t)

)5
)

=
n

(log n)O(1)
.

Similar to the analysis of H1(t), define the Martingale sequence Yi = E[Y | G′i]. The Yi satisfy the
(d+ 1)-Lipschitz condition, and the claim follows from an application of (Lemma 11), as in the two
cases above.

Observation 1. Assume s(t) = Θ(nd) for the same t as in Lemma 8. Then, with probability at

least 1− e−ω(log3 n),

1. h1(t) = Θ
(

(h(t))2·d
n

)
,

2. h4(t) = Θ

(
h(t) ·

(
h(t)·d
n

)4
)
, and

3. h5(t) = Θ

(
h(t) ·

(
(h(t)·d
n

)5
)
.

Proof. For s(t) = Θ(nd), all three equations follow directly from Lemma 8.

4.3.3 Phase 3 for Graphs with Large Degrees

Now we turn our attention to the case d ≥ δ log logn (but d ≤ δ log n) where δ is a large constant.
In this case our algorithm has only one more phase. In Phase 3 every informed node performs a
pull transmission. The length of the phase is α log log n. To prove Theorem 3 (i.e., the result for
large degrees), we first estimate the one-step decrease of the set of uninformed nodes in Claim 1.
The correctness of the algorithm now follows from applying Claim 1 for every step of the phase.

Theorem 3. Let δ be a sufficiently large constant and let δ log log n ≤ d ≤ δ log n. Algorithm 2
broadcasts a message in Gn,d a.a.s. within O(log n) steps, and the number of message transmissions
is bounded by O(n log logn).
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Proof. Again we can apply Corollary 1 showing that the algorithm informs at least n/8 nodes in
Phase 1 (the first α log n steps). At the end of Phase 2 all but n/(log n)Θ(1) nodes are informed
(see Corollary 2). Recall that U(t) is the set of nodes incident to at least one edge which is not
used before step t+ 1. Lemma 4 implies that

|U(t)| = Ω

(
n ·
(

1− 1

d

)10α log logn
)

= (log n)5+Θ(1) · h(t)

at time t = α(log n + log log n), whenever c(1− 1/d)10 > 1 and α > 6 logc(1−1/d)10 2. Here c is the
constant defined in Lemma 3.
According to the algorithm described above, in any step t + i, where i > 0, any informed node v
transmits the message to all nodes which call v in this step. We show the following two claims in
a single induction. The claims estimate the one-step decrease of the set of uninformed nodes.

Claim 1: As long as h(t+ i+ 2) ≥ (log n)q with q being a large constant,

h(t+ i+ 2)

h(t+ i+ 1)
= o

(
h(t+ i+ 1)

h(t+ i)

)2

, (4)

w.h.p.

Claim 2: For any i ≥ 1

h1(t+ i) ≤ h(t+ i− 1)

d3
(5)

with probability 1− e−ω(log3 n).

Induction base, Claim 1: In order to show that the first claim holds for i = 0 we assume
that the information is only transmitted by pull transmissions. Recall that S(t) denotes the set of
unpaired stubs at time t, and s(t) = |S(t)|. We know that if δ � α, then s(t) = Θ(nd). Hence, we
can use Observation 1 to show bounds on h1(t), h4(t), and h5(t).
All nodes v ∈ H3(t) \H4(t) will become informed due to the pull(M) in step t + 1. Only nodes
with four or more uninformed neighbours can remain uninformed. A node v ∈ H4(t)\H5(t) remains
uninformed due to the pull(M) in step t + 1 with probability 1/

(
d
4

)
, independent of the other

nodes. Hence, the expected number of nodes in H4(t) \H5(t) that remain uninformed is

h4(t)(
d
4

) = Θ

(
h(t) ·

(
h(t) · d2

s(t)

)4
)
· 1

d4
.

We can apply Chernoff bounds from Lemma 10 to conclude that with probability 1− e−ω(log3 n),
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h(t+ 1) ≤

(
h(t) ·

(
h(t) · d2

s(t)

)4

· 1

d4

)
· (1± o(1)) + h5(t)

≤

(
h(t) ·

(
h(t) · d
s(t)

)4
)
· (1± o(1)) + Θ

(
h(t) ·

(
h(t) · d2

s(t)

)5
)

(6)

≤

(
h(t) ·

(
h(t) · d
s(t)

)4
)
· (1± o(1)) + Θ

(
h(t) ·

(
h(t) · d
s(t)

)4
)
·
(
h(t) · d6

s(t)

)
(7)

≤

(
h(t) ·

(
h(t) · d
s(t)

)4
)
· (1± o(1)). (8)

The last inequality holds since h(t) ≤ n/(log n)7, w.h.p., and d ≤ log n (see Lemma 3).
Now we consider the set H(t + 2). We know from Lemma 5 that the sub-graph induced by the
vertices of H(t) is a random graph with degree sequence (d1, . . . , dh(t)), where di denotes the number
of neighbours of node vi ∈ H(t). Similar to the proof of Lemma 8 we can show that with probability

1− e−ω(log3 n),

h1(t+ 1) = Θ

(
h(t+ 1) · h(t+ 1)

h1(t)

)
(9)

and

h4(t+ 1) = Θ

(
h(t+ 1) ·

(
h(t+ 1)

h1(t)

)4
)
. (10)

From Observation 1 and Equation 8 it follows that with probability 1− e−ω(log3 n) ,

(h(t+ 1))2 =

(
h4(t)

d4

)2

· (1± o(1)) =


(
h(t) ·

(
h(t)·d
n

)4
)

d4


2

· (1± o(1))

=
(h(t))10

n8
· (1± o(1)) = o

(
h(t)6 · d4

n4

)
. (11)

The last inequality holds since h(t) ≤ n/(log n)Θ(1), d ≤ δ log n and (h(t))4/n4 � d4.
Since H(t+ 2) ⊂ H4(t+ 1), we can use Equation 10 and then Observation 1, resulting in
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h(t+ 2)

h(t+ 1)
≤ h4(t+ 1)

h(t+ 1)
= O

h(t+ 1) ·
(
h(t+1)
h1(t)

)4

h(t+ 1)


= O

(h(t+ 1)
h(t)2·d
n

)4
 = O

(h(t+ 1)

h(t)

)4

·

(
1

h(t) · dn

)4


= O

(h(t+ 1)

h(t)

)4

·

(
(log n)Ω(1)

n · dn

)4


= O

(h(t+ 1)

h(t)

)2

·
(
h(t+ 1)

h(t)

)2

·

(
(log n)Ω(1)

d

)4


= o

(h(t+ 1)

h(t)

)2

·
(
h(t) · d
n

)4

·

(
(log n)Ω(1)

d

)4


= o

(
h(t+ 1)2

h(t)2

)
.

This shows that Claim 1 holds for i = 0.

Induction base, Claim 2: From Lemma 8 we know that

h1(t+ i) = Θ

(
(h(t+ i))2 · d2

s(t+ i)

)
.

We also know that h(t+ i)/s(t+ 1) = O(d5) and h(t+ 1) ≤ h(t+ i− 1). Hence,

h1(t+ i) ≤ h(t+ i)

d3
≤ h(t+ i− 1)

d3
. (12)

Assume now that Claim 1 and Claim 2 hold for some i− 1 ≥ 0.

Inductive step, Claim 1: Similar to Equation 9 we can use Lemma 7 to obtain

E[h1(t+ i)] > h(t+ i) · h(t+ i)

d · h1(t+ i− 1)
.

Now we can use Claim 2 (Equation 12) and get

E[h1(t+ i)] ≥ (h(t+ i))2 · d2

h(t+ i− 1)
. (13)

Applying simple Martingale techniques as before, we conclude that with probability 1− e−ω(log3)

h1(t+ i) > E[h1(t+ i)](1− o(1)). (14)
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Similarly, a calculation like the one for Equation 10 together with Lemma 7 results in

E[h4(t+ i+ 1)] ≤ h(t+ i+ 1) ·
(
h(t+ i+ 1) · d
h1(t+ i)

)4

.

(15)

Using Equation 13 we get

E[h4(t+ i+ 1)] ≤ h(t+ i+ 1)

 h(t+ i+ 1) · d
h(t+i)2·d2

h(t+i−1) · (1− o(1))

4

≤ h(t+ i+ 1)

 h(t+i+1)
h(t+i)

d · h(t+i)
h(t+i−1)

)

4

· (1 + o(1))

≤ h(t+ i+ 1)

(
h(t+ i+ 1) · h(t+ i− 1)

d · (h(t+ i))2

)4

· (1 + o(1)).

The Induction hypothesis gives us

h(t+ i+ 1) = O

(
h(t+ i)3

h(t+ i− 1)2

)
,

resulting in

E[h4(t+ i+ 1)] ≤ h(t+ i+ 1)

(
h(t+ i+ 1) · h(t+ i− 1)

d · (h(t+ i))2

)4

· (1 + o(1))

≤ h(t+ i+ 1) · o
(
h(t+ i+ 1)2

h(t+ i)2

)
. (16)

Applying similar Martingale techniques as before, we conclude that with probability 1− e−ω(log3 n),

h4(t+ i+ 1) = E[h4(t+ i+ 1)](1± o(1)). (17)

Since h4(t+ i+ 1) ≥ h(t+ i+ 2) we get from Equations 16 and 17 that

h(t+ i+ 2) ≤ h(t+ i+ 1) · o
(
h(t+ i+ 1)2

h(t+ i)2

)
,

which proves the inductive step for Claim 1.

Inductive step, Claim 2: We know that each node v of H(t+ i) has at least 4 (and at most d)
edges to nodes in H1(t+ i− 1) (otherwise, v would have been informed in step t+ i). Wach node
in H1(t+ i− 1) has at least one neighbour in H1(t+ i− 1). Thus, applying Lemma 7 we get that
v does not have any neighbour in H(t+ i) with probability at least

(
1− d · h(t+ i)

h1(t+ i− 1)

)d
≥ 1− h(t+ i) · d2

h1(t+ i− 1)
.
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Then,

E[h1(t+ i)] <
h(t+ i)2 · d2

h1(t+ i− 1)
. (18)

The probability that v has a neighbour in H(t+ i) is larger than

h(t+ i)

h1(t+ i− 1) · d
.

From Equation 5 we get h1(t+ i− 1) ≤ h(t+i−2)
d3 . Hence,

E[h1(t+ i)] > h(t+ i) · h(t+ i)

h1(t+ i− 1) · d

≥ h(t+ i) · h(t+ i) · d2

h(t+ i− 2)
. (19)

Now we consider the stubs of nodes in H(t+1) one by one, and apply the following process. Assume
these stubs are numbered 1, 2, . . . , s, where s is the number of stubs in H(t+ i). In some step i, we
pair the ith free stub with one of the stubs not paired so far. Clearly, it follows from our induction
hypothesis that

h1(t+ i− 1) = ω(h(t+ i) · d).

Then, in each step at most 2 stubs from H(t+ i) are paired with each other, and in step i < s/4,
the ith free stub is paired with a stub in H(t+ i) with some probability in the range[

s

2d · h1(t+ i− 1)
,

s · d2

h1(t+ i− 1)− s

]
,

regardless of the connections established so far. Moreover, the upper bound holds even for i ≥ s/4.
Taking into account that (due to our assumption) h(t+i) > logq n, we apply Lemma 10 to conclude
that the number of stubs matched by this process is between

Ω

(
s2

(d · h1(t+ i− 1)

)
and O

(
s2 · d2

h1(t+ i− 1)

)
,

with probability 1 − e−ω(log3 n). Since each node in H(t + i) has more than one and at most d

neighbours in H1(t + i − 1), with probability 1 − e−ω(log3 n) the number of nodes in H1(t + i) is
between

Ω

(
h(t+ i)2

d2 · h1(t+ i− 1)

)
and O

(
h(t+ i)2d2

h1(t+ i− 1)

)
. (20)

Now we can use Equation 20 (with a suitable chosen constant c) and Claim 1:

35



h1(t+ i)

h(t+ i)
≤ h(t+ i)2 · d2

h(t+ i) · h1(t+ i− 1)
≤ h(t+ i) · d2

h1(t+ i− 1)

≤ h(t+ i) · d2

c · h(t+i−1)2

(d2·h1(t+i−2)

(21)

≤ h(t+ i) · d2

c·h(t+i−1)2·d
h(t+i−2)

(22)

≤ h(t+ i) · d · h(t+ i− 2)

c · (h(t+ i− 1))2
(23)

≤ h(t+ i− 1) · d
c · h(t+ i− 2)

. (24)

To obtain Eq. 21 we used the induction hypothesis and to obtain 24 we used Claim 1, respectively.
Since

h(t+ i− 1) · d
h(t+ i− 2)

≤ h(t+ 1) · d
h(t)

and

h(t+ 1) = o(h(t)/d4)

(see above), we obtain the inductive step of Claim 2.

The correctness of the algorithm now follows from a (α log logn)-fold application of Claim 1. If
h(t) ≤ logq n, then the last nodes become informed within O(log log n) steps, a.a.s. [35]. It remains
to bound the total number of messages. Similar to the proof of Theorem 2, Phases 1 and 2 use
at most (On log logn) many messages. Phase 3 has a length of α log log n) resulting in at most
O(n log log n) many messages. This finishes the proof of Theorem 3.

5 Conclusions

We considered a simple modification of the random phone call model in d-regular random graphs
where each node contacts four distinct neighbours in every time step. We showed that this modifi-
cation leads to a significant improvement in the number of transmissions required for broadcasting
a message to all nodes of the graph. One interesting question is how much randomness is needed
in the graph to obtain the improvements described above. We know that on graphs with similar
expansion and connectivity properties as in d-regular random graphs the models presented above
may not lead to any notable improvement. An example for such a graph is the Cartesian product
of a d-regular random graph with a K5. Another important question is whether four choices are
necessary. We believe that the same results may also be obtained with three choices. However, the
case of two random choices per time step is still completely open.
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A Tail Bounds

First we present two different versions of Chernoff bounds.

Lemma 9 ([22]). Let X = X1 + X2 + . . . + Xn be independent 0 − 1 random variables with
Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. Then for 0 < α < 1 and a ≥ p we have

Pr[X ≥ αn] ≤
( p
α

)α
·
(

1− p
1− α

)1−α
.

Lemma 10 ([4]). Let X = X1 + X2 + . . . + Xn be independent 0 − 1 random variables with
Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p.

1. For ε > 0 we have Pr[X ≥ (1 + ε) · E[X]] ≤
(

eε

(ε+1)ε+1

)E[X]
.

2. For 0 < ε < 1 we have Pr[X ≥ (1 + ε) · E[X]] ≤ e−
ε2E[X]

3 .

The following well-known bound is called Azuma-Hoeffding inequality.

Lemma 11 ([10]). Let X0, X1, . . . be a Martingale sequence satisfying the Lipschitz-condition so
that |Xi −Xi−1| ≤ ci for a constant ci. Let c = c0 + c1 + . . .+ cn Then

1. Pr[Xn ≥ X0 + t] ≤ e
−t2
2c .

2. Pr[Xn ≤ X0 − t] ≤ e
−t2
2c .
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