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1 Introduction

In modern cosmology, we are well aware we have to find a compelling explanation for
the late time acceleration of the universe – one that fits not only observation [1–6],
but also is theoretically consistent. One intriguing possibility is that of a light rolling
scalar field. From a purely theoretical point of view, massless scalar fields or moduli are
abundant in string and supergravity theories: Generic string compactifications result in
a plethora of massless scalars in the low energy 4D effective theory, including Kaluza-
Klein scalars describing the size of the compactified dimension; distances between
branes in brane-world type scenarios appear as scalar fields, and in addition to this,
any supergravity theory requires scalar counterparts to all fermionic degrees of freedom
thus N ≥ 4 supergravity necessarily contains scalars in the gravity multiplets.

All of the above seems to suggest that adding scalars to the low energy description
of gravity might be a reasonable thing to do. However, a famous theorem due to
Weinberg [7] shows that any such modification necessarily introduces a new dynamical
degree of freedom which in turn produces a fifth force. If the mediator of this force
is light (which is necessary for the field to be of cosmological relevance) it would lead
to unacceptably large violations of the Equivalence Principle (EP) within the solar
system.Therefore if the reason for the late time acceleration of the universe is a scalar,
there must be a mechanism to screen out its EP-violating effects.

To explore such screening mechanisms, one schematically writes the scalar La-
grangian as

L ⊃ Z(φo)

2
(∂δφ)2 − m2(φo)

2
(δφ)2 +

γ(φo)

MPl

δφT (1.1)

where small variations of the scalar δφ around the background value φo can couple
to the trace of the energy momentum tensor T . We can now see qualitatively the
various different screening scenarios: The scalar force is screened by the Vainshtein
mechanism when Z(φo) is large enough that the canonically normalised field coupling,
γ(φo)/Z

1/2(φo), is small. The chameleon mechanism [8, 9] occurs when the mass m(φo)
is large enough to suppress the range of the scalar force. The symmetron [10] and dila-
ton [11] screenings work by suppressing the scalar coupling γ(φo). In all of these cases,
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the background value of the field φo depends on the environment and the screening
mechanisms occur in the presence of dense matter.

Obviously these theories have been scrutinised heavily in the laboratory [12–17],
solar system [18], astrophysical [19, 20], and cosmological [21, 22] settings (see also [23]
and [24] for interesting recent commentary on the cosmological chameleon). All of these
investigations, however, probe gravity in a regime where the gravitational fields and
space-time curvatures are relatively weak. After the direct detection of gravitational
waves from LIGO [25], we can now hope that gravitational waves from compact binary
systems will allow us to constrain the behaviour of gravity in the strong field, large
curvature regime. Accordingly, attention has increasingly focussed on efforts to test
gravity by studying the dynamics of compact objects such as neutron stars and black
holes, [26, 27], and thus it is natural to ask whether observations of black holes might
provide new constraints on screened modified gravity [28–30].

The constraints from pulsar systems [31] rely on the fact that in scalar-tensor
theories neutron stars take on a non-constant scalar profile, producing equivalence
principle violations. In the context of black holes and additional scalar degrees of
freedom, however, the uniqueness of exact solutions needs to be carefully examined
due a number of “no-hair” theorems that require the scalar fields to take on a constant
value around isolated black holes [32–35]. This might seem to imply that black hole
systems will not be useful for constraining screened modified gravity. However all of
these no-hair theorems generally apply to black hole systems that are asymptotically
flat, stationary, and include no matter – hardly the typical galactic environment! By
systematically relaxing these assumptions we can gain insight into scenarios where
screened modified gravity may have non-trivial effects on black hole dynamics.

Indeed, even without modifying gravity, there are many interesting phenomena
with scalars and non-static black holes. For example, unstable massive scalar modes
around rotating black holes [36–41], or scalar hair around rotating black holes in Ein-
stein gravity [42–44]. It has also been shown that scalar hair will be induced if the
asymptotic boundary conditions for the scalar field vary slowly with time [45–48] (see
also [49] for a study of spherical collapse in scalar-tensor gravity). This time variation,
which violates the conditions of stationarity and asymptotic flatness, could be due to
either the cosmological evolution of the scalar field’s background value or to the motion
of the black hole through an external scalar gradient. Referencing this, [46] has used
observations of a black hole binary to constrain the cosmological time dependence for
extremely light scalar fields. The numerical calculations presented in [50] also support
this idea by showing that black holes moving through a non-uniform scalar gradient
can emit scalar monopole and dipole radiation, and [51, 52] explore other possible
observational effects of scalar hair.

In a previous paper, [53], we made a preliminary investigation using an artificial
matter distribution around a black hole – an ‘accretion’ thick sphere that extended
from r = 6GM out to large r in a Schwarzschild black hole. The purpose of that
investigation was to first establish, within the rules of the no hair theorems, that a
black hole could indeed support scalar hair. Next, analytic modelling of the scalar
profile was undertaken and compared in detail with numerical solutions so that we
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could confidently make an estimate of the magnitude of the scalar profile for a generic
scalar model. Finally, using this data, we explored and estimated observational effects.
Our aim here is to revisit the crude (and unrealistic) model for the accretion sphere
of the black hole, and to use a more realistic disc model, and explore to what extent
the results we derived previously were dependent on the assumed matter distribution
around the black hole.

This paper is organised as follows: we briefly review screened modified gravity
in §2. Next we solve for the scalar profile around a Schwarzschild black hole with an
accretion disc in §3 followed by the Kerr black hole in §4 and conclude by commenting
on possible implications in §5.

2 Screened modified gravity

The way we solve the scalar equation of motion requires the scalar to evolve slowly
(to be made more precise later) in response to the non-uniform matter density of an
accretion disc. While several screening mechanisms exist, we focus on the frameworks
where the additional scalar degree of freedom is constrained to have a large Compton
wavelength compared to the length scale of astrophysical black holes. As we argued
in [53], this is a common feature in several of the most popular screening mechanisms
including the chameleon, the environmentally dependent dilaton, and the symmetron.

The basic idea of screening is that the scalar mass or the coupling to matter (or
both) is dependent on the local energy density, hence in a dense environment such
as our solar system, the field becomes ‘heavy’, effectively decouples, and thus no fifth
force modifications of gravity are present in such environments. On the other hand, at
cosmological scales and densities, the field is light and can give rise to modifications of
the gravitational interaction.

The relevant models of screened modified gravity include: the chameleon mech-
anism, [8, 9], which occurs when the mass of the scalar field, m(φ0), is large enough
to suppress the range of the scalar force; the environmental dilaton, [11], where the
coupling function between the scalar and matter fields and the mass alter in dense
regions; and the symmetron, [10], where the coupling function switches off in dense
environments. These mechanisms can be modelled generically with the Einstein frame
action

S =

∫
d4x
√
−g
[
−
M2

p

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm

[
Ψi, A

2(φ)gµν
]
. (2.1)

Where M2
p = 1/8πG gives the Planck mass, Sm represents the matter action (denoted

generically as Ψi), and A(φ) is the conformal coupling between the Einstein and Jordan
frames g̃µν = A2(φ)gµν . The details of a particular theory are completely specified by
the scalar potential V (φ) and the coupling function A(φ).

Using this set-up, and identifying a conserved density ρ ≡ −A−1Tm in the Einstein
frame [54], the scalar equation of motion becomes

�φ =
∂

∂φ
[V (φ) + (A(φ)− 1)ρ] ≡ ∂Veff(φ, ρ)

∂φ
. (2.2)
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Thus we see explicitly the density-dependent effective potential Veff(φ, ρ) that is the
source of the screening behaviour for chameleons, environmentally dependent dilatons,
and symmetrons.

3 Schwarschild Black Hole

We start by exploring the accretion disc around a Schwarzschild black hole, as a warm
up for the full Kerr problem. In order to proceed, we require a simple model for
the physical set-up. We assume that we have some background ambient density field,
ignoring for now any general isotropic build up of matter in the neighbourhood of
the black hole. Superposed on this ambient density field is the accretion disc, which is
generally highly concentrated in the equatorial plane, extending out from the Innermost
Stable Circular Orbit (ISCO) of the black hole.

We model the accretion disc by a uniform density δ−function on the equatorial
plane extending from the ISCO to some (arbitrary) outer radius r1 characteristic of the
accretion disc or the galactic plane. This has the desirable property of being disc-like
and constrained in a 2-dimensional plane around the black hole, although the constant
density profile is an idealisation. Astrophysically realistic accretion disc models involve
complex fluid dynamics typically requiring numerical modelling (see [55] for a detailed
review) and are beyond the scope of this work. However our results should capture
the salient features of these more involved models, have the particular benefit of being
amenable to analytic analysis, and should provide a reasonable estimate for the scalar
field profiles.

The idea is to analyse the scalar equation (2.2) in the strongly curved geometry
near the black hole event horizon for this idealised disc source. Our aim is to proceed
as far as possible analytically, so that we can obtain general results and features of the
solution that can be used in a wider range of models than if we were to pick specific
potentials, couplings, and solve the problem numerically.

The first step is to choose an appropriate coordinate system for the analysis. As
we will see, it turns out to be most rewarding to rewrite the Schwarzschild metric
in “Weyl” form, where the radial and polar angles {r, θ} are re-badged as a pair of
cartesian-like coordinates {x, y} such that the x− y part of the metric is conformally
flat:

ds2 = e2λdt2 − e2(ν−λ)
(
dx2 + dy2

)
− α2e−2λdϕ2 (3.1)

This is the general Weyl metric form, but for the Schwarzschild solution, the functions
take the form

α ≡ x , λ =
1

2
ln
X+ − Y+

X− − Y−
, ν =

1

2
ln

(X+X− + Y+Y− + x2)

2X+X−
(3.2)

with

Y± = y ±GM , X2
± = x2 + Y 2

± (3.3)
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We can return to the familiar {r, θ} Schwarzschild coordinates via the transformation

x2 = r(r − 2GM) sin2 θ , y = (r −GM) cos θ (3.4)

Now consider the scalar field equation in this background. Our model for the
accretion disc supposes that while it may have highly nontrivial local dynamics, these
average out to an approximately uniform density profile strongly localised in the equa-
torial plane. The scalar profile therefore will be dependent essentially on only the
radial and polar coordinates. This is the reason for choosing this less well known Weyl
coordinate system for the Schwarzschild metric – the wave operator turns out to have
a simple form if the scalar depends only on x and y, being proportional to a flat-space
cylindrical Laplacian, leading to the equation of motion for φ:

�φ ≡ 1√
−g

∂µ
(√
−ggµν∂ν

)
φ = e−2(ν−λ)

[
1

x

∂

∂x

(
x
∂φ

∂x

)
+
∂2φ

∂y2

]
=
∂Veff(φ, ρ)

∂φ
(3.5)

for the appropriate Veff.
In [53], we used a much simpler background matter density in the vicinity of the

black hole, and found approximate analytical solutions, comparing them to full numer-
ical solutions for the scalar profile. With the exception of long Compton wavelength
symmetrons, these were largely similar, with screened scalars having broadly similar
profiles that peaked near the event horizon. We will therefore consider the Chameleon
model in this paper, and take a large Compton wavelength compared to the typical
black hole length scales. The current experimentally constrained model parameters
of environmentally dependent dilatons and symmetrons also put them in the same
category of long Compton wavelength scalars.

In the chameleon models, it is typically assumed that the coupling function is to
a good approximation an exponential:

A(φ) = eβφ/Mp , (3.6)

where β is nearly constant over the range of field values of interest. In addition, a
typical chameleon potential is usually taken to be

V (φ) = M4+nφ−n = V0φ
−n, (3.7)

where n ≥ 1 is an integer of order one, and we define V0 ≡ M4+n to simplify nota-
tion. Keeping only the leading order term from the coupling function, we see that the
effective potential is

Veff(φ, ρ) ≈ V0

φn
+
ρβφ

Mp

, (3.8)

minimised at

φn+1
min =

nV0Mp

ρβ
. (3.9)

The mass of small fluctuations of the field around this minimum is

m2(ρ) = Veff(φ, ρ),φφ |φmin

≈ ρβ

Mp

[
(n+ 1)

(
ρβ

nV0Mp

) 1
n+1

+
β

Mp

]
(3.10)
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which, as required, increases monotonically with ρ.
To find ρ, note that in the Weyl coordinates the equatorial plane corresponds to

y = 0, and the ISCO radius, r = 6GM for the Schwarzschild black hole, corresponds
to x0 = 2

√
6GMBH =

√
6rs, where rs = 2GMBH is the Schwarzschild radius. Thus, in

Weyl coordinates, the accretion disc model we are using has the density profile

ρ→ ρ0 + ρ1δ(y)Θ[x− x0]Θ[x1 − x] (3.11)

where ρ0 is the ambient background density field, and ρ1 a constant representing the
average density of the disc.

We now make two simplifying assumptions in order to explore scalar solutions
analytically. Firstly, we use this crude model for the disc (3.11). Secondly, we assume
that the solution for the scalar is dominated by the effect of ρ1, the accretion disc itself;
essentially this means we expand our scalar around φmin

φ ∼ φmin + δφ (3.12)

where φmin is the background scalar field profile due to the ambient background density
φ0. Finally, we assume that the mass of the scalar is negligible. This will be a good
approximation within the Compton radius of the scalar, and provided our system does
not extend over many Compton wavelengths, should give a realistic picture for the
scalar profile.

Making these assumptions, (3.5) reduces to a Poisson equation for δφ:

(xδφ,x),x + xδφ,yy =
βρ1(r)

Mp

xe2(ν−λ) (3.13)

for which we can use the massless scalar Green’s function to obtain:

δφ = − β

4πMp

∫
d3r′

ρ1(r′)e2(ν−λ)

|r− r′|
(3.14)

The accretion disc model (3.11) localises this integral to the equatorial plane
where

e2(ν−λ) |y′=0=
(
√

4x′2 + r2
s + rs)

2

4x′2 + r2
s

(3.15)

and using∫ π

−π

dϕ′√
y2 + x2 + x′2 − 2xx′ cos(ϕ− ϕ′)

=
4√

(x+ x′)2 + y2
K

[
4xx′

(x+ x′)2 + y2

]
(3.16)

where K is the complete elliptic integral of the first kind, δφ becomes

δφ = −βρ1rs
πMp

∫ x1

x0

(
√

4x′2 + r2
s + rs)

2

x′2 + r2
s

K

[
4xx′

(x+ x′)2 + y2

]
x′dx′√

y2 + (x+ x′)2
(3.17)

Once we specify an x1, we can integrate up this expression to obtain δφ, which
we will do presently. However, for the moment we would like to obtain an order of
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magnitude estimate for δφ, and its dependence on the various parameters analytically.
First, extract the dependence on the black hole mass by rescaling x̂ = x/GMBH =
2x/rs:

δφ = −βρ1r
2
s

4Mp

δ̂φ = −βρ1r
2
s

4πMp

I[x̂, ŷ] (3.18)

where

I[x̂, ŷ] =

∫ x̂1

2
√

6

(
(
√
x̂′2 + 1 + 1)2

x̂′2 + 1

)
K

[
4x̂x̂′

(x̂+ x̂′)2 + ŷ2

]
x̂′dx̂′√

ŷ2 + (x̂+ x̂′)2
(3.19)

The prefactor in (3.17) gives the parameter dependence for the scalar, and we now
approximate (3.19) to get an estimate of the order of magnitude of δ̂φ.

Figure 1. 3D plot illustrating the (normalised) scalar field profile δ̂φ around the
Schwarzschild accretion disc. The start of the accretion disc (shown as a thick black line)
can be clearly seen around x ≈ 5.

The first term for I in brackets is monotonically decreasing, and for x̂′ ≥ 2
√

6
lies in the range [1, 36/25], thus we approximate this term by 1. The elliptic function
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is roughly π/2 unless ŷ ≈ 0, x̂ ≈ x̂′, i.e., on the accretion disc, however since the
singularity of K is logarithmic, this will not give a huge enhancement to the integral,
thus we approximate this contribution to the integrand by π/2. This leaves us with
the final term, that can be integrated exactly to give

I[x̂, ŷ] ' π

2

[
R1 −R0 − x̂ ln

x̂+ x̂1 +R1

x̂+ x̂0 +R0

]
(3.20)

where we have written Ri =
√

(x̂+ x̂i)2 + y2 for clarity. Expanding this at large

r̂ =
√
x̂2 + ŷ2 gives I ≈ π(x̂2

1 − x̂2
0)/2r̂, i.e. the expected “1/r” fall-off of a massless

field. Near the black hole and disc, x̂ ≈ x̂0, ŷ ≈ 0, and I ≈ πx̂1/2. We therefore obtain
an order of magnitude estimate for the magnitude of the chameleon near the disc of:

δφ ≈ −βρ1r
2
s

8Mp

r1

rs
(3.21)

Note that this will be an underestimate, since in each case in the integrand, our esti-
mate was the lower, though more consistent, value of the function. At large distances
from the disc, the profile becomes very accurate, but closer in, we may expect some
discrepancy.

20 40 60 80 100 120 140

r

GM

-50

-40

-30

-20

-10
δϕ


Analytic

Numerical

Figure 2. A comparison of the analytic (under)estimate and the numerically integrated
result plotted in Schwarzschild ‘cartesians’, (r sin θ, r cos θ), at constant r cos θ = GM . The
largest disparity between the two curves is along the length of the accretion disc (6GM < r <
100GM), with the curves approaching at larger r. The peak estimate for δφ agrees within
10% however.
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In order to check this estimate, we integrated (3.19) using mathematica; figure 1
shows the scalar field plotted in Schwarzschild coordinates (r sin θ/GM, r cos θ/GM),
and figure 2 shows the accuracy (or otherwise) of this estimate. The presence of the
accretion disc clearly causes the scalar field to respond and lifts it from its ambient
background value. The disc itself is evident in the plot from the sharp crease in the
profile, resulting from the integrated singularity of the elliptic function. This is clearly
an artefact of the fact we have modelled the disc with a hard δ−function profile. In a
more realistic scenario, the accretion disc while strongly localised near y = 0, will have
some spread on either side, and we would expect this kink discontinuity to smooth out.

-20 -10 0 10 20
-10

-5

0

5

10

-52 -51 -50 -49 -48 -200 -100 0 100 200

-200

-100

0

100

200

-50

-40

-30

-20

-10

Figure 3. Comparison of near field and far field fall off around the Schwarzschild accretion
disc, indicated in each plot by the horizontal thick black line.

On large distances, the scalar rolls back to its ambient value, as expected from
the physics and analytic approximation. Figure 3 shows the near and further field
solutions for δφ. In practise, once the scalar Compton wavelength scale is reached, the
field will then transition to the typical exponential fall-off expected of the massive field
profile.

It is interesting to query to what extent the scalar profile is due to the geometry
of the black hole, and what to the matter distribution, which would in any case cause
the scalar to shift. Figure 4 shows a comparison of the scalar perturbation from the
disc plus black hole, to the disc only. This clearly shows that primary feature of the
scalar being pulled from its equilibrium value by the dense matter is due to the disc
matter density, however, the black hole does impact on the magnitude of the effect
(if one looks at the contour values) increasing it by about 10%. On the one hand,
this might suggest that the black hole is not that relevant, however, the disc would
obviously not be there without the black hole to drive it. In addition this confirms
the fact that in spite of the strong gravity regime of the black hole, and the notion
that the event horizon is somehow “special”, the scalar still behaves and responds to
its environment, with the black hole providing a marginal boost to the local matter
environment effects. As a result, it seems counter-intuitive that a black hole would
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behave differently towards a scalar than the local galactic medium, as suggested for
example for Vainstein screening [56].
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Figure 4. Comparison of scalar profile with and without a black hole. The disc profile is
taken to have the same form, starting at r = 6GM , and ending at r = 100GM .

4 Kerr Geometry

Having discussed the static, spherically symmetric case it is now surprisingly straight-
forward to turn to the more physically interesting case of the rotating Kerr geometry,
usually written in spherical polar Boyer-Lindquist coordinates as

ds2 =
∆− a2 sin2 θ

Σ
dt2 +

4GMar sin2 θ

Σ
dtdϕ− β

Σ
sin2 θdϕ2 − Σ

∆
dr2 − Σdθ2 (4.1)

where a = J/M and

Σ = r2 + a2 cos2 θ

∆ = r2 − 2GMr + a2

Γ = (r2 + a2)2 −∆a2 sin2 θ

(4.2)

Following the method described for the simpler Schwarzschild geometry, we begin
by rewriting the metric in Weyl coordinates [57]

ds2 = e2λdt2 − α2e−2λ[dϕ+Bdt]2 − e2(ν−λ)(dx2 + dy2) (4.3)

where

x ≡ α =
√

∆ sin θ , y = (r −GM) cos θ (4.4)

To get the Weyl functions, we first define

Y± = y ±
√
G2M2 − a2,

X2
± = x2 + y2

± ⇒ X± = r −GM ±
√
G2M2 − a2 cos θ

(4.5)
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Giving

e2λ =
∆Σ

Γ
, B =

2aGMr

Γ
, e2(ν−λ) =

Σ

X+X−
(4.6)

where

r =
X+ +X−

2
+GM , cos θ =

X+ −X−
2
√
G2M2 − a2

(4.7)

Once again, we model the accretion disc by the simplified energy distribution
(3.11), and insert in (3.13) now the Kerr measure

e2(ν−λ) |y=0=
(
√
x̂′2 + 1− â2 + 1)2

x̂′2 + 1− â2
(4.8)

where, as before, we have rescaled our Weyl coordinates, and â = a/GMBH ∈ [0, 1].

It is easy to see that the scalar equation of motion remains mostly unaffected
by the addition of rotation into the geometry. Its functional form is unchanged in
Weyl coordinates, although the multiplicative factor of e2(λ−ν) must now take the Kerr
form. The general expression (3.17) therefore remains the same, with rs = 2GMBH

representing now the black hole mass rather than the horizon radius, and with the
integral function replaced by the appropriately modified Kerr expression:

IKerr[x̂1] =

∫ x̂1

x̂0

(
(
√
x̂′2 + 1− â2 + 1)2

x̂′2 + 1− â2

)
K

[
4x̂x̂′

(x̂+ x̂′)2 + ŷ2

]
x̂′dx̂′√

ŷ2 + (x̂+ x̂′)2
(4.9)

where x̂0 is the rescaled ISCO value of x. The general expression for x̂0 in terms of
â is somewhat unwieldy, however, the key feature is that x̂0 decreases as â increases,
eventually merging with the event horizon at x̂0 = 0.

As before, the elliptic integral contributes roughly a constant, except very near
the accretion disc where is gives a slight uplift to the integral. The final term is
unchanged, however, the first factor, coming from the e2(ν−λ) term, is now potentially
rather different if the black hole is at, or very near, extremality. For â ∼ 1, this term is
roughly 1/x̂′2, and thus the integral generically diverges logarithmically as x̂ISCO → 0
in the extremal limit, with a linear divergence at x̂ = ŷ = 0. Although this sounds
alarming, because of the precipitous drop in the ISCO as a→ aext, xISCO ∼ 2

2
3 (1− â)

1
3 ,

this only contributes an uplift to IKerr of order a few for any realistic astrophysical black
hole. We therefore expect a very similar expression to (3.20) for an estimate of the
integral. The primary difference will be that the strongest shift of the scalar will be near
the ISCO, which will be much closer to the event horizon of the black hole, therefore
correspondingly a sharper profile. This is borne out by the numerical integrations
shown in figure 5, which show the scalar profile in Boyer-Lindquist coordinates for
â = 0.5 and 0.95.

Our overall conclusion therefore is that the disc pulls the scalar from its ambient
value to a central order of magnitude of (3.21). Rotating black holes give a stronger
effect, but only by about 5− 10%, even for a nearly extreme black hole.
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Figure 5. The normalized scalar profile δ̂φ plotted in cartesian coordinates for increasing
rotation: a/GM = 0.5, 0.95. The accretion disc is represented as a solid black line and the
black hole as a black circle in the middle.

5 Summary and Discussion

In the main part of this paper, we presented an analytic analysis of the scalar profile
around a Schwarzschild or Kerr black hole with an accretion disc. With the assumption
of a very sharp profile accretion disc, modelled by a δ−function, the scalar depends
only on the radial distance and angle from the rotation axis. Using the less-well known
Weyl co-ordinate system for the black hole geometry, the scalar equation of motion
simplifies considerably to a form for which a Green’s function is known. We used this to
estimate analytically the scalar field profile, then confirmed this by a simple numerical
integration.

The scalar has a nontrivial profile around the black hole, and is ‘pinned’ to its
largest value on the accretion disc, very near the ISCO. The main result is the scalar
displacement amplitude (3.21):

δφ = −βρ1r
2
s

8Mp

I (5.1)

where I = r1/rs represents the extent of the dense accretion flow, and ρ1 its average
density. We now turn to a discussion of the potential astrophysical consequences and
observable effects of this scalar profile. Our initial assumptions about the accretion
disc being a small addition, so as to not disrupt the background Schwarzschild or Kerr
geometry appreciably, would guarantee the magnitude of any effect due to the scalar
field to be small.

The most obvious effect to consider would be an additional fifth force felt by
any test particle in the vicinity of the black hole accretion disc system. Though it is
entirely possible that these additional forces would cause the structure of the accretion
disc to be non-trivially modified, such effects would require astrophysical modelling
beyond the scope of the present work. We considered this possibility in [53], where
we concluded that the effect would be too small to be observed for a coupling β of
O(1) and while the magnitude of the scalar is similar here since the modelling of the
accretion disk is rather different we should be able to get a better estimate of the fifth
force.
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The effects of the scalar gradient on a test particle can easily be estimated, since
they are roughly proportional to the gradient of the conformal factor A(φ). More
precisely,

ẍ = −A
′(φ)

A
∇φ (5.2)

for a nonrelativistic particle, hence the ratio of the fifth force to the Newtonian force
is

|Fφ|
|FN |

≈
(
r

rs

)2

β(φ)|~∇φ|MBH

M3
p

. (5.3)

Using the results of §3 and §4, we see that |∇φ| ∼ δφ/rs, then (5.1) gives

|Fφ|
|FN |

≈
(
r

8rs

)2

β2I ρ1

M4
p

(
MBH

Mp

)2

≈ 10−21β2 ρ1

ρ�

(
MBH

M�

)2

, (5.4)

assuming that our test particle is near the black hole, so that r/8rs ≈ O(1), that our
accretion flow extends out to roughly 100rs, and taking ρ� ∼ 1021ρcos as a typical
accretion disc density of a solar mass sized black hole1. This ratio is extremely small,
even for β ∼ O(10 − 102), which is an allowed parameter range for the chameleon
model [17], with the only possibility for an observational effect being the case of a
dense accretion disc (ρ1 ∼ ρ�) around a very supermassive black hole MBH ∼ 1010M�.

It is obvious from the force estimation that to evaluate the relevance of our scalar
field profile in the accretion disk, we should compare the emission of any scalar radiation
to gravitational radiation. We will consider the case of an extreme mass ratio inspiral
(EMRI) binary system. These systems typically consist of a stellar mass compact
object orbiting a supermassive black hole and in GR they emit gravitational radiation
at a rate approximated to leading order in ṙ by the quadrupole formula [60, 61],

dE

dt
= −

〈
m2
tG

3M2
BH

c5r4

8

15
(12v2 − 11ṙ2)

〉
, (5.5)

where mt is the mass of in-falling object, v its velocity, r its radial position, and the
angled brackets indicate an average over an orbital period.

Following [53], we compare this to the rate of energy loss by scalar radiation,
obtaining ∣∣∣∣∣ ĖφĖGR

∣∣∣∣∣ ∼ β

(
R0

Rs

) 9
2
(
δφ

δr

)
MBH

M3
p

[
MBH

mt

]
. (5.6)

For mt ∼M� and

106 ≤ MBH

M�
≤ 1010 (5.7)

1As we already noted, accretion disc density depends on black hole mass, the accretion rate, the
radius, and of course the unknown physics of what happens inside the disc. We use a representative
value from [58] and [59] to substitute for our approximate disc density for a stellar size black hole.
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we get,

β210−5 .

∣∣∣∣∣ ĖφĖGR
∣∣∣∣∣ . β2107 , (5.8)

again assuming ρ1 ∼ ρ�. For ultramassive black holes, it would appear that the ratio
of scalar to gravitational radiation can be very large, however, this is a facet of the
fact we have taken the accretion disc density to be of order the stellar mass black hole
disc density. A more realistic estimate takes into account that the density will drop
for larger mass black holes [58], and estimating this drop as being ∝ M−1

BH we instead
arrive at the more realistic estimate

β210−11 .

∣∣∣∣∣ ĖφĖGR
∣∣∣∣∣ . β210−3 . (5.9)

Observations of such processes are among the target sources of future space-based
gravitational wave detectors, such as (e)LISA [62], and potentially could constrain the
values of β for very large supermassive black hole events.

Another interesting effect which could potentially be observable is a shift in the
atomic spectra. The scalar field in the chameleon model couples to matter and therefore
the effective mass of elementary particles within the accretion disk will now receive a
small correction proportional to δφ [63]. For the electron we have,

me(φ) = me(1 +
δφ

Mp

) (5.10)

This in turn should add a correction to all atomic spectra. In particular it will change
the Balmer and Lyman α series via an effect on the Rydberg constant and as it turns
out both of these are observable in the quasar spectra, see eg SDSS [64]. The Rydberg
constant, in natural units, may be expressed as,

R∞ =
α2me

4π
(5.11)

where α is the fine structure constant. The shift in the energy levels, assuming a
correction to just the Rydberg constant, is then

∆E

E
=

δφ

Mp

(5.12)

since δφ is negative this gives a negative shift in the energy levels of order

β10−13 <

∣∣∣∣∆EE
∣∣∣∣ < β10−5 (5.13)

The shift is the same for the Hα, Hβ and Lyα lines. It remains to be seen whether or
not this can be detected with future surveys, though for β ∼ O(10) the shift could be
appreciable for supermassive black holes.
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If the scalar couples to photons via loop effects [65] then there will be a shift in
hyperfine splitting as well. However, this is beyond the scope of this paper and requires
further investigation. Such hyperfine splitting would be easier to distinguish from the
spectral lines required to determine the quasar redshift.

Our results are also strongly indicative of a breakdown of the no-hair theorems
when applied to realistic astrophysical black holes. The presence of a small amount
of matter surrounding the black hole is enough to violate the stringent conditions
required for the no-hair theorems to be valid and as such their use in breaking the
model degeneracy between various modified gravity scenarios would be very limited 2.

It has previously been argued that black holes and stars in the centre of galaxies
would behave differently under the effect of the additional scalar force because, while
the star will feel the effects of such a force, the black hole would be protected by a
no-hair theorem [35, 56]. Our results show that this is not the case and that in any
realistic astrophysical scenario the situation is likely to be much more complex and the
effects of the accretion disk has to be taken into account when computing the force
experienced by an astrophysical black hole in the centre of a galaxy compared to that
experienced by the stars. This is beyond the scope of this investigation.
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