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interactions. The strings represent electric lines of force with charges at their ends. The interaction is 
constructed from a delta-function on the world-sheet which, although off-shell, decouples from the 
world-sheet metric. Integrating out the string degrees of freedom with fixed boundary generates the 
super-Wilson loop that couples spinor matter to electromagnetism in the world-line formalism. World-
sheet and world-line, but not spacetime, supersymmetry underpin the model.
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1. Introduction

Quantum Electrodynamics is perhaps the most successful phys-
ical theory to confront experiment, and so it might seem re-
dundant to consider an alternative formulation. However, as an 
Abelian gauge theory it is a simpler version of the non-Abelian 
gauge theory of the Standard Model to which new approaches 
may still be of interest. In this letter we treat QED by taking 
the electric lines of force as the basic degrees of freedom of the 
electromagnetic field. This immediately requires the technology of 
string theory but applied to a non-standard setting in which the 
ends of the lines of force are electrically charged particles and 
the electromagnetic interaction becomes a contact interaction de-
scribed by δ-functions on the world-sheet. We will show that even 
though these interactions are off-shell they can be constructed to 
be independent of the scale of the world-sheet metric because 
of the non-standard boundary conditions. Unwanted divergences 
that might occur when there is more than one interaction on each 
world-sheet are eliminated when the model has world-sheet su-
persymmetry and this allows the interaction to be exponentiated 
thus generating the super-Wilson loops that couple spinor matter 
to the electromagnetic field on the world-sheet boundaries. Inte-
grating over the boundaries after having included supersymmetric 
boundary terms in the action quantises the spinor matter in the 
world-line formalism. We will impose the tensionless limit, so that 
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the strings representing the lines of force are potentially large, al-
though working with a non-zero, but small, tension would result 
in a model where more conventional string-like behaviour would 
set in at large length scales.

Conventionally, the first step in the passage to the quantum 
theory from the classical Maxwell equations

εμνλρ ∂ν Fλρ = 0, ∂μ Fμν = Jν , (1)

is to solve the first set by introducing a gauge potential, A, and 
then construct a Lagrangian with this as the dynamical variable 
(modulo gauge transformations) so that the second set appear as 
Euler–Lagrange equations. We choose the alternative starting point 
by solving the second set. For simplicity we consider a system 
consisting of particle anti-particle pairs created and then mutually 
annihilating, so the current density is

Jμ(x) =
∑

q

∫
B

δ4(x − w)dwμ (2)

where the world-lines B are closed. One solution is to take

Fμν(x) =
∑

−q

∫
�

δ4(x − X)d�μν(X) , (3)

where d�μν is an element of area on a surface � spanning B . 
This field-strength, which vanishes away from �, may be inter-
preted as that of a single line of force. We will take this surface �
as the dynamical degree of freedom instead of the gauge potential. 
Treating this as the basic physical object is reminiscent of Faraday’s 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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approach to electromagnetism [1] in which lines of force are the 
fundamental degrees of freedom. This was echoed in Dirac’s 1955 
proposal [2] that creation operators for electric charges should si-
multaneously create this part of the electromagnetic field so that 
the radially symmetric Coulomb field for a single charge would 
emerge from quantum mechanical averaging of (3). An equivalent 
expression was used to describe the polarisation vector of charged 
matter for molecular electrodynamics [3] and in the context of 
non-linear electrodynamics by Nielsen and Olesen [4] to form a 
field theory describing the dual string. Its dual is also present in 
theories of electromagnetism with magnetic monopoles [5] and 
has been used [6,7] to derive an effective string theory describ-
ing the evolution of the Dirac string linking two such poles.

Substituting into the classical electromagnetic action∫
d4x Fμν F μν/4 gives the formal expression

q2

4
δ2(0)Area + q2

4

∫
�

d�μν(ξ) δ4 (
X(ξ) − X(ξ ′)

)
d�μν(ξ ′)

∣∣∣
ξ �=ξ ′

the first term [8] is the Nambu–Goto action, albeit with a diver-
gent coefficient, whilst the second is a self-intersection interaction. 
Clearly, to proceed further requires the machinery of string theory 
but with non-standard contact interactions rather than conven-
tional splitting and joining. Similar interactions have previously 
been discussed by Kalb and Ramond [9] and our proposal satis-
fies the consistency constraints they derive. This action has been 
applied classically [10] to the problem of confinement but without 
self-intersections or quantisation.

In [11] it was shown that the average of (3) over � constructed 
according to Polyakov’s approach to the bosonic string [12] does 
in fact yield the electromagnetic field generated by Jμ , Wick ro-
tated to Euclidean signature where the functional integrals behave 
better:

4π2〈
∫
�

δ4(x − X)d�μν(X)〉

= ∂μ

∫
B

dwν

||x − w||2 − ∂ν

∫
B

dwμ

||x − w||2

where the average over � of any functional �[�] is

〈�〉 = 1

Z

∫
D(g, X)� exp

⎛
⎝− 1

4πα′

∫
D

gab ∂ Xμ

∂ξa

∂ Xμ

∂ξb

√
g d2ξ

⎞
⎠ .

Remarkably this result is independent of the scale of the world-
sheet metric despite the δ-function being off-shell and is also in-
dependent of the string tension, α′ . Integrating over a different 
surface �′ spanning the fixed closed loop B ′ gives

〈
∫

��′
d�′ μνδ4(x − X)d�μν(X)〉 = 1

2π2

∫
B B ′

dw ′ · dw

||w ′ − w||2 (4)

(since the right-hand-side is independent of this second surface 
we could obtain a more symmetrical looking result by also averag-
ing over �′). The right-hand-side is the electromagnetic interaction 
between the two loops of charges B and B ′ . If it were possible to 
show that this exponentiates then we would be able to express the 
expectation value of Wilson loops in Maxwell theory, i.e.∫

D A

N
e−S g f

∏
j

e
−iq

∮
B j

dw·A
(5)

(where S g f is the usual gauge-fixed action for the electromagnetic 
field) as the partition function of first quantised strings with fixed 
boundaries and which interact on contact:
∫ ⎛
⎝∏

j

D(X j, g j)

Z0

⎞
⎠ e−S , (6)

where

S =
∑

j

S[X j, g j] +
∑

jk

q2
∫

� j�k

d�
μν
j δ4(X j − Xk)d�k

μν (7)

effectively replacing the quantised electromagnetic field by quan-
tised strings with fixed boundaries. Integrating over the boundaries 
with appropriate weights quantises the charged sources along the 
lines of Strassler’s world-line approach [13] (see also [15] and [16]
for recent applications) so we would arrive at a reformulation of 
QED in terms of strings with unusual boundary terms and contact 
interactions. This programme is pursued in detail in [14] where 
it is shown that with bosonic matter the programme is difficult 
to implement, but that for spinor matter the additional struc-
ture resulting from a spinning world-sheet renders the approach 
tractable, and it is this, actually more realistic, case that we de-
scribe in this letter.

Evaluating the conventional QED functional integral by first in-
tegrating over spinor matter results in the fermionic determinant 
depending on the gauge field Aμ . Strassler represents this determi-
nant by a world-line functional integral. We will use a reparametri-
sation invariant formulation based on the action of Brink, di Vec-
chia and Howe [17] (for further details see [14])

ln Det
(
− (γ · (∂ + i A))2 + m2

)
∝

∫
D(h, w,χ,ψ) W [A] e−SBdVH (8)

where

SBdVH = 1

2

∮ (
1√
h

(
dw

dx

)2

− iψ · dψ

dx
− i

χ√
h

dw

dx
· ψ

)
dx (9)

(for simplicity we drop the mass term) and W is the supersym-
metric Wilson loop

W [A] = exp

(
−q

∮ (
i
dw

dx
· A − 1

2
Fμνψμψν

√
h

)
dx

)
. (10)

Here χ is the fermionic partner of h which is an intrinsic metric on 
the world-line parametrised by ξ , and ψμ are fermionic partners 
of the co-ordinates, wμ in d-dimensional space–time. w , h1/4 and 
χ have dimensions of length but ψ is dimensionless, so SBdVH is 
dimensionless as well. As is well-known, the action SBdVH and the 
exponent of W have the worldline supersymmetry

δw = iαψ , δψ = α√
h

(
dw

dx
− i

2
χψ

)
, δ

√
h = iαχ ,

δχ = 2
dα

dx
, (11)

despite the absence of supersymmetry in the spacetime theory 
of QED. Curiously the fermionic Green function may also be ex-
pressed in the same form of the right-hand-side of (8) but using 
open worldlines [14] with appropriate conditions at their ends. 
In (8) the gauge-field, A, appears only in W so to complete the 
quantisation of QED it just remains to functionally integrate over 
A using the super-Wilson loop equivalent of (5). It is our purpose 
to show that this last step can be replaced by a functional inte-
gral over spinning strings spanning the closed loops B , where our 
string theory contains the unusual features of the boundary ac-
tion (9), contact interactions, and a tensionless limit.
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2. The interacting string theory

The spinning string has gauge-fixed action

Sspin = 1

4πα′

⎛
⎜⎝∫

H

d2z d2θ D̄X · DX −
∫

y=0

dx �̄ · �
⎞
⎟⎠ (12)

where we take the parameter domain to be the upper-half com-
plex z = (x + iy)-plane. θ and θ̄ are anti-commuting variables that 
enter the derivative operators D = ∂/∂θ + θ∂/∂z and D̄ = ∂/∂θ̄ +
θ̄∂/∂ z̄ with ∂/∂z = (∂/∂x − i∂/∂ y)/2. d2z = −2i dx dy and Stokes’ 
theorem becomes 

∫
d2z d2θ D F = ∮

dz̄d2θ θ F and 
∫

d2z d2θ D̄ F =
− 

∮
dzd2θ θ̄ F . Since we work exclusively with functional integrals 

we assume a Wick rotation to Euclidean spacetime. The superfield 
has components

X = X + θ� + θ̄ �̄ + θ̄ θ B (13)

with B an auxiliary field. X , � , �̄ and 
√

α′ have dimensions of 
length. We impose Dirichlet boundary conditions that relate X on 
y = 0 to the world-line variables

X |y=0 = w,
(
� + �̄

)∣∣
y=0 = √

ih1/4 ψ . (14)

The factor of h1/4 is necessary since ψ is a world-line scalar. 
The first term in the action is standard [19]. We have added a 
boundary term (that would vanish under the usual Neveu–Schwarz 
or Ramond boundary conditions) to ensure invariance under the 
residual global supersymmetry

δX = η

(
∂

∂θ
− θ

∂

∂z
+ ∂

∂θ̄
− θ̄

∂

∂ z̄

)
X (15)

which also acts on the world-line variables (with 
√

iα = h1/4η
in (11)) to preserve the boundary conditions and SBdVH .

Consider now a number of spinning strings, each spanning a 
closed boundary and interacting on contact with each other with 
an action that is the generalisation of (8)

Ss =
∑

j

Sspin[X j] +
∑

jk

Sint[X j,Xk] (16)

where Sint is

q2
∫

d2z jd
2θ j

(
D̄X[μDXν] − δ(y)θ θ̄�̄[μ�ν])

j
δ4(X j − Xk)

× d2zkd2θk

(
D̄X[μDXν] − δ(y)θ θ̄�̄[μ�ν])

k

This too is invariant under (15) because of the inclusion of the 
boundary terms δ(y)�̄[μ�ν] . We want to show that with fixed 
boundaries the partition function of the string theory is the same 
as the expectation value of products of super-Wilson-loops in 
Maxwell theory:

∫ ⎛
⎝∏

j

DX j

Z

⎞
⎠ e−Ss =

∫
D A

N
e−S g f

∏
j

W j[A] (17)

which is a functional of the boundary data consisting of world-
line variables associated with the closed loops. In computing the 
left hand-side we expand in powers of the contact interaction. 
Representing the delta-function as a Fourier integral reduces the 
problem to the expectation value of multiple insertions of∫

d2z d2θ V μν(k), with V μν(k) = D̄X[μDXν] eik·X . (18)
So we begin with the simplest case of a single insertion on the 
j-th world-sheet and consider the integral, Iμν

j (k), given by∫
DX j e−Sspin

∫
d2zd2θ

(
D̄X[μDXν] − δ(y)θ θ̄�̄[μ�ν]) eik·X .

(19)

Although classically superconformally invariant the insertion ac-
quires an anomalous dimension that would take it off-shell unless 
k were null, so conventionally δ-function contact interactions do 
not appear in critical string theory. However we argue that the 
same self-contraction of the exponential that gives rise to this 
also suppresses the insertion for all points z that are not close 
(on the scale of the short-distance regulator) to the boundary. Be-
cause of the Dirichlet boundary conditions however, points close 
to the boundary make a finite scale independent contribution. Set 
X = Xc + X̃ with Xc a classical piece satisfying the boundary condi-
tions (14) and Euler–Lagrange equations D̄ DXc = 0, and X̃ a quan-
tum fluctuation. Integrating over X̃ gives

e−Sspin[Xc ]−S L

∫
d2z

(∫
d2θ eik·Xc−πα′k2G0

×
(

D̄X[μ
c DXν]

c − 2πα′ (D̄X[μ
c (DG)0ikν] + (D̄G)0ik[μDXν]

c

))
− δ(y)eik·Xc �̄[μ�ν]) (20)

where SL contains the logarithms of functional determinants that 
give rise to the super-Liouville action. G is the Green function sat-
isfying:

−D̄ DG = (θ1 − θ2)(θ̄1 − θ̄2)δ
2(z1 − z2) ,

G = 0 if y1 = 0 and θ1 = θ̄1 or y2 = 0 and θ2 = θ̄2 (21)

The subscript 0 on G and its derivatives denotes that they should 
be evaluated at coincident points, i.e. z1 = z2, θ1 = θ2, θ̄1 = θ̄2, 
however this is singular so G must be regulated. We choose a heat-
kernel regulator and replace G by

Gε = f

⎛
⎝

√
zR

12 z̄R
12

ε

⎞
⎠ − f

⎛
⎝

√
z12 z̄12

ε

⎞
⎠

where z12 = z1 − z2 −θ1θ2, z̄12 = z̄1 − z̄2 − θ̄1θ̄2, zR
12 = z1 − z̄2 −θ1θ̄2, 

and z̄R
12 = z̄1 − z2 − θ̄1θ2. ε is a short distance cut-off to be taken 

to zero at the end of calculations and

f (s) =
∞∫

1

dτ

4πτ

(
1 − exp

(
− s2

τ

))
, (22)

so that

D̄ DGε = (θ1 − θ̄2)(θ̄1 − θ2)
e

−zR
12 z̄R

12
ε

4πε
− (θ1 − θ2)(θ̄1 − θ̄2)

e
−z12 z̄12

ε

4πε

For points in H this is a regularisation of Green’s equation. 
Gε satisfies the boundary conditions (21). Furthermore this reg-
ulator is invariant under the residual supersymmetry (15) when 
we take the scale of the world-sheet metric to be constant, 
which will be sufficient for our computations. Using this we 
obtain Gε

0 = f
(−(2iy − θθ̄)/

√
ε
)

and (DGε)0 = (D̄Gε)0 =
i
2 (θ − θ̄ )∂ f (2y/

√
ε)/∂ y. Expanding the exponential term in (20)

in powers of θ gives

e−πα′k2G0 =
(

1 + i
θ θ̄

∂
)

e
−πα′k2 f

(
2y√
ε

)
. (23)
2 ∂ y
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When s is large f (s) ≈ (log s)/2π so, for values of k2 that are 
fixed as the cut-off is removed, this exponential suppresses the in-
tegrand in (20) at all points in H apart from those that are close 
(in terms of ε) to the boundary. Consider the behaviour at points 
for which 0 < y < � where � ↓ 0 as ε ↓ 0 but �2/ε diverges. 
Here we can replace the classical field Xc , which varies slowly on 
the scale of ε , by its boundary value. Thus the first term in (20) is 
given for small ε as∫

d2z d2θ eik·Xc−πα′k2G0 D̄X[μ
c DXν]

c

= −2i

∫
dx d2θ eik·Xc D̄X[μ

c DXν]
c

�∫
0

dy

(
1 + i

2
θ θ̄

∂

∂ y

)

× e
−πα′k2 f

(
2y√
ε

)
(24)

Now 
∣∣∣∫ �

0 dy exp(−πα′k2 f (2y/
√

ε))

∣∣∣ < � because f (s) is mono-

tonically increasing so this goes to zero as the cut-off is removed. 
Given that f (0) = 0, it follows that, as ε ↓ 0

�∫
0

dy

(
1 + i

2
θ θ̄

∂

∂ y

)
e
−πα′k2 f

(
2y√
ε

)
→ − i

2
θ θ̄ , (25)

and upon integrating over the anti-commuting variables (24) be-
comes∫

dx eik·Xc �̄
[μ
c �

ν]
c (26)

which cancels against the boundary term in (20). Similarly the re-
maining terms in (20) are, for small ε ,∫

d2z d2θ eik·Xc−πα′k2G0
(

D̄X[μ
c (DG)0ikν] + (D̄G)0ik[μDXν]

c

)

= −
∫

dx d2θ eik·Xc {D̄ + D}X[μ
c ikν] (θ − θ̄ )

πα′k2

�∫
0

dy
∂

∂ y

× e−πα′k2G0 (27)

The y-integral tends to unity as ε ↓ 0 and the integral with respect 
to θ leaves

1

πα′k2

∫
dx eik·Xc

(
ik · (�c + �̄c

)
(�c + �̄c)

[μ + ∂ X [μ
c /∂x

)
ikν]

(28)

so, using (14) we obtain the ε ↓ 0 limit of (20) as

Iμν
j = −2e−Sspin[Xc ]−S L

∫
dx

eik·w

k2

×
(

dw[μ
c /dx − √

h k · ψψ [μ)
ikν] (29)

Now in this expression the length scale 
√

α′ appears only in 
Sspin[Xc] so we can remove this classical action by taking the ten-
sionless limit l/

√
α′ → 0, where l is a measure of the size of the 

closed loop B .1 Additionally we can remove SL by assuming that 

1 We treat the strings as tensionless simply by taking the α′ → ∞ limit of cer-
tain expectation values to suppress unwanted terms. Tensionless strings have been 
analysed more fully in the literature. For example in the treatment of [21] the 
worldsheet metric is degenerate. The theory describing these null strings can be 
constructed by introducing a vector density whose equation of motion imposes this 
constraint [20,22] and the construction extends to the spinning string [23].
there are sufficient additional internal degrees of freedom. SL con-
tains the super-Liouville degrees of freedom, i.e. the scale of the 
metric and its super-partner on the world-sheet. These degrees of 
freedom have not appeared in our result for Iμν

j , even though we 
have not restricted k2 by a mass-shell condition. We have effec-
tively worked with a constant world-sheet metric and absorbed 
the scale into the cut-off ε . The finiteness of I as the cut-off is 
removed demonstrates that Iμν

j is independent of this constant 
scale. Spatial variations of the scale on the world-sheet would 
only contribute at higher order in ε and so vanish as this cut-
off is removed therefore Iμν

j is independent of this scale. Even if 
there are no additional degrees of freedom to cancel SL the super-
Liouville theory decouples provided we choose to treat the world-
line and world-sheet metrics as independent degrees of freedom. 
If instead we choose to relate them by demanding they agree on 
the boundary then the super-Liouville theory would appear to in-
duce interactions in (9) and (10) spoiling the representation of the 
dynamical fermions. However the effect is not drastic and can be 
undone. h can be removed from (9) and (10) by the choice of 
world-line parameter x′ = ∫

dx
√

h. T ≡ ∮
dx

√
h is the single phys-

ical degree of freedom in the metric contributing to the boundary 
theory. Integrating over the Liouville theory with T held fixed can 
only yield a power of T (analogous to the susceptibility compu-
tation in [18]) which would replace the logarithm in (8) by a 
power when T is integrated over. However this can be undone by 
adding a mass term, 

∮
dx

√
h m2, to the action and then integrat-

ing over m with the appropriate measure to cancel the unwanted 
power.

Using (29) we can evaluate the effect of the interaction to lead-
ing order when we average over distinct world-sheets:∫

DX j

Z0

DX j′

Z0
e−Sspin[X j ]−Sspin[X j′ ] Sint[X j,X j′ ]

= q2
∫

d4k

(2π)4
Iμν

j (k) Iμν
j′ (−k) (30)

where the integrand Iμν
j (k) Iμν

j′ (−k) is

∫
dx dx′ eik·(w−w ′)

k2

(
dw

dx
− √

h ψ · k ψ

)
·
(

dw ′

dx′ + √
h′ ψ ′ · k ψ ′

)

which we recognise as the order q2 contribution to the expecta-
tion value of two super-Wilson loops in QED. This verifies (17) to 
leading order when distinct world-sheets are involved. We now ar-
gue that this extends to all orders. This will rely on our procedure 
(namely the action, interaction and regulator) preserving the resid-
ual supersymmetry (15). A general term in the expansion of (17)
will involve multiple insertions at various points zr on each world-
sheet so we need to compute the integral Iμ1ν1..(k1, ..) given by∫

DX e−Sspin

∫
d2z1d2θ1..

×
∏

r

(
D̄X[μr DXνr ] − δ(yr)θr θ̄r�̄

[μr �νr ]
)

eikr ·X
∣∣∣

zr
. (31)

When all the points zr are separated by more than � the compu-
tation parallels that for a single insertion. The exponential factors 
exp(−πα′k2G0) that appear after integrating over X j suppress the 
contribution of insertions except when yr < � and points close to 
the boundary result in a product of terms like (29). These terms 
then yield the required result (17). However, when some of the in-
sertions approach each other divergences might arise that would 
spoil the above argument. We will show that the residual super-
symmetry prevents this.
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Consider a set of n + 1 insertions all being within � of each 
other, but separated by more than � from the others. Using Wick’s 
theorem, their contribution may be replaced by a sum of terms 
involving contractions between the set and normal ordered terms 
(denoted by colons) which are yet to be contracted with operators 
outside the set. E.g. for two insertions

D̄X[μ1 DXν1] eik1·X
∣∣∣

z1
D̄X[μ2 DXν2] eik2·X

∣∣∣
z2

=: D̄X[μ1 DXν1]
∣∣∣

z1
D̄X[μ2 DXν2]

∣∣∣
z2

E :

+ : D̄X[μ1 DXν1]
∣∣∣

z1
D̄X[μ2 ikν2]

2

∣∣∣
z2

D2Gε(z2, z1)E : + . . .

− δ
μ1ν1
μ2ν2

(
D1 D2Gε D̄1 D̄2Gε + D1 D̄2Gε D̄1 D2Gε

) : E : (32)

where E = exp
(
ik1 · X(z1) + ik2 · X(z2)−πα′ ∑kr · ksGε(zr, zs)

)
.

Furthermore the terms inside the colons can be expanded around 
the position of, say, the first insertion, so, in the general case

n+1∏
r=1

(
D̄X[μr DXνr ] eikr ·X

∣∣∣
zr

)

=:
(

n+1∏
r=1

D̄X[μr DXνr ]
)∣∣∣∣∣

z1

E′ : + . . . + F μ1..νn+1(z1, .., zn+1) : E′ :

(33)

with E′ = exp(i(
∑

kr) · X(z1)−πα′ ∑kr · ksGε(zr, zs)). Now

Gε(zr, zs) = − f

(√
zrs z̄rs

ε

)
+ f

⎛
⎝

√
zR

rs z̄R
rs

ε

⎞
⎠ = − f

(√
zrs z̄rs

ε

)

+ 1

4π
log

(
(2iy1 − θr θ̄s)(−2iy1 − θ̄rθs)

ε

)

+ O

(
�

y1

)
(34)

The most divergent terms in (32) and (33) are contained in the co-
efficient F which consists of 2(n + 1) derivatives, D and D̄ , acting 
on various combinations of Gε(zr, zs). The leading terms are those 
in which the derivatives all act on the f (

√
zrs z̄rs/ε) parts. To see 

this scale all the relative co-ordinates zr − zs (but not z1 or z̄1) 
and the θr , θ̄r : (zr − zs) → √

ε(zr − zs), θr → ε1/4θr , θ̄r → ε1/4θ̄r , 
so f (

√
zrs z̄rs/ε) → f (

√
zrs z̄rs) and D → ε−1/4 D , D̄ → ε−1/4 D̄ , 

d2zrd2θr → ε1/2d2zrd2θr for r > 1, but d2z1d2θ1 → ε−1/2d2z1d2θ1, 
so the integral with respect to 

∏
r d2zrd2θr of the term contain-

ing 2(n + 1) derivatives, D and D̄ , acting on f (
√

zrs z̄rs/ε) scales 
into 1/ε multiplied by an integral independent of ε . This depends 
on the kr in a potentially complicated way but the X dependence 
is quite simple so, after the integral over the relative co-ordinates 
and the θr , θ̄r are done we are left with

1

ε
F̃ μ1..νn+1(k1, ..,kn+1)

∫
d2z1 : eiK ·X(z1) :

(
ε

y2
1

)α′ K 2/4

, (35)

where

F̃ μ1..νn+1(k1, ..,kn+1)

=
∫

d2θ1

⎛
⎝n+1∏

j=2

d2z j d2θ j

⎞
⎠ F μ1..νn+1(z1, .., zn+1)

× eπα′ ∑ kr ·ks f (
√

zrs z̄rs)
and K = ∑n+1
j=1 k j . This is not invariant under the residual super-

symmetry and so must vanish. There can be no subleading terms 
of order ε−3/4 since their super-field content would have to be 
fermionic to generate the factor of ε1/4 needed. The next non-
trivial terms are of order 1/

√
ε and using rotational symmetry the 

only possibility is an X-dependence proportional to

cρσ

√
ε

∫
d2z1 : �̄ρ�σ eiK ·X(z1) :

(
ε

y2
1

)α′ K 2/4

. (36)

This too changes under the residual supersymmetry, although if 
cρσ = K ρ K σ its variation is proportional to the variation of the 
boundary term ε−1/2

∫
dx exp(ik · w), so if this boundary term 

were also generated as the insertions approached each other close 
to the boundary then there would be the possibility of a diver-
gence. However a term like (36) does not appear because k · �̄ k · �̄
can only be generated by expanding the θ θ̄ terms in the exponent 
so the coefficient of the term would be

∫
d2θ1

⎛
⎝ n+1∏

j=2

d2z j d2θ j

⎞
⎠ F μ1..νn+1(z1, .., zn+1)

× eπα′ ∑ kr ·ks f (
√

zrs z̄rs) θ̄aθb (37)

(with the result being independent of the choice of a, b). By count-
ing θs we can see that this vanishes: there are n + 1 derivatives D
and n + 1 derivatives D̄ acting on f contained in F . Each of these 
produces terms with the same number of θ and θ̄ counting mod 2, 
resulting in n + 1 (mod 2) θ and n + 1 (mod 2) θ̄ , not the n θ and 
n θ̄ needed for (37) to be non-zero.

The only other divergence we could encounter is at order ε1/4

but the field content of these terms would also be fermionic and 
so cannot be present. Since K is real the remaining contribu-
tions in the expansion (33) are suppressed by the common factor (
ε/y2

1

)α′ K 2/4
arising from the second term in (34) which vanishes 

as the regulator is removed for all K 2 except those close to zero 
(in terms of ε). Since K is ultimately to be integrated over we 
also need to consider the contribution of these small values, how-
ever for α′ large and ε small this factor behaves effectively as 

δ
(

K 2
)
/
(

1
2 α′ ln y1

ε

)2
and so is also suppressed in the tensionless 

limit – see [14] for further detail. We conclude that no divergent 
terms can be generated by insertions that approach each other far 
from the boundary.

As the insertions approach each other close to the boundary 
the second term in Gε varies rapidly so we have to consider its 
variation too by scaling y1 in addition to the other variables. Con-
sequently in the integral of (33) there are potential terms of order 
1/

√
ε , but these take the form ε−1/2

∫
dx exp(iK · w) which we 

have already dealt with. We can ignore the O
(
ε−1/4

)
contribution 

since it would have fermionic super-field content so the next order 
in ε consists of finite terms. There is one candidate that is invariant 
under the residual supersymmetry and so could potentially occur, 
and that is the electromagnetic coupling:∫

dx eiK ·w (
dwμ/dx + iK · (� + �̄)(� + �̄)μ

)
(38)

Potentially this could arise from one of the DX, say the q-th, being 
replaced by their classical value DX

μq
c which would generate the 

dwμ/dx piece, so μ = μq . However if we apply Gauss’ law by con-
tracting the integral of an insertion with k the result is a boundary 
term that does not contain the quantum variables:
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kμ

∫
d2zd2θ

(
D̄X[μDXν] − δ(y)θ θ̄�̄[μ�ν]) eik·X

=
∫

dx eik·X
(

dXν

dx
+ ik · (� + �̄

) (
� + �̄

)ν)
(39)

which factors out of the sum of normal ordered terms due to the 
other insertions in the set. So this boundary integral of the q-th 
field would have to factor out of the contraction of (38) with kq
which is not possible because it contains only one field integrated 
around the boundary. In conclusion, supersymmetry prevents di-
vergences appearing when the insertions approach each other, con-
sequently (30) exponentiates, leading to (17). As a final step we 
integrate over the world-sheet metric and boundaries weighted by 
the world-line action∫ ⎛

⎝ n∏
j

D(g,X, w,ψ,h,χ) j

Z0

⎞
⎠ e−Ss−SBdVH (40)

=
∫ ⎛

⎝ n∏
j

D(w,ψ,h,χ) j

⎞
⎠ D A

N
e−S g f −SBdVH

∏
j

W j[A]. (41)

On summing over n this expresses the equality of the partition 
functions of QED and of tensionless spinning strings with con-
tact interactions. Following Strassler we can include a background 
gauge field on the world-lines to source photon amplitudes, and, as 
explained in [14] the Green functions for the charged particles are 
obtained by including open world-lines with appropriate boundary 
conditions at their ends.

3. Concluding remarks

We have argued that QED is related to the tensionless limit of 
spinning strings with contact interactions. World-sheet supersym-
metry has underpinned the consistency of the construction and 
indicates that the model has a preference for spinor matter. The 
string world-sheets are the trajectories of lines of electric flux con-
nected to electric charges at their ends, a picture reminiscent of 
the old dual resonance model. Integrating over these produces the 
electromagnetic super-Wilson loops (associated with world-sheet 
boundaries) necessary to describe the electromagnetic coupling of 
spinor matter. These spinning strings are physically very different 
from the fundamental strings of quantum gravity. They interact via 
δ-functions on the world-sheet which are not present in critical 
string theory because they naively break super-conformal invari-
ance but they contribute here because of the different boundary 
conditions. Furthermore, because the string length scale is taken 
to be infinite the strings themselves can be very large, possibly 
macroscopic and potentially observable. If this scale were instead 
large but finite then the model would receive string-like correc-
tions that set in at large distances. We have not presented a com-
plete theory and many details remain to be worked out, such as 
combinatorics, ultra-violet regulator and possible infra-red issues 
connected with the tensionless limit. Further work will also be re-
quired to obtain the generalisation to non-Abelian gauge theory.
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