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Abstract
We present a geometric realization for all mutation classes of quivers of rank 3 with
real weights. This realization is via linear reflection groups for acyclicmutation classes
and via groups generated by π -rotations for the cyclic ones. The geometric behavior
of the model turns out to be controlled by the Markov constant p2 + q2 + r2 − pqr ,
where p, q, r are the weights of arrows in a quiver. We also classify skew-symmetric
mutation-finite real 3× 3 matrices and explore the structure of acyclic representatives
in finite and infinite mutation classes.

Keywords Quiver mutation · Reflection · Markov constant

Mathematics Subject Classification 13F60 · 20H15 · 51F15

1 Introduction andMain Results

Mutations of quivers were introduced by Fomin and Zelevinsky (2002) in the con-
text of cluster algebras and since then have found numerous applications in various
domains of mathematics. Mutations are involutive transformations decomposing the
set of quivers into equivalence classes called mutation classes (see Sect. 2.1 for pre-
cise definitions). Knowing the structure of mutation classes gives a lot of information
about the corresponding cluster algebras. It is especially beneficial if there exists a
certain combinatorial or geometric model for mutations. This is the case, for example,
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for adjacency quivers of triangulations of bordered marked surfaces (Fock and Gon-
charov 2006; Gekhtman et al. 2005; Fomin et al. 2008), where mutations correspond
to flips of triangulations.

There is a model for mutations of quivers containing a representative without ori-
ented cycles in their mutation class (such quivers are called mutation-acyclic): it was
shown in (Speyer and Thomas 2013; Seven 2015) that mutations of mutation-acyclic
quivers can bemodeled by reflections of a tuple of positive vectors in a certain quadratic
space (we call this a realization by reflections). One of the goals of this paper is to con-
struct a model for mutations of mutation-cyclic quivers of rank 3, and thus to obtain a
geometric realization for every quiver of rank 3 (Theorem 3.6). In particular, we prove
that mutations of mutation-cyclic rank 3 quivers can be modeled by π -rotations in
triples of points on a hyperbolic plane.

Mutation classes of rank 3 quiverswere studied inAssemet al. (2008), Beineke et al.
(2011), Berenstein et al. (2006), Felikson et al. (2012), Seven (2012) and Warkentin
(2014). In particular, the Markov constant C(Q) = p2 + q2 + r2 − pqr for a cyclic
quiver Q with weights (p, q, r) was introduced in Beineke et al. (2011) and proved to
be mutation-invariant. Combining our results with ones of Beineke et al. (2011), we
show that C(Q) defines the type and geometric properties of realizations of all rank 3
quivers (Theorem 4.4). For mutation-acyclic quivers,C(Q) also controls the signature
of the quadratic space where mutations are modeled by reflections. More precisely,
after considering appropriate projectivization, C(Q) chooses between the sphere S2,
Euclidean plane E2 and the hyperbolic plane H2, see Remark 4.7.

Throughout thewhole paper, we allow a quiver to have realweights, so all the results
concern a more general class of quivers than is usually considered (see also Lampe
2018). A quiver is mutation-finite if its mutation class is finite. The classification of
mutation-finite quivers with integer weights in rank 3 is extremely simple: there are
two quivers in the mutation class of an orientation of A3 Dynkin diagram, two quivers
in the mutation class of an acyclic orientation of A(1)

2 extended Dynkin diagram,
and the Markov quiver. However, in the case of real weights the question is more
interesting, we classify all the finite mutation classes in rank 3 in Theorem 5.9, which,
in its turn, leads to the complete classification of mutation-finite quivers with real
weights (Felikson and Tumarkin 2019).

Finally, we discuss the structure of acyclic representatives in mutation classes.
According to Caldero and Keller (2006), all acyclic quivers in any integer mutation
class can be mutated to each other via sink-source mutations only, i.e. by mutations in
vertices incident to incoming (or outgoing) arrows only. This is not the case for quivers
with real weights: already finite mutation classes may have two essentially distinct
acyclic representatives (see Table 1), and infinitemutation classes have infinitelymany
ones which are distributed densely, see Theorem 6.2.

2 Mutation-Acyclic Quivers via Reflections

In this section we model mutations of a mutation-acyclic rank 3 quiver via some
linear reflection group acting on S

2, E2 or H2. The results of this section can be
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deduced from Barot et al. (2006) [see also Seven (2015), Speyer and Thomas (2013)
and Felikson and Tumarkin (2018) for more general picture], we give a geometric
interpretation and observe that taking real weights instead of integer ones does not
affect the proofs.

2.1 Quiver Mutations

A quiver Q is an oriented graph with weighted edges without loops, 2-cycles and
multiple edges. We allow the weights to be any positive real numbers. We call the
directed edges arrows. By rank of Q we mean the number of its vertices.

For every vertex k of Q we define an involutive operation μk called mutation of
Q in direction k. It gives a new quiver μk(Q) which can be obtained from Q in the
following way (see Fomin and Zelevinsky 2002):

– orientations of all arrows incident to the vertex k are reversed, weights remain
intact;

– for every pair of vertices (i, j) such that Q contains arrows directed from i to k
and from k to j the weight of the arrow joining i and j changes as described in
Fig. 1.

Given a quiver Q, its mutation class is a set of all quivers (considered up to iso-
morphism) obtained from Q by all sequences of iterated mutations. All quivers from
one mutation class are called mutation-equivalent.

Quivers without loops and 2-cycles are in one-to-one correspondence with real
skew-symmetric matrices B = {bi j }, where bi j > 0 if and only if there is an arrow
from i th vertex to j th one with weight bi j . In terms of the matrix B the mutation μk

can be written as μk(B) = B ′, where

b′
i j =

{−bi j , if i = k or j = k;
bi j + |bik |bk j+bik |bk j |

2 , otherwise.

A rank 3 quiver (and the corresponding 3 × 3 matrix) is called cyclic if its arrows
compose an oriented cycle, and is called acyclic otherwise. A quiver (and the matrix)
is mutation-cyclic if all representatives of the mutation class are cyclic, and mutation-
acyclic otherwise.

Fig. 1 Quiver mutations. The
sign before r (resp., r ′) is
positive if the vertices of Q
(resp., Q′) form an oriented
cycle, and negative otherwise.
Either r or r ′ may vanish

µk

kk

qq pp

rr ′
±r ± r′ = pq
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2.2 Construction

2.2.1 Initial Configuration

Let Q be an acyclic rank 3 quiver and let B be the corresponding skew-symmetric
3 × 3 matrix. Consider a symmetric matrix with non-positive off-diagonal entries
M(B) = (mi j ), where mii = 2, mi j = −|bi j | if i �= j .

M(B)defines aquadratic form, andwecan consider it as thematrix of inner products
of some triple of vectors (v1, v2, v3) in a quadratic space V of the same signature as
M(B) has. Considering the projectivization P(V ) = V /R+, the images li of the
hyperplanes Πi = v⊥

i define lines in a space X of constant curvature, where X is the
sphere S

2 if M(B) is positive definite, a Euclidean plane E
2 if M(B) is degenerate

positive semidefinite, orH2 if M(B) is of signature (2, 1). The scalar product (vi , v j )

characterizes the mutual position of the corresponding lines:

|(vi , v j )| =

⎧⎪⎨
⎪⎩
2 cos∠(Πi ,Π j ) < 2 if li intersects l j ,

2 if li is parallel to l j ,

2 cosh d(li , l j ) > 2 otherwise,

where d(li , l j ) is the distance between diverging lines in H2.
Consider also the halfplanes l−i = {u ∈ P(V ) | (u, vi ) < 0}, let F = l−1 ∩ l−2 ∩ l−3 .

Since (vi , v j ) ≤ 0, F is an acute-angled domain (i.e., F has no obtuse angles).

2.2.2 Reflection Group

Given a vector vi ∈ V with (vi , vi ) = 2 one can consider a reflection with respect to
li = v⊥

i defined by ri (u) = u − (u, vi )vi . Reflections preserve the scalar product in
V , and ri (vi ) = −vi , i.e. ri is an isometry of X preserving li and interchanging the
halfspaces into which X is decomposed by li . We denote by G the group generated
by reflections r1, r2, r3.

2.2.3 Mutation

The initial acyclic quiver Q (and matrix B) corresponds to the initial set of generating
reflections in the group G and to the initial domain F ⊂ P(V ). Applying mutations,
we will obtain other sets of generating reflections in G as well as other domains in
P(V ).

More precisely, define mutation of the set of generating reflections by partial con-
jugation: μk(r j ) = rkr j rk if b jk > 0, and μk(r j ) = r j otherwise. Consequently,
the mutation of the triple of vectors (and of the triple of lines) is defined by partial
reflection:

μk(v j ) =

⎧⎪⎨
⎪⎩

v j − (v j , vk)vk if b jk > 0,

−vk if j = k,

v j otherwise.
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Note that themutation as defined above is not an involution. To fix this, choose a vector
u ∈ F and define μk as above (i.e. reflecting v j if b jk > 0) for the case (u, vk) < 0,
and by reflection of v j if b jk < 0 for the case (u, vk) > 0. Applications of two versions
of the definition differ by reflection in vk only. Throughout the paper we will mostly
use the configurations up to conjugation by an element of G, so it will be sufficient
for us to use the initial definition.

2.3 Geometric Realization by Reflections

Lemma 2.1 (Barot et al. (2006), Corollary of Proposition 3.2) Let Q be a rank 3
quiver, and let B be the corresponding skew-symmetric matrix. Let V = 〈v1, v2, v3〉
be a quadratic space and suppose that

(1) (vi , vi ) = 2 for i = 1, 2, 3, |(vi , v j )| = |bi j | for 1 ≤ i < j ≤ 3;
(2) if (vi , v j ) �= 0 for all i �= j , then the number of pairs (i, j) such that i < j and

(vi , v j ) > 0 is even if Q is acyclic and odd if Q is cyclic.

Then the set of vectors v′ = (μk(v1), μk(v2), μk(v3)) satisfies conditions (1)–(2) for
B ′ = μk(B).

We note that the statement of (Barot et al. 2006, Proposition 3.2) is formulated
in terms of quasi-Cartan companions, which are Gram matrices of tuples of vectors
{v1, v2, v3}, and their mutations, which are precisely changes of bases corresponding
to our mutations v �→ v′ defined above.

The statement of the lemma is proved in Barot et al. (2006) for integer skew-
symmetrizable matrices, however, their proof works for real skew-symmetric matrices
aswell.One can also note that for any skew-symmetricmatrix B there exists a quadratic
three-dimensional space V and a triple of vectors v1, v2, v3 ∈ V satisfying the assump-
tions of the lemma.

Definition 2.2 Let B be a 3×3 skew-symmetric matrix. We say that a tuple of vectors
v = (v1, v2, v3) is a geometric realization by reflections of B if conditions (1)–(2)
of Lemma 2.1 are satisfied. We also say that v provides a realization of the mutation
class of B if the mutations of v via partial reflections agree with the mutations of B,
i.e. if conditions (1)–(2) are satisfied after every sequence of mutations.

Given a geometric realization (v1, v2, v3) of B, consider the lines li = {u | (u, vi ) =
0}. The (unordered) triple of lines (l1, l2, l3)will be also called a geometric realization
by reflections of B (note that properties (1)–(2) do not depend on the choice of vectors
orthogonal to (l1, l2, l3)). A realization of B will also be called a realization of the
corresponding quiver Q.

Corollary 2.3 Every acyclic mutation class has a geometric realization by reflections.

Proof In view of Lemma 2.1 it is sufficient to find a geometric realization for an acyclic
quiver. This is provided by the construction above (notice that for the initial acyclic
quiver we get (vi , v j ) < 0, so condition (2) holds). 
�
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Remark 2.4 In contrast to quiverswith integerweights,mutation classes of quiverswith
realweightsmay havemore than one acyclic representative (modulo sink-sourcemuta-
tions), we discuss this in the last section. Meanwhile, we observe that by Lemma 2.1 a
triple of lines corresponding to any acyclic quiver determines an acute-angled domain,
while a triple corresponding to a cyclic quiver determines a domain with an obtuse
angle.

3 Mutation-Cyclic Quivers via �-Rotations

3.1 Construction

Similarly to acyclic mutation classes realized by partial reflections in S2,E2 orH2, we
will use π -rotations inH2 to build a geometric realization for mutation-cyclic classes.

3.1.1 Initial Configuration

Let Q be a cyclic rank 3 quiver and let B be the corresponding skew-symmetric 3× 3
matrix (we will assume b12, b23, b31 > 0). We will also assume |bi j | ≥ 2 for all i �= j
(in view of Lemma 3.3 below this is the case for quivers in mutation-cyclic classes).

Let V be a quadratic space of signature (2, 1), suppose that v1, v2, v3 are negative
vectors with (vi , vi ) = −2, |(vi , v j )| = |bi j | for i �= j . Then vi correspond to points
in the hyperbolic plane H2, the product (vi , v j ) represents the distance d(vi , v j ), i.e.,
(vi , v j ) = −2 cosh d(vi , v j ).

It is not immediately evident that for every mutation-cyclic matrix B there is a
corresponding triple of vectors v1, v2, v3, we will prove this in Sect. 4.

3.1.2 �-Rotations Group

With every x ∈ H
2 (i.e., with every negative v ∈ V ) we can associate a rotation by

π around x . A π -rotation Rv about v, (v, v) = −2, acts as Rv(u) = −u − (u, v)v.

Given three points v1, v2, v3, we can generate a group G = 〈Rv1, Rv2 , Rv3〉 acting
on H2.

3.1.3 Mutation

The initial matrix B corresponds to the initial set of generating rotations in the group
G and to the initial triple of points in H

2. Applying mutations, we will obtain other
sets of generating rotations of G as well as other triples of points.

More precisely, define mutation of the set of generating rotations by partial conju-
gation, in exactly the same way as for reflections: μk(r j ) = rkr j rk if b jk > 0, and
μk(r j ) = r j otherwise. Consequently, the mutation of the triple of points is defined
by partial rotation:

μk(v j ) =
{

−v j − (v j , vk)vk if b jk > 0,

vi otherwise.
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3.2 Geometric Realization by�-Rotations

Lemma 3.1 Let Q be a cyclic quiver of rank 3 with all weights greater or equal to 2,
let B be the corresponding skew-symmetric matrix with b12, b23, b31 > 0, and let V be
the corresponding quadratic space. Suppose that v1, v2, v3 ∈ V are vectors satisfying
(vi , vi ) = −2, (vi , v j ) = −|bi j | for 1 ≤ i < j ≤ 3.

Then Q′ = μk(Q) is a cyclic quiver with weights greater or equal to 2, and the set
of vectors v′ = (μk(v1), μk(v2), μk(v3)) satisfies the assumptions of the lemma for
B ′ = μk(B).

Proof Due to the symmetry, to prove the lemma we only need to check one mutation
(say, μ2). A direct computation shows that (v′

1, v
′
3) = −(b12b23 − b31) = −b′

13,
(v′

1, v
′
2) = (v1, v2) = b′

12, (v′
2, v

′
3) = (v2, v3) = b′

23. As v′
1 and v′

3 are negative,
(v′

1, v
′
3) = −2 cosh d(v′

1, v
′
3) < −2 < 0, which implies that b′

31 = −b′
13 < −2, i.e.

Q′ = μ2(Q) is a cyclic quiver with |b′
12|, |b′

23|, |b′
31| ≥ 2 for B ′ = μ2(B). Also, the

computation above shows that the assumptions are satisfied by v′ and B ′. 
�
Notation 3.2 From now on, given a cyclic quiver we denote its weights by p = |b12|,
q = |b23|, r = |b31|. We will also denote the corresponding matrix B by a triple
(p, q, r).

A quiver is called minimal if the sum of its weights is minimal across the whole
mutation class.

Lemma 3.3 Let Q be a cyclic quiver with weights p, q, r > 0.

(a) if r < 2 then Q is mutation-acyclic;
(b) if r = 2 and p �= q then Q is mutation-acyclic;
(c) if r = 2 and p = q ≥ 2 then Q is mutation-cyclic, and Q is minimal in its

mutation class.

Proof (a) We will apply mutations μ1 and μ3 alternately (starting from μ3), so that at
every step b13 = r stays intact. Furthermore, each of the steps changes either b12 or
b23 as follows: 
�
Claim 1 For n ∈ N denote Q′

n = (μ1μ3)
n/2Q if n is even or Q′

n = μ3(μ1μ3)
(n−1)/2Q

if n is odd. If all Q′
k are cyclic for k < n, then the entries of the corresponding matrix

B ′
n satisfy

|b′
12| (or |b′

23|) = fn(p, q, r) = un(r)q − un−1(r)p,

where un(x) is a Chebyshev polynomial of the second kind (of a half-argument) recur-
sively defined by u0(x) = 1, u1(x) = x, un+1(x) = xun(x) − un−1(x).

The proof is an easy induction: μ3(p, q, r) = (rq − p, q, r), and the step is given by
μ = μ1 orμ3 withμ( fn, fn+1, r) = ( fn+2, fn+1, r). The claim can also be extracted
from (Lee and Schiffler (2015), Lemma 3.2).

Claim 2 For any real p, q, r > 0 s.t. r < 2 there exists n ∈ Z+ such that un+1(r)q −
un(r)p < 0.
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To prove the claim, we will use Chebyshev polynomials of the second kind defined
by

U0(y) = 1, U1(y) = 2y, Un+1(y) = 2yUn(y) −Un−1(y).

Notice that if x = 2y then un(x) = Un(y). For 0 < r < 2 we can write r = 2 cos θ

for some 0 < θ < π/2. Then we have

un(r) = Un(cos θ) = sin((n + 1)θ)

sin θ
,

where the last equality is a well-known property of Chebyshev polynomials of the
second kind. If un+1(r)q − un(r)p ≥ 0, then

sin((n + 1)θ)

sin θ
q ≥ sin(nθ)

sin θ
p,

or just sin((n + 1)θ)q ≥ sin(nθ)p, as sin θ > 0. Since 0 < θ < π/2, there exists
n > 0 such that sin(kθ) > 0 for all 0 < k ≤ n but sin((n + 1)θ) < 0. This gives the
number n required in Claim 2.

Combining the two claims we see that there exists n ∈ N such that Q′
n is acyclic,

which completes the proof of part (a).
(b) If r = 2 then un(r) = n + 1, so, the condition un+1(r)q − un(r)p > 0 turns into
(n + 1)q − np > 0. Assuming q < p, this cannot hold if n is large enough.
(c) If p = q > 2 and r = 2 then there exist points v1, v2, v3 in H

2 realizing B =
(q, q, r). Indeed, we take v1 = v3, and choose any v2 such that 2 cosh d(v1, v2) = q
(as usual, we assume (vi , vi ) = −2). Applying repeatedly Lemma 3.1 we see that in
this case Q is mutation-cyclic. Moreover, the mutated triple of points always remains
collinear, and it is easy to see that every new mutation either increases the distances in
the triple or brings it to the previous configuration. This implies that the initial quiver
Q was minimal. 
�

Similarly to realizations by reflections (see Definition 2.2) we define realizations
by π -rotations.

Definition 3.4 Let B be a 3×3 skew-symmetric matrix. We say that a triple of vectors
v = (v1, v2, v3) is a geometric realization by π -rotations of B if the assumptions of
Lemma 3.1 hold. We also say that v provides a realization of the mutation class of B
if the mutations of v via partial π -rotations agree with all the mutations of B, i.e. if
the assumptions of Lemma 3.1 hold after every sequence of mutations.

We can now formulate the following immediate corollary of Lemma 3.1.

Lemma 3.5 A mutation-acyclic quiver has no realization by π -rotations.

Theorem 3.6 Let Q be amutation-cyclic rank 3 quiver, and let B be the corresponding
skew-symmetric matrix. Then the mutation class of B has a realization by reflections
or a realization by π -rotations.
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Proof Since Q is mutation-cyclic, Lemma 3.3 implies that B = (p, q, r) with
p, q, r ≥ 2. If there is a triple of points on H

2 on mutual distances dp, dq , dr ≥ 0,
where dx = arccosh x

2 , then Lemma 3.1 guarantees the realization by π -rotations (as
2 cosh d(u, v) = −(u, v)). Such a triple of points on H

2 does exist if and only if the
triangle inequality holds for dp, dq , dr .

If we assume that the triangle inequality does not hold, then it is an easy exer-
cise in hyperbolic geometry to find a triple of lines l p, lq , lr in H

2 such that
dp = d(lq , lr ), dq = d(l p, lr ) and dr = d(lq , l p), and two of these are sepa-
rated by the third one (as in Fig. 2, left). This provides us with a realization by
reflections. 
�

4 Geometry Governed by theMarkov Constant

Definition 4.1 The Markov constant C(p, q, r) for a triple (p, q, r), where p, q, r ∈
R, was introduced by Beineke et al. (2011) as

C(p, q, r) = p2 + q2 + r2 − pqr .

For a cyclic quiver Q with weights p, q, r , C(Q) is defined as C(p, q, r), while
for an acyclic quiver with weights p, q, r one has C(Q) := C(p, q,−r) (this can be
understood as turning an acyclic quiver into a cycle at the price of having a negative
weight). It is observed in Beineke et al. (2011) that C(Q) is a mutation invariant,
it was also shown in Beineke et al. (2011) that in the case of integer weights C(Q)

characterizes (with some exceptions) the mutation-acyclic quivers:

Proposition 4.2 (Beineke et al. (2011), extract from Theorem 1.2) Let Q be a rank
3 cyclic quiver with integer weights given by p, q, r ∈ Z≥0. Then the following
conditions are equivalent.

(1) Q is mutation-cyclic;
(2) p, q, r ≥ 2 and C(p, q, r) ≤ 4;
(3) C(p, q, r) < 0 or Q is mutation-equivalent to one of the following classes:

(a) C(p, q, r) = 0, (p, q, r) is mutation-equivalent to (3, 3, 3);
(b) C(p, q, r) = 4, (p, q, r) is mutation-equivalent to (q, q, 2) for some q > 2.

Our next aim is to give a geometric interpretation of C(Q) as well as to extend the
result to the case of real numbers p, q, r .

Fig. 2 No realization by
reflections for mutation-cyclic
quivers

)b()a(

lq lr lp
lq

lr

lp

dq

dr

dp
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The question of recognizing whether a quiver Q is mutation-acyclic is non-trivial
if Q is not acyclic itself [i.e. Q is a cycle (p, q, r)] and if p, q, r ≥ 2 [otherwise
we just use Lemma 3.3(a)]. For quivers of this type, the proof of Theorem 3.6 shows
that Q can be realized by π -rotations (and is mutation-cyclic by Lemma 3.5) or by
reflections depending on the triangle inequality for dr ≤ dp + dq , where p ≤ q ≤ r
and dx = arccosh x

2 . Denote

Δ(Q) = dp + dq − dr ,

understanding Δ(Q) ≥ 0 as “triangle inequality holds” and Δ(Q) < 0 as “it does
not”.

Lemma 4.3 Let Q = (p, q, r) be a rank 3 cyclic quiver with 2 ≤ p ≤ q ≤ r . Then

– if Δ(Q) > 0 then C(Q) < 4;
– if Δ(Q) = 0 then C(Q) = 4;
– if Δ(Q) < 0 then C(Q) > 4.

Proof Δ(Q) < 0 if and only if cosh(dp +dq) < cosh(dr ). Since cosh(dx ) = x/2, we
have

cosh(dp + dq) = p

2

q

2
+ sinh

(
arccosh

p

2

)
sinh

(
arccosh

q

2

)

= pq

4
+

√(
p2

4
− 1

) (
q2

4
− 1

)
.

Hence,Δ(Q) < 0 is equivalent to
√

(p2 − 4)(q2 − 4) < 2r− pq. Therefore,Δ(Q) <

0 implies (p2 − 4)(q2 − 4) < (2r − pq)2, i.e. 4 < p2 + q2 + r2 − pqr = C(Q).
An easy calculation shows that C(Q) > 4 and 2 ≤ p ≤ q ≤ r imply 2r − pq > 0,
so C(Q) > 4 also implies Δ(Q) < 0. 
�
Theorem 4.4 Let Q be a rank 3 quiver with real weights. Then

(1) if Q is mutation-acyclic thenC(Q) ≥ 0 and Q admits a realization by reflections;
(2) if Q is mutation-cyclic then C(Q) ≤ 4 and Q admits a realization byπ -rotations;
(3) Q admits both realizations (by reflections and by π -rotations) if and only if Q is

cyclic with p, q, r ≥ 2 and C(Q) = 4.

Proof (1) If Q ismutation-acyclic, consider the acyclic representative (wemay assume
it is Q itself). Then C(Q) ≥ 0 as it is a sum of four non-negative terms. Existence of
a realization by reflections is guaranteed by Corollary 2.3.
(2) If Q = (p, q, r) is mutation-cyclic, then by Lemma 3.3(a) we have p, q, r ≥ 2,
and by Theorem 3.6 Q has a realization either by reflections in H

2 or by π -rotations
(again, in H2). Which of the options holds depends on the triangle inequality, i.e., on
the sign of Δ(Q), which is determined by the sign of 4 − C(Q). More precisely, if
C(Q) ≤ 4 then the triangle inequality holds and Q has a realization by π -rotations,
and if C(Q) > 4 then Q has a realization by reflections.
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Suppose that amutation-cyclic quiver Q hasC(Q) > 4 and, hence, has a realization
by reflections. It is shown in Section 5 of Beineke et al. (2011) that every mutation-
cyclic class with C(Q) �= 4 contains a minimal element Qmin, where the sum of the
weights p + q + r is minimal over the whole mutation class [notice that Beineke
et al. (2011) shows this for all mutation classes with real weights]. Consider the
realization of Qmin = (pmin, qmin, rmin). As Qmin is still mutation-cyclic, we have
pmin, qmin, rmin ≥ 2 which implies that the lines l p, lq , lr in the realization of Qmin do
not intersect each other. If one of the lines (say, lr ) separates the others (see Fig. 2a),
then partial reflection in lr (reflection of exactly one of l p and lq ) decreases one of the
three distances, which contradicts the assumption that Qmin is minimal in the mutation
class. If none of these lines separates the other two (see Fig. 2b), then for any choice of
normal vectors there will be even number of positive scalar products (vi , v j ), which
does not agree with Definition 2.2 for a cyclic quiver.

By Theorem 3.6, the contradiction shows that every mutation-cyclic quiver Q has
C(Q) ≤ 4, admits a realization by π -rotations, and does not admit a realization by
reflections if C(Q) �= 4.
(3) First, by Lemma 3.5 a mutation-acyclic quiver cannot be realized by π -rotations.
Next, a mutation-cyclic quiver with C(Q) �= 4 cannot be realized by reflections
as shown in the proof of part (2). Finally, suppose that Q is mutation-cyclic and
C(Q) = 4. Then there is a realization of Q by π -rotations about 3 collinear points
(as C(Q) = 4 is equivalent to the equality in the triangle inequality). Now, consider
the line l containing these three points. Taking three lines through these three points
orthogonal to l gives a realization by reflections. 
�
Remark 4.5 (On realizations of (2, 2, 2)) In case of the quiver (2, 2, 2)both realizations
above are very degenerate (i.e., either reflections with respect to three coinciding lines
or π -rotations with respect to three coinciding points). However, one can also consider
a realization by reflections with respect to three mutually parallel lines (in E2 or H2),
this will lead to an infinite group G.

Remark 4.6 As it is mentioned in Section 5 of Beineke et al. (2011), if Q is mutation-
cyclic with C(Q) = 4 then the mutation class of Q may have no minimal quiver.
Having in mind any of the two realizations of Q described above, it is clear that a
mutation-cyclic Q = (p, q, r) has a minimal representative in the mutation class if
and only if dp/dq ∈ Q. If dp/dq /∈ Q then we can always make the distances between
three collinear points (or between three lines) as small as we want, which means that
the quiver tends to the Markov quiver (2, 2, 2).

Remark 4.7 (Geometric meaning of C(Q) for mutation-acyclic Q) If Q is mutation-
acyclic, C(Q) is also responsible for the choice of the space H2, E2 and S

2. Indeed,
the choice of this space depends on the sign of the determinant of the matrix M(B)

(see Sect. 2.2.1), cf. Seven (2012): det M(B) = −2(p2 + q2 + r2 + pqr − 4) =
−2(C(Q) − 4).

Remark 4.8 (Geometric meaning of C(Q) for mutation-cyclic Q) Let Q = (p, q, r)
be mutation-cyclic, let A, B,C ∈ H

2 be the points providing a realization of Q
by π -rotations, denote by RA, RB, RC the corresponding π -rotations. Then C(Q) is
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Fig. 3 Geometric meaning of
C(Q)

responsible for the type of the hyperbolic isometry g = RA ◦ RB ◦ RC in the following
way: g is elliptic (rotation by α, where 2 cosα = √

4 − C) if C(Q) > 0, parabolic if
C(Q) = 0, and hyperbolic (translation by d, where 2 cosh d = √

4 − C) ifC(Q) < 0.
This can be proven following the ideas of Beardon (1983, §11.5). To a trian-

gle with sides a, b, c and opposite angles α, β, γ one assigns a positive number
λ := sinh a sinh b sin γ = sinh b sinh c sin α = sinh c sinh a sin β, where the equality
follows from the (hyperbolic) sine rule. Theorem 11.5.1 of Beardon (1983) states that
the square of the trace of the element of PSL(2,R) corresponding to g = RA◦RB◦RC

equals 4λ2. Then a short exercise in hyperbolic geometry shows that 2λ = √
4 − C ,

while the types of hyperbolic isometries are distinguished by the corresponding traces,
see Beardon (1983).

We now summarize the geometric meaning of C(Q) provided in Theorem 4.4 and
Remarks 4.7, 4.8 in Fig. 3. Namely, C(Q) tells whether Q is mutation-acyclic or
mutation-cyclic (admits realization by reflections or π -rotations), for realization by
reflections it chooses the space where the groupG acts, and for realization by rotations
tells the type of the product of the generators.

5 Application: Classification of Rank 3 Quivers of Finite Mutation
Type

We now use the geometric models constructed above to classify rank 3 mutation-finite
quivers.

Lemma 5.1 Let Q = (p, q, r)or Q = (p, q,−r)be amutation-finite quiver, p, q, r ∈
R≥0. Then p, q, r ≤ 2.

Proof Suppose first that Q is cyclic, i.e. Q = (p, q, r), we may assume p ≥ q ≥ r >

0. If p > 2, then r ′ = pq − r > 2q − r ≥ q, which implies that the mutation class
contains an infinite sequence of quivers with strictly increasing sum of weights, so Q
cannot be mutation-finite.

Now, suppose Q = (p, q,−r) is acyclic with max(p, q, r) > 2. Applying, if
needed, sink/source mutations, we may assume Q = (r , q,−p)with p ≥ q ≥ r > 0,
p > 2. Then, after one more mutation we get a cyclic quiver with p′ = qr + p > 2,
which results in an infinite mutation class as shown above. 
�

A combination of Lemma 3.3 with Lemma 5.1 leads to the following.
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Corollary 5.2 If Q is a mutation-cyclic quiver of finite mutation type then Q =
(2, 2, 2).

Thus, we only need to consider mutation-acyclic quivers, i.e., ones represented by
reflections in one of the spaces S2,E2 and H

2 (depending on the sign of 4 − C(Q)),
see Theorem 4.4(1).

Lemma 5.3 Suppose that Q = (p, q,±r) is mutation-finite. Then p = 2 cos(πk/l)
for some k ∈ Z≥0, l ∈ Z+. The same holds for q and r.

Proof By Lemma 5.1 we have p, q, r ≤ 2, so the lines l p, lq and lr in the realization
of Q intersect each other forming some angles θp, θq , θr (if p = 2 then the lines lq
and lr are parallel).

Suppose Q = (p, q,±r) and p = 2 cos θp. Applying μ2 and μ1 alternately,

we will get infinitely many triples of lines (l(n)
p , l(n)

q , l(n)
r ) where l p = l(n)

p and all

lines l(n)
q , l(n)

r pass through the same point O = lq ∩ lr and form the same angle

θp = ∠(l(n)
q , l(n)

r ) = ∠(l(n)
r , l(n+1)

q ), see Fig. 4. If θp is not a rational multiple of π ,

then there are infinitely many intersection points of lines l(n)
r with l p, thus infinitely

many distinct angles. Therefore, quivers obtained from Q bymutationsμ2 andμ1 will
contain infinitely many different entries, which implies that Q cannot be mutation-
finite. 
�

Lemma 5.4 Let Q be a mutation-acyclic quiver having a realization by reflections in
H

2 (i.e. C(Q) > 4). Then Q is not mutation-finite.

Proof By Lemma 5.1, we may assume p, q, r ≤ 2, i.e. every quiver in the mutation
class is represented by a triple l p, lq , lr of mutually intersecting (or parallel) lines.
First, suppose p = 2 (i.e. θp = 0 and lq is parallel to lr ). By assumption C(Q) > 4,
which implies that l p, lq , lr are not mutually parallel. Hence, after several mutations

preserving l p we will get a triple of lines (l p, l
(n)
q , l(n)

r ) where l p is disjoint from l(n)
q

and l(n)
r , see Fig 5a. This contradicts Lemma 5.1.

Thus, Q (and every quiver in its mutation class) is realized by a triple of mutually
intersecting lines. The angles θp, θq , θr in the triangle representing Q = (p, q,±r)
are functions of p, q, r : p = 2 cos θp (same for q and r ). So, if Q is mutation-finite
then there is a smallest non-zero angle θmin such that θmin appears as an angle for a
realization of some Q′ in the mutation class of Q.

lp
lq lr

l(n)
r

l(n)
q

θp θp θp
θp

θq θr

O

l0

li

li−1

θmin

θmin
θmin

θminθmin

Fig. 4 Angles are π -rational in mutation-finite case
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lp

lq lr l(n)q l(n)r

θp θp θp θp

θmin θmin

α
O

S1 S2lp

(b)(a)

Fig. 5 Hyperbolic case. (We use upper half-plane model on the left and Poincaré disc model on the right)

Consider the realization T0 = (l p, lq , lr ) of the quiver Q′ and let θmin = ∠(lq , lr ).
Applyingmutationsμ2 andμ1 as in the proof ofLemma5.3 (i.e., l p is always preserved
and the image of lq is reflected with respect to the image of lr or vice versa), we will
get further triangles Ti realizing different quivers in the mutation class. We aim to
show that some of the triangles Ti either contains an angle smaller than θmin or has
two disjoint sides (contradicting Lemma 5.1).

Let O = lq ∩ lr . Consider the lines through O forming the angle θmin with l p
(see Fig. 5b), let S1 and S2 be the intersection points of these lines with l p. Let α be
the other angle formed by these lines (see Fig. 5b). Each of the triangles Ti has O
as a vertex, and as the sum of angles in a hyperbolic triangle is less than π , we have
∠S1OS2 < π − 2θmin, which implies that

α = π − ∠S1OS2 > 2θmin.

Thismeans that at least one of the triangles Ti will have a side crossing the grey domain
between the lines. However, such a line will either be disjoint from l p or parallel to l p
(contradicting Lemma 5.1 or the case considered above respectively), or it will cross l p
at an angle smaller than θmin which is not possible either. The contradiction completes
the proof of the lemma. 
�

Lemma 5.5 Suppose that Q is mutation-acyclic and has a realization by reflections
in E2 (i.e. C(Q) = 4). Then the following conditions are equivalent:

(a) Q is mutation-finite;
(b) Q = (p1, p2,±p3) with pi = 2 cos(π ti ), where ti ∈ Q;
(c) Q is mutation-equivalent to (2 cos(π/n), 2 cos(π/n), 2), where n ∈ Z+.

Proof Condition (a) implies (b) by Lemma 5.3. Next, (b) says that in the realization
(l0, l1, l2), one has ∠(l1, l0) = k1π/n1 and ∠(l2, l0) = k2π/n2 for some ki , ni ∈ Z+.
This implies that under the mutations one can only obtain angles of size kπ/n1n2,
where k ∈ Z+, k < n1n2. So, in any quiver mutation-equivalent to Q the weights can
only take finitely many values 2 cos(kπ/n1n2), which results in finitely many quivers
in the mutation class. This shows equivalence of (a) and (b). Obviously, (c) implies
(b). We are left to show that (c) follows from either (a) or (b).

Assume Q is mutation-finite. Then there is a minimal angle θmin obtained as an
angle between the lines in a realization of some quiver Q′ in the mutation class of
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Q. Assume that θmin = ∠(l1, l2) and consider the alternating sequence of mutations
μ1 and μ2. Up to conjugation, we can assume that all these mutations preserve l0
and reflect the image of l2 with respect to the image of l1 (or vice versa). We obtain
finitely many lines l1, l2, . . . , lm through O = l1 ∩ l2, any two adjacent lines li and
li+1 form an angle θmin and belong to a realization of one quiver (together with l0). As
the angle formed by l0 and any of these lines cannot be smaller than θmin, we conclude
that θmin = π/n for some integer n, and one of l1, . . . , lm , say li , is parallel to l0, see
Fig. 4. Then the lines (li , li−1, l0) form a realization of some quiver Q′′ in the mutation
class of Q, where Q′′ = (2 cos θmin, 2 cos θmin, 2), θmin = π/n. This shows that (a)
implies (c). 
�
Remark 5.6 An example of acyclic representative in the mutation class of (2 cos π

n ,

2 cos π
n , 2) is (2 cos π

n , 2 cos(π
2 − π

2n ),−2 cos(π
2 − π

2n )) if n is odd and (2 cos π
n ,

2 cos(π
2 − π

n ), 0) if n is even.

Lemma 5.7 Suppose that Q is mutation-acyclic and has a realization by reflections
in S

2 (i.e. C(Q) < 4). If Q is mutation-finite then Q is mutation-equivalent to
(2 cos(π t1), 2 cos(π t2), 0), where (t1, t2) is one of the following pairs:

(1/3, 1/3), (1/3, 1/4), (1/3, 1/5), (1/3, 2/5), (1/5, 2/5).

Proof By Lemma 5.3, the weights of Q are of the form 2 cos θ , where θ is a rational
multiple of π . We will apply a mutation μ to Q and check whether μ(Q) still satisfies
this condition.

More precisely, we can assume that Q is acyclic and

Q = (p, q,−r) =
(
2 cos

π t

n
, 2 cos

πs

n
,−2 cos

πm

n

)
,

where 0 < π t
n ≤ πs

n ≤ πm
n ≤ π

2 and n ∈ Z+ such that π/n is the smallest angle in
the realization of the mutation class. Applying the mutation preserving p and q and
changing r to r ′ we get

r ′ = pq + r = 4 cos
π t

n
cos

πs

n
+ 2 cos

πm

n

= 2 cos
π(s + t)

n
+ 2 cos

π(s − t)

n
+ 2 cos

πm

n
.

Notice that r ′ should be also a double cosine of an integer multiple of π/n. So, if Q
is mutation-finite, then there are integer numbers s, t,m, k, n satisfying the equation

cos
π(s + t)

n
+ cos

π(s − t)

n
+ cos

πm

n
= cos

πk

n
. (1)

It was shown by Conway and Jones (1976) that the only rational linear combinations
of cosines of at most four rational multiples of π between 0 and π giving a rational

123



A. Felikson, P. Tumarkin

number (without proper subset having this property) are the following:

cosπ/3 = 1/2, cosπ/2 = 0,

− cosϕ + cos(π/3 − ϕ) + cos(π/3 + ϕ) = 0 (0 < ϕ < π/6),

cosπ/5 − cos 2π/5 = 1/2,

cosπ/7 − cos 2π/7 + cos 3π/7 = 1/2,

cosπ/5 − cosπ/15 + cos 4π/15 = 1/2,

− cos 2π/5 + cos 2π/15 − cos 7π/15 = 1/2,

or one of four other equations, each involving four cosines on the left and 1/2 on the
right.

The latter four equations are irrelevant to us as they have too many terms to result
in an equation of type (1). So, we need to consider the former seven equations and a
trivial identity cosϕ+cosψ = cosϕ+cosψ . For each of these identities wematch its
terms to the terms of (1) (taking into account the signs of the terms) and compute the
values of s, t,m, k, n. Most of the values obtained by this procedure are not relevant
by one of the two reasons:

– either the values s, t,m, n correspond to a triangle in H
2 or E2, but not in S

2 as
needed;

– or the values s, t,m, n do not correspond to an acute-angled triangle (which should
be the case as we start with an acyclic quiver Q).

After removing irrelevant results, there are 13 cases left, some of them correspond-
ing to mutation-infinite quivers. To exclude these, we check one more mutation and
write an equation similar to (1) for rq + p or rp + q. Removing these, we result
in five quivers listed in the lemma plus two more quivers: (1, 1,−2 cos 2π/5) and
(2 cos 2π/5, 2 cos 2π/5,−2 cos 2π/5), which turned out to be mutation-equivalent to
(2 cosπ/5, 2 cos 2π/5, 0) and (1, 2 cos 2π/5, 0) respectively. 
�
Remark 5.8 (Finite mutation classes, spherical case) In Table 1 we list the quivers
belonging to the five finite mutation classes described by Lemma 5.7. Notice that
two of these classes contain two acyclic representatives which are not sink/source
equivalent.

Corollary 5.1 together with Lemmas 5.4, 5.5 and 5.7 imply the following classifi-
cation.

Theorem 5.9 Let Q be a connected rank 3 quiver with real weights. Then Q is of finite
mutation type if and only if it is mutation-equivalent to one of the following quivers:

(1) (2, 2, 2);
(2) (2 cos(π/n), 2 cos(π/n), 2), n ∈ Z+;
(3) (1, 1, 0), (1,

√
2, 0), (1, 2 cosπ/5, 0), (2 cosπ/5, 2 cos 2π/5, 0),

(1, 2 cos 2π/5, 0).
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Table 1 Finite mutation classes with C(Q) < 4

Acyclic quivers (up to sink/source) Cyclic quivers C(Q)

(1, 1, 0) (1, 1, 1) 2

(1,
√
2, 0) (

√
2,

√
2, 1) 3

(1, 2 cosπ/5, 0) (2 cosπ/5, 2 cosπ/5, 1) 5+√
5

2

(2 cosπ/5, 2 cosπ/5, 2 cosπ/5)

(2 cosπ/5, 2 cos 2π/5, 0) (2 cosπ/5, 2 cos 2π/5, 1) 3

(1, 1,−2 cos 2π/5) (1, 1, 2 cosπ/5)

(1, 2 cos 2π/5, 0) (2 cos 2π/5, 2 cos 2π/5, 1) 5−√
5

2

(2 cos 2π/5, 2 cos 2π/5, −2 cos 2π/5)

a

b c

d
e

hgf

m n
a

c b

d

fe

h g

nm

Fig. 6 “Exchange graphs” of the mutation classes for quivers (2 cosπ/5, 2 cos 2π/5, 0) on the left and
(1, 2 cos 2π/5, 0) on the right, the edges carrying the same letters should be identified. Each graph contains
two connected acyclic belts labeled differently (blue and red) and can be drawn on a torus (color figure
online)

Remark 5.10 The five mutation classes in part (3) of Theorem 5.9 contain all rank 3
quivers of “finite type”, i.e. ones that can be modeled by reflections of finitely many
vectors. Namely, the first three correspond to types A3, B3 and H3, the exchange
graphs for these classes can be found in Fomin and Reading (2007). The remaining
two can also bemodeled by reflections in some of the roots of the non-crystallographic
root system H3, we draw the corresponding “exchange graphs” in Fig. 6.

Remark 5.11 One can check that the triangular domains corresponding to quivers in the
mutation classes of A3, B3 and H3 tessellate the 2-sphere. The domains corresponding
to quivers in the mutation classes of (2 cosπ/5, 2 cos 2π/5, 0) and (1, 2 cos 2π/5, 0)
tessellate a torus which is a two or fourfold covering of the sphere respectively.

6 Acyclic Representatives in Infinite Real Mutation Classes

Table 1 shows that there may be acyclic representatives in the same mutation class
which differ much more than just by a sequence of sink/source mutations.

123



A. Felikson, P. Tumarkin

Lemma 6.1 Let Q = (p, q, r) be mutation-acyclic with p < 2. Then, iterating muta-
tions μ1 and μ2 (so that p and lp are preserved), one can always reach an acyclic
representative in at most �π/ arccos p

2 � mutations. In particular, there is an acyclic
representative with weight p.

Proof Consider a realization (l p, lq , lr ) of Q by reflections and consider the triples of
lines obtained from (l p, lq , lr ) by mutationsμ1 andμ2 applied alternately (see Fig. 4).
If n consecutive sectors cover the whole angle 2π around the common point O of lq
and lr , then at least one of the corresponding �(n + 1)/2� triples is acute-angled.

Since arccos p
2 = θp ≥ 2π

n , we can take n to be equal to �2π/ arccos p
2 � + 1. As

one needs to make �(n − 1)/2� mutations to obtain all the �(n + 1)/2� triples that
produce n sectors covering 2π , the number of required mutations does not exceed
�π/ arccos p

2 �. 
�
Theorem 6.2 Let Q = (p, q, r) be mutation-acyclic with 0 < C(Q) < 4.
Then there exists an acyclic quiver Q′ which can be obtained from Q in at most

�π/ arcsin
√
4−C(Q)

2 � mutations.
Proof Consider the realization (l p, lq , lr ) of Q by reflections. As C(Q) < 4, this
realization is a configuration of 3 lines on a sphere. By Lemma 6.1, it is sufficient to
show that the angles in the realization of other quivers in the mutation class cannot be
too small. We will show that they cannot become smaller than arcsin(

√
4 − C(Q)/2).

To show this we follow the same ideas as in the proof of Lemma 4.8. Namely, we
choose a triangle bounded by (l p, lq , lr ) and denote the lengths of its sides by a, b, c
and the opposite angles by α, β, γ . Then we show that

λ := sin a sin β sin γ = sin b sin α sin γ = sin c sin β sin γ = √
4 − C(Q)/2.

Here all but the last equalities follow from the spherical sine law, and the last equality
follows from spherical second cosine law cos a sin β sin γ = cosβ cos γ − cosα,
while taking in mind that p = 2 cosα, q = 2 cosβ and r = 2 cos γ . In particular, we
see that

sin γ ≥ sin a sin β sin γ = √
4 − C(Q)/2.

As C(Q) is independent on the representative in the mutation class, we have
the same estimate for every angle in every triangle we can obtain by mutations of
(l p, lq , lr ). 
�
Remark 6.3 There is no counterpart of Theorem 6.2 for the case of C(Q) ≥ 4 (i.e.
for Euclidean and hyperbolic realizations). Indeed, take any triple of lines (l p, lq , lr )
in E

2, where lq and lr form a π -irrational angle θp. Then one can use mutations μ1
and μ2 to obtain a triple of lines with (at least one) arbitrary small angle. Repeating
the same but now centered in the smallest angle, we can get a triple of lines with
two angles arbitrary small (and thus the third one arbitrary close to π ), i.e. a triple of
almost coinciding lines. It is easy to see that this cannot be turned into an acute-angled
configuration in a predefined number of mutations.
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