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ABSTRACT

We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS).
TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS)
subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects
(variable stars and active galactic nuclei across 7500 deg2 selected from a combination of SDSS and multi-epoch
Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects,
avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel
Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample
will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or
more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables,
approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The
variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and
variability measurements similar to those we develop here may be used to make more uniform quasar samples in
large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS
will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant
chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to
identify and characterize the multitude of variable objects that will be detected photometrically in even larger
variability surveys such as Large Synoptic Survey Telescope.

Key words: quasars: supermassive black holes – stars: variables: general – surveys

1. INTRODUCTION

Variability in optical luminosity is an important behavior in
many astronomical objects, and enhancing our understanding
of the physics of a variety of systems. In this paper, we discuss
objects whose optical luminosity varies by a tenth of a

magnitude or more on timescales of a year or less, a level that
can be easily measured with ground-based observations, and
refer to them as “variable objects.” This term encompasses both
stellar variables and active galactic nuclei (AGNs). The large
majority of AGNs (especially quasars) and approximately one
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percent of stars satisfy this definition. Quasars and other AGNs
generally vary stochastically in optical bands by up to several
tenths of a magnitude over months and years (Giveon et al. 1999;
Vanden Berk et al. 2004). The main cause of quasar variability in
the optical continuum is instability in the accretion disk
(Rees 1984; Kawaguchi et al. 1998; Pereyra et al. 2006; Ruan
et al. 2014). Blazars, generally accepted to be AGNs whose
relativistic jets point along the line of sight (Antonucci 1993;
Urry & Padovani 1995), vary due to Doppler beaming of their jet
emission (Ulrich et al. 1997). Microlensing by stars in
intervening lensing galaxies (Wambsganss 2006; Morgan
et al. 2010) can also contribute to AGN variability in some cases.

Stellar variability is produced by a large variety of physical
processes. Chromospheric magnetic fields cause flaring stellar
activity (Schatzman 1962; Wilson 1963; Baliunas et al. 1995;
Hall et al. 2009; Mathur et al. 2014) that produces significant
optical variability, particularly in younger late-type stars.
Periodically pulsating variable stars exhibit large amplitude
variability caused by the κ mechanism in which a star’s
atmospheric opacity varies periodically (Zhevakin 1959). These
are more likely to appear as early-type stars, and the most famous
pulsators, RR Lyrae and Cepheid variables, are commonly used
as “standard candle” distance probes (Hubble 1929; Rod-
gers 1957; Pritchet & van den Bergh 1987; Smith 1995;
Freedman et al. 2001; Sesar et al. 2010). Cataclysmic variables
(CVs) are binaries in which a white dwarf accretes material from
its companion producing occasional outbursts that can generate
several magnitudes of variability (Mumford 1963; Connon
Smith 2007; Knigge 2011). CV donor stars can appear as a wide
variety of stellar types although most CVs involve a red dwarf or
giant. Eclipsing binaries can also produce significant periodic
variability (Stephenson 1960; Debosscher et al. 2011; Beck
et al. 2014) across all stellar types.

Because of its astrophysical importance, variability has
become the focus of many recent and upcoming photometric
surveys in which the same region of sky is imaged multiple
times. A series of small (20–100 deg2) surveys including the
Faint Sky Variability Survey (Groot et al. 2003) and the
Massive Compact Halo Object (MACHO) (Alcock et al. 2001)
have obtained hundreds to thousands of photometric measure-
ment epochs. The Kepler Mission (Borucki et al. 2010) is
probing similarly sized areas with much greater photometric
precision and tens of thousands of observation epochs. The
Optical Gravitational Lensing Experiment (OGLE) I-OGLE IV
(Udalski et al. 2008; Wyrzykowski et al. 2014), the QUEST
RR-Lyrae Survey (Vivas et al. 2004), the Sloan Digital Sky
Survey (SDSS, York et al. 2000), Stripe 82 (Sesar et al. 2007),
and the VISTA Variables in the Vía Láctea ESO Public Survey
(Catelan et al. 2011) cover 2000, 700, 290, and 560 deg2,
respectively, with each providing on the order of 100
measurement epochs per source. Recently, a number of “full
sky” (at least 10,000 deg2) variability surveys have been
completed. ROTSE-I (Akerlof et al. 2000; Woźniak
et al. 2004b), The La Silla-QUEST Variability Survey in the
Southern Hemisphere (Hadjiyska et al. 2012), the Catalina Sky
Survey (CSS; Drake et al. 2009), the Palomar Transient
Factory (PTF, Law et al. 2009), All-Sky Automated Survey
(Pojmanski 2002), the Lincoln Near-Earth Asteroid Research
survey (LINEAR, Palaversa et al. 2013), and Pan-STARRS1
(PS1, Kaiser et al. 2002, 2010) obtain between 50 and 400
measurements per object. Of these, PS1 is the deepest and
covers the largest area, and PS1 data will be the focus of this

paper. In the near future, the Gaia mission (Lindegren
et al. 2008) and the Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration et al. 2009) will extend full sky
surveys to greater precision, more rapid cadences and much
fainter limits.
These photometric surveys have been accompanied by many

large spectroscopic surveys. The SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013), its SDSS-
IV extension eBOSS (eBOSS; K. Dawson et al. 2015, in
preparation), and the LAMOST ExtraGAlactic Surveys (Wang
et al. 2009) will eventually take 1.3 106× spectra of quasars,
which are generally variable. SDSS has also taken 2.4 105×
optical stellar spectra in the Sloan Extension for Galactic
Understanding and Exploration (Yanny et al. 2009) and will
take 105 high resolution infrared spectra with the APO galactic
evolution experiment (Zasowski et al. 2013). The Bulge Radial
Velocity Assay (Kunder et al. 2012), the Radial Velocity
Experiment (Kordopatis et al. 2013), the LAMOST experiment
for galactic understanding and exploration (Deng et al. 2012),
and the galactic archaeology with HERMES survey (Zucker
et al. 2012) will obtain between 104 and 2.5 106× stellar
spectra each. We expect roughly 1% of the stars in each of
these surveys to satisfy our definition of variable. Finally, the
Gaia mission will obtain high resolution (R ≈ 11,500) narrow
filter (8470 Å λ< < 8740) and low resolution (10 R< < 200)
broad filter (3300 Å λ< < 10,000) spectroscopy of V10 178 <
objects. These spectra will provide precise radial velocity
measurements and generally characterize a wide variety of
astrophysical objects, but may be less useful for the broad
variety of galactic and extragalactic variable objects we target
at characterizing, e.g., specific absorption and emission lines
that fall outside the narrow high resolution spectra.
Despite these dedicated photometric variability surveys and

similarly large spectroscopic surveys, large spectroscopic
surveys of variable objects are somewhat lacking. There have
been variability-selected samples of quasars (e.g. Palanque-
Delabrouille et al. 2011a) and RR Lyrae stars (e.g. Drake
et al. 2013) as well as relatively small SDSS spectroscopic
variability studies of subdwarfs (Geier et al. 2011), white dwarf
main-sequence binaries (Rebassa-Mansergas et al. 2011),
white dwarfs (Badenes et al. 2009; Mullally et al. 2009;
Badenes et al. 2013), and field stars more generally (Pourbaix
et al. 2005). But these surveys have been relatively small in
size and have used color information, spectra or specific light
curve character to target specific types of variables.
The Time Domain Spectroscopic Survey (TDSS) has been

designed to widen the scope of spectroscopic surveys of variable
objects and will soon become the largest medium resolution
(R 2000≈ ), broad wavelength (3600 Å λ< < 10,400 Å) spec-
troscopic survey of variable objects. This survey, a subproject of
the SDSS-IV eBOSS, will cover 7500 deg2 and include 220,000
variability-selected targets with no focus on any specific
variability or photometric type in target selection. TDSS is not
well-suited to spectroscopic identification of rapid transients,
because plug plates to accommodate the 1000 spectroscopic
fibers must be drilled well in advance of observations.
Roughly 90% of TDSS targets will be TDSS’s Single Epoch

Spectroscopy (SES) targets, for which TDSS will produce a
single discovery (identification/classification) spectrum. For
bright, quickly varying targets within this sample, we will also
be able to study spectroscopic variability by examining the
spectroscopic sub-exposures taken over hours or sometimes
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several nights. This TDSS SES sample is designed to be a
probe of general optical variability and will be the subject of
this paper.

The remaining 10% of TDSS spectra will be drawn from one
of TDSS’s nine Few Epoch Spectroscopy (FES) projects, a
series of smaller (≈1000 targets each) samples with previous
SDSS spectroscopy for which TDSS will obtain another
spectrum for two- and occasionally three-epoch comparison.
The FES projects are each designed to probe a specific type of
variable object and science topic. These nine current projects
are devoted to:

1. Radial velocity variation in dwarf carbon stars
2. M-dwarf white dwarf binaries
3. Activity in ultracool dwarfs on decadal timescales
4. Stars with more than 0.2 magnitudes of variability
5. Broad absorption line trough variability (as in Filiz

et al. 2013) in quasars
6. Balmer line variability in high signal to noise quasars
7. Double-peaked broad emission line quasars
8. Searching for binary black hole quasars via Mg II line

velocity shifts
9. Quasars with more than 0.7 magnitudes of variability

The details of these FES projects will be addressed in future
papers.

In this paper, we describe how the TDSS SES Project
(subsequently referred to as simply TDSS) produces a large
sample of photometric variable objects with a broad range of
variability types while avoiding spurious, non-astrophysical
“variability” in its target selection. In Section 2 we outline
TDSS’s role in eBOSS, the larger SDSS-IV optical spectro-
scopy project. In Section 3 we demonstrate how the
combination of SDSS and PS1 photometry allows the
construction of a 7500 deg2, relatively uniform sample, and
we describe our algorithm for quantifying variability into a
single metric in Section 4. In Section 5 we present our ultimate
target prioritization. We estimate our survey purity (fraction of
candidates that genuinely vary by a few tenths of magnitudes)
and show how it varies across the sky in Section 6. We describe
the selection of a small subsample of i-band dropouts that
would have been missed by our algorithm without special
effort in Section 7. We statistically classify our complete list of
targets by their colors in Section 8 and discuss how our
selection percentage varies as a function of color in Section 9.
Finally, we compare the targets selected by our algorithm using
our data set to small sets of known variable objects and objects
with existing SDSS spectra from SDSS Stripe 82 in Section 10.

2. TDSS AND EBOSS

TDSS is a subprogram of the Extended Baryon Oscillation
Spectroscopic Survey (eBOSS). eBOSS is an SDSS-IV project
designed to perform a variety of cosmological measurements
with spectroscopy of quasars (A. Myers et al. 2015, in
preparation), luminous red galaxies (A. Prakash et al. 2015, in
preparation), X-ray emitting quasars and cluster galaxies
(M. L. Menzel et al. 2015 in preparation, A. Finoguenov
et al. 2015, in preparation, and A. Clerc et al. 2015, in
preparation), and emission line galaxies (Comparat et al.
2013). TDSS will be paired with the main eBOSS survey
(shown in Figure 1) and is planned to cover a total of 7500
deg2 in the Northern and Southern Galactic Caps. eBOSS
devotes 10 fibers deg−2 to TDSS-only targets. But TDSS also

selects an additional 23 TDSS-joint targets deg−2 that have
previous SDSS spectroscopy or are part of the main eBOSS
quasar target list most of which is selected using colors alone
with the XDQSOz algorithm (Bovy et al. 2012). A small
number of eBOSS quasars are also selected using a combina-
tion of colors and optical variability from the PTF (Palanque-
Delabrouille et al. 2011b). The full TDSS sample will thus
include 33 objects deg−2. See Section 6 for more details.
Spectroscopy for the main TDSS sample will be obtained as

part of the eBOSS schedule on the BOSS spectrograph (Smee
et al. 2013). At the TDSS i = 21 magnitude limit, we will obtain
per pixel signal to noise ratios of 5 or better (Dawson et al. 2013;
typical pixel size is roughly 1 Å). We use an i = 17 bright limit
to prevent saturation and signal leaking between adjacent fibers.
The spectra cover 3700 Å λ< < 10,400Å in two channels
(red and blue). The spectrograph’s resolution runs from
R = 1560 at 3700Å to R = 2270 at 6000 Å (blue channel),
and from R = 1850 at 6000Å to R = 2650 at 9000Å
(red channel). These spectra will be easily good enough measure
continua, major absorption, and emission features, quasar
redshifts, and stellar velocities (to better than 50 km s−1).

3. THE SDSS-PS1 DATA SET

In order to measure optical variability, TDSS uses a
combination of single-epoch SDSS and multi-epoch PS1
photometry. We use SDSS photometry from SDSS Data Release
9 (Gunn et al. 1998; York et al. 2000; Gunn et al. 2006; Aihara
et al. 2011; Eisenstein et al. 2011; Ahn et al. 2012). SDSS DR9
covers 14,555 square degrees in the u, g, r, i, and z filters which
span the 3000 Å λ< < 10,000Å spectral range (Fukugita
et al. 1996). The imaging footprint covers most of the high
Galactic longitude area north of declination 10− °. Throughout
this paper, we use u, g, r, i, and z to refer to the SDSS
magnitudes and not the (very similar) PS1 analogs.
The PS1 3π survey (Kaiser et al. 2002, 2010; Chambers 2011)

covers its 30,000 deg2 area north of declination 30− °. This
region includes the entire SDSS survey imaging footprint. The
PS1 gP1, rP1, iP1 and zP1 filters cover the 4000 Å λ< <
9200 Å spectral range similarly to the corresponding SDSS g,
r, i and z filters. PS1 also has a yP1 filter which, including the
spectral response of the camera, covers 9200 Å λ< < 10500 Å.
These PS1 filters are described in detail in Tonry et al. (2012).
The PS1 survey takes four exposures per year for 3.5 years with
each of the g r i z yP1 P1 P1 P1 P1 filters (non-simultaneously) and fills

Figure 1. Planned eBOSS (and by extension TDSS) area is shown in blue and
purple. The blue area may be sampled twice for the eBOSS Emission Line
Galaxy (ELG) project. The eBOSS predecessor, BOSS, is outlined in orange,
and the Dark Energy Survey, which may be of interest in ELG targeting, is
outlined in green.
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approximately 90% of the 30,000 deg2 area in each band. The
missing area is mostly due to non-detection areas on the camera
plane and weather restricting the survey to two or rarely zero
exposures per filter in some areas of the sky. Individual PS1
exposures are generally shallower than analogous SDSS images.
However, the 10σ limiting point-spread function (PSF)
magnitudes of the PS1 average catalogs, produced by taking a
weighted average of individual detections rather than stacking
the images (PS1 image stacking is still being developed), are
well-matched to the SDSS single-exposure limits as summarized
in Table 1.

In this work, we use an updated version of the “bercali-
brated” PS1 data from Schlafly et al. (2012), which includes
the PS1 data up through 2013 July (using PV1 of the PS1
pipeline) and is calibrated absolutely to 0.02 magnitudes or
better. This database excludes detections flagged by PS1 as
cosmic rays, edge effects, and other defects.

To convert between SDSS and PS1 magnitudes, we use the
conversions from Finkbeiner et al. (2014) which follow the
equation

m m a a gi a gi a gi

gi g i

,
, (1)

P1 SDSS 0 1 2
2

3
3− = + + +

= −

where m = griz and a0123 are in Table 2. Tonry et al. (2012)
also provide a similar conversion from SDSS to PS1 calculated
from PS1 filter curves, but we use the Finkbeiner equations
because they are optimized to be accurate for a broad stellar
population, and because they are calculated within the Schlafly
et al. (2012) übercalibrated system. For the non-varying stars
for which these coefficients were fit, these conversions are
accurate to 0.01 magnitudes or better. We add this 0.01 mag in
quadrature to our statistical error. When comparing SDSS and
PS1 magnitudes, we convert them to standard logarithmic
magnitudes, rather than the default asinh-based “Luptitudes”
that SDSS reports (Lupton et al. 1999).

All database analysis and cross-matching of surveys is
performed with the Large Survey Database software (LSD;
Juric 2011). LSD is a versatile, parallelized, python-based
database module optimized for astronomical querying and
cross-matching. We compare PS1 and SDSS PSF magnitudes
in all cases, only work with objects that are unresolved in
SDSS (morphology type “star”), and match PS1 and SDSS
objects with a radius of 1″. 5.

Figure 2 shows a typical SDSS-PS1 light curve for a non-
variable and a variable object. The SDSS and PS1 magnitudes
are consistent for the non-variable, confirming at least the
approximate validity of the Finkbeiner conversions in this case.

It is easily discernible that the variable object is varying in the
PS1 data, but it is also clear that the very sparse PS1 sampling
prevents a detailed characterization of a single object’s

Table 1
Median 10σ Limiting AB PSF Magnitudes of SDSS, PS1 3π Single Exposures,

the PS1 3π Mean Catalog, and the Current PS1 3π Stack

Filter SDSS PS1 Exposure PS1 Mean PS1 Stack

u 21.2 L L L
g 22.3 21.2 21.7 22.4
r 21.8 21.0 21.7 22.2
i 21.4 20.8 21.5 22.0
z 19.9 20.1 20.7 21.3
y L 19.1 19.7 20.3

Note. Similarly named filters from different surveys are not exactly the same.

Table 2
The Coefficients used to Convert from SDSS Magnitude to PS1

Magnitudes in Equation (1)

Filter a0 a1 a2 a3

g 0.00128 −0.10699 0.00392 0.00152
r −0.00518 −0.03561 0.02359 −0.00447
i 0.00585 −0.01287 0.00707 −0.00178
z 0.00144 0.07379 −0.03366 0.00765

Note. Ensemble error bars are insignificant; for individual stars, these
conversions are good to 0.01 magnitudes.

Figure 2. Typical SDSS-PS1 light curves from a Stripe 82 photometric
standards (top) and variable objects (bottom). The four lines in each figure
represent, from bottom to top, the light curve from g (in green), r (in red), i (in
black), and z (in blue) filters. The first data point on each light curve and the
horizontal line are taken from (PS1-converted) SDSS, and all other datapoints
are from PS1.
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variability (e.g., determining a period). This limitation,
combined with a desire to avoid biasing our sample to any
specific variability type, led to the relatively simple variability
criteria described in Section 4.

3.1. PS1 Photometric Uncertainties

Accurate photometric uncertainties are very important for
variability measurements. If we overestimate photometric error,
we will underestimate variability and vice versa. To assess the
level of spurious variability induced by incorrect error bars in
PS1, we draw from the PS1 catalog a population of 4,032,258
(theoretically) constant photometric F stars which satisfy the
following SDSS criteria (all magnitudes PSF magnitudes and
are dereddened using the Schlegel et al. (1998) extinction
map):

r u g g r

r i i z

16 20, ( 0.82) ( 0.30)

( 0.09) ( 0.02) 0.04, Type

6 (star).

(2)

2 2

2 2
SDSS

< < − − + − −
+ − − + − − <

=

This selection volume is essentially a 0.2 magnitude four color
sphere around the position of F stars in color space (Ivezić
et al. 2007). F stars are useful standards because they are
common, and because their luminosity peaks roughly in the
middle of our gP1rP1iP1zP1 wavelength range.

We examine the reduced 2χ distribution for single filter F
star light curves, assuming a constant luminosity model, i.e.:

n

m m

m
m

1

1

( ¯ )

¯
1

. (3)

i

i

i i

i

red
2

2

2

2

2

∑

∑
∑

χ
σ

σ

σ

=
−

−

=

The quantity red
2χ should approach unity for large ensembles of

constant sources, implying that the variation in the mean
magnitude is consistent with the error bars. We plot the median

red
2χ versus the average of the error bars from different

measurements in Figure 3. red
2χ is never 1, but it is fairly

constant with respect to the size of the error bars (although
there is a small positive correlation between the two). The
square root of this constant is 1.387, 1.327, 1.249, 1.228, and
1.170 in gP1, rP1, iP1, zP1, and yP1 filters, respectively. We
multiply the standard PS1 error bars by these constants in
our work.

4. TDSS VARIABILITY MEASUREMENT

TDSS aims to take full advantage of the SDSS-PS1
combined data set to select a highly pure sample of variable
objects without any overt bias with regard to color or variability
pattern. To achieve this goal we preselect targets whose
variability can be robustly measured. We then combine data
across filters in which a given source is well-measured into a
single three-dimensional parameter space. Finally, we use a
kernel density estimator (KDE; Rosenblatt 1956; Parzen 1962)
and a Stripe 82 training set to assign each object a probability

of being a true variable object based on its location within this
3D KDE space. Figure 4 outlines this process.
Among objects detected in both SDSS an PS1, we preselect

a subset with good data quality to avoid wasting computational
resources on sources for which we could not reliably measure
variability at the 0.1 magnitude level by requiring that

i
g r z

r

r

r

r

n

17 21,
, , 16,

type 6 (star),

5 ,
10 ,
20 ,
30 ,
10. (4)PS griz

SDSS

22

17

15

13

1

< <
>
=
> ″
> ″
> ″
> ″
>

Here, all magnitudes are SDSS PSF magnitudes. We find that
95% of such objects have SDSS i band errors and PS1 iP1 mean
errors of less than 0.1 magnitudes at i = 21. The i 17> and
g r z, , 16> requirements prevent selection of very bright
sources whose flux would bleed into neighboring spectroscopic
fibers. We are obtaining spectra of i16 17< < targets with
smaller telescopes and will discuss this bright extension of
TDSS in a future paper. We restrict ourselves to unresolved
objects (SDSS morphological type “star”), because it is
difficult to perform consistent measurements of extended
sources in varying observation conditions at the precision we
need. Based on our experience with visual inspection, we also
require that the sources not have an i 22< neighbor within 5″
as this can confuse the photometry (r 522 > ″). Similarly, we
require no i 17, 15, 13< neighbors within 10″, 20″, 30″,
respectively. Finally, we require PS1 detections at more than 10
epochs across the gP1rP1iP1zP1 filters (n 10grizPS1 > ) for each

Figure 3. red
2χ vs. average photometric measurement error for F stars that

satisfy Equation (2) in gP1(upper left), rP1(upper right), iP1(lower left), and zP1

(lower right). Each is fit as a constant (blue) and as a line (red). The data are
very roughly consistent with a constant model, with a different constant for
each filter.
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object to ensure that we have a significant amount of variability
information. This last requirement is the most restrictive and is
met by approximately 85% of i17 21< < SDSS sources with
PS1 matches.

We also examine each source in every filter to determine in
which filters we can reliably measure variability. For a given
source, we only measure variability in filters in which

n

err 0.1,
err 0.1,

1. (5)

SDSS

PS1

PS1

<
<
>

Here, errSDSS and errPS1 are the SDSS and PS1 mean magnitude
errors, respectively. nPS1 is the number of detections in a single
PS1 filter. Because PS1 lacks a u filter and SDSS lacks a y
filter, we only examine variability across the griz filters. To
eliminate some obvious artifacts, we ignore filters in which the
PS1-SDSS difference is greater than 3 magnitudes, unless the
PS1-SDSS difference is greater than 1.2 magnitudes in another
filter. For a given source, we designate filters that pass these
criteria as “good” and only examine the variability of sources
with at least two good filters.

Many groups have demonstrated that advanced machine
learning algorithms are highly effective at selecting variable

objects (Woźniak et al. 2004a; Richards et al. 2011). These
algorithms are generally optimized to accept a large number of
inputs to distinguish between variable objects and nonvariables
with fairly complex routines that can be difficult to assess. We
opted for a simpler 3D KDE estimator for two main reasons.
First, TDSS aims to be a variability-only survey, and it is
difficult to ensure that machine learning algorithms (which
work best with many input parameters) are primarily using
variability to select astrophysical variables. For instance, a
boosted decision tree, given the griz magnitudes of a set of
variable objects (including many quasars) and non-variables
(with mainly stars), can locate quasars clustered in color space,
which may reproduce quasar color selection and ignore actual
variability entirely. Second, the depth and number of observa-
tions per source varies significantly across the PS1 survey, and
it is difficult to ensure that a complicated machine learning
algorithm is operating efficiently across the whole sky when its
inputs change. Furthermore, when we restricted a boosted
decision tree to a small number of robust parameters that
contained no color information, we found that the KDE
detected more variable objects at a similar threshold. We
discuss our boosted decision tree results in detail in the
appendix.
Through extensive testing, we have settled on a simple 3D

(S S S, ,1 2 3) KDE parameter space:

( )

( )
( )

( )

S

n

S

S

median mag mag ,

Var Variance Err 1 ,

median sign Var Var ,

median(mag ). (6)

1 PS1 SDSS

PS1 PS1 PS1
2

PS1

2 PS1 PS1
1 2

3 PS1

= −

= − −

=
=

Qualitatively, S1 is the PS1 SDSS difference and represents
long term (multi-year) variability. S2 is the PS1 only variability
and represents short term (days to a few years) variability. S3 is
just an apparent magnitude. The word “median” refers to the
median magnitude value across all good filters (Equation (5))
for a given source. If there are only two good filters, S1 and S2
become minima to prevent individual outlier filters from
creating false positive variable targets. All magnitudes used are
PSF magnitudes. The PS1 magnitudes, magPS1, are median
magnitudes, used to improve robustness due to the non-
simultaneous nature of the PS1 measurements in different
filters. VarPS1 is an estimate of true PS1 magnitude variability
above the expected random variability given the error bars. Var
is negative for sources whose photometry randomly varies less
than their error bars would indicate. The variable S2 is a simple
function of Var that accounts for this possible negativity while
also converting Var into units of magnitudes (where the
distribution is more useful for KDE analysis). The variable S3
is the median PS1 magnitude across good filters. While there is
no obvious trend of variability with magnitude, our ability to
accurately measure variability decreases as objects get fainter,
and using S3 in our selection allows us to adjust our threshold
accordingly.
To assess which bins are the most likely to contain true

variable objects, we use a set of confirmed Stripe 82 variable
and standard (non-variable) objects. Both catalogs are from
Ivezić et al. (2007) and are made with Stripe 82 light curves.
Often, our error bars are of order 0.1 magnitudes, so to

Figure 4. Flowchart describing the process by which we determine Pvariable, the
probability that a given candidate is a variable object. Parallelograms represent
data objects. Diamonds are conditional statements that reject some of the data.
Rectangles are functions. We start with all SDSS objects in the eBOSS area as
well as two Stripe 82 training sets, Variables (both stellar and AGN) and
Standards. Each of the three data sets pass a set of data quality cuts and are
cross-matched with PS1 data. Using PS1 data and single epoch SDSS data, we
calculate our variability parameters (S1, S2, S3) for all three data sets. We use
the variability parameters from the training sets to produce a Kernel Density
Estimate, E S S S( , , )1 2 3 . Using this function, which is static across the sky, we
can assign every potential TDSS candidate an E value, which is easily
converted to Pvariable, via R, the (assumed constant) ratio of variable objects to
nonvariables.
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maintain high purity of the Stripe 82 variable object catalog, we
require

g
r
i

Ampl 0.1,
Ampl 0.1,
Ampl 0.05, (7)

>
>
>

where Ampl is the estimated amplitude of variation in
magnitudes from SDSS. We use a lower threshold in the i
band, because both stellar variables and quasars tend to vary
less in redder bands, and because SDSS is shallower and less
sensitive to variability in the i band. A total of 89% of Stripe 82
variable objects from Ivezić et al. (2007) satisfy this
requirement. To increase the purity of the Stripe 82 standards
catalog, we require

n 7,

2,

2,

2, (8)
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i

SDSS

red
2

red
2

red
2

χ

χ

χ

>
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<

where nSDSS is the number of SDSS measurements and the red
2χ

values are fits assuming a constant magnitude in each filter.
Approximately 66% of Stripe 82 standards from Ivezić et al.
(2007) satisfy this requirement. To obtain a sample that is
similar to TDSS, we use the region of Stripe 82 where
R. A. 315> ° or R. A. 60< °. This avoids the 300 R. A.° <

315< ° region that is at low Galactic latitude and has a stellar
density well above that typical in TDSS. Our variable object and
standard catalogs have 12,523 and 411,219 sources, respectively.

We divide our standard and variable object KDE spaces into
200 equally spaced bins in each of the three dimensions (i.e.,
2003 total bins). We set the bounds along each dimension to
include the middle 99.8% of our variable object training set.
The remaining sources are placed in either the minimum or
maximum bin as appropriate. We convolve our binned
parameter space with a normalized, symmetric Gaussian filter
with σ = 5 bins (0.02 × 0.008 × 0.1 mags in (S1, S2, S3)-space)
so that regions with a small number of sources are filled
uniformly as a continuous function. We normalize each KDE
density so that it is effectively a probability density.

To prioritize targets, we examine the smoothed, continuous,
normalized (so that it integrates to unity) KDE density of Stripe
82 variable objects and standards, which we designate varρ and

stanρ . We assign each bin in (S1, S2, S3)-space a KDE value,
E S S S( , , )1 2 3 , defined as

E . (9)var

stan

ρ
ρ

=

Areas of parameter space with the highest values of E are the
most efficient places to find variable objects and are initially
assigned the highest priority. In Section 5 we will discuss how
our final target list does not strictly follow the E value above.
This quantity is, in principle, simple to relate to the probability
of an object being a variable object:

P
E

R E
, (10)variable =

+
where R is the ratio of nonvariables to variable objects. In
practice, R depends on Galactic latitude and longitude, survey

depth, observation cadence, and the chosen threshold for
variability. Different variability surveys could thus have wildly
different values of R. Consulting color-based quasar selection,
we estimate that an average of 2.4% of sources which pass our
data quality preselection in Equations (4) and (5) are quasars,
which we generally assume to be variable objects. 58% of
objects in our Stripe 82 variable object catalog are quasars. We
combine these numbers to estimate that approximately 4% of
objects which pass our preselection are variable objects. This
leads to an estimate R = 25, which we use in every region of
the sky. While inaccuracies in R will moderately affect our
estimates of purity, they do not directly affect the actual targets
we select.

5. PRIORITIZATION OF TDSS VARIABLE OBJECTS

Given our allotted fiber density across the sky, we seek a
statistically uniformly selected target list of 10 TDSS-only
targets deg−2 across the entire TDSS area. To move from our
3D “efficiency” space defined in Stripe 82 to this uniform
density target list, we divide the sky into equal area “pixels,”
determine a sensible threshold for our value E (defined in
Section 4), accept all targets that cross that threshold in the
20% lowest target density pixels, and randomly subsample
targets which cross that threshold in the 80% higher target
density pixels. Our final sample is then uniform in the sense
that objects everywhere pass the same E threshold, but we use
more subsampling in denser, low Galactic latitude areas.
We start by dividing the sky into 2 × 2 degree square pixels.

In each pixel, we assign an E threshold that selects exactly 10
TDSS-only targets deg−2 after removing the numerous targets
shared with the eBOSS CORE quasar program, targets with
previous SDSS spectroscopy and a small set of targets selected
from the PTF. We use “TDSS-only targets” to refer to objects
selected for observation exclusively by TDSS and refer to the
complete set of objects which satisfy our selection criteria as
“total targets.” We do not formally exclude the objects we
share with the eBOSS CORE quasar sample, and they are part
of the final TDSS survey. The distinction between these
samples is made in our targeting procedure, because TDSS
targets that are also in the eBOSS CORE quasar sample are not
charged to our survey fiber allotment of 10 targets deg−2.
In Figure 5 we show three cross-sections of our 3D KDE taken

from a large region (135 R. A. 150 , 45 decl. 60° < < ° ° < < °)
for statistical robustness. These cross-sections demonstrate how
selection varies in S1 ( PS1 SDSS∣ − ∣) and S2 (PS1 Variability) at
different values of S3 (median magnitude) where S1, S2 and S3
are defined in Equation (6). The three density contours represent
the cutoffs we use to obtain 10, 20, and 40 TDSS-only targets
deg−2. Our threshold in S1 and S2 expands outward at fainter
magnitudes indicating, sensibly, that we require stronger
variability to observe fainter objects, since they have larger error
bars. Objects are generally required to vary by approximately 0.2
magnitudes to meet a 10 target deg−2 limitation across most of
the sky. Our KDE can fail in regions near the edge of our KDE
parameter space where the density of both variable objects and
standards is small. To avoid this problem, we assign any object
with S 0.51 > or S 0.252 > a value of E = 100 if its E does not
already exceed 100. Only 15% of our TDSS-only targets and 8%
of our total targets have E assigned to 100.
The KDE that underlies Figure 5 is derived exclusively from

a fixed set of Stripe 82 standards and variable objects and can
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thus be applied to any area of the sky. However, the positions
of the contours in Figure 5 corresponding to a particular target
density are only applicable to a specific 135 deg2 area of the

sky. Different pixels across the sky will have different 10
targets deg−2 thresholds (contour positions) corresponding to
the variation in density of stellar variables (and stars more
generally) across the sky. Figure 6 shows the distribution of 10
target Edeg 2− thresholds across our pixels. A total of 80% of
pixels have a 10 targets Edeg 2− threshold greater than 45.4,
and we adopt this value as our nominal global E threshold.
Again, E(S1, S2, S3) is a static function defined by Stripe 82, so
the only thing that changes across the sky is the density of
objects with E 45.4> . Equation (10) states that the expected
variable object purity of targets with E = 45.4 is 65%. This is a
lower bound on our sample purity, and our estimated purity
(Section 6) is significantly higher.
Figure 7 presents the distribution of the density of TDSS-

only objects (those objects not selected as part of the eBOSS
CORE quasar sample and not having previous spectroscopy)
and of all objects that cross the E = 45.4 threshold in each
pixel. The density rises precipitously in the low Galactic
latitude regions at the edges of our survey. This result simply
implies that a significant fraction of our variable objects are
stars that become more common at lower Galactic latitude.
Some of the pixels with low target density are near the very
edge of our estimated survey bounds. Many of these pixels will
not be included in the actual spectroscopic survey. Globally,
the average density of TDSS-only targets with E 45.4> is
14 deg−2, and we are sparse sampling 70% of these sources.
The majority of pixels with fewer than 10 targets deg−2 with
E 45.4> , have at least 8 targets deg−2, so only a small number
of spectra of E 45.4< objects will be taken.
Having established a threshold, we must still determine how to

make a uniform target list with 40 TDSS-only targets (10 deg−2)
in each 4 deg2 pixel. In the 20% of pixels with 40 or fewer
TDSS-only targets that cross the E threshold, we simply select
the 40 targets with the highest E estimate (a small fraction of
which have E 45.4< ). In the 80% of pixels with more than 40
targets, we prioritize a small number of hypervariable targets
(described in Subsection 5.1) and then assign a random priority
to the remaining targets with E 45.4> , choosing the targets with
the highest priority until we reach our 10 deg−2 target quota.

Figure 5. 2D cross-section from our 3D KDE. The top, middle, and bottom
panels are cross-sections centered around median magnitude, S3 = 17.5, 18.5, 20,
respectively. The contour labels specify the number of TDSS-only targets deg−2

obtained with each cut. We show the Stripe 82 standards (black), variable quasars
(blue), and variable non-quasars (red). Here quasars either have SDSS spectral
type “q” or P (qso) 0.5> according to the eBOSS CORE photometric quasar
selection algorithm. The lack of points near the S 02 = axis is due to the square
root in the definition of S2 and does not significantly affect the binned KDE.

Figure 6. Fraction of pixels with a 10 TDSS-only targets Edeg 2− threshold less
than a given value. Our global E threshold, 45.4, is marked with a dotted line.
Only 20% of pixels have a 10 targets deg−2 threshold less than 45.4. As noted
in the text, 15% of TDSS-only targets have their E manually set to 100 which
leads to the jump at E = 100.
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Our final step to produce a target list is to visually inspect
every object’s SDSS image. Visual inspection was performed
by authors Morganson, Green, Anderson, and Ruan. Objects
judged to have significant flux from nearby neighbors, objects
with unflagged processing errors or objects within approxi-
mately 30″ of a diffraction spike are removed. Lower priority
objects rise in the queue naturally, with E 45.4< objects being
prioritized directly by E value. The fraction of objects removed
by visual inspection ranges between 5% and (rarely) 30%. The
rejection fraction is highest at low Galactic latitudes where
there are many very bright stars (that can influence photometry
over distances of several arcminutes) and close stellar pairs

(unresolved in the SDSS catalog). Fortunately, these regions
also have an abundance of high E targets.

5.1. TDSS Prioritization of Hypervariables

While the main goal of TDSS is to provide a statistically
uniform sample of variable objects, TDSS also provides a
unique opportunity to obtain a statistical sample of the most
variable objects in the sky, which we designate as hypervari-
ables. While most of these hypervariables would be observed
naturally as part of the survey, we wish to ensure that
hypervariables which vary above a particular threshold are all
observed, regardless of the local target density. Our KDE
method is not well-designed to select hypervariables, since the
extreme regions of variability space are poorly populated by
either variable objects or standards. Instead we reduce our
variability parameters from Equation (6) to a single
parameter:

(
)

( )

( )

( )

V

S S

median mag mag

4 median Var ,

4 . (11)

PS1 SDSS
2

PS1
2 1 2

1
2

2
2 1 2

= −

+

= +

This is an elliptical contour of approximately constant density
in our (S1, S2) variability space. The factor of 4 accounts for the
fact that x, the SDSS-PS1 difference, is generally of order twice
y, the PS1 only variability. This ratio is not exact and is specific
to this data. It is likely due to the longer timescales of the
SDSS-PS1 difference.
Table 3 lists the number of hypervariables as a function of

different thresholds of V (Equation (11)). Using the densities
presented here and the density map shown in Figure 8, we set
our V threshold to 2.0 magnitudes. This choice yields 1108
targets, most of which would have likely been observed naturally
by our KDE selection method. Globally, this population density
is 0.14 deg−2 but in a representative low Galactic latitude region
(120 R. A. 130 , 10 decl. 20° < < ° ° < < °), the density of

Figure 7. Map showing the density of TDSS-only objects (excluding CORE
quasars and objects with previous spectroscopy) that exceed the E = 45.4
threshold in each 2 × 2 degree pixel and the distribution of these densities (top
2 panels). Map showing the total density of all objects that exceed the E = 45.4
threshold in each pixel, including objects shared with the eBOSS CORE quasar
sample and objects with previous spectra, and the corresponding distribution of
these densities (bottom two panels).

Table 3
Estimated Total Number of Hypervariables (H) that Pass Different Thresholds

of V (VThresh from Equation (11))

VThresh H HQSO H* HCORE Hprev Hdeg 2− H deglow
2−

1.0 8411 7 6489 1274 640 1.05 1.54
1.2 4784 3 4046 481 253 0.60 0.91
1.4 3069 1 2725 224 118 0.38 0.55
1.6 2071 0 1899 120 51 0.26 0.42
1.8 1492 0 1375 80 36 0.19 0.24
2.0 1108 0 1033 52 22 0.14 0.19
2.2 823 0 778 29 15 0.10 0.15
2.4 629 0 595 21 12 0.08 0.10
2.6 483 0 463 12 8 0.06 0.08
2.8 401 0 385 10 6 0.05 0.06
3.0 338 0 323 9 6 0.04 0.06

Note.We also show the expected number of TDSS-only quasars (HQSO), TDSS-
only non-quasars (H*), quasars shared with the CORE quasar group (HCORE)
and targets with previous SDSS spectra (Hprev). The last two columns are the

total density (deg−2) of hypervariables across the whole survey and the density
in a low galactic latitude region (120 R. A. 130 , 10 decl. 20° < < ° ° < < °).
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hypervariables is 0.19 deg−2, 2% of our low latitude targets.
While the majority of targets TDSS selects have colors
consistent with being quasars, approximately 95% of our
hypervariables do not. We will briefly investigate the likely
identities of hypervariables in Section 8.3.

6. ANTICIPATED PURITY

When evaluating our selection criteria, we were primarily
concerned with the purity of all targets selected at a given
threshold, Ptot, and the purity of our TDSS-only target list after
eBOSS CORE quasars and targets with previous SDSS
spectroscopy are removed, Ptar. We estimate the anticipated
purity of our total sample using our results in Stripe 82.
Specifically, building on Equation (10), we define:

P
f

R f f

R

,

25, (12)

tot
var S82

stan S82 var S82

=
+

=

P
f f

R f f f

f
N

N N N

,

. (13)

tar
tar var S82

stan S82 tar var S82

tar
tar

tar CORE prev

=
+

=
+ +

Here, fvar S82 and fstan S82 are the fraction of Stripe 82 variable
objects and standards (as defined in Section 4) that pass a given
threshold. The quantity R is the expected ratio of nonvariables
to variable objects discussed in Section 4, and ftar is the fraction
of objects which pass a given threshold that will be TDSS-only
targets. Ntar, NCORE, and Nprev are the numbers of TDSS-only
targets, eBOSS CORE quasar targets, and objects with previous
SDSS spectroscopy that pass a given threshold, respectively.
The sum N N Ntar CORE prev+ + is the total number of objects
that pass a given threshold.

To assess the performance of our variable object selection
algorithm, we tested it on a large, representative patch of sky,
the 135 R. A. 150 , 45 decl. 60° < < ° ° < < ° region pre-
viously mentioned in Section 4. We used this region to set
our selection threshold to obtain 10, 20 ... 60 TDSS-only
targets deg−2 in Table 4. Having set a threshold to obtain a
known density of targets, cross-matched with eBOSS and
SDSS databases to remove eBOSS CORE quasars and objects
with previous spectra and calculated purity with Equation (13),

we can estimate the number of low variability sources that
scatter into our selection space:

N N P(1 ). (14)lovar tar tar= −

To estimate our quasar fraction, we assume that everything
in the color box

u g

g r

0.8,

0.65 (15)
SDSS SDSS

SDSS SDSS

− <
− <

is a quasar.
There are

N N N N* (16)tar QSO lovar= − −

remaining objects which are expect to be mostly stellar variable
objects. We also calculate NCORE, Nprev, and Ntot.
Table 4 demonstrates how various quantities change as we

lower our target selection threshold. The thresholds are set so
that the 20th percentile pixel (as described in Section 5) has
Ntar 20. We actually derive our statistics from our larger test
region, which is quite similar to the 20th percentile pixel (the
density of targets in this region is Ntar test). We acquire 10
TDSS-only spectra deg−2, so the final line is most useful. The
TDSS selection algorithm at that surface density produces a
target list that is Ptot = 95% pure. Many of these targets are
shared with the eBOSS CORE quasar sample or have previous
SDSS spectra. After these targets are removed, the TDSS-only
targets are Ptar = 88% pure. Note that “low variability” sources
are sources that did not vary in the Stripe 82 data. Some
unknown, but likely significant, fraction of these sources are
true variable objects that varied during the PS1 epochs or
between SDSS and PS1. In addition, our visual inspection
removes a significant fraction of non-variable objects that is not
accounted for in this analysis.
Since most of the quasars we select are shared with the

eBOSS CORE quasar sample, the TDSS-only targets are
approximately 90% non-quasars (mostly variable stars). In
practice, we expect to find a significant fraction of unusual
quasars with colors not described by Equation (15), so precise
estimates of the quasar fraction will require spectra. Our data
and selection method are optimized for 10 TDSS targets
deg−2. If we were to expand our target list to the 20 targets
deg−2 threshold, we would be selecting 6.5 additional variable
objects and 5.6 additional standards in our test field (roughly
5.4 variable objects and 4.6 standards in our 20% field). Our
additional targets would be only 54% pure. Selecting a
“deeper” set of variable objects with high purity likely requires
higher precision PS1 data or significantly better-sampled light
curves.

7. TDSS SELECTION OF I-BAND DROPOUTS

TDSS strives to produce a sample of variable objects that is
unbiased in color space. We make one small exception for
i-dropouts, objects that are observed in the z band but are either
not observed in any bluer bands or have extremely large i z−
colors. Among known astrophysical i-dropouts are late M- and
L-type dwarfs and z 6≈ quasars, all of which are rarely
detected and may have interesting variability properties. Our
two filter requirement would exclude these objects if we did not
create a separate pipeline to identify them.

Figure 8. Map showing the locations of V 2.0> hypervariables across the sky
in equatorial coordinates.
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Our i-dropout selection method closely follows the main
selection method described in Section 4. First, we make an
initial database level cut:

i z
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r
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The first three requirements are all purely SDSS-based and are
designed to find i-dropouts while excluding any sources found
in the main sample. The next four requirements remove objects
whose photometry has likely been altered by a nearby bright
object. The final requirement ensures that we have sufficient
PS1 data to make a variability measurement. These criteria
yield 11,594 sources with typical limiting magnitudes of
z 19.9< , y 19.7< . These requirements also ensure that the
objects are real and not just cosmic rays or other artifacts in a
single z band image, which can be problematic for i-dropout
searches (Fan et al. 2001; Morganson et al. 2012).

To select long term variable objects, we would naturally
wish to use the SDSS-PS1 z magnitude difference. Our filter
transformations in Equation (1), however, are not designed to
work with i-dropouts, which are bound to have extreme colors,
so we must derive our own SDSS-PS1 filter corrections. In
Figure 9, we fit z z zSDSS PS1Δ = − versus zy z yPS1 PS1= − as a
line, z a b zyΔ = + , by minimizing the absolute deviations:

( )
S

z a b zy
, (18)

i

i i

i
∑

σ
=

Δ − +

yielding

a
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0.141,
0.525.

=
= −

Minimizing the absolute deviations is more robust to outliers
than a typical 2χ method. With this linear fit, we can define an
expected zSDSS given PS1 colors:

( )z z a b z y* . (19)SDSS PS1 PS1 PS1= + + −

z z*SDSS SDSS− is 0 for a typical i dropout in our sample. With
this correction, we can define a 2D KDE parameter space
analogous to the first two dimensions of our main selection
KDE in Equation (6)
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Figure 10 shows our 2D KDE variable i-dropout selection
space. The objects which satisfy the criteria in Equation (17)
tend to be at the faint end of their selection space with
magnitude errors near the 0.1 magnitude limit. Their distribu-
tion is correspondingly more broad than that of the sources in
Figure 10. We lack a large sample of confirmed variable i-
dropouts and therefore cannot produce a training set as we did
for the main population. Instead, we select the 5% outliers in
variability space. There is a small population of sources with
negative PS1 variability (in which the standard deviation is less
than what one would expect from the error bars as described in
Section 4) and only moderate PS1-SDSS difference. To avoid
“rewarding” sources for having negative PS1 variability, an
area of parameter space that is rare, but not particularly likely to

Table 4
Estimated Target Counts and Purities from Stripe 82 Tests at Different Variability Cutoffs

Ntar 20 Ntar test NQSO N* Nlovar NCORE Nprev Ntot Ptar Ptot

60 67.8 3.3 16.7 47.7 18.6 27.4 113.7 45.2 58.0
50 56.5 3.0 16.6 36.8 18.0 25.8 100.3 49.2 63.3
40 45.4 2.7 16.4 26.4 17.2 24.2 86.8 54.5 69.6
30 35.2 2.4 15.8 17.0 16.2 22.4 73.8 61.4 76.9
20 23.7 2.1 14.1 7.5 14.6 19.8 58.1 73.3 87.1
10 11.3 1.4 8.3 1.7 10.8 14.6 36.7 86.4 95.4

Note. All counts are deg−2. All purities are percentages. Ntar 20 is the number of targets in the 20th percentile pixel for a given threshold while Ntar test is the number of
targets in our test field. NQSO, N*, and Nlovar are the estimated numbers of TDSS-unique quasars, stars, and low-variability objects, respectively. NCORE and Nprev are

the estimated numbers of objects we share with the CORE quasar sample or have previous SDSS spectroscopy. Ntot is the total number of candidates. Ptar and Ptot are
the estimated purities of our tdss-only targets and our total targets, respectively
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Figure 9. z zSDSS PS1− differences of i-dropouts vs. their z yPS1 PS1− colors.
The line was defined using a linear minimum absolute deviations fit, and we
use it to compare individual zPS1ʼs to zSDSSʼs.
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indicate true variability, we eliminate sources that satisfy

S S0.6, 0, (21)1 2< <

where S1 and S2 are defined in Equation (20). In total, 221
i-dropouts satisfy our selection criteria. Of these, only 73 pass
our visual inspection and are included in the TDSS target list.

Only 7 previously discovered z 6≈ quasars (Fan et al.
2001, 2006; Morganson et al. 2012; Bañados et al. 2014)
satisfy our initial selection criteria, and only 1 passes our
variability threshold. This is not entirely surprising as
cosmological time dilation will significantly reduce any
observed variability from these quasars. In addition, MacLeod
et al. (2010), Morganson et al. (2014) and others have found
significant anticorrelation between quasar variability and
luminosity, and z 6≈ quasars detected by SDSS are necessa-
rily extremely luminous.

8. PHOTOMETRIC CLASSIFICATION OF ALL
TDSS TARGETS

The algorithm described in Sections 4 and 5 produces a
target list that includes 242,513 objects. This list has
approximately 10% more sources than we will be able to
target spectroscopically due to a combination of extra area and
extra density. Nevertheless, the fractions of different classes of
objects in this list should closely resemble the final spectro-
scopic sample. While we do not make any explicit use of color
in our variable object selection, classifying our objects by color
will allow us to anticipate our final results. We do not attempt
to correct for Milky Way reddening in our photometry, because
colors do not directly influence our selection. Since the TDSS
area is at high Galactic latitude, this only introduces a small
error on our color measurements.

In Figure 11, we show the SDSS g r− versus u g−
distribution of all TDSS targets. Here, we include all objects
with previous spectroscopy as well as those objects we share
with the eBOSS CORE quasar group. The extended horizontal
cloud at g r 1.2− > is mostly due to objects with essentially
zero flux in the u band. These objects have very large error bars
in u g− . We define regions of color-space on the plot

(using SDSS colors):

u g g r
u g u g
g r u g
g r
u g g r u g
g r u g
u g g r u g
g r g r
g r u g

QSO : 0.8, 0.65,
RRL : 1.35, 1.05,

0.5( ) .15,
MS : 1.2 or

0.8, 0.5( ) 0.25,
0.5( ) 0.55, not RRL,

HZQ : 0.8, 0.5( ) 0.55, not RRL,
MISC : 0.6, 1.2,

0.5( ) 0.25. (22)

− < − <
− < − >
− < − −
− >
− > − < − +
− > − −
− > − < − −
− > − <
− > − +

Our categories are named to indicate the primary type of
expected variable object in each region, but no category will be
absolutely pure. The QSO fiducial color region is mostly
quasars and other AGNs and is identical to that defined by our

Figure 10. Locations of the i-dropouts in the 2D KDE space defined in
Equation (20). We selected variable targets from outside the 95% contour.

Figure 11. SDSS g r− vs. u g− distribution of all TDSS targets (top) and
TDSS-only targets after we remove CORE quasars and objects with previous
SDSS spectroscopy (bottom). Low (high) priority eBOSS color-selected
quasars are in green (blue). Low (high) priority non-quasars are in red
(yellow). The QSO, MS, RRL, and HZQ regions are the areas of color space
that contain most quasars, main sequence stars, RR Lyrae stars, and high-
redshift (z 2.5> ) quasars, respectively. The dotted line represents the stellar
main sequence. The horizontal blur at g r 1.5− > is due to objects no being
detected in the u band and being assigned an essentially random “Luptitude.”
Similarly, marginal u detections are biased to lower Luptitudes and our u g−
distribution is shifted lightly to the left of the fiducial main sequence line.
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quasar criteria in Equation (15). RRL contains RR Lyrae stars
and other variable F stars. MS contains the bulk of the main
sequence. HZQ is the region where high-redshift (z 2.5> )
quasars typically reside. There is no dominant astrophysical
identity of the MISC (miscellaneous) sources, but various
white dwarf binary systems are included. Consistent with
previous variability studies, the region with the most targets is
the QSO region (59.0%) followed by the MS (31.2%) as
shown in Table 5. To estimate our total number of quasar
candidates, we add our QSO and HZQ objects and subtract
10% to obtain 135,000. We take 90% of the sum of our other
three categories to estimate 85,000 stellar variables.

We can make more sophisticated color classifications of
particular classes of objects. Using eBOSS CORE quasar color-
based photometric classification and previous SDSS spectro-
scopy, we can alternately define “CORE quasars” as those
objects for which

P (qso) 0.5 or
Class QSO. (23)SDSS

>
=

P (qso) is provided by the eBOSS CORE quasar team (A. Myers
et al. 2015, in preparation) which uses the XDQSOz algorithm
(Bovy et al. 2012) and ClassSDSS is the SDSS spectral class
from previous spectroscopy. These criteria do not include the
small number of potential quasars selected exclusively by the
PTF variability quasar search. The eBOSS quasar classifier
actually only applies to z 0.9> quasars, but most lower redshift
quasars are either swept up into this classifier or already have
previous spectra. In Figure 11, the 134,289 CORE quasars (as
now defined by Equation (23)) are shown in green and blue,
with the highest priority variable objects in blue. The 108,224
objects not satisfying Equation (23) are shown in red and yellow
with the highest priority objects shown in yellow.

Reassuringly, the bulk of our quasars are centered around
u g 0.2− = , g r 0.2− = , the known center of the quasar
locus. There is also a high density of points along the main
sequence, although there is more than the 0.1≈ magnitude of
scatter we would expect from our statistical error bars. This just
indicates that many of our variable stars have somewhat
unusual colors and is to be expected for variables (e.g.
unresolved binaries or stars with particularly active photo-
spheres). One notable subpopulation of this plot is the “blue
cloud” of 7548 sources not classified as quasars by Equa-
tion (23) in the region defined by

u g
g r

0.5 1.0
0.1 0.5. (24)

< − <
< − <

This cloud extends off the left of the main sequence and while
photometrically blue, is colored red in our plot. A large fraction
of these objects are likely to be z 2.8≈ quasars. This is a well-
known region in color space where quasars begin to overlap
with the main sequence and the color selection used to produce
the eBOSS CORE quasar sample is insufficient to distinguish
the two. The addition of variability information has likely
allowed us to break the color degeneracy and may be used in
the future to extend the redshift range of quasar samples. Note
that the coloring in Figure 11 is effectively opaque in high
density regions with non-quasars being plotted over quasars.
Underneath the “blue cloud” there are also 11,160 objects
identified as quasars by the criteria in Equation (23) “under-
neath” the “blue cloud” in the top figure.
In Figure 12 we show separately the estimated density of

quasars and stars deg−2 across our target sample. In this plot,
we define quasars via the simple color box in Equation (15).
Our map does not perfectly match the eBOSS area and some
extra areas near the edges contain significant (unaccounted for)
dust that limits depth and reddens quasars out of our color box.
This reddening, combined with geometric incompleteness near
the edges of our survey, lower densities near the edge of our
field. Beyond these small underdense edges that will not be
included in the final survey, our targets are uniformly
distributed, not displaying the strong Galactic density variation
of the sky plots in Figure 7.
Figure 13 shows the magnitude distribution of the TDSS

targets. In general, we would expect unbiased magnitude
distributions to increase exponentially at fainter magnitudes.
Instead, our magnitude distribution peaks at i = 20.25. This is a
price we pay to ensure high purity. The requirement of
detections in multiple filters, our accounting for error bars in
Equation (5) and the increased variability requirements at fainter
magnitudes as shown in Figure 5 all decrease the target density

Table 5
Numbers and Fractions of Different Broad Color-based Categories as Shown in

Figure 11 in Our Total Sample and Our TDSS-only Sample

All Targets TDSS-only Targets
Category Nobjects % of Total Nobjects % of Total

MS 75754 31.2 67922 71.5
QSO 143052 59.0 12754 13.4
RRL 7358 3.0 4384 4.6
HZQ 6948 2.9 3059 3.2
MISC 9401 3.9 6889 7.3

Figure 12. Estimated density of quasars deg−2 (top) and stars deg−2 (bottom)
in our target list across the sky. The “ratty” edges are in very dusty regions that
are not actually part of our sample.
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at fainter magnitudes. Our TDSS-only targets have a larger tail
on the bright end than the CORE quasars and objects with
previous spectra. This result can be explained by the fact that our
variable objects are mostly stars (see Table 4), and stars are
more concentrated at brighter magnitudes relative to quasars.

8.1. The Quasar Population

We can probe our likely quasar targets in significantly more
detail using a combination of previous spectroscopy and
photometry. We are particularly interested in seeing if we are
strongly biased toward selecting quasars in a particular color or
redshift region. If this were the case, it might indicate that our
filter transformations in Equation (1) were failing catastrophi-
cally in that region. Fortunately, as we show below, the only
redshift and color biases are subtle and expected.

Figure 14 shows the redshift distribution of three categories of
spectroscopic quasars: all the unresolved, i17.8 19.1SDSS< <
SDSS spectroscopic quasars in the TDSS footprint, those with
P 0.5qso > according to the eBOSS CORE quasar sample and
those that make our target list. We chose these limits because the
eBOSS CORE bright limit is 17.8, and the previous SDSS
spectroscopic faint limit (for the main z 2.5< quasar popula-
tion) is approximately 19.1. To be clear, these quasars all have
previous SDSS spectroscopy and will not generally be
reobserved in TDSS. The eBOSS team excludes z 0.9< quasars
from their sample. In general, TDSS recovers 30% of all
spectroscopically confirmed quasars across a broad range of
redshift. There are no sharp gaps or spikes that indicate that
quasars at particular redshifts are being over-selected or under-
selected due to Equation (1) or other effects.

The bottom panel of Figure 14 compares the selection
efficiency of the CORE quasar sample and TDSS. TDSS
underselects z 0.2< objects spectroscopically classified as
quasars. Most lower redshift objects with SDSS spectral
classification of “QSO” are in fact lower luminosity active
galaxies whose emission is not dominated by the central black
hole. This is indicated by the fact that z0.2 2.5< < quasars
from the plot have mean (median) u g− color of 0.22 (0.25),
whereas the z 0.2< quasars in this plot have mean (median)
u g− color of 0.95 (0.53). This extra redness is indicative of
significant host galaxy flux contamination. Both the CORE

quasar sample and the TDSS sample have a decreasing
selection efficiency with increasing redshift. For the CORE
quasar sample, this effect arises because quasars have less
distinct colors at z 2.5> , particularly at z 2.8≈ where quasars
have similar optical colors to main sequence stars. The TDSS
roll-off in efficiency is more gradual and is likely due to the fact
that higher redshift quasars vary more slowly due to
cosmological time dilation as well as their high luminosities
and implied large black hole masses.
Figure 15 compares g r− versus u g− for all

i17.8 21.0< < , P 0.5qso > CORE quasars and i17.8 21.0< <
spectroscopically identified quasars as well as the subset of those
quasars selected by TDSS. The distributions are qualitatively
nearly identical. Figure 15 (bottom) shows the ratio of the two
populations across color space. Across the main quasar locus,
TDSS recovers 20%–30% of the CORE and spectroscopic
quasars. In Figure 15 (top) there is a faint peninsula of CORE
quasar targets stretching from u g g r0, 0.2− = − = − to
u g g r0.5, 0.5− = − − = − that are not selected by TDSS in
Figure 15 (middle). These objects are likely to be white dwarfs.
Excluding this area, TDSS shows a broad tendency to be more

Figure 13. Magnitude distribution of all targets (blue) and TDSS-only
targets (red).

Figure 14. Redshift distribution of quasars with previous SDSS spectroscopy
(top). The histograms show all unresolved, i17.8 19.1SDSS< < spectroscopic
quasars in the TDSS area (blue), spectroscopic quasars that have an XDQSOz
probability P 0.5qso > according to the CORE quasar team (red) and quasars
that make our final target list (white). The bottom panel shows the fraction of
each population as a fraction of the total spectroscopic quasar population. Note
that the XDQSOz probability used to select eBOSS CORE quasars intentionally
excludes z 0.9< quasars from their sample.
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complete at the blue end in both the u g− and g r− axes,
although there is a low completeness region in the lower left hand
corner of Figure 15 (bottom) that may be due to small number
statistics. This preference for blue objectsmay partly stem fromour
decreasing completeness at higher redshift shown in in Figure 14.

For a given i, we will also generally bemore sensitive to variability
for blue objects that are bright in r and g. So our imagnitude limit
may lead to an implicit blue source selection bias.
It is not surprising that the CORE quasar team is

significantly more complete at selecting quasars than we are.
Their selection is focused on quasars, and it is roughly 4 times
larger than our sample. But is should be noted in the analysis
above, we do not (and cannot) evaluate the fraction of quasars
selected by their variability with TDSS that are missed by
conventional color selection. Some poorly constrained fraction
of quasars are reddened by dust or otherwise have non-standard
colors, and the spectra from TDSS will allow us to study how
well many of these quasars we can select from their variability.

8.2. The Stellar Population

Using spectroscopy and eBOSS color-based quasar selection,
we can statistically remove most quasars from our sample and
investigate the colors of our stellar targets. Again, TDSS does
not select stellar targets with color classification, so we expect
our targets will span a large range of stellar types and colors.
Figure 16 shows the r i− versus g r− color distribution of

all sources after removing the objects defined as quasars in
Equation (23). Statistically, we expect the vast majority of
remaining objects to be stars. We match the objects to the
SDSS main sequence from Kraus & Hillenbrand (2007) which
we approximate as

r i g r g r
r i g r

0.5( ) 0.05, for 1.45,
0.675, for 1.45. (25)

− = − − − <
− > − =

This is just a diagonal line which approximates the A through
M0 stars and a vertical line that matches the colors of M1 and
later stars. We classify our stars into categories defined in
Table 6. These categories are chosen to be spaced at roughly
0.2 magnitude intervals in g r r i,− − so that they are
meaningful distinctions for a sample with error bars of just
under 0.1 magnitudes. We set the location of the median
subclass of star in Table 6 to the nearest point on the the main
sequence approximation in Equation (25). We then match each
star to the nearest stellar category median. The results are

Figure 15. SDSS g r− vs. u g− distribution of all quasars for all
i17.8 21.0< < quasars in the eBOSS area (top) and the subset of those selected

by TDSS (middle). The bottom panel shows the ratio of the two populations.

Figure 16. SDSS r i− vs. g r− distribution of all TDSS non-quasars (mostly
stars). We approximate the main sequence and label and color-code different
stellar types.
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shown by the coloring in Figure 16. We exclude stars that do
not satisfy

r i g r
g r
r i g r

0.5( ) 0.35,
1.8,
0.5( ) 0.25 or r i 1.2 (26)

− > − −
− <
− < − + − >

for tabulation purposes, these stars are called “Not MS” in
Table 7 and are colored in grayscale in Figure 16.

Table 7 lists the numbers and percentages of different stellar
types shown in Figure 16. It also presents the numbers and
percentages of different stellar types after removing the “blue
cloud” stars described in Equation (24). These “blue cloud
stars,” if they are not actually quasars, are most likely F and G
type stars.

There are two notable trends in Table 7. First, 17.1% of all
objects are classified as “Not Main Sequence.” This large
fraction is perhaps not surprising since many of our variable
targets will be interacting or eclipsing binaries, stars under-
going intense chromospheric activity or will otherwise have
colors not consistent with simple stellar physics. Additionally,
the fractions of variables are fairly constant across our stellar
categories, ranging from 4.2% to 8.8%. There is no obvious
reason for this to be the case. But it is convenient, as it will
allow the study of a broad range of targets. Understanding why
the fraction of stellar variables is constant in r i g r,− − space
will likely be a significant topic of interest for TDSS as spectra
are analyzed.

Our stellar candidates are distributed much more uniformly
across the main sequence than those presented in the Catalina
Surveys Periodic Variable Star Catalog (Drake et al. 2014) and
the analogous catalog from LINEAR (Palaversa et al. 2013).
Specifically, a much larger fraction of our sources are redder K
and M stars. The CSS and LINEAR teams require a period
measurement for inclusion in their catalogs and are thus
particularly sensitive to RR-Lyrae and other (mostly blue)
pulsating variables with short periods. Since we do not require
a period measurement, our sample includes many eclipsing
binaries whose period is difficult to measure due to their low
duty cycle. Eclipsing binaries occur across a wide range of
stellar masses, so should be distributed rather uniformly across

the main sequence. We also expect to find various flaring stars,
especially toward the red end of the mains sequence, which
may not be periodic at all.

8.3. The Hypervariable Population

As mentioned in Section 5.1, 1108 of our sources are
hypervariables with 2 or more magnitudes of variability, V (see
Equation (11)). In Figure 17, these variables have an unusual
distribution of colors, with almost none near the quasar locus.
These hypervariables are also significantly redder than our
main population, suggesting that many of these stars may be
CVs, Mira variables or long-period variables.
We expect the hypervariables to be some of the most

interesting objects in our survey and plan on examining this
hypervariable population as well as the high variability stellar
and quasar populations (mentioned as FES projects in the
introduction). Specifically, we will examine the light curves
from PS1 and shallower surveys like the CSS, the PTF, and
LINEAR (when available) and see how these relate to our early
spectral identifications.

9. TDSS SELECTION FRACTION AS A
FUNCTION OF COLOR

We can learn more about the TDSS selection algorithm by
inverting the analysis in Section 8 and determining what
percentage of objects with particular colors are selected as
targets. Figure 18 displays the selection percentage in the
g r− , u g− space from Figure 11 and the r i− , g r− space
from Figure 16. In this plot and in the accompanying tables
below, we compare the total number of TDSS targets to the

Table 6
The Different Stellar Categories shown in Figure 16

Stellar Class Median Class g r− r i− g r( )line− r i( )line−
OBA A5 −0.02 −0.17 −0.06 −0.08
Early F F2 0.22 −0.01 0.19 0.05
Late F F8 0.31 0.03 0.28 0.09
Early G G2 0.42 0.11 0.40 0.15
Late G G8 0.53 0.18 0.52 0.21
Early K K2 0.71 0.29 0.70 0.30
Mid K K5 0.95 0.44 0.96 0.43
Late K K7 1.14 0.55 1.15 0.53
M0 M0 1.40 0.67 1.45 0.67
M1 M1 1.47 0.88 1.45 0.88
M2 M2 1.48 1.03 1.45 1.03
M3 M3 1.48 1.27 1.45 1.27
M4+ M4 1.48 1.51 1.45 1.51

Note. We show the description, the median stellar subclass, the actual location
of that subclass in g r r i,− − space from Kraus & Hillenbrand (2007) and
our approximation of this point on the main sequence approximation defined in
Equation (25).

Table 7
The Number and Percentage of Targets in the TDSS Candidate List from

Different Stellar Classes/subclasses after Removing all Quasars (as Defined by
Equation (23))

Stellar Class N P Nno bc Pno bc

OBA 4421 4.2 4406 4.5
Early F 6711 6.3 5240 5.4
Late F 6657 6.3 3951 4.0
Early G 6574 6.2 4006 4.1
Late G 6293 5.9 5507 5.6
Early K 6407 6.0 6405 6.5
Mid K 5014 4.7 5014 5.1
Late K 5857 5.5 5857 6.0
M0 8455 8.0 8455 8.6
M1 5894 5.5 5894 6.0
M2 7061 6.6 7061 7.2
M3 9380 8.8 9380 9.6
M4+ 9390 8.8 9390 9.6

MS 88114 82.9 80566 82.4
Not MS 18190 17.1 17236 17.6

Previous SDSS Spectra

Star 1742 1.6 1646 1.7
Galaxy 196 0.2 167 0.2

Note. N is the number of non-quasar targets of each type. P is the percentage of
our total non-quasar targets from each stellar type. Nno bc and Pno bc are the
analogous quantities for targets after objects in the “blue cloud” (Equation (24))
are also excluded. The first 13 rows add up to the main sequence (MS) line,
and the total is of course 100%.

16

The Astrophysical Journal, 806:244 (22pp), 2015 June 20 Morganson et al.



total number of objects in the TDSS footprint that pass our data
quality cuts in Equation (4). In broad strokes, the selection
percentage is extremely low (0.3%) along the main sequence
and much higher (above 10%) in areas of color space in which
quasars or other more exotic astrophysical objects are expected
to reside.

Table 8 tabulates the fraction of sources selected as variable
objects in the categories in Figure 18 (top) and Equation (22).
We only select 0.28% of objects on the main sequence,
excluding the RR Lyrae box from which we select 0.61% of
objects. Within the (very broad) quasar box (which includes
many nonvariable, blue stars), we select 11.9%, although we
select approximately 30% of quasars with previous SDSS
spectra as noted in Section 8. We select 1.61% and 1.06% of
sources in the HZQ and MISC regions, respectively. These off-
main sequence regions include variable subclasses like CVs
and white-dwarf main sequence binaries in addition to high-
redshift quasars.

Table 9 tabulates the fraction of sources we select as variable
objects from the categories in Figure 18 (middle) and from
Section 8.2 after likely quasars are removed. We also present

our results after removing the ambiguous “blue cloud” region
from Equation (24) in the right half of the table. Along the
main sequence, we preferentially select OBA stars (4.4%) and
F stars (3.31%) over redder stars (0.2%–0.5%). Perhaps some
of these early-type (blue) stars are the unusually colored
quasars that remain after excluding our color-selected quasar
sample, but the huge difference in selection percentage between

Figure 17. SDSS g r− vs. u g− distribution of all TDSS hypervariables (top)
and the r i− vs. g r− distribution of all TDSS hypervariables (bottom). In the
top panel, low (high) priority objects are in red (yellow) and the QSO, MS,
RRL, and HZQ regions are the areas of color space that contain most quasars,
main sequence stars, RR Lyrae stars, and high-redshift quasars, respectively. In
the bottom panel, we show the approximate positions of main sequence
classifications.

Figure 18. Percentage of SDSS objects which satisfy Equation (4) that we
select as TDSS targets as a function of g r− and u g− (top). The same
percentage as a function of r i− and g r− (bottom). The variable object
categories from Figure 11 and the main sequence categories from Figure 16 are
also shown.

Table 8
Total Number of Targets, Total Number of Objects and Percentage-selected of

Different Broad Color-based Categories as Shown in Figure 11 in
Our Total TDSS Sample

Category Ntargets Ntotal objects % Selected

MS 75,754 27,079,176 0.28
QSO 143,052 1,201,995 11.90
RRL 7358 1,204,246 0.61
HZQ 6948 430,329 1.61
MISC 9401 890,721 1.06
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early-type and late-type stars suggests that a relatively large
fraction of early-type stars are early-type variables, including
pulsators such as RR Lyrae stars.

10. STRIPE 82 AND CSS TARGETS WITH PREVIOUS
SPECTROSCOPY OR VARIABILITY CLASSIFICATIONS

As a final probe into the TDSS sample, we run our algorithm
on SDSS and PS1 data across the high Galactic latitude,
315 R. A. 60° < < °, area of SDSS Stripe 82 and cross-match
our results with samples of objects with previous spectroscopy
or variability classification. Both spectroscopy and known
variable objects are significantly more dense in Stripe 82 than
in the larger SDSS or eBOSS areas, so this data set provides a
relatively complete and homogeneous sample. We slightly
modify our selection algorithm by using 2◦. 5 × 2◦. 5 pixels with
62 TDSS-only targets per pixel since Stripe 82 is 2◦. 5 wide. We
then cross-match these targets (including shared CORE quasar
targets) with i17 21< < point sources that have previous
public SDSS spectroscopy and also cross-match our sample
with known variable objects. We use a set of 173 ellipsoidal/
eclipsing binaries from Bhatti (2012), 235 RR Lyrae from
Sesar et al. (2010), and 91 other low mass periodic sources
from Becker et al. (2011). We also cross-match our complete
target list with the union of the CSS periodic variables from
Drake et al. (2014) and RR Lyrae variables from Drake et al.
(2013) and Torrealba et al. (2015). This union contains 68,956
stellar variables, 5978 of which satisfy the minimum data
quality requirement from Equation (4) and are in the TDSS
area. Both our spectroscopic and variable object samples are
the results of multiple different surveys with acute and
intentional biases rather than a single statistically complete
sample. The relative fractions of different sources that we
detect are thus only suggestive of how our techniques will
select various subclasses of variable objects.

Table 10 shows the numbers of objects of different
spectroscopic types that pass our selection cut. We use SDSS
spectroscopic pipeline classes (“quasar,” “star,” or “galaxy”)
and subclasses (of which there are many) rather than
performing independent spectroscopic analysis. We combine
all objects with spectroscopic type “quasar” into the AGN
category and classify them as either “AGN Broadline” or
“AGN Non-Broadline.” As expected, we select a significantly
higher fraction of Broadline AGNs. Many “Non-Broadline”
AGNs are starburst galaxies or Seyfert type 2 galaxies in which
the potentially variable central black hole is less dominant in
the overall emission.
We only select 0.58% of objects with stellar spectra. This is

also expected as most stars, unlike quasars, are not inherently
variable. Conversely, only 358 of our approximately 2400
stellar targets (15%) in Stripe 82 have previous spectra. The
fact that 85% of our stellar targets are new, even in Stripe 82,
an area with a disproportionately high density of spectra,
emphasizes how large and unique the TDSS stellar sample is.
For convenience, we have bundled our stellar spectroscopic

subclasses into the same photometric color subclasses we use in
Tables 6 and 7 with additional categories for L and T dwarfs,
carbon stars, CVs, and white dwarfs. Roughly half of the stars
selected have OBA type colors. This population is highly
weighted toward the “A” end, and many of these stars are likely
RR Lyrae or anomalous Cepheid variables. The list of stars
with previous SDSS spectra is heavily biased toward OBA
stars. Only 4.2% of our non-quasar targets are OBA targets. We
also tend to select a relatively high percentage of L and T stars
(3.24%) as well as carbon stars (3.42%), which are likely in
binaries (Green 2013). We only select 3.16% of CVs, objects
that by definition have large variability amplitudes, but
relatively short duty cycles. The L, T, carbon star, and CV
selection fractions are all suspect as a large number of objects
are misidentified with these intrinsically rare classifications in

Table 9
The Numbers and Percentages of Targets Selected from Different Stellar Classes/Subclasses after Removing all Quasars (as Defined by Equation (23))

Stellar Class Ntargets Ntotal objects % Selected Ntargets no bc Ntotal objects no bc % Selectedno bc

OBA 4421 100,368 4.40 4406 100,219 4.40
Early F 6711 202,730 3.31 5240 88,923 5.89
Late F 6657 1,407,242 0.47 3951 455,731 0.87
Early G 6574 2,408,184 0.27 4006 1,479,662 0.27
Late G 6293 2,810,731 0.22 5507 2,668,135 0.21
Early K 6407 2,755,323 0.23 6405 2,755,301 0.23
Mid K 5014 2,147,150 0.23 5014 2,147,150 0.23
Late K 5857 2,565,386 0.23 5857 2,565,386 0.23
M0 8455 3,465,678 0.24 8455 3,465,678 0.24
M1 5894 2,616,959 0.23 5894 2,616,959 0.23
M2 7061 2,944,265 0.24 7061 2,944,265 0.24
M3 9380 3,443,992 0.27 9380 3,443,992 0.27
M4+ 9390 2,365,245 0.40 9390 2,365,245 0.40

MS 88,114 29,233,253 0.30 80,566 2,7096,646 0.30
NMS 18,190 1,011,878 1.80 17,236 997,638 1.73

Previous SDSS Spectra

Star 1742 219,463 0.79 1646 158,830 1.04
Galaxy 196 6981 2.81 167 6005 2.78

Note. Ntargets is the number of non-quasar targets of each selected while Ntotal is the total number of non-quasar objects that pass our data quality requirements. The %
selected columns is the percentage of objects that we select in our total sample. we also show the analogous quantities for targets after objects in the “blue cloud”
(Equation (24)) are also excluded (subscripted “No Bc”).
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the SDSS spectroscopic pipeline. In practice, objects identified
by TDSS with these rare classifications may require additional
observations to classify them with certainty. We select 4% of
unresolved objects with galaxy spectra. These are probably
intermediate AGNs not recognized as quasars by the SDSS
algorithm due to relatively weak emission lines, AGNs with
resolved galaxy flux that SDSS misclassified morphologically
or occasionally supernova hosts.

Table 11 lists the fractions of previously identified Stripe 82
variable objects we detect. We only detect 15% of the Bhatti
(2012) binaries. Binaries typically produce the 0.2≈ magnitudes
of variability we require for targets only when they are nearly
fully eclipsing and thus have a relatively low duty cycle
compared to the more constantly dynamic pulsators. More than
half (51%) of the Sesar et al. (2010) RR Lyrae sample makes
our cut. In fact, 156 of 235 (66%) of their RR Lyrae stars pass
our (E 45.4> ) RR Lyrae cut, with 15% being removed by our
random downsampling in areas with more than 10 targets deg−2.
If the density of selected RR Lyrae stars here were applied over
the whole sky, we would expect to find 1700 RR Lyrae stars.
Additionally, our broad variability selector should identify many
RR Lyrae stars whose light curves are too faint to be precisely
classified as RR Lyrae stars. It is likely that our estimate in
Table 5 of 4384 TDSS-only RR Lyrae targets made solely from
photometry is not more than a factor of two too high. We only
detect 11% of other periodic stars, likely due to their relatively
small variability amplitudes.

We can perform a more in depth analysis for many of our
sources over the full TDSS area by cross-matching with known
periodic variable objects from CSS. CSS is significantly

shallower that PS1 (typical limiting magnitude of V = 19.7),
and the CSS sources with measurable periodicity are biased
toward the brighter end of the survey. Our sample of 5978 CSS
periodic variables analyzed by TDSS is heavily biased toward
the bright end of the survey with 3963 i 18< and 5621 i 19<
objects, respectively. Table 12 shows the numbers and
percentages of CSS periodic variables selected by TDSS. The
categories are those used by Drake et al. (2014). Our results
here are similar to those in Stripe 82. In particular, we recover
53% of RR Lyrae and generally recover a large fraction of the
pulsating stars (RR Lyrae, Blazhko stars, Cepheid variables, δ
Scuti stars, and Long period variables) which tend to have high
amplitudes and duty cycles. As a reminder, we are randomly
downsampling by 30%, so we should not exceed 70%
completeness for a large population. We generally recover a
smaller fraction of binary systems (W-Ursae Majoris, Algol
Eclipsing, β Lyrae, RS Canum Venaticorum, and Post
Common Envelope Binaries) which tend to have lower duty
cycles and amplitudes (although the categories here have
relatively high amplitude).
As TDSS spectra are processed, we plan to compare our

spectral identification of brighter TDSS-identified variable
objects to those derived from higher cadence light curve
analysis from other time domain imaging surveys (particularly
the CSS, the PTF, and LINEAR). Photometric classification of
the stellar population may be supported through a machine-
learning approach to the photometric time-series light curves.
For example, the artificial neural-network based Eclipsing

Table 10
A Summary of SDSS Spectroscopic Pipeline Classes and Subclasses of All

315 R. A. 60° < < °, i17 21< < Stripe 82 Point Sources with Spectroscopy

Spec Class NS82 S82ρ NS82TDSS S82TDSSρ TDSS%

AGN 24,315 47.44 6788 13.24 27.92

AGN Broadline 18,999 37.07 5727 11.17 30.14
AGN Non-Broadline 5316 10.37 1061 2.07 19.96

Star 62,147 121.26 358 0.70 0.58

OBA 6080 11.86 160 0.31 2.63
Early F 10,151 19.81 55 0.11 0.54
Late F 6895 13.45 26 0.05 0.38
Early G 3469 6.77 3 0.01 0.09
Late G 410 0.80 3 0.01 0.73
Early K 8789 17.15 20 0.04 0.23
Mid K 432 0.84 3 0.01 0.69
Late K 3177 6.20 4 0.01 0.13
M0 3200 6.24 1 0.00 0.03
M1 2696 5.26 10 0.02 0.37
M2 3746 7.31 3 0.01 0.08
M3 4485 8.75 8 0.02 0.18
M4+ 6274 12.24 28 0.05 0.45
L, T 556 1.08 18 0.04 3.24
Carbon Star 117 0.23 4 0.01 3.42
CV 253 0.49 8 0.02 3.16
WD 1417 2.76 4 0.01 0.28

Galaxy 1448 2.83 58 0.11 4.01

Note. These columns are the number and density deg−2 of each type of object,
the number and density deg−2 of each type of object that is selected by TDSS,
and the percentage of these objects that would be selected by TDSS. Many L,
T, carbon star, and CV classifications are suspect.

Table 11
The Classes of Selected 315 R. A. 60° < < ° Stripe 82 i17 21< <

Variable Point Sources

Var Class NS82 S82ρ NS82 TDSS S82 TDSSρ TDSS%

Binaries 173 0.34 26 0.05 15.03
RR Lyrae 235 0.46 120 0.23 51.06
Other Periodic 91 0.18 10 0.02 10.99

Note.These columns are the number and density deg−2 of each type of object,
the number and density deg−2 of each type of object that is selected by TDSS,
and the percentage of these objects that would be selected by TDSS.

Table 12
The Classes of Selected Periodic Variable Point Sources from the

Catalina Sky Survey

Var Class NumCSS NumCSS TDSS TDSS%

W-Ursae Majoris 1982 550 27.75
Algol Eclipsing 364 47 12.91
β Lyrae 27 7 25.93
RR Lyrae 3494 1867 53.43
Blazhko 3 3 100.00
RS Canum Venaticorum 29 7 24.14
Anomalous Cepheid 3 2 66.67
Cepheid-II 11 3 27.27
High Amplitude δ Scuti 21 7 33.33
Long-Period Variables 7 3 42.86
Rotating Ellipsoidal 18 5 27.78
Post Common Envelope Binary 17 6 35.29

All 5978 2507 41.94

Note. The columns are the number of each type of object in the TDSS area, the
number detect by TDSS and the percentage of these objects that would be
selected by TDSS.
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Binary Factory (EBF) pipeline (Paegert et al. 2014; Parvizi
et al. 2014) has been used to automatically identify and sub-
classify eclipsing binary stars in the Kepler field as eclipsing
contact, eclipsing semi-detached, and eclipsing detached
systems with a low false positive rate. These EBF sub-
classifications are accompanied by a confidence level (i.e.,
posterior classification probability) for each target as a given
variable type (e.g., Eclipsing Binary, Cepheid, δ Scuti, RR
Lyrae). This EBF-generated confidence may then be used as
quantitative corroboration for the spectral classification of
TDSS stellar variable targets, and extrapolated cautiously to
fainter targets.

11. CONCLUSIONS

TDSS promises to open a new window into the nature of
astrophysical variable objects. Obtaining 220,000 R ≈ 2000,
optical spectra will make TDSS a massive and unique spectro-
scopic survey of variable objects. Just as important as the scale
of the TDSS sample is its breadth. By adopting a general
variability metric and not selecting for specific types of variable
objects in color space, TDSS will not only acquire spectra of
135,000 variable quasars, but it will also obtain spectra of
85,000 stellar targets including perhaps 4000 RR Lyrae stars and
1108 hypervariables (including blazars, CVs, or other flaring
stars), hundreds of carbon stars and multitudes of other variables
yet to be determined. The TDSS stellar spectra have little overlap
with previous SDSS stellar spectra and should prove to be a truly
unique sample.

This survey is facilitated by the combination of SDSS and
PS1 photometry. SDSS and PS1 both produce 10% level
photometry out to i = 21 in the griz filters across an overlapping
area of 14,400 deg2, including the entire 7500 deg2 eBOSS area.
The combination of an SDSS-PS1 photometry difference,
spanning 6–10 years, and PS1-only variation, with timescales
of hours to years, efficiently selects both long term variable
objects (quasars) and shorter term variable objects (most
variable stars). After flagging and rejecting sources with
unreliable photometry using sensible database queries, we use
a KDE and a Stripe 82 training set to produce a sample that we
estimate to be 95% pure, based on Stripe 82 variability
measurements. We suspect that our final sample will have even
higher purity since some Stripe 82 non-variables may have
simply been dormant during the epochs of Stripe 82 imaging but
active during those of PS1. In addition, we increase purity
further with visual image inspection. While the vast majority of
our sample is selected in a relatively unbiased manner, we

deliberately select 1108 hypervariables (which vary by more
than 2 magnitudes) and 73 i-dropouts to ensure that these
potentially interesting objects are not excluded from our sample.
While precise and complete identification of variable objects

is impossible with basic photometric colors, we analyze our
sample in u g g r r i, ,− − − color space to characterize our
sample in broad strokes. The majority of our sample (59%)
resides in the traditional z 2.5< quasar color region. However,
after removing our overlap with the eBOSS CORE quasar
sample and previous spectroscopy, only 13.4% of our TDSS-
only targets reside in this region, while 76.1% of them lie along
or near the main sequence (including 4.1% which are in the
F-star region where most RR Lyrae lie). Our stellar population
is spread out relatively evenly with 37.7% of our non-quasar
sample being M stars, 40.9% being FGK stars, 4.2% being
(intrinsically rare) OBA stars, and 17.1% being outside our
main sequence classifying scheme. This target diversity was a
natural result of selecting objects based on their variability
without explicit regard for their colors. Inverting this analysis,
we select 11.9% of objects within a broad quasar color box
while we only select 0.28% of main sequence stars. Within the
main sequence, we select 4.4% of OBA stars, 3.31% of F stars,
and roughly 0.25% of all other stars.
We anticipate that the breadth of the TDSS sample will lead

to a wide variety of applications. Our work here suggests
variability will help improve quasar selection in redshift
regimes where photometric color selection is difficult
(z 2.8≈ ) and distinguish white dwarfs from quasars. More
interestingly, variability can help us identify quasars that are
reddened by dust, have weakened emission lines or otherwise
have unusual colors that mask them from conventional quasar
searches. TDSS will also produce a relatively pure and
complete quasar sample with respect to variability allowing a
study of how quasar properties change with variability in a
statistically robust way. Determining how the concentration of
different types of stellar variables changes across the Milky
Way will be a major survey goal of TDSS. TDSS also promises
to produce the largest sample of outer Milky Way RR Lyrae
spectra and will thus probe the outer halo with new precision.
TDSS should also significantly expand our samples of CVs and
variable carbon stars, although confident identification may
require additional observations, particularly for objects that are
not in a quiet state when observed by TDSS. Finally, as the first
truly large scale spectroscopic survey to access a broad range of
variable types, TDSS serves as a pathfinder for future
variability surveys like LSST, allowing both a statistical

Table 13
The Stochastic Gradient Boosted Decision Tree Analog of Table 4

Ntar 20 Ntar test NQSO N* Nlovar NCORE Nprev Ntot Ptar Ptot

60 67.8 2.9 11.7 53.1 14.1 15.7 97.6 36.8 45.6
50 56.5 2.6 13.1 40.7 13.5 14.9 84.9 41.9 52.0
40 45.4 2.3 14.6 28.6 13.0 14.0 72.4 49.1 60.6
30 35.2 1.9 15.5 17.8 12.1 13.0 60.4 58.2 70.4
20 23.7 1.5 14.3 7.9 10.7 11.4 45.7 71.2 82.7
10 11.3 0.9 9.4 1.1 8.2 8.3 27.8 90.8 96.0

Note. Estimated target counts and purities from stripe 82 tests at different variability cutoffs. All counts are in units of deg−2. All purities are percentages. Ntar 20 is the
number of targets in the 20th percentile pixel for a given threshold while Ntar test is the number of targets in our test field. NQSO, N* and Nlovar are the estimated numbers
of TDSS-unique quasars, stars and low-variability objects, respectively. NCORE and Nprev are the estimated numbers of objects we share with the CORE quasar sample
or have previous SDSS spectroscopy. Ntot is the total number of candidates. Ptar and Ptot are the estimated purities of our TDSS-only targets and our total targets,
respectively.
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spectroscopic characterization of the variable object population
and the identification of rare or extreme examples only found in
large variable samples.

Funding for the SDSS-IV has been provided by the Alfred P.
Sloan Foundation and the Participating Institutions. SDSS-IV
acknowledges support and resources from the Center for High-
Performance Computing at the University of Utah. The SDSS
web site is www.sdss.org. SDSS-IV is managed by the
Astrophysical Research Consortium for the Participating
Institutions of the SDSS Collaboration including the Carnegie
Institution for Science, Carnegie Mellon University, the
Chilean Participation Group, Harvard-Smithsonian Center for
Astrophysics, Instituto de Astrofísica de Canarias, The Johns
Hopkins University, Kavli Institute for the Physics and
Mathematics of the Universe (IPMU) / University of Tokyo,
Lawrence Berkeley National Laboratory, Leibniz Institut für
Astrophysik Potsdam (AIP), Max-Planck-Institut für Astro-
physik (MPA Garching), Max-Planck-Institut für Extraterres-
trische Physik (MPE), Max-Planck-Institut für Astronomie
(MPIA Heidelberg), National Astronomical Observatory of
China, New Mexico State University, New York University,
The Ohio State University, Pennsylvania State University,
Shanghai Astronomical Observatory, United Kingdom Partici-
pation Group, Universidad Nacional Autónoma de México,
University of Arizona, University of Colorado Boulder,
University of Portsmouth, University of Utah, University of
Washington, University of Wisconsin, Vanderbilt University,
and Yale University. The PS1 Surveys have been made
possible through contributions of the Institute for Astronomy,
the University of Hawaii, the Pan-STARRS Project Office, the
Max-Planck Society, and its participating institutes, the Max
Planck Institute for Astronomy, Heidelberg, and the Max
Planck Institute for Extraterrestrial Physics, Garching, The
Johns Hopkins University, Durham University, the University
of Edinburgh, Queen’s University Belfast, the Harvard-
Smithsonian Center for Astrophysics, and the Las Cumbres
Observatory Global Telescope Network, Incorporated, the
National Central University of Taiwan, the National Aero-
nautics and Space Administration under Grant No.
NNX08AR22G issued through the Planetary Science Division
of the NASA Science Mission Directorate, the National
Science Foundation under grant No. AST-1238877, the
University of Maryland, and Eotvos Lorand University
(ELTE). We thank Don York for many discussions, spanning
a number of years, related to the combined SDSS and PS
scientific potential, and we thank Tim Heckman for his support
linking the two surveys through TDSS. We gratefully
acknowledge help with candidate visual inspection provided
by Jerica Green (SAO) and Caroline Scott (Imperial).

APPENDIX
COMPARISON OF KDE TO BOOSTED

DECISION TREE

In order to investigate whether more complex techniques that
utilize a greater variety of variability features can offer
significant improvement over our variability-based KDE
approach, we compared the KDE results with those obtained
using a Stochastic Gradient Boosted Decision Tree (SGBDT)
technique (Friedman 2001, 2002). Gradient boosting is one of
the most powerful and commonly used machine learning
techniques, and among its advantages are that it is highly

flexible and fairly robust against overfitting. The basic idea
behind gradient boosting is to build up a classifier (or
regression function) as a linear combination of many weak
classifiers. In most applications, including ours, the weak
classifiers are shallow binary decision trees. One can think of
the technique as modeling the logarithm of the probability that
an object is a variable object, given the set of input variability
features, as a basis expansion in a set of shallow decision trees,
where each decision tree is derived sequentially from the
training data. In the stochastic implementation that we used, the
decision trees are derived sequentially using a random
subsample of the training data, which improves the prediction
error by reducing variance in the estimator through averaging.
In addition to the median(SDSS-PS1), median(Var), and
median(mag) features used in our standard selection algorithm,
we add c red

2χ , Qtot, v, and median(σ). Here, c red
2χ is the reduced

2χ of our PS1 g r i zP1 P1 P1 P1 magnitudes assuming a constant for
each of the g r i zP1 P1 P1 P1 filters. Qtot is the average of Q Q75 25−
across griz filters, where Q75 and Q25 are, respectively, the 75th
and 25th percentile PS1 measurement in each filter. The
quantity v is a four filter white noise amplitude described in
Morganson et al. (2014). Median(σ) is the median PS1
standard deviation across the griz filters.
We used the stochastic gradient boosting algorithm imple-

mented by the Python scikit-learn package.24 There are a few
tuning parameters in this algorithm. The first is the fraction of the
training data that is used in each subsample when deriving each
weak classifier. We set this parameter to 0.5, a recommended
default value. Another tuning parameter is the learning rate,
which controls the amount of shrinkage employed. A higher
learning rate means that less shrinkage is applied to each of the
base classifiers (shallow decision trees), and the model is built
up faster. We adopt the default value of 0.1. The number of
decision trees to use in the sum is chosen to be 84, found by
minimizing the “out-of-bag” error; the out-of-bag error is the
error as evaluated by that subsample of the training set that was
not used to build the next weak classifier. Finally, the maximum
allowed depth of each decision tree in the sum was chosen to be
3, found to minimize the test error, where we withheld 25% of
the Stripe 82 data set as test data and used the remaining 75% to
train the algorithm. Ultimately, the SGBDT assigns every object
in our 135 R. A. 150 , 45 decl. 60° < < ° ° < < ° test set (as
well as our training variable object and standard sets) a
probability of being a variable object. This quantity is analogous
to the E quantity (and related probability) defined in Section 4
for our KDE.
The SGBDT also provides a relative measure of the

importance of each feature in classifying variable objects.
The most important feature was found to be
median( SDSS PS1 )∣ − ∣ , followed by median(Var) and med-
ian(σ). These three features contained approximately 60% of
the total feature importance measure.
In Table 13, we show the SGBDT analog of Table 4. As in

Section 4, we set thresholds in our SGBDT Pvar so that 10, 20...
60 TDSS-only targets deg−2 pass the threshold in our test set.
We can then count the number of variable objects and
standards that pass these thresholds and calculate purities and
other quantities with the same procedures described in
Section 6. At the crucial density of 10 TDSS-only targets
deg−2 (the density of our actual target list), the SGBDT sample

24 http://scikit-learn.org
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is slightly more pure than our KDE sample (90.8% versus
86.4% in Ptar). However, our KDE performs significantly better
at finding CORE quasars and objects with previous SDSS
spectra and identifies 9.1 additional objects deg−2. Since we are
interested in the total sample that passes our threshold, this
feature is a decisive advantage for the KDE. We also
conceptually prefer using the KDE method which uses a few
robust quantities that may be more homogeneous across our
sample.
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