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Abstract

Studies of the evolution of collective behavior consider the payoffs of individual versus social learning. We have previously
proposed that the relative magnitude of social versus individual learning could be compared against the transparency of
payoff, also known as the ‘‘transparency’’ of the decision, through a heuristic, two-dimensional map. Moving from west to
east, the estimated strength of social influence increases. As the decision maker proceeds from south to north, transparency
of choice increases, and it becomes easier to identify the best choice itself and/or the best social role model from whom to
learn (depending on position on east–west axis). Here we show how to parameterize the functions that underlie the map,
how to estimate these functions, and thus how to describe estimated paths through the map. We develop estimation
methods on artificial data sets and discuss real-world applications such as modeling changes in health decisions.

Citation: Brock WA, Bentley RA, O’Brien MJ, Caiado CCS (2014) Estimating a Path through a Map of Decision Making. PLoS ONE 9(11): e111022. doi:10.1371/
journal.pone.0111022

Editor: Igor Linkov, US Army Engineer Research and Development Center, United States of America

Received May 23, 2014; Accepted September 28, 2014; Published November 4, 2014

Copyright: � 2014 Brock et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This research was partially supported by the Leverhulme Trust ‘‘Tipping Points’’ program. The funder had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-author R. Bentley is a PLOS ONE Editorial Board member, but this does not alter the authors’ adherence to PLOS ONE Editorial policies
and criteria.

* Email: r.a.bentley@bristol.ac.uk

Introduction

In studies of decision-making and health, social influence is

becoming increasingly recognized. Coordinated behavior has

benefits for groups and the individuals within them. When

successful behaviors of the community are socially learned,

cooperation can evolve in social networks extending beyond the

limits of Hamiltonian inclusive fitness among kin [1–8]. Provided

that some fraction of agents learn individually [9], either as

‘‘specialists’’ or ‘‘generalists’’ [10], social learning can be seen as an

adaptive strategy among ‘‘scroungers’’ for the exploitation of the

information gains made by the ‘‘producers’’ who track the

environment through individual learning [11–13]. Most evolu-

tionary approaches expect the most adaptive state to equilibrate to

a mix of individual and social learners whose proportions are

dictated by the degree of spatial and temporal autocorrelation of

the environment and the cost of individual learning [7,12,14–18].

This assumption of adaptive equilibrium is an ideal, however, and

not necessarily attainable in conditions of continual transition. As

social learners increase in frequency, they are increasingly copying

from each other, and so the quality of their information about

decision payoffs likely diminishes [12]. At the same time,

individual learners may be overwhelmed by rapid change, poor

information, or simply too much information in order to make

informed decisions.

For this reason, there is the important factor of how well

informed decision makers are — what we might call the

‘‘transparency’’ of payoffs in their decisions. A relevant question

about online social media, for example, is whether their

searchability makes decision makers more well informed, or

whether the deluge of social influence and similar options makes

decisions less transparent in terms of payoffs [19]. Traditional

decision theory typically assumes that agents are informed about

their behavioral options, or if not, then are at least knowledgeable

about the people from whom they might learn, preferably the most

skilful, informed, or prestigious members of the group [12,20–22].

In contrast, models of collective flocking or herding behavior

assume no such knowledge — agents are often represented by

vectors, with choice as the direction and transparency as the

magnitude. Even as most agents follow neighbors with no

particular preference, a collective direction (consensus) can

nonetheless favor of the minority, if there exists high transparency

of choice [23–25].

We see two major factors in decision making: social/individual

learning and transparency of choice [19], as depicted in Figure 1.

This heuristic map represents the relative magnitude of social

versus individual learning on the horizontal axis and the

transparency of a decision on the vertical axis. Following the call

for evolutionary theory as the integrating principle of behavioral

science [26], the map is intended to unify quantitative approaches

from multiple branches of social science, ranging from rational-

actor approaches in the northwest, to more anthropological social-

learning theory in the northeast, to the ‘‘information overload’’ of

the southwest and southeast.

At the macro scale, the map reduces the complexity of social

decision process analysis to the coarse-grained simplicity of two

axes, analogous to a principal components analysis reduced to two

dominant factors. The north–south axis, which we parameterize as

bt, represents a measure of transparency in the payoff differences

among available alternatives, from opaque at the south (bt~0) to

absolutely transparent in the north (bt~?). Along the east–west
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axis, the measured parameter Jt increases from west to east, from

a decision made individually at the western edge (Jt~0) to pure

social decision making — copying, for example — at the eastern

edge (Jt~?).

The framework has broad applicability, and one particular

application we envisage is toward fertility decisions for example,

using an exceptional long-term dataset on about 250,000 people,

collected in the Matlab region of Bangladesh since 1966 [27].

Those data are excellent, long-term monthly records of the

decisions that have been made over many years, along with

associated (anonymous) details of the individuals making those

decisions, such as total fertility, religion, surviving children, age at

marriage, household income, education and other observable

covariates that impact fertility. We can also consider social

variables as well, such as density of the behaviour within the local

social network. Other health-related examples would be smoking,

where national health services such as the NHS in the United

Kingdom or the ALSPAC dataset at University of Bristol hold

long-term data on anonymous individuals and their relevant

binary choices (to smoke or not, be vaccinated or not), along with a

wealth of covariate information on the individuals (wealth,

education, religion, and so on) but also often on social visibility

(e.g., kin members in the same dataset).

Work on peer effects in smoking behavior is vast, but we have

not found any work that attempts to estimate the dynamics of the

intensity of choice function, as we propose. Work that is most

closely related to ours [28,29] attempts to control for the effects of

self-selection into peer groups, correlated unobservables, and

contextual effects that tend to bias received estimates of peer

effects on smoking (e.g., estimates of our J parameter). This

valuable precedent, however, does not estimate the intensity of

selection function as we propose.

Our approach could be applied to far different scenarios than

health, including criminal records or consumer sales, where long-

term choice data are available alongside individual covariates. We

see the framework as especially appropriate to online choices in

the big-data era, as the covariate data could be comprehensive,

including vast records of previous choices. In all cases, the

characterization on social influence and transparency of choice

would provide a novel insight into the decision dynamics at the

population scale.

We previously described the map in terms of generalized data

patterns diagnostic of each of its four quadrants [19]. We focused

on population-scale data patterns and left specific empirical

estimation concerning individuals to future work. Here we show

how real-world data could be plotted as locations on the map in

Figure 1 and, if the data allow, as trajectories across the map

through time. This requires us to develop a method to estimate b

and J, either for each agent or for each agent’s group, from real-

world data. We assume the available data include the (a) covariates

that may influence the agent’s choice, (b) variability of the agent’s

choices, and (c) strength of social influences upon the agent’s

choices. All three of these associations may change through time.

The Model

In parametarizing our two-dimensional map, we divide

transparency of choice into separable components for intrinsic

utility and social influence. Our model builds on previous work in

discrete choice theory by parameterizing the transparency of

choice as a function of observable covariates (see Methods). To

begin, let there be G groups with I players in each group. We can

think of I as being a large number so that the law of large numbers

gives a good approximation in what follows. For now, assume the

groups are disjoint, i.e., nonoverlapping. Agent i in group g

chooses choice k if the random utility agent i gets from choice k is

greater than the random utility available from any other choice,

~UUigtkw
~UUigtj , ð1Þ

at time t for all j=k. Here, symbols with a * denote random

variables (deterministic quantities will not have tildes).

Assume that

~UUigtk~Uigtkz
~EEigtk

bitg

, ð2Þ

where the U ’s are deterministic and the random variables ~EEigtk are

Independent and Identically Distributed Extreme Values (IIDEV)

across all dates, choices, groups, and individuals. Then the

transparency of choice is inversely proportional to how strongly

the noise in the payoff is amplified, 1=bigt. We then choose units so

the constant of proportionality is one (so that when noise is small,

transparency is high). As we will see, this noise can occur in

intrinsic utility and/or social utility of the choice. The probability,

Pritg(k), that agent i in group g chooses k is then the term for

choice k divided by the sum of terms across all choices, Z:

Pritg(k)~
1

Zitg

e
bigtUitgk and Zitg~

XKt

j~0

ebigtUitgj , ð3Þ

where i, k and g take the integer index values from 1 to I , Kt, and

G, respectively. The higher the transparency of choice is, the more

sensitive the probability is to the utility. Note that when

transparency of choice b is zero, utility has no effect on choice,

and agents are effectively just guessing among all the choices, i.e.,

Pr(k)~
1

k
when b~0.

Figure 1. Summary of the four-quadrant map for understand-
ing different domains of human decision making, based on
whether a decision is made independently or socially and the
transparency of options and payoffs [19].
doi:10.1371/journal.pone.0111022.g001
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In order to incorporate the ‘‘east-west’’ axis of social influence,

one option is to add a term for frequency-dependent social

learning [30], whereas another is to add a social component by

which agent i makes pairwise expectations on choices of j others

[31]. Building on both, we define utility with respect to choice

k~0 and then divide Prigt (k) by Prigt (0), so that the partition

function, Zitg, cancels out from equation 3, such that

Prigt(k)

Prigt(0)
~

e
bigtUitgk

e
bigtUitg0

: ð4Þ

If we then take the natural logarithm of both sides, we are left with

the transparency b multiplied by the difference in utility U . We

can then expand the utility function into an individual component

and a social component as follows:

ln
Prigt(k)

Prigt(0)
~ b(h,zigt)|fflfflfflffl{zfflfflfflffl}

transparency

½Q1(xikgt{xi0gt)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
individual

zJ(Q2,yigt)(Ptkg{Pt0g)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
social

� ð5Þ

for agent i, for choice k, in group g, at date t (recall that Ptkg is the

fraction of group g that chose k at date t).

Table 1 in the Methods section (below) summarizes the different

parameters and variables involved. Equation 5 separates, from left

to right on its right-hand side, an individual-choice component,

bQ1, and a social component, bJ. The individual component of

choice is governed by Q1 and acts on the payoff difference between

options (x1{x0). The social-influence component, governed by

JQ2, acts on the popularity of the option (Ptkg{Pt0g) that is

expressed as the relative popularity of choice k compared to the

choice of reference k~0. Although the transparency of choice

parameter, b, is part of both the individual term and the social-

learning term, our map depicts the transparency of choice and

social influence as orthogonal dimensions.

The model is intended to allow the estimation b and J from the

data and potentially map a trajectory through time for agent i in

group g. The transparency of choice, b, increases from south to

north on the map and the social influence, J, increases from west

to east (Figure 1). We may estimate bitg~b(h,zitg) once we have

adequate time series data set on a vector of covariates, fxitgg, and

we have parameterized the transparency of choice function,

bitg~b(h,zitg). The parameter vectors h and Q2 can be normalized

to fit the functional specification, bitg~b(h,zitg), and social-utility

function, J(Q2,yitg), respectively (discussed below).

The covariates for each agent include those that predict the

propensity of the behavior, denoted by fxigtg, those associated

with the presence of social influence fyitgg, and those that relate

how variable the choices were through time, fzitgg. These realities

are amplified by Q1 (individual) and Q2 (social), which govern the

sensitivity to inherent differences of the choice and social

influence, respectively. In other words, the parameter vectors

h, Q1, and Q2 operate on aspects of the real world denoted by

positive scalars x, y, and z, respectively. Estimating the parameter

vector Q1 determines the individual sensitivity to differences in

choice (x1{x0). Estimating the parameter vector h, along with

the scalar observable z, determines the transparency of choice, b.

Estimating the parameter vector Q2 specifies the social-influence

function, J(:).
We tested to see how these estimates can be used to describe a

path, fb(h,zitg), J(Q2,yitg)g, through the map for each agent i in

each group g for which we have data at date t.

Results

We generated artificial data to yield four different paths through

the map to test whether our suggested estimation procedure

actually works (see Methods). We can use equation 5 for a log odds

regression,

ln
Prigt(1)

Prigt(0)

� �
~b(h,zigt)

½Q10zQ11(xi1gt{xi0gt)z

J(Q2,yigt)(Pt1g{Pt0g)�zEi1gt{Ei0gt

� �
,ð6Þ

where Ptkg is the fraction of group g that chose k at date t. We

then specified the social-influence and transparency of choice

functions as follows,

Table 1. Parameters and variables of the model.

Parameter or variable Description

U Total utility payoff function (total)

i Individual index, from 1 to I

k Choice index, from 1 to K

g Group index, from 1 to G

Ei Random idiosyncrasies (noise) associated with agent i

bit transparency of choice for agent i at time t. Depends on h and z.

J Social influence for agent i at time t. Depends on Q2 and y.

Q1 Individual sensitivity to differences in choice (xi1gt{xi0gt)

Q2 Social choice transparency (parameter vector)

h Covariates for choice transparency (parameter vector)

x Scalar for individual choice

y Scalar for presence of social influence

z Scalar for variability of choices through time

Xi Observable characteristics of agent i, consisting of fxitgg

doi:10.1371/journal.pone.0111022.t001
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J(Q2,yigt)~eQ2yigt

b(h,zigt)~ehzigt :
ð7Þ

We can now use this parameterisation to explore how the

parameterised map applies to artificial datasets (see Methods on

how these data were generated). In Figure 2, we show simulations

of the binary choice (e.g., to have a child or not) with

Q2~1, Q1~1, and h~5 from equation 7, with group size

G~100 and M~100 agents per group. We then vary the initial

starting proportions of the 10,000 agents (over all groups) choosing

one (blue) versus the other (red). We can see that all simulations

converge to nearly 100% of agents choosing the blue option in

fewer than ten time steps, even if we start with a majority choosing

red at the starting point. This is what we expect when both Q2 is

positive and h is high and positive — the population selects the

option with the better payoff.

The specification in equation 7 allows other variations that yield

more novel results. To convey the effects of varying h and Q2,

Figure 3 shows the change in behavior for a binary choice under

different values of h and y2 (for clarity, Figure 3 shows just the

proportion of one of the two choices). In varying these two

parameters, we find variation not only in final outcomes after 30

time steps, but in the dynamics of choice as well (Figure 3). When

Q2 is negative, for example, we move toward social independence,

and, for positive Q2, decisions tend to be made socially. Similarly,

when h is negative, we move south toward ambivalence, and, as h
increases, we move north toward a transparency between the

binary options. If y2 is low and h high, a member (or a whole

group) might be able to choose something different from the norm.

This event, however, becomes rarer as social influence increases.

We then used the modelling to explore how the parameters b

and J can be estimated from the simulated data. Figure 4 shows

how some estimates of the parameters, based on the data

generated via simulation, vary as we move along the axis on the

map displayed in Figure 1. We use a nonlinear least squares

(NLLS) method to estimate y2 and h; for y2 large (Figure 3,

bottom row), for example, estimating h accurately is nearly

impossible because there is little variation in behaviour as the

social dominance of the group dominates individual utilities.

Discussion

In these tests, we found that estimation is reasonable for y2 but

less precise for h. We see the source of this ‘‘weak identification’’

problem in equation 5 where, because b multiplies w1 and J, there

can be difficulty in disentangling parameters in b from w1 and

parameters in J unless we have the right kind of specifications of b

and J as well as variation in the observables that go into estimating

their parameters. In equation 11 we can also see the challenge in

disentangling the size of b for the size of the variance of the

random variable on the right-hand side (multiplying numerator

and denominator by a scalar cancels out). This suggests that the

variance of the numerator has to be normalized to one, say, in

order to identify parameter theta in b.

We note that the inability to correctly estimate h for large values

of y2 is not important because the uncertainty around h when y2

is large shows that payoff/costs are irrelevant when social

influence is extremely high. In future work we will focus on how

to better estimate h. Moreover, as we focus on Q2 and h, we may

Figure 2. Simulations of T~20 time steps, with group size G~100 and M~100 agents per group. From equation 7, we set Q2~1, Q1~1,
and h~5. The noise component, Ei1gt{Ei0gt has mean 0 and s~0:01. Shown are proportions of the 10,000 total agents who have made one of the
two possible two choices, one shown as red and one shown as blue, through time. The different plots show simulations with varying starting points
for each proportion. The payoffs xi1gt and xi0gt are chosen from from time-varying normal distributions N(t=10,1), and yigt and zigt are both chosen
from time-varying normal distributions N(t=10,1). Gray bounds show 95% quantiles for sample paths over group and red/blue curves show the mean
paths for proportion over groups.
doi:10.1371/journal.pone.0111022.g002

A Map of Decision Making

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e111022



Figure 3. Simulations of binary choice model with varying choice intensity h and social influence intensity Q2. For clarity the plots only
show the proportion of agents making one of the two choices (e.g., non-parent). The panels show 16 different combinations of h and y2 , with Q1~1
for all. Each panel shows results of simulation with 30 time steps, 100 groups and 200 agents per group, noise component Ei1gt{Ei0gt with mean 0
and s~0:1, and starting proportion 80% for the choice shown (so the choice not shown starts at 20%). The payoffs xi1gt and xi0gt are chosen from
N(t=10,0:01), and yigt and zigt are both chosen from N(10t,1). Gray bounds show 95% quantiles for sample paths over group for the proportion of
non-parents over groups.
doi:10.1371/journal.pone.0111022.g003

Figure 4. Map of the chosen values of h and y2 used in Figure 3. The red dots represent the true parameter values and are linked to their
corresponding nonlinear least squares estimates in blue.
doi:10.1371/journal.pone.0111022.g004

A Map of Decision Making

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111022



consider that Q1 is unnecessary. We prefer to keep Q1 embedded in

the model, as it allows for a priori assumptions regarding the

strength of individual vs social learning — from Q1v0 (aversion to

choice 1) to Q1~0 (no individual bias) to Q1w1 (bias towards

choice 1). Further, removing Q1 would change the inference on b

and J ; that is, eazbx and aebx can be equivalent representations

when a and b are positive, but otherwise the relevance of a
depends on the magnitude of x in the former and allows negative

outputs in the latter.

The simple bi-axial map of behavior in Figure 1 aims to extract

from aggregated data the transparency of decisions (north–south)

and the extent to which a behavior is acquired socially versus

individually (east–west). We have proposed a means by which to

parameterize the functions that underlie the map and thus

estimate paths through it. Rather than assume how well agents

are informed in their learning, we can let transparency of choice

be a variable parameter in our models, with the aim of using the

models to infer transparency of choice from real data [19,23]. For

example, we might have a vector h such that the transparency of

choice would be parameterized as the specification b~h0zzh1.

A hypothetical real-world example for z might be the fraction of

unvaccinated in group g at time t. We would consider an idealized

binary choice of whether or not to get vaccinated at time t, where

k~1 would designate vaccinated and k~0 designate not

vaccinated. In this example, b grows linearly with zh1, which

would imply that the more unvaccinated there were in the group,

the more transparent the decisions would become about vaccina-

tion. Other binary-choice examples might include whether or not

to use contraception, smoke, use hand sanitizer, or perhaps the

fertility decision of whether or not to have a child.

Social-influence studies that treat transparency of choice as a

variable suggest that it has a complex interaction with social

learning. Some of this interaction might be captured, for example,

by a specification such as J~Q20zyQ21, by which, assuming Q21 is

positive, the presence of social influence increases with the scalar y.

Hypothetical real-world examples for a group-specific y include

the fraction in the group that are high income or perhaps the Gini

coefficient of the group. Given the formulation for J , the scalar

factor y then affects the social influence associated with other

observables.

These parameters relate to debates on modelling fertility

decisions, for example, as explanations range from an intrinsic

individual utility decision [27] versus the social influence of the

frequency of a particular fertility level in their local community

[32]. For example, it may be that poor, uneducated women living

in a wealthy, educated group tend to adopt the low-fertility level of

the group rather than the higher fertility that would otherwise be

associated with their low income and low education as individuals

[32]. In this case the social-choice transparency, Q21, might reflect

the tendency to have the same number of children as other

mothers, whose success and/or education has become more

socially visible.

Fertility research also generates the sort of long-term, time-

stratified demographic datasets that are appropriate to our

proposed estimation method for the map. More generally, the

growth of so-called ‘‘big data’’ on collective decisions also seems

suited to this map [19], which links different scales of analysis, such

as the microprocesses that produce observed scaling relationships

in social-network formation [33].

As new digital technologies filter and search social influences

and information, transparency of choice may be increased, but

conversely if agents are overwhelmed the online deluge of

information, options, and social influences [34,35], then transpar-

ency of choice, bt, may decrease (by decreasing h and/or zigt). This

may be central to herding effects in online product ratings [36], for

example. Also, the transparency of payoffs may well be changing

for many health decisions - the rapidly changing conditions of the

modern world may effectively lower b as the connection between

the decision and its actual future payoffs are obscured by the

‘‘noise’’ of socio-economic change. Seemingly straightforward

social interventions may therefore have unanticipated consequenc-

es [37].

The dimensions of the map are also relevant to studies that

compare technological complexity with population size [38–41],

which assumes relatively transparent individual and social

learning. Adding agents who are uninformed (payoffs not

transparent) tends to cause a group consensus to regress to a

single mode [24,42]. When it is much easier, and less costly

(essentially free), to see what others do, then the balance could shift

to the east and south. When survey respondents, for example, can

see the aggregated guesses from other people, they simply change

from their original, individual guesses in linear proportion to the

distance from the group mean [43].

Conclusion

Having presented a two dimensional map (Figure 1) as a

schematic abstraction of human decision-making [19], we have

now gone further toward making this into an empirical tool to

project population-scale decision data onto axes of social influence

and transparency of choice. As the decision maker proceeds from

south to north, the precision of understanding which choice is best

increases. As the decision maker moves from west to east, the

strength increases of social influence or peer group influence on

which choice is best. Starting with a basis in discrete-choice

modeling with social influence, we have discussed how a path

through the map for a group of decision makers can be estimated

from data sets. Through experiments with artificial data sets, we

showed how the suggested estimation methods work and how

parametric specifications can be estimated. For smaller datasets,

we recommend maximum likelihood as the best way to estimate a

path through the map, and then for larger datasets it becomes

possible to use NLLS as the estimation method.

The map can now be applied to real-world case studies,

especially those that feature large, time-stratified demographic

data sets on binary decisions, such as those regarding health

decisions. The parametrization we have presented allows us to

extract, from these sorts of datasets, locations on the map

representing degree of social learning and transparency of choice.

As we apply this method in the future, we may be surprised to find

that standard, universal assumptions regarding certain decisions

may be becoming less appropriate, as the nature of such decisions

changes through time or in different cultural contexts.

Methods

Artificial data generation
We generated data for T periods, G groups with M members

each as follows. We first generated a random noise component,

Ei1gt{Ei0gt, for each agent choice over the time span, which means

T|G|M logistic random variates with mean 0 and variance s2.

We then simulated variability in payoffs and social influence for all

of these choices as well. In doing so, we generated three sets of

T|G|M normally distributed random numbers, each with time

varying means and variance, one set for the x’s, one set for the y’s

and one set for the z’s. In this case we allowed the means of x,y,

and z to increase over time, by choosing xi1gt and xi0gt from

normal distributions with mean t=10 and variance 0.1, and

A Map of Decision Making
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choosing both yigt and zigt from normal distributions with mean

10t and variance 1. In generating these artificial data sets, we

found that our simulation outcomes were well determined after

T~20 time steps, during which the effect of varying group size

and members per group was minimal when both G and M are

greater than 100. We then specified the social-influence and

transparency of choice functions as indicated in equation 7.

Functional forms and estimation
In order to identify parameters of the model that describe

movements across the map, we need to separate transparency of

choice from social influence. To do this, we start with the north–

south axis of the map (the transparency of choice) and then add,

via the east–west axis, social influence on individual choices. We

can start with the north–south axis. In discrete-choice theory, we

assume we have a certain number of choices available and a

certain amount of utility that is divided up among those choices.

We then effectively toss the choices randomly into bins of a certain

utility and find how many choices we expect in each bin. To start,

consider a population of individuals making a binary choice ({1
or z1), each seeking to maximize payoff function U :

max
ki[f{1,1g

U ½ki,Xi,Ei(ki)�, ð8Þ

in which ki represents the binary choice and Xi represents

covariates of agent i such as family, peer group, previous choices,

or education level. The parameter Ei represents idiosyncrasies,

which are treated as random, even if privately sensible to each

individual agent. Following [31], we will assume that the values of

Ei are what are known as Independent and Identically Distributed

Extreme Values (IIDEV).

For a given individual, a standard approach assumes the

probability to make a particular choice is equivalent to the

probability that the difference in idiosyncrasies, Ei,z{Ei,{, is less

than some threshold z:

Pr (Eiz{Ei{vz)~
1

1z exp ({biz)
, ð9Þ

where bi is transparency of choice for agent i. To illustrate,

Figure 5 shows, for two values of bi, how the probability that

option {1 (versus option z1) is chosen depends on this payoff

difference Ei,z{Ei,{. The probability transition is more abrupt or

decisive for the higher value of bi (farther north on our map),

representing greater transparency of choice.

Our use of the Fermi/Boltzmann function as our equation (9) is

fairly standard in discrete-choice theory, but it is also seen in some

studies of evolutionary games in finite populations, in which a

‘‘temperature,’’ or ‘‘noise,’’ parameter is varied (e.g., taken to zero)

in order to characterize the equilibrium in terms of cooperators in

the population. The same function has been used, for example, to

model the probability of outcome between two randomly selected

individuals playing Prisoners Dilemma or related pairwise game

[44,45]. In that case, the parameter (analogous to temperature in

the Boltzmann function) is intensity of selection rather than our

transparency of choice, which operates on the payoff difference.

The difference in our approach from game-theoretic approaches is

twofold. First, rather than play pairwise games, agents choose

among available options and the model relates how well choice

popularity corresponds to covariates among the individuals of the

population. Second, our focus is on econometric identification of

parameters and estimation of parameters as well as on the ability

to retrieve the model parameters from noisy data. In particular, we

are interested in estimating the intensity of selection as a function

of observable covariates. This effort appears new to the literature

on estimation of social influences on choice, and it raises difficult

identification issues that we have addressed through simulation

methods. We developed this approach in order to show that our

method works before applying it to field data.

Although this established approach does not model social

influence directly, it has been used as a baseline to infer it from

appropriate datasets. Aral et al. [46], for example, applied this to

daily data on the social network links and the date when

individuals downloaded a certain mobile-service application

(app). Aral et al. [46] considered individuals of similar propensity,

pit, to have adopted the app by time t, which for agent i was

estimated using a logistic regression equivalent to:

pit~
1

1ze{(bitXitzEit)
, ð10Þ

where bit functions as transparency of choice and Xit is a vector of

observable characteristics and behaviors for agent i at time t (we

have subsumed one of their other parameters into the idiosyncra-

sies term Eit). Having collected data over a 4-month period, Aral

et al. [46] were able to distinguish homophily — the tendency of

similar individuals to associate with each other — from genuine

influence (roughly 50/50 in their final estimation).

Now, to build from this background to an explicit consideration

of social influence and transparency of choice, suppose that we

have G different subpopulations, each with I individuals. Within

each population g~1,2, . . . ,G individuals are considered potential

peers. Suppose we have observed covariates for all dates t and

each agent i in every group g, as well as the estimated propensity

to be vaccinated, denoted by fxigtg. Also suppose, based on

previous studies, we have another set of social-influence covariates,

fyigtg, on agent i and group g at date t, and yet another set of

covariates, fzitgg, that relate how variable the choices were

through time.

Our goal is to plot J(Q̂Q2,yigt) and b(ĥh,zigt) for each agent i for

each date t for each group g on the map, by which we could

describe a temporal path for each agent i in each group g. We start

with the scalar covariate case where choice number 1 is made over

choice 0 at date t. This happens when the utility of choice #1
versus choice #0, comprising the individual and social-choice

components, exceeds the random variable given the choice

transparency, i.e.,

Figure 5. From equation 9, showing how the probability that
option {1 (versus option z1) is chosen depends on this payoff
difference EEi,z{EEi,{, two values of bi .
doi:10.1371/journal.pone.0111022.g005
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~UUi1gt{ ~UUi0gt~Q1(xi1gt{xi0gt)zJ(Q2,yigt)(Pt1g{Pt0g)w

1

b(h,zigt)
(~EEitg0{~EEitg1),

ð11Þ

where, again, the covariates, fx,y,zg, are all positive, one-

dimensional scalars. Note that Q2 and h can be either positive or

negative. Table 1 (below) summarizes the different parameters and

variables involved. The parameter vector, (Q1, Q2; h), represents

the intrinsic and social sensitivities, given the transparency of

payoffs. The estimates of these from the data set are denoted

(Q̂Q1, Q̂Q2; ĥh)— we use ‘‘hats’’ to denote estimates.

With sufficient data on x,y, and z from a particular case study,

we can estimate the parameter vector, (Q1, Q2; h), of the structural

model in equations 3 and 5 using the observed fractions fPtg1g of

vaccinated individuals in group g at date t (recall that the estimates

are denoted by ĥh, Q̂Q1, Q̂Q2). The model predicts that agent i in group

g gets vaccinated at date t if the difference in noisy payoff ~UU is

greater than zero. In other words, the probability of positive payoff

for vaccination, Prf ~UUi1gt{ ~UUi0gtw0g, is equivalent to the prob-

ability favoring the intrinsic plus social payoffs of parenting over

the random idiosyncrasies of choice:

Prf ~UUi1gt{ ~UUi0gtw0g

~ Pr Q1(xi1gt{xi0gt)zJ(Q2,yigt)(Pt1g{Pt0g)w
~EEitg0{~EEitg1

b(h,zigt)

� �
~F ½Q1(xi1gt{xi0gt)zJ(Q2,yigt)(Pt1g{Pt0g)�b(h,zigt)

� �
:

ð12Þ

Here, F (x):Prf~EEitg0{~EEitg1ƒxg is the cumulative distribution

function of the random variable, ~EEitg0{~EEitg1.

Functional forms for b,J
To specify b(h,zigt) we might start with the simple specification

b(h,zigt)~ exp (hzigt), with zigt representing the variability of

choices through time t. With this specification, the larger b(h,zigt)

is, the less variable the choices of agent i are through time.

We can then discuss several different specifications of the social-

influence function J(Q2,yigt). To work within the borders of the

map we might, for example, specify the social-influence function as

J(Q2,yigt)~ minf0,Q20zQ21yigtg: ð13Þ

This function allows J(Q2,yigt) to take the value zero with

positive probability, and we require the function J(Q2,yigt)§0, i.e.,

to not allow J(Q2,yigt)v0, so that the farthest west part of the map

corresponds to J(Q2,yigt)~0. In the absence of social influence,

the value of yigt~0. If we assume that J(Q2,y)~J(�QQ2,y) for an

open set of y’s implies Q2~�QQ2, and that b(h,z)~b(�hh,z) for an open

set of z’s implies h~�hh, then the absence of social influence yigt~0

implies

Q20ƒ0 and �QQ20ƒ0: ð14Þ

Further, we see that if the data have a wide enough range over

individuals, groups, and dates, of values of yigt, it must be the case

that

J(Q2,yigt)~ minf0,Q20zQ21yigtg
~J(�QQ2,yigt)~ minf0,�QQ20z�QQ21yigtg
[Q20ƒ0, �QQ20ƒ0, Q21ƒ0, �QQ21ƒ0,

ð15Þ

i.e., social influence is zero for all values of the parameters that

cannot be specified by the data alone. This level of identification

can be enough when we simply want to determine the strength of

social influence over time for different individuals and groups in

different choice settings. We discuss another specification of the

social-influence function J(Q2,yigt) in Section 5, where we test the

estimation procedure on artificial data.

Estimation methods
In order to consider two popular estimation methods, Maxi-

mum Likelihood (ML) and Non-Linear Least Squares (NLLS), we

consider a binary decision via equation 12, with the probability

statement

Prf ~UUi1gt{ ~UUi0gtw0g

~ Pr

(Q10zQ11(xi1gt{xi0gt)z

J(Q2,yigt)(Pt1g{Pt0g)w
b(h,zigt)

8><
>:

9>=
>;

~F
½Q10zQ11(xi1gt{xi0gt)zJ(Q2,yigt)(Pt1g{Pt0g)�

b(h,zigt)

 !
,

ð16Þ

where F(:) is the cumulative distribution function of the random

variable, ~EEitg0{~EEitg1. We have added a constant term, Q10, and a

slope term, Q11, in equation 16 to capture variation among agents

in how they respond to different alternatives, independent of social

influences.

Now, denote by SigtEf1,0g the random variable, which is either

1 if agent i in group g succeeds (or chooses ‘‘yes’’) at date t or 0 if

agent i in group g fails (or chooses ‘‘no’’) at date t. From equation

16 we can write the likelihood function for the probability of

Q1, Q2, and h, given the real-world data ([47], section 17.3), which

relates to how well the model predicts all the observed successes

(yeses) and failures (nos):

L(Q1,Q2,hDdata)~ P
f(i[g),g,tg

F (Xigt)
	 
Sf(i[g),g,tg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

successes

1{F (Xigt)
	 
1{Sf(i[g),g,tg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

failures

,
ð17Þ

where F(:) is the cumulative distribution function of the random

variable, ~EEitg0{~EEitg1, and

Xigt:½Q10zQ11(xi1gt{xi0gt)zJ(Q2,yigt)(Pt1g{Pt0g)�b(h,zigt): ð18Þ

In the standard versions of estimation of discrete-choice models,

the transparency of choice, b(h,zigt), is typically assumed to be

constant (absorbed into the other parameters by a normalization

convention). We are interested in how b varies, however, so we

must modify the conventional textbook approach [47]. One

popular way of proceeding is to formulate dynamic discrete-choice

models [48], which often use Markov chain formulations or

hazard-function formulations. However, for simplicity we wish to
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remain as close as possible to the static framework with

independent stochastic drivers. Therefore, we shall work with

the likelihood function (equation 3.7) above, where the ultimate

stochastic drivers are IIDEV across individuals, groups, and dates.

In the scalar case, formulas for the partial derivatives of the

likelihood function with respect to Q10,Q11,Q2,h are straightfor-

ward. The maximum-likelihood estimator, at the peak of the

likelihood function, is found by setting these four partial

derivatives of the likelihood function equal to zero. This yields

four nonlinear equations in four unknowns. When one takes these

four partial derivatives and sets the four resulting equations equal

to zero, one will see that when, for some reason, the social-

influence function is always zero, then the pair Q10,Q11 is

determined only up to scale. The nonlinearity of the social

influence helps resolve this particular identification problem.

If the social-influence function is zero, however, or restricted to

be zero, we normalize the four equations by dividing the equations

by Q10=0, which can be further simplified by setting Q10~1 and

solving the remaining three equations for Q11,Q2, and h. Three

nonlinear equations in three unknowns is still more challenging

than simple Ordinary Least Squares regression analysis.

Packages such as Matlab or R are good for general ML

estimation, which works well when we have few observations per

cell and enough observations per cell to allow for logistic

regression [49]. Also, ML estimation does not assume that errors

follow a specific distribution, whereas NLLS assumes normality of

the errors, and one can use least squares estimators as starting

points on the ML solver. ML estimation is less demanding of data

sets than NLLS [47, chapter 14], but in cases where there is a large

amount of data, we can also consider NLLS estimation methods

that require larger data sets. Equation 5 suggests the NLLS

regression equation of the log odds of agent i in group g of

choosing choice 1 rather than choice zero at date t,

ln
Prigt(1)

Prigt(0)
~b(h,zigt)f½Q10zQ11(xi1gt{xi0gt)z

J(Q2,yigt)(Pt1g{Pt0g)�zEi1gt{Ei0gtg,
ð19Þ

in which the right-hand side again consists of transparency of

choice multiplied by individual, social, and noise components (note

that the noise terms E in equation 19 are part of the standard

regression equation framework and are not the same as the

terms in the logit equations above). Here, we assume

the standard regression orthogonality condition on the regression

errors,

EfEi1gt{Ei0gtD(xi1gt{xi0gt),yigt,zigtg~0, ð20Þ

so that parameter estimates are consistently estimated as sample

size tends to infinity.

Note that equation 20 implies

Efb(h,zigt)(Eikgt{Ei0gt)g~0 ð21Þ

by taking iterated expectations. Equation 21 assures us that if we

estimate the parameters in equation 19 by NLLS, the estimates

will have good properties, provided that the parameter vector,

(Q1,Q2,h), in the structural model in equation 19 is identified ([47],

chapter 7). Of course, since the function induces heteroskedasticity

in the residuals, b(h,zigt)(Eikg1{Ei0gt), of the NLLS regression

equation 19, this heteroskedasticity can be exploited to produce

more efficient estimates ([47], chapter 7). To avoid some problems

of large sample size and data overflow, an improved NLLS

estimation process might use a growing window in time, i.e., start

with points corresponding to time 0ƒtƒ5 and locate a plausible

region on the parameter space, add more points for time 0ƒtƒ10
and update, and so on.

Consider the functional-form specifications for the transparency

of choice function and the social-influence function,

b(h,zigt)~ehzigt

J(Q2,yigt)~eQ2yigt :
ð22Þ

Substituting 22 into 19, NLLS proceeds by selecting the

parameter vector, Q10,Q11,Q2,h, to minimize the sum of squared

errors (SSE),

SSE!
X

iEg,g,t

ln
Prigt(1)

Prigt(0)

� �
{ehzigt ½Q10zQ11(xi1gt{xi0gt)

zeQ2yigt (Pt1g{Pt0g)�

8><
>:

9>=
>;

2

~
X

iEg,g,t

g2
igt,

ð23Þ

where

gigt: ln
Prigt(1)

Prigt(0)

� �
{ehzigt ½Q10zQ11(xi1gt{xi0gt)

zeQ2yigt (Pt1g{Pt0g)�
ð24Þ

is the prediction error of the model. In other words, NLLS

chooses the parameter vector to minimize the sum of prediction

errors. Taking the four partial derivatives of SSE with respect to

Q10,Q11,Q2,h, and setting all four of them equal to zero, we have

the four following four nonlinear equations in four unknowns:

LSSE

LQ10

~
X

iEg,g,t

gigt({ehzigt )~0

LSSE

LQ11

~
X

iEg,g,t

gigt({ehzigt xigt)~0

LSSE

LQ12

~
X

iEg,g,t

gigtf({yigte
Q2yigt (Pt1g{Pt0g)ehzigt xigt)g~0

LSSE

Lh
~
X

iEg,g,t

gigtf({zigt½Q10zQ11xigtzeQ2yigt (Pt1g{Pt0g)�ehzigt )g~0

ð25Þ

We can see that if for some reason the term P1gt{P0gt is always

zero, then the pair of parameters, Q10,Q11, of the direct utility

difference is determined only up to scale. To put it another way: if

we set the social-influence function J(Q2,yigt) equal to zero, then

the parameter pair, Q10,Q11, is not identified, i.e. any parameter

pair lQ10,lQ11 will solve the last equation of 25 with the third

equation dropped for all values of l. We resolve this problem if it

occurs by ‘‘normalizing’’ by setting Q10~1 and dropping the first

equation of 25. We recommend the same procedure for the ML

estimation above.
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25. Mann R, Perna A, Strömbom D, Garnett R, Herbert-Read J, et al. (2013) Multi-

scale inference of interaction rules in animal groups using bayesian model

selection. PLoS Computational Biology 9(3): e1002961.

26. Gintis H (2007) A framework for the unification of the behavioral sciences.

Behavioral and Brain Sciences 30: 1–61.

27. Shenk M, Towner MC, Kress HC, Alam N (2013) A model comparison

approach shows stronger support for economic models of fertility decline.

Proceedings of the National Academy of Sciences USA 110: 8045–8050.

28. Krauth B (2006) Simulation-based estimation of peer effects. Journal of

Econometrics 133: 243–271.

29. Krauth B (2007) Peer and selection effects on youth smoking in california.

Journal of Business and Economic Statistics 25: 288–298.

30. McElreath R, Bell AV, Efferson C, Lubell M, Richerson PJ, et al. (2008) Beyond

existence and aiming outside the laboratory: estimating frequency-dependent

and pay-off-biased social learning strategies. Philosophical Transactions of the

Royal Society B 363: 3515–3528.

31. Brock WA, Durlauf SN (2001) Interactions-based models. In: Heckman J,

Leamer E, editors, Handbook of Econometrics, Amsterdam: Elsevier Science.

pp. 3297–3380.

32. Colleran H, Jasienska G, Nenko I, Galbarczyk A, Mace R (2014) Community-

level education accelerates the cultural evolution of fertility decline. Proceedings

of the Royal Society B 281: 20132732.

33. Snijders TA, Steglich CE (2013) Representing micro-macro linkages by actor-

based dynamic network models. Sociological Methods and Research 42: in

press.

34. Goncalves B, Perra N, Vespignani A (2011) Validation of dunbar’s number in

twitter conversations. PLoS ONE 6(8): e22656.

35. Dean D, Webb C (2011) Recovering from information overload. McKinsey

Quarterly Jan: 1–9.

36. Sridhar S, Srinivasan R (2012) Social influence effects in online product ratings.

Journal of Marketing 76: 70–87.

37. Gibson M, Gurmu E (2012) Rural to urban migration as an unforeseen impact

of development intervention in ethiopia. PLoS ONE 7: e48708.

38. Powell A, Shennan SJ, Thomas MG (2009) Late pleistocene demography and

the appearance of modern human behavior. Science 324: 1298–1301.

39. Hausmann R, Hidalgo CA (2011) The network structure of economic output.

Journal of Economic Growth 16: 309–342.

40. Henrich J (2010) The evolution of innovation-enhancing institutions. In:

O’Brien M, Shennan S, editors, Innovation in cultural systems, Boston: MIT

Press. pp. 99–120.

41. Malakoff D (2013) Are more people necessarily a problem? Science 333: 544–

546.

42. Palfrey TR, Poole KT (1987) The relationship between information, ideology,

and voting behavior. American Journal of Political Science 31: 511–530.

43. Mavrodiev P, Tessone C, Schweitzer F (2013) Quantifying the effects of social

influence. Scientific Reports 3: 1360.

44. Traulsen A, Nowak MA, Pacheco JM (2007) Stochastic payoff evaluation

increases the temperature of selection. Journal of Theoretical Biology 244: 349–

356.

45. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection

temperature in evolutionary game dynamics. Journal of Theoretical Biology 246:

522–529.

46. Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based

contagion from homophily-driven diffusion in dynamic networks. Proceedings of

the National Academy of Sciences USA 106: 21544–21549.

47. Greene WH (2012) Econometric Analysis. Saddle River, NJ: Prentice Hall.

48. Arcidiacono P, Bayer P, Bugni F, James J (2013) Approximating high

dimensional dynamic models: Sieve value function iteration. Advances in

Econometrics 31: 45–96.

49. Amemiya T (1981) Qualitative response models: A survey. Journal of Economic

Literature 19: 1483–1536.

A Map of Decision Making

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e111022

r.a.bentley@bristol.ac.uk

