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The Thomson problem, arrangement of identical charges on the surface of a sphere, has found many
applications in physics, chemistry and biology. Here, we show that the energy landscape of the Thomson
problem forN particles withN ¼ 132, 135, 138, 141, 144, 147, and 150 is single funneled, characteristic of
a structure-seeking organization where the global minimum is easily accessible. Algorithmically,
constructing starting points close to the global minimum of such a potential with spherical constraints
is one of Smale’s 18 unsolved problems in mathematics for the 21st century because it is important in the
solution of univariate and bivariate random polynomial equations. By analyzing the kinetic transition
networks, we show that a randomly chosen minimum is, in fact, always “close” to the global minimum in
terms of the number of transition states that separate them, a characteristic of small world networks.
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Introduction.—The Thomson problem is an important
model in both physics and chemistry and is easily stated:
find the minimum energy of a system composed of N
identical charges that are constrained to move on the
surface of a sphere of unit radius, i.e., minimize the
potential energy function

VThðrÞ ¼
X

1≤i<j≤N

1

rij
; ð1Þ

where rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 þ ðyi − yjÞ2 þ ðzi − zjÞ2

q
, subject

to spherical constraints x2i þ y2i þ z2i ¼ 1 for all
i ¼ 1;…; N.
The model was proposed by J. J. Thomson as a repre-

sentation of atomic structure [1], although it was soon
abandoned in this context. However, it has subsequently
found many applications in physics, chemistry, and bio-
physics because it captures the competition between local
order for neighboring particles and long-range constraints
due to the curvature and geometry. In particular, it is not
generally possible to arrange every particle in an identical
environment. The resulting model can provide insight into
the forces governing far more complex systems, such as the
arrangement of proteins in shells of spherical viruses [2–5],
fullerene patterns for carbon clusters [6], the surface
ordering of liquid metal drops confined in Pauli traps
[7], and the behavior of colloidal particles trapped at a
fluid-fluid interface [8–15].
In the mathematics and computer science communities,

the Thomson problem has gained special attention because
it appears in the 7th problem in Steven Smale’s list of

eighteen unsolved problems for the 21st century [16,17].
The problem, as posed by Smale [18], requires us to
algorithmically construct a collection of starting points
[21], say r�, so that for a given number of particles N,
VThðr�Þ − VThðrgmÞ ≤ const × logN, for N ≥ 2. Here, rgm
is the global minimum for the given N. Constructing such
points corresponds to finding a good starting system of
polynomial equations to locate all the complex solutions for
sets of polynomial equations and to realize the fundamental
theorem of algebra [22,23].
Given its broad relevance, the global minimum of the

Thomson problem has been studied extensively [24–37].
Analytical solutions are known for N ¼ 2–6 and 12
[38,39]. For N ¼ 4, 6, and 12, they correspond to
Platonic solids. The global minimum structures for larger
N have been tackled computationally [32,33,40–48]. Most
of these studies, however, only focus on the global minima.
In the present Letter, we search extensively for (most, if not
all) the minima and transition states of the Thomson
problem at some selected sizes up to N ¼ 150 and study
the networks defined by these minima and the transition
states that connect them. Using disconnectivity graphs
[49,50], we find that the Thomson problem exhibits a
single funnel for all N considered. We also show that the
networks exhibit typical characteristics of a small world
network. Hence, in the context of Smale’s 7th problem, all
minima are only a few steps from the global minimum.
Potential energy landscapes of the Thomson problem.—

We begin by collecting some basic definitions: a local
minimum of a potential is a point in the configuration space
where the gradient vanishes and at which the Hessian
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matrix has no negative eigenvalues. The minimum at which
the potential attains the lowest value is the global minimum.
A transition state [51] is a configuration where the gradient
vanishes, and exactly one eigenvalue of the Hessian matrix
is negative. Transition states define connections between
pairs of minima via steepest-descent paths. Hence, we can
construct kinetic transition networks [52–54] of local
minima and the transition states that link them for a given
potential.
To perform an extensive search for local minima and

transition states of the Thomson problem, we employed the
GMIN [55] and OPTIM programs [56]. To identify likely
global minima, we applied basin-hopping global optimi-
zation [57–60]. In this method, random geometrical per-
turbations are followed by energy minimization, and moves
are accepted or rejected based upon the energy differences
between local minima. This procedure transforms the
energy landscape system into the set of catchment basins
for the local minima. For all the minimizations in the
present Letter, a modified version of the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm [61,62] was
used. This scheme has proved to be the most efficient in
recent benchmarks [63].
We used a combination of the doubly-nudged elastic

band (DNEB) and hybrid eigenvector-following techniques
to find the transition states [64]. In DNEB, a series of
images interpolate between the two end points, and the total
energy is minimized subject to spring constraints between
adjacent images. Maxima in the DNEB path are then
adopted as transition state candidates, which we refine to
high precision using hybrid eigenvector-following [65–67].
Here we use a Rayleigh-Ritz approach [60] to compute the
smallest nonzero eigenvalue, and take an uphill step along
the corresponding eigendirection. Then we minimize in
the tangent space for a limited number of steps, so that the
gradient does not develop a significant component in the
uphill direction. We project out all components correspond-
ing to zero Hessian eigenvalues. For the Thomson problem,
these are the three modes associated with overall rotations
around the x, y, and z axes. Using spherical polar
coordinates ðϕ; θÞ, the corresponding eigenvectors are
êx¼ðcosθcosϕ=sinθ;sinϕÞ, êy¼ð−cosθsinϕ=sinθ;cosϕÞ
and êz ¼ ð1; 0Þ.
For each transition state, we applied small displacements

in the two downhill directions and minimized the energy to
identify minimum-transition state-minimum triplets. In
some cases, new local minima may be identified in this
procedure. By iterating the process, we systematically build
a connected database of stationary points.
Our results for the number of minima and transition

states at N ¼ 132, 135, 138, 141, 144, 147, and 150 are
shown in Fig. 1. In all cases [68], we have obtained more
minima than previous results given in the literature [27,69].
It is known that the number of local minima for a molecular
system usually increases exponentially with system size
[27,70,71]. This scaling applies here, and locating likely

candidates for the global minimum becomes increasingly
difficult for larger systems. However, the rate of increase is
relatively slow for the Thomson problem, because the
Coulomb potential is long-ranged [72–74].
Disconnectivity graphs provide a powerful way to

visualize the organization of minima and transition states
[49,50]. A disconnectivity graph is a tree graph where the
vertical axis corresponds to the potential energy. Each line
terminates at the energy of a local minimum, and the
minima are joined at the lowest energy where they can
interconvert for regularly spaced energy thresholds. These
connections are defined by the highest transition state on
the lowest energy path between each pair of minima.
The disconnectivity graph for the databases considered

here is shown in Fig. 2 for N ¼ 147. It shows a typical
structure-seeking “palm tree” organization [50], where
there is only a single funnel in the potential energy
landscape, and the energy barriers separating local
energy minima and the global minimum are small. The
same qualitative features are observed for all particle
numbers we have considered, up to N ¼ 150. This organi-
zation is associated with efficient relaxation to the global
minimum.
Network properties.—For each N, we construct a net-

work G in which each node corresponds to a unique
minimum energy structure, where permutation-inversion
isomers are lumped together. Hence, there are N min nodes.
Two nodes are connected by an edge if a transition state
exists between the corresponding minima. For each N, we
have obtained N ts energetically distinct transition states.
Here, we need only consider whether two minima are
connected or not, and more than one distinct transition
state between a pair of minima only counts as a single
edge. We call N edge the number of edges for the given
network, with N ts ≥ N edge. As in previous results for
Lennard-Jones clusters [75–77], our networks are undi-
rected and unweighted graphs and, hence, agnostic about
all other information, such as barrier heights or transition
rates between the minima.

135 140 145 150 N

1000

104

105

No of TS

No of Minima

CGS2

CGS1

EH

FIG. 1. “TS” refers to “Energetically Distinct Transition Sates,”
“EH” refers to the estimate of the number of minima given in
[27], “CGS1” is a recent [69] fit to the number of minima found
in previous calculations, and “CGS2” is an estimate [69] for the
number of minima (we use the maximum out of those suggested
in [69]). The lines connecting data points are a guide to the eye.
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To further describe our findings, we first define two
quantities. The characteristic path length (L) is the average
of the shortest path between each pair of nodes in G. We
apply an all-pairs shortest path algorithm [78] to the graph
G to compute the distance between every two nodes. L is

the arithmetic mean of the distances between all pairs of
nodes with a finite distance. The local clustering coefficient
Ci of the ith node is defined as the fraction of pairs of
neighboring nodes that are connected over all pairs of
neighbors of the node. The global clustering coefficientC is
the average of Ci for i ¼ 1;…;N min.
A graph is a small-world network if the characteristic

path length is similar to, and the clustering coefficient is
much higher than, the random graph with the same number
of nodes and edges [79]. Small-world properties have been
observed in a number of networks of dynamic systems. Our
results for the networks of minima of the Thomson problem
for various values of N are reported in Table I. The
characteristic path length and the clustering coefficient
of the corresponding random graph are denoted as L0 and
C0, respectively. It is evident that L is as small as L0, while
C is much larger than C0, and hence, the small-world
characteristics of the networks are established. The network
diameter values, defined in terms of the longest shortest
path length, are 5 (N ¼ 132, 135, 138, 141, 144), 6
(N ¼ 147), and 7 (N ¼ 150).
Another important network property is the betweenness

centrality, which is defined for each node as the number of
shortest paths from all nodes to all others that pass through
the node under consideration. Betweenness centrality
determines how central the node is. In Fig. 3, we plot
the betweenness centrality of all the nodes of our networks
for N ¼ 138. Our results reveal that the global minimum of
the Thomson problem is the most central in the network.
The number of connections (the node degree) of minima as
a function of energy is plotted in Fig. 4. The figure clearly
shows that low-lying minima are highly connected, making
them hubs, unlike the higher energy minima.
Discussion and conclusion.—In this Letter, we have

characterized the potential energy landscape of the
Thomson problem for selected sizes up to N ¼ 150. We
confirmed that both the number of minima and transition
states grow exponentially with N, albeit with a small
exponential factor due to the long range nature of the
Coulomb interactions. This exponential increase makes the
searches for the global minima of the Thomson problem
progressively more difficult. However, by analyzing the
disconnectivity graphs, we find that for the sizes inves-
tigated here, the landscapes exhibit clear structure-seeking
organization. The global minima for systems characterized
by such funneled potential energy landscapes can usually
be located easily, even when the total number of minima is
large. The asymmetry of the energy barriers makes it easy
to escape from high to low energy minima, while the
reverse transitions are significantly slower.
We have analyzed the networks consisting of local

minima and the connections between them defined by
transition states and find that they exhibit small world
properties [79]. Our results provide further evidence to
support the conjecture that the small-world phenomenon

FIG. 2. (a) The disconnectivity graph for N ¼ 147. In all cases
considered here, the disconnectivity graphs show a typical
structure-seeking “palm tree” organization. In panel (b), the
insets show the structures of the lowest five minimum energy
configurations. The pentagons, hexagons, and heptagons indicate
that the charges in the center of the polygons have five, six, and
seven neighbors, respectively.
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might be another generic feature of landscapes with the
structure-seeking palm tree organization [80]. Moreover,
we found that the low-lying minima are generally signifi-
cantly more connected than those at higher energy, sug-
gesting scale-free properties. Further statistical tests [81]
are required to confirm this behavior. We note that similar
kinetic hubs have been identified for biomolecules in
previous publications [80,82,83]. It is important to note
that these networks are static. Hence, the scale-free phe-
nomenon, if confirmed, requires explanation beyond the
usual preferential attachment schemes [84].
Our results are relevant for addressing Smale’s 7th

problem. For the sizes considered here, the global mini-
mum is, on average, only a few transition states
[OðlogN minÞ] away from any random starting point.
N min grows exponentially with N, and the increase in
the average number of connections is linear. Since the
diameter of the networks is typically five or six (and at most
seven), the global minimum is never further than a few
steps away, even from the highest-lying minimum.
Moreover, the betweenness centrality is largest, by orders
of magnitude, for the global minimum, so the majority of
shortest paths between all pairs of minima pass through the
global minimum; i.e., the global minimum is the central
node of these networks. Hence, finding the global mini-
mum and exploiting the funneled or small-world structure

of the landscape, is relatively straightforward from
a numerical optimization point of view. Interestingly,
though our results suggest that finding the global
minimum of the Thomson problem may be relatively easy,
finding an answer to the Smale problem is nondeterministic
polynomial-time hard [85]. Constructing and analyzing
networks of minima for the logarithmic version of the
potential [17] may provide more concrete details on the
mathematics behind Smale’s 7th problem.
The present results agree with the observation [75] that

funneled energy landscapes display small world character-
istics. In the future, we will explore whether these two
features are generally correlated, or if a counterexample can
be found. Another avenue for future work is to extend our
analysis to larger particle numbers. Our previous results for
the Thomson problem [33] found that global minima for
N > 400 start to display alternative defect motifs. We
expect the potential energy landscape to display multiple
funnels in this regime, and it will be interesting to see
whether the small world phenomenon found here will be
preserved.
In the future, we will further analyze the network

properties of this model by including weights and direc-
tions for the edges, depending on the barrier heights and

TABLE I. Analysis of networks for different values of N. N min, N ts, and N edge are the number of minima (nodes), energetically
distinct transition states, and edges, respectively. L and C are the characteristic path length and the clustering coefficient of each
network, while L0 and C0 are the characteristic path length and the clustering coefficient of the corresponding random graph.

N N min N ts N edge L L0 C C0

132 1183 28 284 8700 2.3003 2.8959 0.6032 0.0124
135 1585 51 832 11 285 2.2368 3.0391 0.6932 0.009
138 3226 88 999 20 150 2.1791 3.4865 0.6312 0.0039
141 4165 100 085 38 210 2.5684 3.1487 0.5871 0.0044
144 4534 136 519 33 113 2.3369 3.4445 0.7142 0.0032
147 6644 151 299 39 241 2.4314 3.8247 0.6375 0.0018
150 9774 178 728 87 203 2.7601 3.5163 0.4312 0.0018

FIG. 3. Betweenness centrality of the individual minima for
N ¼ 138.

FIG. 4. The number of connections for local minima is plotted
as a function of potential energy for N ¼ 138. The line is the
binned average.
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kinetic transition rates. We also plan to develop more
specific algorithms to locate local and global minima by
exploiting small-world properties [86–88]. Analyzing the
appropriately weighted and directed networks of free energy
minima [89] and transition states may provide additional
insight into the Thomson problem. Furthermore, investigat-
ing network properties of higher index saddles may also
provide insights for developing novel optimization algo-
rithms [90].
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