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Abstract. The Induced Disjoint Paths problem is to test whether
an graph G on n vertices with k distinct pairs of vertices (si, ti) contains
paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k, and
Pi and Pj have neither common vertices nor adjacent vertices (except
perhaps their ends) for 1 ≤ i < j ≤ k. We present a linear-time algorithm
that solves Induced Disjoint Paths and finds the corresponding paths
(if they exist) on circular-arc graphs. For interval graphs, we exhibit a
linear-time algorithm for the generalization of Induced Disjoint Paths
where the pairs (si, ti) are not necessarily distinct. In both cases, if a
representation of the graph is given, then the algorithms run in O(n+k)
time.

1 Introduction

A classic algorithmic problem on a graph G with k distinct pairs of vertices
(si, ti) is to find vertex-disjoint paths P1, . . . , Pk such that Pi connects si and
ti for i = 1, . . . k. Known as the Disjoint Paths problem, it is NP-complete
on general graphs [16], but can be solved in O(n3) time for any fixed integer
k [25] (that is, it is fixed-parameter tractable). The Induced Disjoint Paths
problem also takes as input a graph G with k distinct pairs of vertices (si, ti)
and also asks whether there are paths P1, . . . , Pk such that Pi connects si and ti
for i = 1, . . . , k, but with the extra condition that P1, . . . , Pk must be mutually
induced, that is, no two paths Pi, Pj have common or adjacent vertices (except
perhaps their end-vertices). Notice that the Disjoint Paths problem can be
reduced to Induced Disjoint Paths by subdividing every edge of the graph.
The Induced Disjoint Paths problem is NP-complete even for instances with
k = 2 [2, 5], and thus in particular is not fixed-parameter tractable unless P=NP.
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The hardness of both Disjoint Paths and Induced Disjoint Paths on
general graphs inspired research on their complexity on structured graph classes.
On the negative side, Disjoint Paths remains NP-complete on line graphs [20]
and split graphs [14], and Induced Disjoint Paths remains NP-complete on
claw-free graphs [6] (in fact, even on line graphs). Both problems remain NP-
complete on planar graphs [19, 8]. In these cases, however, fixed-parameter al-
gorithms are known [9, 14, 17, 24, 25]. On the positive side, polynomial-time al-
gorithms for Disjoint Paths exist on graphs of bounded treewidth [23] and
graphs of clique-width at most 2 [12], and for Induced Disjoint Paths on
AT-free graphs [8] and chordal graphs [1].

We focus on the complexity of Induced Disjoint Paths on circular-arc
graphs. A circular-arc graph is a graph that has a representation in which each
vertex corresponds to an arc of a circle, and two vertices are adjacent if and only if
their corresponding arcs intersect. Circular-arc graphs generalize interval graphs,
which have a representation in which each vertex corresponds to an interval of
the line, and two vertices are adjacent if and only if their corresponding intervals
intersect. The complexity of Disjoint Paths is known: it is NP-complete on
interval graphs [22]. In contrast, for Induced Disjoint Paths, the authors of
the present work recently showed a polynomial-time algorithm on circular-arc
graphs [9] (for a weaker problem variant, such an algorithm is also implied by a
general framework [7]). This work, as well as the polynomial-time algorithms on
AT-free graphs [8] and chordal graphs [1], imply a polynomial-time algorithm
on interval graphs. These algorithms do not settle the complexity of Induced
Disjoint Paths on circular-arc graphs (and interval graphs) completely, as the
question whether a linear-time algorithm exists is left open.

In this paper, we exhibit a linear-time algorithm for Induced Disjoint
Paths on circular-arc graphs. This improves on the known algorithm for circular-
arc graphs as well as the known algorithms for interval graphs. We also introduce
a generalization of Induced Disjoint Paths called Requirement Induced
Disjoint Paths, which is to find ri paths that connect si and ti for i = 1, . . . , k,
such that all paths are mutually induced. We present a linear-time algorithm for
Requirement Induced Disjoint Paths on interval graphs. In both cases, if
a representation of the graph is given and the graph has n vertices, then the
algorithms run in O(n + k) time.

Our two new algorithms first preprocesses the instance. Some of the prepro-
cessing rules build on our earlier work on Induced Disjoint Paths [8, 9], but
care is required to adapt them for Requirement Induced Disjoint Paths
and to execute them in O(n + k) time on a graph on n vertices with k terminal
pairs. Hence, most of our preprocessing rules are novel. After the preprocessing
stage, the algorithms identify a set of candidate paths for each pair (si, ti). For
each candidate path for a pair (si, ti), we add an arc with color i that corre-
sponds to the path of an auxiliary graph H. Finally, we show that it suffices to
find an independent set in H that contains ri arcs of each color. We show that
the algorithms perform all stages in O(n + k) time.
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2 Preliminaries

We only consider finite undirected graphs that have no loops and no multiple
edges. We refer to the textbook of Diestel [4] for any standard graph terminology
not defined here. Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S]
denotes the subgraph of G induced by S, that is, the graph with vertex set S
and edge set {uv ∈ E | u, v ∈ S}. We write G − S = G[V \ S]. The (open)
neighborhood and closed neighborhood of a vertex u are denoted by NG(u) =
{v | uv ∈ E} and NG[u] = NG(u) ∪ {u}, respectively. The open and closed
neighborhood of a set U ⊆ V are denoted by NG(U) = {v ∈ V \ U | uv ∈
E for some u ∈ U} and NG[U ] = U ∪NG(U), respectively. We denote the degree
of a vertex u by degG(u) = |NG(u)|.

We denote an unordered pair of elements x, y by {x, y} (i.e. {x, y} = {y, x}).

Problem Definition Let P = v1 · · · vr be a path (we call such a path a v1vr-
path). The vertices v1 and vr are the ends or end-vertices of P , and the vertices
v2, . . . , vr−1 are the inner vertices of P . We say that an edge vivj , i + 1 < j, is
an inner chord of P if vi or vj is an inner vertex of P . Distinct paths P1, . . . , P`

in a graph G are mutually induced if:

(i) each Pi has no inner chords;
(ii) any distinct Pi, Pj may only share vertices that are ends of both paths;
(iii) no inner vertex u of any Pi is adjacent to a vertex v of some Pj for j 6= i,

except when v is an end-vertex of both Pi and Pj .

Notice that condition (i) may be assumed without loss of generality. This defini-
tion is more general than the definition in Section 1, as it allows the end-vertices
of distinct paths to be the same or adjacent.

We are now able to formally state our decision problem (where a terminal is
some specified vertex).

Requirement Induced Disjoint Paths

Instance: a graph G, k pairs of distinct terminals (s1, t1), . . . , (sk, tk) such
that {si, ti} 6= {sj , tj} for 0 ≤ i < j ≤ k, and k positive integers
r1, . . . , rk.

Question: does G have ` = r1 + . . . + rk mutually induced paths P1, . . . , P`

such that exactly ri of these paths join si and ti for 1 ≤ i ≤ k?

If r1 = . . . = rk = 1, then the problem is called Induced Disjoint Paths. The
paths P1, . . . , P` are said to form a solution for a given instance, and we call
every such path a solution path.

The problem definition allows a vertex v to be a terminal in two or more pairs
(si, ti) and (sj , tj). For instance, v = si = sj is possible. This corresponds to
property (ii) of our definition of “being mutually induced”. In order to avoid any
confusion, we will view si and sj as two different terminals “placed on” vertex v.
Formally, we call v a terminal vertex that represents a terminal si or ti if v = si
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or v = ti, respectively. We let Tv denote the set of terminals represented by v. If
Tv = ∅, we call v a non-terminal vertex. We say that the two terminals si and ti
of a terminal pair (si, ti) are partners of each other. If si is represented by u and
ti by v, then we also call a uv-path an siti-path. By our problem definition, each
terminal pair (si, ti) consists of two distinct terminals. Hence, two partners are
never represented by the same vertex.

By Property (i), each solution path P has no inner chords and P is an induced
path if and only if its ends are non-adjacent. If two adjacent vertices u and v
represent terminals belonging to the same pair (si, ti), then the path uv is called
a terminal path for si, ti. We need the following observation.

Observation 1 Any yes-instance of Requirement Induced Disjoint Paths
has a solution that contains all possible terminal paths. In particular, a terminal
path for a pair (si, ti) is the unique siti-path in this solution if ri = 1.

Graph Classes Recall the definition of circular-arc and interval graphs from the
introduction. Both graph types can be recognized in linear time and a corre-
sponding representation can be found in linear time:

Theorem 1 ([3], see also [13, 18]). An interval graph G on n vertices and m
edges can be recognized in O(n+m) time. In the same time, a representation of
G can be constructed with interval end-points 1, . . . , 2n.

The first linear-time recognition algorithm for circular-arc graphs was given
by McConnell [21] (see also [15]).

Theorem 2 ([21]). A circular-arc graph G on n vertices and m edges can be
recognized in O(n + m) time. In the same time, a representation of G can be
constructed with arc end-points clockwise enumerated as 1, . . . , 2n.

By Theorems 1 and 2, we always assume that an interval or circular-arc graph
is given both by its adjacency list and its representation. Moreover, we assume
that all the end-points of the intervals/arcs in the representation are distinct
integers 1, . . . , 2n. Notice that using a representation we can check adjacency in
O(1) time. By slight abuse of notation, we often do not distinguish between the
vertices and their corresponding intervals/arcs; e.g., we may speak of terminal
intervals/arcs instead of terminal vertices.

For a vertex u of an interval graph, lu and ru denote the left and right end-
point of u, respectively. Note that the degree of u is at least (ru − lu − 1)/2.
For circular-arc graphs, we equate “left” to “counterclockwise” and “right” to
“clockwise”. Then, in the same way as for interval graphs, we let lu and ru denote
the left and right end-point of a vertex u, respectively. In this way we are able
to define similar terminology for both interval and circular-arc graphs. For two
points x, y on the line, we write x ≤ y if y lies to the right with respect to x,
and x < y if x ≤ y and x 6= y, and we say that a point z lies between points
x and y, if x ≤ z ≤ y. If x, y, z are points on a circle we write x ≤ z ≤ y (or
x ≤ z and z ≤ y) to indicate that z is in the interval with the left end-point x
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and the right end-point y. We say that a vertex u lies between points x and y if
x ≤ lu < ru ≤ y (recall that lu and ru are distinct integers). Finally, a vertex
u lies between two other vertices v, w if it lies between rv and lw; note that in
that case we have in fact that rv < lu < ru < lw by our assumption that no two
end-points in the interval representation are the same.

An independent set in a graph G is a set of vertices that are pairwise non-
adjacent. At some stage, our algorithm for Induced Disjoint Paths on circular-
arc graphs needs to compute a largest independent set of a circular-arc graph.
If a representation of the graph is given and the graph has n vertices, then the
next result shows that this takes O(n) time.

Theorem 3 ([11]). If the arc end-points of a circular-arc graph G on n vertices
are sorted, then a largest independent set of G can be found in O(n) time.

3 Interval Graphs

In this section we develop a linear-time algorithm that solves Requirement
Induced Disjoint Paths on interval graphs. If we are given a representation
of the interval graph and the graph has n vertices and k terminal pairs, then the
algorithm actually runs in O(n + k) time.

A possible approach would be the following greedy algorithm: find a terminal
vertex with the leftmost right end-point and trace path(s) for the corresponding
terminal pairs by a greedy procedure that iteratively chooses the non-terminal
vertex with the leftmost right end-point that does not conflict with vertices
already chosen. However, we do not elaborate on this approach for two reasons.
First, this approach would not be substantially simpler than the approach of
our algorithm, as both approaches require a similar (careful) analysis of a high
number of corner cases. Second, and more importantly, the goal of this paper is
to design a linear-time algorithm for Induced Disjoint Paths on circular-arc
graphs, where we have no natural starting point for a similar greedy approach
and guessing such a starting point would irrevocably lead to a quadratic-time
algorithm.

We describe the main constructs of our algorithm. Consider an instance of
Requirement Induced Disjoint Paths. Let P be an siti-path that is not
a terminal path, i.e. that has at least one inner vertex. Let IP be the interval
on the line obtained by taking the union of the intervals that correspond to
the inner vertices of P . We say that P covers the interval IP . Because P is an
siti-path, we say that IP has color i.

Lemma 1. Let P1, . . . , P` form a solution. The following statements hold:

i) For 1 ≤ i ≤ k, any interval IPa
with color i intersects the intervals that

represent si and ti and does not intersect any other interval that represents
a terminal;

ii) For 1 ≤ a < b ≤ `, IPa
∩ IPb

= ∅;
iii) For 1 ≤ i < j ≤ k, there is no interval with color j that lies between two

intervals with color i, or vice versa.
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Proof. Properties i) and ii) follow immediately from definition. In order to show
iii), assume that an interval IPc

with color j lies between two intervals IPa
and

IPb
, both with color i, for some i, j with i 6= j. Let u and v represent si and ti. By

i), IPa and IPb
each intersect u and v. Then IPc also intersects u and v. As i 6= j,

we find that at least one of u, v represents neither sj nor tj , contradicting i). ut

3.1 An Outline of Our Algorithm

Before giving the precise details of our algorithm we first present an outline. Our
algorithm roughly consists of three stages: preprocess the instance, construct an
auxiliary graph H, and find an independent set in H.

In Stage 1, we perform eight preprocessing steps. The order in which we
execute these steps is crucial for the correctness of our algorithm. In Step 1 we
preprocess the instance by deleting non-terminal vertices adjacent to at least
three terminal vertices (we will show that these vertices will not be used in any
solution). In Step 2 we check if there exists a pair (si, ti) with ri ≥ 2 that is
represented by two non-adjacent terminal vertices (we will show that our instance
is a no-instance if this is the case). In Steps 3–8 we preprocess the instance further
and simultaneously start to determine a set of “candidate paths” that might or
might not be used in the solution that we are constructing. This set of candidate
paths is constructed in such a way that for any siti solution path P there is a
candidate path P ′ such that P ′ is also an siti-path and IP ′ ⊆ IP . We will ensure
that in the end the set of candidate paths has size O(n).

By Lemma 1 ii), the paths that are selected in a solution must cover distinct
parts of the line. Therefore, we create an auxiliary interval graph H that consists
of all intervals covered by the candidate paths. We also assign a color to each
interval, namely color i if the interval corresponds to a candidate path for a pair
(si, ti) (the reason to color these intervals will become clear later). In Step 3
we already start the construction of H by adding to H the interval Ivuw with
color i for each non-terminal vertex u that is adjacent to terminal vertices v
and w representing terminals si and ti with ri ≥ 2. Following Observation 1, we
also add intervals corresponding to terminal paths to H (this must be done in a
careful way, as described in Steps 4–8).

In Stage 2, we finish the construction of H. At the start of Stage 2 we
may have already processed a number of terminal pairs completely. For each
remaining terminal pair we check three possible situations (Steps 9a–9c). Each
of these three situation may apply for a certain terminal pair, and when a certain
situation applies we add a number of additional colored intervals to H.

In Stage 3, we essentially search for an independent set in H that contains
ri vertices of color i for i = 1, . . . , k (Step 10). We will show that such an
independent set corresponds to a solution for our instance. Moreover, we will
prove that for any yes-instance, our algorithm will indeed continue to Stage 3
and will then find an independent set of H in this stage.

In Section 3.3–3.5, we describe all steps of the algorithm in detail. We say
that a step is safe if it runs in time O(n+k) and is correct in the following sense:
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(i) a No-answer is given for no-instances only;
(ii) if a new instance is obtained, then it has a solution if and only if the original

instance has a solution.
(iii) if a set of intervals that are all colored with color i is added to H, then this

set has size O(n) and corresponds to a candidate set of candidate paths.

The algorithm assumes that an interval representation of G is known, as given
by Theorem 1. As mentioned, it also maintains an auxiliary interval graph H,
initially empty. Recall that any vertex that we add to H will correspond to
a candidate path for a solution. While adding vertices to H, we maintain an
interval representation of H. Finally, the algorithm maintains a set P of paths,
initially empty, which will form a solution for the instance (should it be a yes-
instance). We let T = {s1, t1, . . . , sk, tk} be the set of all terminals. A terminal
pair (si, ti) is a multi-pair if ri ≥ 2, and a simple pair otherwise. As mentioned,
the algorithm roughly consists of three stages: preprocess, construct H, and find
an independent set.

3.2 Basic Tools

Before we describe the stages and preprocessing steps, we define the following
basic tools that arise in the implementation of several preprocessing steps. Later
we will apply the results in this section amongst others to auxiliary sets of
intervals that do not have distinct endpoints. Hence, in the next definition,
lemma and corollary we assume that interval end-points may coincide.

Definition 1. Let C be a set of n intervals of a line with interval end-points in
1, . . . , 2n. For a given integer j, a subset C ′ ⊆ C is j-close if for each interval
u ∈ C ′ it holds that lu ≤ j, and either u contains the point j or there is no
interval u′ ∈ C\C ′ that contains a point between ru (exclusive) and j (inclusive).

Lemma 2. Let c ≥ 1 be an integer, and let C be a set of n intervals of a line
with interval end-points in 1, . . . , 2n. Then in O(cn) time, we can construct a
j-close set C∗j of min{c, cj} intervals of C for all j = 1, . . . , 2n, where cj is the
number of intervals u with lu ≤ j.

Proof. We perform a sweep-line algorithm. We start by initializing some data
structures. For j = 1, . . . , 2n, let Lj = {u ∈ C | lu = j}. The sets Lj can be
computed in O(n) total time by for each u ∈ C putting it into the set it should
be in. Finally, initialize an empty deque D.

We now perform the sweep. For each j = 1, . . . , 2n in order, perform the
following action. While there is a u ∈ Lj , remove u from Lj ; if D contains less
than c elements, then add u to D; otherwise, if the right endpoint of u lies further
to the right than the right endpoint of the interval v ∈ D with the leftmost right
endpoint among all intervals in D, then remove v from D and add u instead. If
Lj is or becomes empty, then we make the set C∗j equal to the contents of the
deque D.
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The correctness of the algorithm is immediate. Since the deque D contains
at most c elements at any moment during the execution of the algorithm, the
running time of the algorithm is O(cn). ut

Corollary 1. Let X be a set of n intervals of a line with interval end-points in
1, . . . , 2n. Let d ≥ 1 be an integer and let C,D be disjoint subsets of X. Then
one can identify in O(dn) time a set of intervals u in D that intersect at least d
intervals in C, as well as for each such u a set of d intervals in C that intersect u,
or else conclude that no such u exists.

Proof. A trivial application of Lemma 2 with c = d and C yields in O(cn) =
O(dn) time for each j = 1, . . . , 2n the set C∗j of (at most) d j-close intervals.
Observe that an interval u ∈ D intersects at least d intervals of C if and only if
|C∗ru | = d and each v ∈ C∗ru intersects u. Hence, by a straightforward inspection
of each interval in D, we can report all those that are adjacent to at least d
intervals of D in O(dn) time. ut

3.3 Stage I: Preprocess

The only operations performed on G by our algorithm are vertex deletions.
Hence, the graph that we obtain after each step is still interval. For simplicity,
we denote this graph by G as well.

Step 1. Delete all non-terminal vertices that are adjacent to at least three
terminal vertices.

Lemma 3. Step 1 is safe.

Proof. Any internal vertex of a path of a solution is adjacent to at most two
terminal vertices, which are the end-vertices of the path. Hence, any non-terminal
vertex that is adjacent to at least three terminal vertices cannot be used in any
solution. Therefore, Step 1 is correct.

A trivial application of Corollary 1 with d = 3, C equal to the set of terminal
vertices, and D equal to the set of non-terminal vertices yields all non-terminal
vertices that are adjacent to at least three terminal vertices in O(n) time. Then
we delete all such non-terminal vertices, which takes O(n) time again. ut

Step 2. Check if there is a multi-pair that is represented by two non-adjacent
terminal vertices. If so, then return a No-answer.

Lemma 4. Step 2 is safe.

Proof. Step 2 is correct, because there must exist at least two solution paths
between the terminal vertices of a multi-pair. If the two terminal vertices are
not adjacent, the union of the vertices of these two paths induces a cycle on at
least four vertices in G. This is not possible in an interval graph. Using the list
of terminal pairs, Step 2 takes O(k) time. ut
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Suppose that we have not returned a No-answer after performing Step 2. In
the next step, for each multi-pair, we identify a set of paths that together with
the terminal paths form all candidate paths.

Step 3. For each non-terminal vertex u adjacent to terminal vertices v and w
representing multi-pair terminals si and ti, add Ivuw with color i to VH , and
delete u from G.

Lemma 5. Step 3 is safe. Moreover, for any multi-pair (si, ti), if P is a solution
siti-path with at least one inner vertex, then there is a candidate siti-path P ′

with IP ′ ⊆ IP .

Proof. We first prove that Step 3 is correct. Let u be a non-terminal vertex
adjacent to terminal vertices v and w representing terminals si and ti from a
multi-pair (si, ti). By Lemma 3, we find that u is not adjacent to any other
terminal vertices. Hence, vuw may be considered as a candidate path for a solu-
tion. Moreover, because u is adjacent to both v and w, we deduce the following.
Firstly, every siti-path in a solution has at most one inner vertex; otherwise
its vertices would induce a cycle on at least four vertices in G, as v, w are ad-
jacent by Step 2. Hence, the set of intervals added to VH for each multi-pair
(si, ti) contains all possible solution paths for (si, ti), and as such corresponds
to a candidate set for (si, ti). Secondly, u may not be used in a solution path
for a terminal pair (sj , tj) with j 6= i. Hence, we can safely remove u from G.
Because we only added intervals to H that correspond to distinct vertices, we
added O(n) vertices to VH in total.

We now show how to perform Step 3 in O(n+k) time. We create an auxiliary
set of intervals X. First, add the intervals of all non-terminal vertices to X. Then,
for each pair of terminal vertices v and w representing multi-pair terminals si
and ti, create a new interval pi equal to the intersection of v and w and associate
with it the number i; note that v and w are adjacent by Step 2, and therefore
the interval is well defined. Observe that |X| = O(n+k). Now apply Corollary 1
to X with d = 1, C equal to the set of non-terminal vertices, and D equal to the
set of intervals pi. For each interval reported by the algorithm of Corollary 1,
let u be the non-terminal vertex and pi be the interval of D that intersects it.
From pi, and in particular from i, we derive the corresponding multi-pair, and
thus the terminal vertices v and w. Then u is adjacent to v and w, and thus we
add Ivuw with color i to VH , and delete u from G. This takes O(|X|) = O(n+k)
time in total. The correctness of the algorithm follows from the correctness of
Corollary 1, and from the fact that after Step 1, each non-terminal vertex is
adjacent to at most one pair of terminal vertices v and w representing a multi-
pair. ut

In the next two steps, which are inspired by our earlier work on Induced
Disjoint Paths [8, 9], we get rid of all adjacent terminal vertices that represent
the same terminal pair. This includes (but is not limited to) all multi-pairs.

Step 4. Find the set Z of all terminal vertices v such that v only represents
terminals whose partners are in NG(v). Delete the vertices of Z and all non-
terminal vertices of NG(Z) from G. Delete from T the terminals of all terminal
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pairs (si, ti) with si ∈ Tv or ti ∈ Tv for some v ∈ Z. Put all terminal paths
corresponding to deleted terminal pairs in P.

Lemma 6. Step 4 is safe.

Proof. We first show that Step 4 is correct. Let {si1 , . . . , sip , tj1 , . . . , tjq} be the
union of all terminals represented by vertices in Z. By Observation 1, we may
assume that each terminal path for (sia , tia) for a = 1, . . . , p and each terminal
path for (sjb , tjb) for b = 1, . . . , q is in a solution, if our instance is a yes-instance.
Hence, we can safely put these terminal paths in P. Moreover, as we already
identified a candidate set for all multi-pairs in Step 3, we may safely remove
each of the two terminals of every pair (sia , tia) for a = 1, . . . , p and every pair
(sjb , tjb) for b = 1, . . . , q from T .

Let u be a non-terminal vertex in NG(Z). Then u is not adjacent to two
terminal vertices representing two terminals from a multi-pair, as otherwise we
would have removed u in Step 3 already. Moreover, u is not used as an inner
vertex of a solution path for a simple terminal pair (si, ti) either, for the following
two reasons. Firstly, if si or ti is represented by a vertex in Z, we would use the
corresponding terminal path for a solution due to Observation 1. Secondly, if
both si and ti are not represented by a vertex in Z, we could still not use u as
an inner vertex for an siti-path, as u is adjacent to some terminal vertex in Z.

We now show how to perform Step 4 in O(n + k) time. We “mark” each
terminal vertex. Then we go through the list of terminal pairs, and if a pair
(si, ti) is not represented by adjacent terminal vertices, then we “unmark” these
terminal vertices. The set Z is the set of all “marked” terminal vertices that
are left in the end. By using the interval representation, obtaining Z takes O(k)
time. A trivial application of Corollary 1 with d = 1, C equal to Z, and D equal
to the set of non-terminal vertices yields all non-terminal vertices in NG(Z) in
O(n) time. Then we delete all such non-terminal vertices and all vertices of Z,
which takes O(n) time again. Finally, we go through the list of terminal pairs,
and if a terminal si or ti is in Z, we delete both si and ti from T and add its
terminal path to P. This takes O(k) time. We conclude that the total running
time of performing Step 4 is O(n + k). ut

After Step 4, each terminal vertex represents at least one terminal whose
partner is at distance at least 2. There may still be terminal pairs whose terminals
are represented by adjacent vertices. We deal with such pairs in the next step.

Step 5. Delete all terminals si and ti represented by adjacent terminal vertices
from the terminal list, and delete all common non-terminal neighbors of the
terminal vertices that represent si and ti. Put all terminal paths corresponding
to deleted terminals in P.

Lemma 7. Step 5 is safe.

Proof. We first show that Step 5 is correct. First, we may assume without loss of
generality that a solution contains all terminal paths by Observation 1. Hence,
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we may safely put these terminal paths in P, and delete terminals that are
represented by adjacent terminal vertices if (si, ti) is not a multi-pair; if (si, ti)
is a multi-pair, then all candidate paths have already been identified in Step 3,
and thus si and ti may be deleted as well.

Second, if a solution path contains an inner vertex u adjacent to a terminal
vertex v representing a terminal that we remove in Step 5, then the reason is
that u belongs to a solution path for a terminal pair (sj , tj) where sj or tj is rep-
resented by v as well (note that v represents at least one terminal whose partner
is not represented by a neighbor of v, as otherwise we would have removed v
in Step 4). Hence, u is allowed to be adjacent to v by definition, except if u is
adjacent to both the terminal vertex that represents si and the terminal vertex
that represents ti. Since these common neighbors are removed in Step 5, the
latter is not possible though.

We can perform Step 5 in O(n+k) time using a similar idea as in Step 3. We
create an auxiliary set of intervals X. First, add the intervals of all non-terminal
vertices to X. Then, for each pair of terminals (st, ti) represented by adjacent
terminal vertices, create a new interval pi equal to the intersection of v and w
and associate with it the number i; clearly, the interval is well defined. Observe
that |X| = O(n + k). Now apply Corollary 1 to X with d = 1, C equal to the
set of non-terminal vertices, and D equal to the set of intervals pi. This takes
O(|X|) = O(n+k) time. Then we delete each non-terminal vertex whose interval
was reported by Corollary 1, which takes O(n) time. The rest of Step 5 can be
trivially performed in O(k) time. ut

Call a terminal pair long if its two terminals are represented by vertices of
distance at least 2. After Step 5, all terminal pairs are long. Therefore, by Step 2,
there are no multi-pairs anymore. Assume that there are k′ ≤ k terminal pairs
left; note that k′ = 0 is possible.

Step 6. Check if there exists a terminal vertex that represents three or more
terminals. If so, then return a No-answer.

Lemma 8. Step 6 is safe.

Proof. We first prove that Step 6 is correct. For contradiction, assume that a
terminal vertex u represents at least three terminals sh, si, sj . Due to Step 5,
these terminals belong to long pairs. Let v1, v2, v3 denote the terminal vertices
that represent th, ti, tj , respectively. Because u is not adjacent to any of v1, v2, v3,
every solution has shth, siti, and sjtj-paths that each contain at least one inner
vertex x1, x2, x3, respectively. Assume without loss of generality that x1, x2, x3

are adjacent to u. The intervals x1, x2, x3 do not intersect each other but they
do intersect u. Assume without loss of generality that x2 lies between x1 and x3.
Then all the vertices of the siti-path except u lie between x1 and x3. Therefore,
u and v2 are adjacent. This contradicts with the fact that the pair (sj , tj) is
long. Hence, our instance is a no-instance if this situation occurs.

Step 6 can be performed in O(n + k) time by going through the list of
terminals and counting how often each terminal vertex occurs. ut
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After Step 6, a terminal vertex may represent at most two terminals (which
by definition must belong to different terminal pairs). We therefore assume from
now on that each terminal vertex has associated with it the list of at most two
terminal pairs i, i′ for which it represents a terminal; these lists take O(k) time
to compute in a straightforward manner.

We now observe that terminals should be ordered, and we let our algorithm
find this ordering.

Step 7. Check if there exist three terminal vertices u, v, w such that u and w
represent terminals from the same pair such that lu ≤ lv < lw. If so, then return
a No-answer. Otherwise, order and rename the terminals such that rui

< lvi and
lvi ≤ lui+1

for i = 1, . . . , k′ − 1, where ui, vi are the vertices representing si, ti,
respectively.

Lemma 9. Step 7 is safe.

Proof. We first prove that Step 7 is correct. Suppose that there exist three
terminal vertices u, v, w such that u and w represent terminals from the same
pair and lu ≤ lv < lw. Assume that u, v, w represent si, sj , ti, respectively, and
let x represent tj . Let P1 and P2 be the siti-path and sjtj-path, respectively, in
a solution. Because (si, ti) and (sj , tj) are long, both P1 and P2 contain at least
one inner vertex. By Lemma 1, IP1

∩ IP2
= ∅. However, this is not possible as

lu ≤ lv < lw. Hence, our instance is a no-instance.
We now show how to perform Step 7 in O(n + k) time. Recall that each

end-point of an interval is an integer between 1 and 2n. Construct 2n buckets
B1, . . . , B2n. Then go through the list of terminal pairs T and put a terminal in
bucket Blu if u is the vertex of G that represents the terminal. Go through the
non-empty buckets among B1, . . . , B2n in increasing order and verify whether
the partner of a terminal of a terminal pair not seen before is in the next non-
empty bucket. Stop and return a No-answer if this does not hold. Otherwise, as
each bucket contains at most two terminals due to Step 6, this gives the desired
ordering of the terminal pairs in O(n + k) time. ut

Step 8. For i ∈ {1, . . . , k′−1}, if ti and si+1 are represented by distinct vertices
v and w, delete all non-terminal vertices adjacent to both v and w.

Lemma 10. Step 8 is safe.

Proof. Any non-terminal vertex deleted in Step 8 can never be used as an in-
ner vertex of a solution path by the definition of the Requirement Induced
Disjoint Paths problem.

We now show how to perform Step 8 in O(n) time. Apply Corollary 1 with
d = 2, C equal to the set of terminal vertices, and D equal to the set of non-
terminal vertices. For each interval reported by the algorithm of Corollary 1, let
u be the non-terminal vertex and v, w be the terminal vertices that it intersects.
From v and w we can derive the corresponding terminal pairs, using that each
terminal vertex has associated with it the list of at most two terminal pairs i, i′

for which it represents a terminal. Then we can straightforwardly determine if
u should be deleted. This takes O(n) time in total. ut
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3.4 Stage II: Construct H

We now construct the auxiliary H. Note that some intervals were already added
to H as part of our preprocessing stage (namely in Steps 3–5).

Step 9. For each i ∈ {1, . . . , k′}, perform steps 9a–9d (where v and w are
terminal vertices that represent si and ti, respectively).

9a. For every common neighbor u of v and w, add the interval Ivuw to H with
color i, and delete u from G.

9b. For each neighbor x of v not adjacent to w, determine whether there exists a
neighbor y of w adjacent to x. If so, then choose y such that the right end-point
of y is leftmost amongst all such neighbors of w. Add the interval Ivxyw to H
with color i.

9c. Determine the connected components C1, . . . , Cp of G−(N [v]∪N [w]) whose
vertices lie between rv and lw. For each Cj , determine the vertex l(Cj) with the
leftmost left end-point and the vertex r(Cj) with the rightmost right end-point.
For each neighbor x of v, let Cx be the component among C1, . . . , Cp with the
rightmost rr(Cj) for which rx > ll(Cj). Then let yx be the neighbor of w with
the leftmost right endpoint amongst all neighbors y of w with ly < rr(Cx). If yx
exists, then add the interval between l(x) and r(yx) to H with color i.

Lemma 11. Step 9 is safe. Moreover, for i = 1, . . . , k′, if P is a solution siti-
path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. We first prove that Step 9 is correct. Let i ∈ {1, . . . , k′}. Let v and w be
the (non-adjacent) vertices of G representing si and ti, respectively. Let P be a
solution path for (si, ti).

Suppose that P has length 2. Then P has exactly one inner vertex u, which
is adjacent to both v and w. By Step 9a, H contains the interval IP .

Suppose that P has length 3. Then P has exactly two inner vertices x and
y′ that are adjacent to v and w, respectively. Let y be the neighbor of w that is
adjacent to x and has the leftmost right end-point among all such vertices. Then
P ′ = vxyw is an siti-path. Notice that IP ′ ⊆ IP by the choice of y and by the
fact that u and v have no common neighbors after Step 9a. Therefore, in any
solution that contains P , we can replace P by P ′. By Step 9b, H contains IP ′ .

Finally, suppose that P has length at least 4. Because P is an induced path,
there is a connected component Cj of G − (N [v] ∪ N [w]) whose vertices all lie
between rv and lw, such that all inner vertices of P except two neighbors of v
and w are in Cj . Let x and y be the neighbors of v and w on P , respectively.
Since P is an induced path, x and y are not adjacent, and thus Cj = Cx by
definition and the fact that IC1

, . . . , ICp
are pairwise disjoint. Then from P we

can construct an siti-path P ′ by replacing y with yx. Notice that IP ′ ⊆ IP by
the choice of yx and by the fact that v and w have no common neighbors after
Step 9a. Therefore, in any solution that contains P , P can be replaced P ′. By
Step 9c, H contains IP ′ .
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Observe that the above arguments prove that for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

We now show how to perform Step 9 in O(n+k) time. It is important to note that
we can consider each terminal pair separately during Step 9, as each non-terminal
vertex will be involved in the actions of Step 9 for at most two terminal pairs.
This is because a non-terminal vertex u is involved for the terminal pair (si, ti),
represented by terminal vertices v and w, only if u is adjacent to v or w, or if u
lies between v and w. By Step 1, Step 6, and Step 8, each non-terminal vertex
is adjacent either to one terminal vertex that represents at most two terminals
or to two terminal vertices that represent the terminals of the same terminal
pair. Hence, if there are ni− 2 non-terminal vertices involved with terminal pair
(si, ti) and we spend O(ni) time for each i, then the whole algorithm runs in∑k′

i=1 O(ni) = O(n + k) time.
So assume that there are two fixed terminal vertices v and w representing the

terminal pair (si, ti), and assume that all ni−2 other (non-terminal) vertices are
either adjacent to v or w, or lie between v and w. Moreover, a straightforward
modification enables us to assume that the representation has interval end-points
1, . . . , 2ni. We now show that Steps 9a, 9b, and 9c can indeed be performed in
O(ni) time, and O(ni) intervals are added to H.

For Step 9a, we simply evaluate all non-terminal vertices u whether they are
adjacent to both v and w. Using the interval representation, adjacency can be
tested in O(1) time. Therefore, it takes O(ni) time to evaluate all non-terminal
vertices u, and possibly add Ivuw to H and delete u. Clearly, O(ni) intervals are
added to H.

For Step 9b, we perform a sweep-line algorithm. Let X = NG(v) and Y =
NG(w). After Step 9a, X ∩ Y = ∅. For any j ∈ {1, . . . , 2ni}, let LY

j = {u ∈ Y |
lu = j} and let RX

j = {u ∈ X | ru = j}. By assumption, |LY
j |+|RX

j | ≤ 1 for each
j ∈ {1, . . . , 2ni}. Let y be a non-terminal vertex, which initially points nowhere
and which we denote y = ⊥. We now perform the sweep. For each j = 1, . . . , 2ni

in order, we perform the following actions in order. If there is a u ∈ LY
j , and

either y = ⊥ or ru < ry, then let y = u. If there is a x ∈ RX
j and y 6= ⊥, then

add the interval Ivxyw to H with color i. The vertex y that is maintained ensures
that for each x ∈ X, we know the vertex that is adjacent to x and w with the
leftmost right end-point (if it exists). It is clear that the sweep-line algorithm
takes O(ni) time and that O(ni) intervals are added to H.

For Step 9c, we perform several sweep-line algorithms. In the first sweep, we
determine the connected components C1, . . . , Cp and their vertices with leftmost
left end-point and rightmost right end-point. Let Z denote the non-terminal
vertices that are not adjacent to v nor w; this set can straightforwardly be
determined in O(ni) time, using the interval representation to test adjacency in
O(1) time. For any j ∈ {1, . . . , 2ni}, let LZ

j = {u ∈ Z | lu = j}. By assumption,

|LZ
j | ≤ 1 for each j ∈ {1, . . . , 2ni}. Let s, t be non-terminal vertices, which

initially point nowhere and which we denote s = t = ⊥. Initialize an integer
q = 0. Also, for each j ∈ {1, . . . , 2ni}, initialize a table A[j], which will store for
which component C ∈ {C1, . . . , Cp} the singleton set that contains the interval

14



IC is j-close. For each j = 1, . . . , 2ni in order, we perform the following actions
in order. If there is a u ∈ LZ

j , then do the following:

– if t 6= ⊥, u is adjacent to t, and ru > rt, then let t = u;
– if t 6= ⊥ and u is not adjacent to t, then report a new interval cq from ls to

rt, increase q by 1, and let s = t = u;
– if t = ⊥, then let s = t = u and increase q by 1.

Finally, set A[j] = q.
This algorithm reports in O(ni) time a set O(ni) of intervals that correspond

to IC1
, . . . , ICp

for the components C1, . . . , Cp respectively; denote this set by
C = {cq | q ∈ {1, . . . , p}}.

We now “combine” the intervals of C and the intervals of NG(v). Let X =
NG(v). For each interval x ∈ X such that A[rx] 6= 0, create a “combined interval”

a
A[rx]
x from lx to rcA[rx]

. We then perform the same algorithm as in Step 9b, where
instead of X = NG(v) we use the set of combined intervals as X. This enables
us to perform Step 9c in O(ni) time, and add O(ni) intervals to H. ut

3.5 Stage III: Find Independent Set

It remains to find a particular independent set in H.

Step 10. Find an independent set in H that, for i = 1, . . . , k, contains exactly
ri−1 or ri vertices colored i depending on whether (si, ti) is a multi-pair or not.
If such a set exists, add the corresponding candidate paths to P and return P.
Otherwise, return a No-answer.

Lemma 12. Step 10 is safe.

Proof. We first prove that Step 10 is correct. We do this by proving that our
instance is a yes-instance if and only if H has an independent set as described
in Step 10. First, suppose that H has such an independent set I. For each
interval u of color i, we can find an siti-path in G with inner vertices that are
used to construct u. Taking into account the terminal paths that are already
included in P, we obtain ri siti-paths for each i ∈ {1, . . . , k}. We have to show
that these paths are mutually induced. Because I is an independent set, distinct
paths have no adjacent inner vertices. It remains to show that each u ∈ I does
not intersect any terminal vertex (interval) of G except the vertices representing
si and ti. If u is added to H in Step 3, then this follows immediately from the
fact that all non-terminal vertices that are adjacent to at least three terminals
are deleted in Step 1 and from the description of Step 3. If u is added to H in
Step 9, then u does not intersect any terminal vertex deleted in Step 4, because
we delete such terminal vertices together with adjacent non-terminal vertices.
Similarly, u does not interfere with any terminal deleted in Step 5, as proved
in Lemma 7. Moreover, each interval added in Step 9 intersects exactly two
remaining terminal vertices that are partners by Step 8. Hence, the instance is
a yes-instance.
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Now suppose that our instance is a yes-instance. Let `i = ri − 1 if (si, ti)
is a multi-pair, and let `i = ri otherwise. By Observation 1, we can assume
that the solution includes all terminal paths. Therefore, the solution contains
exactly `i siti-paths with inner vertices. By Lemmas 5 and 11, for each such
solution siti-path P , there is a candidate siti-path P ′ such that IP ′ ⊆ IP .
Therefore, we can replace each solution path by a candidate path to obtain
a solution that only uses candidate paths. Let I denote the set of intervals
covered by these paths. By Lemma 1, the intervals of I do not intersect each
other. Moreover, by construction, I contains `i intervals with color i. Hence these
intervals correspond to an independent set of H that has the required properties.

We now show how to perform Step 10 in O(n) time. We do this by perform-
ing the following procedure, which is a modification of the well-known greedy
algorithm for finding a largest independent set in an interval graph.

1. Construct 2n buckets L1, . . . , L2n and 2n buckets R1, . . . , R2n.

2. For each vertex u of H, put u in buckets Llu and Rru .

3. Set I = ∅ and h = 2n. For i = 1, . . . , k, set `i = ri−1 if (si, ti) is a multi-pair,
and set `i = ri otherwise.

4. Scan the buckets Lh, . . . , L1 until we find a bucket Lj that contains a vertex u
of H of some color i such that `i > 0. Then u is included in I. Find the set
of vertices X from the buckets Rj , . . . , Rh, and delete all vertices of X from H.
Then set `i = `i − 1, h = j, and repeat the procedure. We stop as soon as we
cannot find the next bucket Lj .

If I contains less than `i vertices of color i for some i ∈ {1, . . . , k}, then stop
and return a No-answer. Otherwise, return I. This procedure takes O(|V (H)|) =
O(n) time, and the corresponding paths can be found in O(n) time (by assuming
that all intervals are annotated with their corresponding paths of at most four
vertices, or in the case of the intervals generated by Step 9c, by the four vertices
and component number that generated the interval). Hence, it remains to show
that the procedure is correct. We need the following claim, which implies that
between the left endpoints of two intervals with a color i there can be no left
endpoint of an interval with color j 6= i.

Claim 1. Let Ui, Uj be the set of vertices (intervals) of H colored by distinct
colors i and j respectively. Then for any u ∈ Ui and v ∈ Uj, lu 6= lv. Moreover,
if lu < lv for some u ∈ Ui and v ∈ Uj, then lx < ly for any x ∈ Ui and y ∈ Uj.

Proof: Let u ∈ Ui and v ∈ Uj . Suppose that u and v are added to H in Step 3
of the algorithm. Then lu 6= lv, because u and v are distinct vertices of G. We
assume without loss of generality that lu < lv. Note that the intervals of Ui

correspond to the non-terminal vertices of G that are adjacent to two adjacent
terminal vertices w1, z1 of G representing si, ti and that are not adjacent to other
terminal vertices by Steps 1 and 3. Similarly, the intervals of Uj correspond
to the non-terminal vertices of G that are adjacent to two adjacent terminal
vertices w2, z2 of G representing sj , tj and that are not adjacent to other terminal
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vertices. Consider the interval I = w1 ∩ z1. Because lu < lv, the left end-point
of any x ∈ Ui lies to the left of the right end-point of I and the left end-point
of any y ∈ Uj lies to the right of the right end-point of I. Hence, lx < ly for any
x ∈ Ui and y ∈ Uj .

Suppose now that u is added to H in Step 3 and v is added to H in Step 9.
The intervals of Ui correspond to the non-terminal vertices of G that are adjacent
to two adjacent terminal vertices w1, z1 of G representing si, ti and that are not
adjacent to other terminal vertices. The intervals of Uj are the unions of non-
terminal vertices of G and these intervals intersect two non-adjacent terminal
intervals w2, z2 of G representing sj , tj . Observe that the intervals of Ui could not
be used for construction of the intervals of Uj because all non-terminal vertices
that are adjacent to w1, z1 are deleted in Steps 4 and 8. Moreover, the intervals
of Uj do not intersect any terminal vertex of G except w2, z2. Hence, lu 6= lv.
Consider the interval I = w1 ∩ z1. Without loss of generality, lu < lv. Then the
left end-point of any x ∈ Ui lies to the left of the right end-point of I and the
left end-point of any y ∈ Uj lies to the right of the right end-point of I. Hence,
lx < ly for any x ∈ Ui and y ∈ Uj .

Finally, suppose that u and v are added to H in Step 9 of the algorithm.
The intervals of Ui intersect two non-adjacent terminal intervals w1, z1 of G
representing si, ti and they do not intersect other terminal vertices of G, and
the intervals of Uj intersect two non-adjacent terminal intervals w2, z2 of G
representing sj , tj and they do not intersect other terminal vertices of G. Recall
that the terminals are ordered in Step 7. Hence, we can assume without loss of
generality that rw1

< lz1 ≤ lw2
< rz2 . It remains to observe that each interval

of Ui has its left end-point to the left of rw1 and each interval of Uj has its left
end-point to the right of rw1 . This proves Claim 1.

Claim 1 implies that between the left endpoints of two intervals with color i
there can be no left endpoint of an interval with color j 6= i. Then, similar as the
correctness of the well-known greedy algorithm for finding a largest independent
set in an interval graphs, we can argue that the above procedure outputs the
required independent set. ut

As each step in our algorithm is safe, we obtain the following result.

Theorem 4. The Requirement Induced Disjoint Paths problem can be
solved in time O(n + k) for interval graphs on n vertices with k terminal pairs
if a representation of the graph is given.

If no representation of the graph is given, then combined with Theorem 1 this
implies a linear-time algorithm for Requirement Induced Disjoint Paths.

4 Circular-Arc Graphs

In this section, we modify the algorithm of the previous section to work for the
Induced Disjoint Paths problem on circular-arc graphs. The general idea
of the approach remains the same, but some preprocessing steps are no longer
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needed, and some steps need modification. In particular, we do not need colors
here. We will again show that each step of the algorithm is safe, where the
definition of a safe step remains the same, mutatis mutandis. The algorithm
assumes that an arc representation of G is known, as given by Theorem 2. It
maintains an auxiliary circular-arc graph H, initially empty, in a similar manner
and function as before. It also maintains a set P of paths, initially empty.

4.1 Basic Tools

We need to extend the basic tools we defined for interval graphs to circular-arc
graphs. For this, only minor modifications are necessary.

Definition 2. Let C be a set of n arcs of a circle with arc end-points in 1, . . . , 2n.
For a given integer j, a subset C ′ ⊆ C is j-close if for each arc u ∈ C ′ either u
contains the point j or there is no arc u′ ∈ C \C ′ that contains a point between
ru (exclusive) and j (inclusive) in “clockwise” direction.

Lemma 13. Let c ≥ 1 be an integer, and let C be a set of n arcs of a circle
with arc end-points in 1, . . . , 2n. Then in O(cn) time, we can construct a j-close
set C∗j of min{c, n} arcs of C for all j = 1, . . . , 2n.

Proof. We perform a sweep-line algorithm. We start by initializing some data
structures. For j = 1, . . . , 2n, let Lj = {u ∈ C | lu = j} and L2n+j = {u ∈
C | lu = j}. The sets Lj , and L2n+j can be computed in O(n) time by for each
u ∈ C putting it into the two sets it should be in. Finally, initialize an empty
deque D.

We now perform the sweep. For each j = 1, . . . , 2n in order, perform the
following action. While there is a u ∈ Lj , remove u from Lj ; if D contains less
than c elements, then add u to D; otherwise, if the right endpoint of u lies
further to the right than the right endpoint of the arc v ∈ D with the leftmost
right endpoint among all arcs in D, then remove v from D and add u instead.
After finishing this, we again consider each j = 1, . . . , 2n in order, but now with
respect to L2n+j . We repeat the same action as above, but if L2n+j is or becomes
empty, then we make the set C∗j equal to the contents of the deque D.

The first sweep initializes the deque, so that the second sweep can correctly
report the C∗j . Since the deque D contains at most c elements, the running time
of the algorithm is O(cn). ut

Lemma 13 has the following corollary, which can be be proven in the same
way as the proof of Corollary 1, except that we rely on Lemma 13 instead of
Lemma 2.

Corollary 2. Let X be a set of n arcs of a circle, with arc end-points in 1, . . . , 2n.
Let d ≥ 1 be an integer and let C,D be disjoint subsets of X. Then one can iden-
tify in O(dn) time a set of arcs u in D that intersect at least d arcs in C, as
well as for each such u a set of d arcs in C that intersect u,. or else conclude
that no such u exists.
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5 Steps

We now describe the steps that the algorithm takes in detail. The algorithm
first performs Step 1. Note that Steps 2 and 3 are not necessary, as there are no
multi-pairs now, and thus we do not apply them. We then continue with Steps 4
and 5.

Lemma 14. Steps 1, 4, and 5 are safe.

The proof of this lemma is obtained in the same way as the proofs of Lemmas 3,
6, and 7 with the following caveats. We now rely on Corollary 2 instead of
Corollary 1. In the implementation of Lemma 7 we must be careful that the
intersection of the arcs of two terminal vertices can consist of two disjoint arcs;
however, by adding both arcs to the set X constructed in Lemma 7 in this case,
the algorithm goes through as before.

After Step 5, for every remaining terminal pair (si, ti), si and ti are repre-
sented by vertices at distance at least 2, and as before, we call such pairs long.
Let k′ be the number of remaining terminal pairs. Notice that it can happen
that k′ ≤ 1 after Step 5. It is convenient to handle this case separately.

Step 5+. If k′ = 0, then stop and return the solution P. If k′ = 1, then consider
the terminal vertices u and v representing the terminals of the unique pair of T .
Find an induced uv-path P if it exists. If P exists, then add P to P, and return
the solution P. Otherwise, stop and return a No-answer.

Lemma 15. Step 5+ is safe.

Proof. Step 5+ can be executed in O(n) time, because if k′ = 1, then the required
path P can be found by tracing a path along the circle. The cases that k′ = 0
and that k′ = 1 and P does not exist are trivially correct. If k′ = 1 and P does
exist, then P cannot have any inner (non-terminal) vertices that are adjacent to
the terminal vertices that are deleted in Step 4, because any such non-terminal
vertices are deleted as well. Moreover, P cannot have any inner (non-terminal)
vertices that are adjacent to the terminals that are deleted in Step 5, as any
such non-terminal vertex would either be adjacent to three terminals and thus
removed in Step 1, or be adjacent to a terminal vertex of the single remaining
terminal pair. ut

Now we can assume that k′ ≥ 2. Since all pairs are long and k′ ≥ 2, there is
only one direction around the circle that a solution path can go, and therefore,
intuitively, the problem starts to behave roughly as it does on interval graphs.
We perform Steps 6, 7, 8, and 9, where in Step 9 we do not color the vertices.

Lemma 16. Steps 6, 7, 8, and 9 are safe. Moreover, for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. The lemma follows immediately from Lemmas 8, 9, 10, and 11. In the
proof of Lemma 9, we need to be slightly careful: if the first two non-empty
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buckets contain terminals from different terminal pairs, then since we are dealing
with circular-arc graphs, this does not immediately mean that we should return a
No-answer. Instead, we should restart the procedure with the second non-empty
bucket, and move the first non-empty bucket to the end of the list (as bucket
B2n+1). In the other lemmas, we now rely on Corollary 2 instead of Corollary 1.
In Lemma 11 it is important to note that for each i = 1, . . . , k′, the terminal
vertices representing si and ti and the ni−2 non-terminal vertices involved with
(si, ti) induce an interval graph. Hence, the proof of the lemma goes through
without further modifications. ut

Finally, we execute the following simplified version of Step 10.

Step 10∗. Find a largest independent set in H using Theorem 3. If such a set
exists, add the corresponding candidate paths to P and return P. Otherwise,
return a No-answer.

Lemma 17. Step 10∗ is safe.

Proof. A largest independent set can be found in O(n) time using Theorem 3.
Then the corresponding paths can be found in O(n) time (by assuming that all
arcs are annotated with their corresponding paths of at most four vertices, or in
the case of the arcs generated by Step 9c, by the four vertices and component
number that generated the interval). To prove that Step 10∗ is correct, we prove
that the instance is a yes-instance if and only if H has an independent set of
size at least k′.

Suppose that I is an independent set of H of size at least k′. By the construc-
tion of H, the set of vertices of H can be partitioned into k′ sets X1, . . . , Xk′

such that for each i ∈ {1, . . . , k′}, Xi contains only intervals that intersect the
vertices u, v representing si, ti, respectively, in ru and lv. Hence, I has exactly
one vertex from each X1, . . . , Xk′ . For each interval w in I from Xi, we can find
an siti-path in G with inner vertices that are used to construct w. Taking into
account the paths that are already included in P, we obtain siti-paths for each
i ∈ {1, . . . , k}. We have to show that these paths are mutually induced. Because
I is an independent set, distinct paths have no adjacent inner vertices. It re-
mains to show that each w ∈ I does not intersect any terminal vertex (interval)
of G except the vertices representing si and ti. Notice that w does not intersect
any terminal vertex deleted in Step 4, because we delete such terminal vertices
together with adjacent non-terminal vertices. Similarly, as argued in Lemma 7, w
does not interfere with any terminals deleted in Step 5. Recall that non-terminal
vertices that are adjacent to at least three distinct terminal vertices are deleted
in Step 1. By Step 8 and the fact that the common neighbors of two terminals are
deleted in the first phase of the construction of H in Step 9a, we find that w does
not intersect any terminal except si, ti. Hence, the instance is a yes-instance.

Suppose now that we have a yes-instance of Induced Disjoint Paths.
Consider a solution for this instance. By Observation 1, we can assume that this
solution includes all terminal paths from P. We consider the remaining k′ paths
that have at least one inner vertex. By Lemma 16, for each solution siti-path P ,
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there is a candidate siti-path with IP ′ ⊆ IP . Hence, we may assume that each
solution path is a candidate path. Let I be the set of intervals covered by these
paths. Because the paths are mutually induced, the intervals of I do not intersect
each other. Hence, H has an independent set of size k′. ut

As each step in our algorithm is safe, we obtain the following result.

Theorem 5. The Induced Disjoint Paths problem can be solved in time
O(n + k) for circular-arc graphs on n vertices with k terminal pairs if a repre-
sentation of the graph is given.

If no representation of the graph is given, then combined with Theorem 2 this
implies a linear-time algorithm for Induced Disjoint Paths.

6 Conclusion

We gave a linear-time algorithm for Requirement Induced Disjoint Paths
on interval graphs, and for Induced Disjoint Paths on circular-arc graphs.
Both algorithms actually run in O(n + k) time if a representation of the graph
is given and the graph has n vertices and k terminal pairs. By the application
of the same ideas, we can solve Requirement Induced Disjoint Paths on
n-vertex circular-arc graphs in time O(n2). The increase in running time is be-
cause to solve the auxiliary problem of finding a multicolored independent set
we must “guess” a starting point for the greedy selection of such a set. The ques-
tion whether there exists a linear-time algorithm for Requirement Induced
Disjoint Paths restricted to circular-arc graphs remains open.

A natural question is whether the multicolored independent set problem that
we solve in Step 10 of the algorithm can be solved in polynomial time on interval
graphs when no order on the colors is known. In the appendix, we answer this
question negatively.
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A Multicolored Independent Set

In Step 10 of the algorithm for interval graphs, we solve an instance of a gener-
alization of the following problem:
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Multicolored Independent Set

Instance: a graph G, an integer k, and a function c : V (G)→ {1, . . . , k}.
Question: does G have an independent set I with

⋃
v∈I c(v) = {1, . . . , k}?

In Step 10, we essentially show that such an instance can be solved in polynomial
time on interval graphs if for any two vertices u,w with c(u) = c(w) = i there is
no vertex v with c(v) = j and lu < lv < lw. However, on general interval graphs,
this problem becomes NP-complete.

Theorem 6. Multicolored Independent Set on interval graphs is NP-
complete.

Proof. We show in fact that the problem is already NP-complete on disjoint
unions of double stars (i.e. graphs obtained from two disjoint stars by adding
an edge between the two central vertices), which form a subclass of interval
graphs. We reduce from 3-SAT. Consider an instance of 3-SAT with n vari-
ables x1, . . . , xn and m clauses C1, . . . , Cm. We construct a graph G and a func-
tion c as follows. For each xi, we create two adjacent vertices xi and x̄i with
c(xi) = c(x̄i) = i. For each Cj , we create three vertices and set c(·) of these ver-
tices to j + n. We then make these three vertices adjacent to the corresponding
literal vertices (for example, if Cj contains xi, x̄j , xl, then we join the first vertex
with the vertex xi, the second with x̄j and the third with xl). This completes
the construction. Note that it is indeed a disjoint union of double stars. The
correctness can be seen as follows: we set variable xi to true if and only if the
vertex xi is not in the independent set. ut

It is easy to show that Multicolored Independent Set is fixed-parameter
tractable on interval graphs when parameterized by the number of colors: guess
an ordering of the colors, and for each choice, run a procedure similar to the
one described for Step 10. A faster algorithm can be obtained using dynamic
programming.
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