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boson, and through continuum production where the Z boson couples to a loop of massless

quarks or to a massive quark. We calculate the interference of the two processes and its con-

tribution to the cross section up to and including order O(α3
s). The two-loop contributions

to the amplitude are all known analytically, except for the continuum production through

loops of top quarks of mass m. The latter contribution is important for the invariant mass

of the two Z bosons, (as measured by the mass of their leptonic decay products, m4l), in a

regime where m4l ≥ 2m because of the contributions of longitudinal bosons. We examine

all the contributions to the virtual amplitude involving top quarks, as expansions about

the heavy top quark limit combined with a conformal mapping and Padé approximants.

Comparison with the analytic results, where known, allows us to assess the validity of the

heavy quark expansion, and it extensions. We give results for the NLO corrections to this

interference, including both real and virtual radiation.
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1 Introduction

The production of four charged leptons is a process of great importance at the LHC. It was

one of the discovery channels of the Higgs boson at the LHC. It also provides fundamental

tests of the gauge structure of the electroweak theory through the high-energy behaviour.

Four charged leptons are predominantly produced by quark anti-quark annihilation; the

mediation is by photons or Z bosons dependent on the mass of the four leptons, m4l.

A smaller contribution, which however grows with energy is provided by gluon-gluon

fusion. The Higgs boson is of course produced in this channel; in the Standard Model

(SM) this occurs predominantly through the mediation of a loop of top quarks. As pointed
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Figure 1. Representative diagrams for the ZZ production. In the following we will suppress the

Z-decays to leptons.

out by Kauer and Passarino [1], despite the narrow width of the Higgs boson, the Higgs-

mediated diagram gives a significant contribution for m4l > mH . If we examine the tail of

the Higgs-mediated diagrams there are three phenomena occurring:

• The opening of the threshold for the production of real on-shell Z bosons, m4l > 2mZ .

• The region m4l = 2m, (m is the top quark mass) where the loop diagrams develop

an imaginary part.

• The large m4l region, m4l > 2m, where the destructive interference between the

Higgs-mediated diagrams leading to Z bosons and the continuum production of on-

shell Z bosons is most important.

A feature of this tail is that it depends on the couplings of the Higgs boson to the

initial and final state particles but not on the width of the Higgs boson. Assuming the

couplings of the on- and off-peak Higgs-mediated amplitudes are the same, it has been

proposed to use this property to derive upper bounds on the width of the Higgs boson [2].

Note that models with different on- and off-peak couplings can be constructed [3].

In the following we shall refer to the production of the bosons V1, V2. Gluon-gluon fu-

sion first contributes to the cross section for electroweak gauge boson production pp→ V1V2

as shown in figure 1(c)-(e) at O(α2
S), which is the next-to-next-to-leading-order (NNLO)

with respect to the leading-order (LO) QCD process shown in figure 1(a); no two-loop

gg → V1V2 amplitudes participate in this order in perturbation theory.

In the context of the Higgs boson width, however, the interference between the Higgs-

mediated Z boson pair-production and the Standard Model continuum at next-to-leading-

order (NLO) QCD already requires knowledge of the one- and two-loop gg → (H →)V1V2

amplitudes. The requirement for more precise estimates to the Higgs boson width were
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emphasised in [4–6]. Signal-background interference effects beyond the leading order have

been considered in ref. [7] for the process gg → H → W+W− for the case of a heavy

Higgs boson.

In this work we will limit ourselves to the Z boson pair final state, due to its importance

at the LHC. At LO [8] and NLO [9–12] the amplitudes for single Higgs boson production

have been known for quite some time. At LO, the amplitude for the SM continuum

gg → ZZ process occurs via massless and massive fermion loops and results are available

in each case [13–16].

The situation, however, is different for the NLO continuum process, although vast

progress in terms of two-loop amplitudes has been made [17–22]. Recently two-loop gg →
ZZ amplitudes1 via massless quarks became available [21, 22]. The complete computation

of two-loop amplitudes with massive internal quark loops, on the other hand, is commonly

assumed to be just beyond present technical capabilities. Although the contribution of the

top quark loops to these diagrams is smaller than the contribution of the light quarks in the

region just above the Z-pair threshold, in the high m4l region the amplitude is dominated

by the contributions of longitudinal Z bosons that couple to the top quark loops. Recently

a first heavy top quark approximation for the two-loop gg → ZZ amplitude with internal

top quarks was published [6]. In that work only the leading term in the s/m2 expansion

was considered. In that approximation, the vector-coupling of the Z boson to the top

quark does not contribute. In addition an approximate treatment of this process at higher

orders, based on soft gluon resummation, was presented in ref. [23].

In the present work we will push this analysis further. We start by presenting our

results for the LO and NLO Higgs-mediated ZZ production in terms of the s/m2 expansion

in section 2, despite the fact that the full result is known. This part is required for the

later interference with the SM continuum. Furthermore, it is well suited to introduce our

notation in section 2.1 and to assess the validity of the approximation methods with respect

to the exact known (N)LO amplitudes in section 2.2.

The results for the LO and virtual NLO contributions to the SM continuum with

massive quark loops will be given in section 3 as a large-mass expansion (LME) with

terms up to (s/m2)6. We will limit our discussion to the interference between the Higgs-

mediated term and the continuum term. Similar to [6] we will consider on-shell Z bosons

in the final state. A theoretical predictions for off-shell Z bosons would be optimal, but

in order to reduce the number of scales in the problem, we restrict ourselves to on-shell Z

bosons. Since we are primarily interested in the high-mass behaviour this is an appropriate

approximation. A limited number of scales is beneficial when we consider the extension of

our approach to a full calculation. In section 4 we summarize our treatment of the real

radiation contribution, which makes use of results already presented in ref. [16].

The results of our calculation, including loops of both massless and massive quarks,

will be presented in section 5. We will compare the effects of the NLO corrections to the

interference contribution with the corresponding corrections to the Higgs diagrams alone.

1Actually, the results in [21] and [22] allow for arbitrary off-shell electroweak gauge bosons in the fi-

nal state.

– 3 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
1

In addition, we will discuss the impact of our results on analyses of the off-shell region that

aim to bound the Higgs boson width.

All expansion results from section 2 and section 3.4.1 are provided via ancillary files

on arXiv as FORM and Mathematica readable code.

2 Higgs production in gluon-gluon fusion and decay to ZZ

In this section we give a detailed discussion of single Higgs boson production at LO and

NLO QCD and its subsequent decay to a pair of on-shell Z bosons. As mentioned earlier

the LO and NLO amplitudes for single Higgs boson production have been known for a long

time; either approximate results in terms of Taylor expansions in the inverse of the top

quark mass s/m2 [8, 12, 24–28] or results keeping the exact top mass dependence [12, 29].

It is understood that, whenever feasible and available, the exact results for LO and

NLO amplitudes are used. However, we are mainly interested in approximations to the

interference contributions Re
〈
ALO

∣∣B(N)LO

〉
, where A denotes the Higgs-mediated and B

the SM continuum amplitude. Since no exact results are available for BNLO we will use

the, so-called, large-mass expansion [30] as an approximation of the SM continuum. Hence,

for consistency, we also perform the expansion of the Higgs-mediated amplitude A to

high powers in s/m2. Expansion of the two-loop Higgs-mediated amplitude ANLO and its

comparison to available results from the literature provides moreover a helpful check of our

expansion routines due to the general structure of the LME.

Furthermore, the large-mass expansion in powers of s/m2 is formally only valid below

the threshold of top quark pair-production, as m is assumed to be much larger than any

other scale in the problem, e.g. s � m2. As extensively discussed in literature the naive

LME can be drastically improved at (and even far above) threshold by taking the next mass

threshold into account, see ref. [30] and references within, or by rescaling the approximated

NLO result by the exact LO result, see e.g. refs. [31, 32]. We will address this issue in

section 2.2.3 and try to draw conclusions for the SM continuum.

2.1 Preliminaries

The amplitudes for single Higgs boson production

g(p1, α,A) + g(p2, β, B)→ H(p1 + p2), s = (p1 + p2)2 , (2.1)

are illustrated in figure 2 for the one-loop and two-loop case. The largest contribution is

due to the internal massive top quark loop; in the following we will ignore the contribution

of other quarks for the Higgs production process.

The gg → H amplitude, with color (Lorentz) indices A,B(α, β) for the initial state

gluons, can be written as∣∣∣A0,AB
αβ (α0

S ,m
0, µ, ε)

〉
= −iδAB gW

2mW

4

3
(gαβ p1 · p2 − p1,βp2,α)

∣∣A0(α0
S ,m

0, µ, ε)
〉
, (2.2)

such that the reduced matrix element
∣∣A0(α0

S ,m
0, µ, ε)

〉
is dimensionless and can be ex-

pressed as a function of µ2/s and rt = m2/s. The bare on-shell amplitudes admit the
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(a) (b)

(c) (d)

Figure 2. Representative diagrams for the LO+NLO virtual gg → H → ZZ amplitude.

perturbative expansion

∣∣A0(α0
S ,m

0, µ, ε)
〉

=
α0
S

4π

∣∣∣A0,(1)(m0, µ, ε)
〉

+

(
α0
S

4π

)2 ∣∣∣A0,(2)(m0, µ, ε)
〉

+O
(
(α0

S)3
)
, (2.3)

where we introduced the parameter ε from dimensional regularisation in d = 4− 2ε space-

time dimensions and µ to keep the amplitudes dimensionless. The calculation is performed

in Conventional Dimensional Regularisation (CDR) and the following definition of the

d-dimensional loop integral measure∫
d4p

(2π)4
−→ µ2ε e

εγE

(4π)ε︸ ︷︷ ︸
≡Sε

·
∫

ddp

(2π)d
(2.4)

is used in accordance with the MS-scheme, to avoid the proliferation of unnecessary γE −
log(4π) terms.

The ultraviolet (UV) renormalised amplitudes are given by∣∣∣Ar(α(nf )
S (µ),m, µ, ε)

〉
= ZmZg

∣∣A0(α0
S ,m

0, µ, ε)
〉
, (2.5)

where Zg denotes the on-shell gluon renormalisation constant. The Htt̄ vertex is renor-

malised, according to [33], by g0
H = Zm gH with gH being the Yukawa coupling for the top

quark. The bare top quark mass is related to the renormalised mass, m, by m0 = Zmm.

The necessary on-shell renormalisation constants are given by

Zg = 1−
α

(nf )
S

4π
TF

(
µ2

m2

)ε
· 4

3ε
+O

(
(α

(nf )
S )2, ε

)
and (2.6)

Zm = 1−
α

(nf )
S

4π
CF

(
µ2

m2

)ε [
3

ε
+ 4

]
+O

(
(α

(nf )
S )2, ε

)
, (2.7)
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with TF = 1/2. See appendix A of [34] and references therein for more information. The

mass renormalisation enters as an overall factor in eq. (2.5) because of the renormalisa-

tion of the Yukawa coupling, and also implicitly in the relationship between the bare and

renormalised mass. We will always present mass-renormalised results in the following.

The strong coupling constant is renormalised in the MS-scheme according to

α0
S = Z

(nf )
αS α

(nf )
S (µ) , (2.8)

with [34]

Z
(nf )
αS = 1−

α
(nf )
S

4π

β
(nf )
0

ε
+O

(
(α

(nf )
S )2

)
and β

(nf )
0 =

11

3
CA −

4

3
TFnf , (2.9)

where nf = 6 denotes the number of fermions and β
(nf )
0 the coefficient of the beta function.

The explicit scale dependence of the renormalised strong coupling constant α
(nf )
S (µ) is

dropped in the following to simplify our notation. All of our quantities are computed in

five-flavour (nl = 5) QCD. Hence, we decouple the top quark from the QCD running via

α
(nf )
S = ξαSα

(nl)
S and ξαS = 1 +

α
(nl)
S

4π
TF

[
4

3
log

(
µ2

m2

)]
+O

(
(α

(nl)
S )2, ε

)
, (2.10)

with nl the number of light quarks.

After UV renormalisation the two-loop amplitude still contains divergences of infrared

origin. The structure of these divergences is, however, completely understood at two-loop

level. The finite remainder is defined by infrared (IR) renormalisation∣∣∣FA,B (α(nl)
S ,m, µ

)〉
=
(
Ẑ(nl)
gg

)−1 ∣∣∣Mr
A,B

(
α

(nl)
S ,m, µ, ε

)〉
. (2.11)

Expanding eq. (2.11) in α
(nl)
S /(4π) yields the explicit expressions for the LO and NLO finite

remainders ∣∣∣F (1)
A,B(m,µ)

〉
=
∣∣∣Mr,(1)
A,B (m,µ)

〉
and (2.12)∣∣∣F (2)

A,B(m,µ)
〉

=
∣∣∣Mr,(2)
A,B (m,µ, ε)

〉
− Ẑ(nl,1)

gg

∣∣∣Mr,(1)
A,B (m,µ, ε)

〉
. (2.13)

The infrared renormalisation matrix Ẑ
(nl)
gg is taken from [34–36] and reads for the gluon-

gluon initial state with colourless final state in terms of the renormalised strong coupling

constant

Ẑ(nl)
gg = 1+

α
(nl)
S

4π
Ẑ(nl,1)
gg = 1+

α
(nl)
S

4π

(
−2CA
ε2

−
2CA log

(
−µ2/s

)
+ β

(nl)
0

ε

)
+O

(
(α

(nl)
S )2

)
.

(2.14)

In the end we are interested in the amplitude for the process

g(p1) + g(p2)→ H → Z(p3) + Z(p4) , (2.15)

– 6 –
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and we set up momentum conservation as p1 + p2 = p3 + p4. For the calculation at hand

we also need the decay amplitude H → ZZ, see figure 2a, which is given by

|Mρσ〉H→ZZ = igW
mW

cos2 θW
gρσ . (2.16)

Combining eqs. (2.2), (2.16) the full amplitude for production and decay is

∣∣∣Aαβρσ,ABggHZZ (α
(nl)
S ,m, µ, ε)

〉
= N δAB

4

3

s

s−m2
H

∣∣∣A(α
(nl)
S ,m, µ, ε)

〉
·

(
gαβ − pα2 p

β
1

p1 · p2

)
gρσ,

(2.17)

where we have defined an overall normalisation factor,

N = i

(
gW

2 cos θW

)2

. (2.18)

From this it is straightforward to square the amplitude to obtain the result for the Higgs-

mediated diagrams alone. The sum over the polarisations of the gluons and the Z bosons

of momentum p can be performed as usual with the projection operators,

Pµνg = −gµν , P ρβZ (p) = −gρβ +
pρpβ

m2
Z

. (2.19)

Using these projectors we get the subsidiary result

P ρσZ (p3)PZ ρσ(p4) = 2

[
(d− 2)

2
+

1

8

(s− 2m2
Z)2

m4
Z

]
. (2.20)

Including also the sum over colors yields the matrix element squared for the signal in this

channel, (The statistical factor for identical Z bosons is not included).

Sgg ≡
〈
Aαβρσ,ABggHZZ (α

(nl)
S ,m, µ, ε)

∣∣∣AABggHZZ,αβρ′σ′(α
(nl)
S ,m, µ, ε)

〉
P ρZρ′(p3)P σZσ′(p4) (2.21)

= |N |2 64NA

9

(
s

s−m2
H

)2 〈
A(α

(nl)
S ,m, µ, ε)

∣∣∣A(α
(nl)
S ,m, µ, ε)

〉
× (1− ε)

[
1− ε+

1

8

(
1

rZ
− 2

)2]
,

where we use the notation rZ = m2
Z/s and NA = N2

c − 1 = 8.

2.2 Large-mass expansion and improvements

Using the aforementioned conventions we can compute the leading- and next-to-leading-

order amplitude
∣∣A(1,2)(m,µ, ε)

〉
for single Higgs boson production. Although we always

work with the loop measure Sε = exp(εγE)(4π)−ε we factor out

SεcΓ =
eεγE

(4πε)
· Γ(1 + ε)(4π)ε = 1 + ε2

π2

12
+O(ε3) , (2.22)

– 7 –
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in the results presented below to keep factors of π2 implicit. The dimensional dependent

factor cΓ denotes the somewhat more natural loop measure, because it cancels exactly the

Γ(1 + ε) factor obtained by the loop integration.

The exactly known leading-order result in d-dimensions (d = 4− 2ε) yields [8, 11, 27,

37, 38]∣∣∣A(1)(m,µ, ε)
〉

= SεcΓ · 3rt (2.23)

×
(

2ε

1− ε
B0 (p1 + p2;m,m)−

(
1− 4

1− ε
rt

)
sC0 (p1, p2;m,m,m)

)
,

where s = (p1 + p2)2. The definitions of the integrals B0 and C0 are given in appendix A.

The essential idea of the large-mass expansion based on the method of expansion by

regions [30] is that the integration domain is divided into different regions where the loop

momenta are soft, ki ∼ pi � m or hard, pi � ki ∼ m. The external momenta pi � m are

always assumed to be small. In the expansion of one-loop integrals only the region of a

hard loop momentum k1 ∼ m exists, because all propagators are associated with the large

mass m. As a result the one-loop expansion consists only of a naive Taylor expansion and

its result is given in terms of simple massive one-loop vacuum integrals.

The two-loop integral expansion is more involved since the hard as well as the soft

region must be considered. The first region results, with the help of [39], in scalar massive

two-loop vacuum integrals. The soft region produces a product of massive one-loop vacuum

integrals and massless one-loop bubble and triangle integrals. All occurring integrals are

well known and, although, the intermediate expressions become huge, the final results are

remarkably simple, as can be seen below. We use our own fully automatic in-house software

to perform the large-mass expansion, relying extensively on the features of FORM [40] and

Mathematica. For a similar approach to Higgs boson pair-production, see e.g. [41].

Using the large-mass expansion for the B0 and C0 integral, given in section A, the

corresponding expansion of the full result for
∣∣A(1)(m,µ, ε)

〉
in d dimensions is∣∣∣A(1)(m,µ, ε)

〉
= SεcΓ

(
µ2

m2

)ε{
1 +

1

rt

[
7(1 + ε)

120

]
+

1

r2
t

[
1

336

(
2 + 3ε+ ε2

)]
(2.24)

+
1

r3
t

[
13
(
6 + 11ε+ 6ε2

)
100800

]
+

1

r4
t

[
24 + 50ε+ 35ε2

207900

]
+

1

r5
t

[
19
(
120 + 274ε+ 225ε2

)
121080960

]
+

1

r6
t

[
180 + 441ε+ 406ε2

55036800

]
+

1

r7
t

[
1260 + 3267ε+ 3283ε2

2117187072

]
+

1

r8
t

[
10080 + 27396ε+ 29531ε2

89791416000

]
+

1

r9
t

[
31
(
10080 + 28516ε+ 32575ε2

)
14340021696000

]
+

1

r10
t

[
50400 + 147620ε+ 177133ε2

11640723494400

]
+O

(
1/r11

t , ε
3
)}

.

Similarly the two-loop result can be expressed in terms of the leading-order amplitude∣∣Ā(1)(m,µ, ε)
〉

= (SεcΓ(µ2/m2)ε)−1
∣∣A(1)(m,µ, ε)

〉
and with only mass renormalisation in-

cluded∣∣∣A0,(2)(m,µ, ε)
〉

=

(
SεcΓ

(
µ2

m2

)ε)2{
CA

[(
− 2

ε2

(
m2

−s− iε

)ε
+
π2

3

) ∣∣∣Ā(1)(m,µ, ε)
〉

+ 5 +
1

rt

29

360
+

1

r2
t

1

2520
− 1

r3
t

29

56000
− 1

r4
t

3329

24948000
− 1

r5
t

1804897

63567504000
− 1

r6
t

41051

7063056000
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− 1

r7
t

156811

132324192000
− 1

r8
t

74906179

307984556880000
− 1

r9
t

834852479

16562725058880000
− 1

r10
t

2412657613

228565605812544000

]
− 3CF

[
1− 1

rt

61

270
− 1

r2
t

554

14175
− 1

r3
t

104593

15876000
− 1

r4
t

87077

74844000
− 1

r5
t

13518232199

62931828960000
(2.25)

− 1

r6
t

673024379

16362275529600
− 1

r7
t

225626468867

27815868400320000
− 1

r8
t

51518310883673

31445839226561760000

− 1

r9
t

24341081985219

72122692986023680000
− 1

r10
t

2035074335031827

28792409364206167680000

]
+O

(
1/r11

t , ε
)}

.

The first terms of eq. (2.24) and eq. (2.25) fully agree with available results in the litera-

ture [27, 28]. Especially the NLO corrections presented in [27] cover terms in the expansion

up to O
(
1/r2

t , ε
2
)

and we find full agreement with our results for the amplitudes as well as

the cross sections. The analytic results for the exact LO and NLO amplitude A, keeping

the full top mass dependence, can be taken from [11, 42].2 The NLO results for the virtual

amplitude have also been checked by our own independent program, using GiNaC [43] to

evaluate the harmonic polylogarithms. This serves as a further independent check of the

mass expansion results in eq. (2.24) and eq. (2.25). This agreement will be illustrated in

section 2.2.3.

The radius of convergence of the large-mass expansion is given by s/(4m2) . 1. The

polynomial growth leads to an extremely good convergence below and close to threshold

of top quark pair-production, as shown later.

2.2.1 Rescaling with exact leading-order result

Above threshold, however, naively no convergence with respect to the exact result can be

expected. At least two procedures exist which lead to major improvements in terms of

convergence of the expanded result even above threshold.3 We recall these procedures in

this subsection and the next.

A well known method of extending the naive large-mass expansion of the NLO cross

section beyond its range of validity relies on factoring out the LO cross section with exact

top mass dependence,

σNLO
imp,N ≡ σLO

exact ·
σNLO

exp

σLO
exp

= σLO
exact ·

N∑
n=0

cNLO
n (1/rt)

n

N∑
n=0

cLO
n (1/rt)n

. (2.26)

The numerator and denominator are expanded to the same order in 1/rt. It was argued

for single Higgs boson production in [31] and for Higgs boson pair-production in [32] that

varying N in the above formula allows to check for additional power corrections. Including

sufficient orders in the expansion should lead to stable approximations σNLO
imp,N .

2The overall sign of the NLO term differs between the published paper [11] and the thesis of Beerli [42].

We believe that the sign in the latter is correct, which is also supported by the comparison with the NLO

results using the large-mass expansion [27, 28].
3The region above threshold could also be approximated by fitting a suitable ansatz to the high-energy

limit [31, 44, 45]. This, however, would require additional knowledge of the high-energy behaviour and is

beyond the scope of this work.
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The method relies on the expansion of numerator and denominator in eq. (2.26) and

evidently, requires the knowledge of all of the ingredients in terms of series expansions.

Although this requirement usually does not pose any problem per se it might turn out to

be disadvantageous in certain cases. In our particular case at hand, we require the SM

continuum as well as the Higgs-mediated amplitude as large-mass expansions. Certainly

the Higgs-mediated amplitude is well known at LO and NLO including its full top mass

dependence. Any approximation of this amplitude poses a potential threat of introducing

unnecessary uncertainties. We will discuss this point further in section 3.5 and see that

the method introduced in the next section provides a way to circumvent this issue.

2.2.2 Conformal mapping and Padé approximants

Having sufficiently many terms in the 1/m expansion at hand allows for a more powerful

resummation method, the Padé approximation [30, 46–49]. The univariate Padé approxi-

mant [n/m] to a given Maclaurin series with a non-zero radius of convergence z0

f(z) =
∞∑
n=0

anz
n (2.27)

is defined via the rational function

f[n/m](z) =
b0 + b1z + b2z

2 + . . .+ bnz
n

1 + c1z + c2z2 + . . .+ cmzm
(2.28)

such that its Taylor expansion reproduces the first n+m coefficients of f(z); the coefficients

bi and ci are uniquely defined by this expansion. The advantage of Padé approximants over

other techniques, e.g. Chebyshev approximation, lies in the fact that they can provide gen-

uinely new information about the underlying function f(z), see [49] for more information.

The downside of Padé approximants is their uncontrollability. In general, there is no

way to tell how accurate the approximation is, nor how far the range z can be extended.

Computing the Padé approximants [n/n] or [n/n±1] for different orders n allows, at least,

checking the stability of the approximation. We will refer to [n/n] as diagonal and to

[n/n± 1] as non-diagonal Padé approximants in the following.

Although the Padé approximation can be directly applied to eq. (2.27), it is advanta-

geous to apply a conformal mapping [46]

w(z) =
1−

√
1− z/z0

1 +
√

1− z/z0

(2.29)

first. The amplitudes at hand, gg(→ H) → ZZ, with z = s/m2 develop a branch cut

starting from z0 = 4 and extending to +∞ due to the top quark pair-production threshold.

Applying the mapping, eq. (2.29), transforms the entire complex plane into the unit circle

of the w-plane, such that the upper (lower) side of the cut corresponds to the upper (lower)

semicircle and the origin of the original z-plane is left unchanged.

The initial power series can now be transformed into a new series in w [30]

f(w) =
∞∑
n=0

Φnw
n , (2.30)
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where

Φ0 = a0 and Φn =

n∑
k=1

(n+ k − 1)!(−1)n−k

(2k − 1)!(n− k)!
(4z0)k ak , if n ≥ 1 , (2.31)

and, subsequently, its Padé approximants computed. We will illustrate these features using

the example of single Higgs boson production in the next section.

2.2.3 Comparison of LME with full result

Let us briefly compare the results from the large-mass expansions, eq. (2.24) and eq. (2.25),

and their, previously discussed, improvements to the known LO and NLO QCD result with

full top mass dependence [9–12]. We include the subsequent H → ZZ decay, as given in

eq. (2.16), perform the UV+IR renormalisation and compute the phase space integral over

eq. (2.21) including all corresponding phase space factors and coupling constants. The NLO

contribution so obtained is not physical, since we neglect the real-radiation contribution for

now. Considering the obtained finite parts of the LO and virtual NLO corrections alone,

on the other hand, allow to better verify the validity of our approximations. To be specific,

we set

σLO
H ∼ Re

〈
F (1)
A (m,µ)

∣∣∣F (1)
A (m,µ)

〉
and σNLO

virt,H ∼ 2 Re
〈
F (1)
A (m,µ)

∣∣∣F (2)
A (m,µ)

〉
.

(2.32)

We utilise the CT10nlo PDF set [50] within LHAPDF [51] to determine αS(µf ) and use the

input parameters

√
S = 13 TeV , µf = µr =

√
s ,

m = 173.5 GeV , mZ = 91.1876 GeV , (2.33)

mW = 80.385 GeV , GF = 1.16639 · 10−5 GeV−2 ,

where S and s denote the hadronic and partonic center-of-mass energy, respectively.

The orange curves in figure 3 depict the large-mass expansion results of eq. (2.32) for

the LO and the NLO case, where each4 finite remainder F (1,2)
A is expanded up to 1/m20. A

minimum cut
√
s ≥ 2mZ has been imposed and the threshold for top quark pair-production

is given by s/m2 = 4. The relative deviation

∆σ

σ
= 1− σ

(N)LO
approx

σ
(N)LO
exact

(2.34)

of the approximated results with respect to the exact result are shown in the bottom

plots. The large-mass expansion describes the exact LO and virtual NLO results up to

the top threshold very well, with only 5% deviation at LO and 7% at NLO at s = 4m2.

4The ambiguity between expanding the product
〈
F (1)

A

∣∣∣F (1,2)
A

〉
or expanding each

∣∣∣F (1,2)
A

〉
separately,

consists only of power corrections which are numerically negligible. We checked that the difference in ∆σ/σ

at threshold of both approaches is . 1%. The same arguments hold for the series expansions including the

conformal mapping.
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Figure 3. Left panel: leading-order gg → H → ZZ cross section. 1.) LME up to 1/m20

(orange). 2.) Exact result (black), LME with conformal mapping (blue) and Padé approximants

[4/4], [4/5], [5/4], [5/5] (yellow, purple, green, brown) agree perfectly. Right panel: virtual NLO

corrections to gg → H → ZZ cross section. See text for details. Color code as in left panel. The

bottom plots show the relative deviations with respect to the exact (N)LO results. The vertical

dashed line denotes the top quark pair-production threshold.

As expected however the large-mass expansion diverges for values above this threshold.

Improvements to this naive approximation by means of the conformal mapping, eq. (2.29),

are shown in blue. On top we compute the diagonal, [5/5] (brown) and [4/4] (yellow), and

non-diagonal, [4/5] (purple) and [5/4] (green), Padé approximants at amplitude level for

the mapped series expressions of each finite remainder, i.e. F (i)
A,[n/m]. Both results, using

the Padé approximants or the mapped series alone, excellently reproduce the exact results

(black curve) even far above threshold; with less than 1% deviation from the exact result

over the considered range. As a result the Padé approximant [5/5] overlays all other curves

in figure 3, some of which are scarcely visible.

The second choice of improving the naive LME is given by the rescaling from eq. (2.26).

The results are shown in figure 4. The exact virtual NLO result is again shown in black.

The rescaled LMEs are indicated by the shaded grey area and its envelope is given by the

expansions σNLO
imp,1 (orange) and σNLO

imp,10 (blue). Although the heavy-quark approximation

σNLO
imp,1 gives a reasonable estimate of the exact result above threshold it fails to describe the

threshold behaviour and peak structure of the exact result. At threshold the deviation is

10%. Taking higher orders in the expansion into account improves the threshold prescrip-

tion, with 3% deviation for σNLO
imp,10 at threshold, but worsens the trend for higher energies.

In both cases we find more than 20% deviation for s/m2 > 20.

We end this section by drawing our conclusions from the results presented. We see that,

at least in the single-scale Higgs boson production and having a sufficient number of terms

in the LME at hand, applying the conformal mapping (and the Padé approximation) yields

excellent prescriptions of the exact results. The conformal mapping is imperative, whereas

the additional Padé approximants give only small improvements in terms of uncertainty

reduction and stability of the approximations. We conclude that we should favour these

approximations over the rescaling method.
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Figure 4. Virtual NLO corrections to gg → H → ZZ cross section with rescaling from eq. (2.26).

See text for details. 1.) Exact NLO result (black). 2.) Varying orders of rescaled LMEs are

indicated by shaded grey area. Its envelope is given by σNLO
imp,1 (orange) and σNLO

imp,10 (blue). The

bottom plot shows the relative deviations with respect to the exact NLO results. The vertical

dashed line denotes the top quark pair-production threshold.

One important point to notice, however, is that the kinematics change when moving

from the single Higgs boson production to the SM Z boson pair-production.5 Therefore,

the results discussed here may not necessarily transfer easily. Still, the comparisons within

this section should give an idea of the validity of the improved large-mass expansions. We

will discuss analogous considerations for the Z boson pair-production in section 3.5.

3 Virtual corrections to SM ZZ production via massive quark loops

After we set the stage in the previous sections, including derivation of known results

for the single Higgs amplitudes and extending their expansion to higher orders, we can

now tackle the unknown QCD corrections to Z boson pair-production via massive quark

loops in the SM. Representative diagrams for the leading-order contribution are illus-

trated in figure 5a and for the virtual next-to-leading-order diagrams in figure 5(b)–(f) and

figure 6, respectively.

These amplitudes were first studied for on-shell Z bosons in ref. [13]; more recently,

the Z decay and off-shell effects were also calculated at leading-order [15]. Virtual two-loop

contributions with massless internal quark loops (and subsequent Z boson decay) became

5Even if the H → ZZ decay is included. Effectively, only the 2 → 1 kinematics of the Higgs boson

production matter.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Representative diagrams for the LO and virtual NLO gg → ZZ amplitude.

available only recently [17–22]. Due to the complexity of the computation and present

technical limitations no full two-loop correction to the amplitudes with massive internal

quarks is presently known. The authors of [6] made the first attempt in approximating the

virtual NLO corrections with internal top quarks. Their results, however, includes only

the first term of the 1/m expansion. At this order contributions from the vector coupling

of the Z bosons to the quarks are neglected completely. This is not necessarily troubling

since the vector coupling contribution is af/vf ∼ 2.5 times smaller than the axial coupling

contribution.

However, to fully incorporate the physics of the Z boson interactions and to give an

estimate of power corrections s/m2 we compute the virtual two-loop corrections up to

O
(
r−7
t

)
. We keep the Z bosons on-shell, sum over their polarisations and project onto the

tensor structure of the gg → H → ZZ amplitude (eq. (2.17)) since we are only interested

in the interference of both.

This section is structured as follows: in section 3.1 we give our definitions of the SM

ZZ amplitude, as far as the conventions differ from section 2.1. The leading-order and

next-to-leading-order results are presented in section 3.3 and section 3.4, respectively. The

latter is divided into two parts; the first consists of diagrams where both Z bosons couple

to one fermion line and the second handles anomaly style diagrams where a single Z boson

is connected to one fermion string.

3.1 Preliminaries

The on-shell Z boson pair-production in gluon-gluon fusion

g(p1, µ,A) + g(p2, ν, B)→ Z(p3,mZ , α) + Z(p4,mZ , β) , (3.1)

via the heavy top quark loop can be completely expressed in terms of kinematical invariants

p2
3 = m2

Z = p2
4 , s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 and s+ t+ u = 2m2

Z ,

(3.2)

or equivalently, using the on-shellness condition, by the rescaled variables

rt =
m2

s
, rZ =

m2
Z

s
, x =

m2
Z − t
s

=
p1p3

p1p2
and x̃ = (1− x)x . (3.3)
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The SM continuum amplitudes
∣∣∣B0,AB
µναβ(α0

S ,m
0, µ, ε)

〉
admit the same perturbative expan-

sion as given in eq. (2.3) for the Higgs-mediated process. The bare amplitudes are renor-

malized in accordance with eqs. (2.5)–(2.14), omitting the superfluous Higgs vertex renor-

malisation. As mentioned earlier we project onto the tensor and color structure of the

Higgs-mediated amplitude (eq. (2.17)) with

∣∣B0(α0
S ,m

0, µ, ε)
〉

=
δAB

NA
(gµν p1p2 − pµ2p

ν
1) Pαρ

′

Z (p3)P βZ,ρ′(p4)
∣∣∣B0,AB
µναβ(α0

S ,m
0, µ, ε)

〉
, (3.4)

where NA = N2
c − 1 = 8 and PZ,αβ(p) from eq. (2.19).

We shall consider a single quark of flavor f to be circulating in the quark loop. The

Standard Model coupling of this fermion to a Z boson is given by,

− i gW
2 cos θW

γµ (vf − afγ5) , vf = τf − 2Qf sin2 θW , af = τf , τf = ±1

2
. (3.5)

The superposition of vector and axial coupling allows to write the scattering amplitude as∣∣B0(α0
S ,m

0, µ, ε)
〉

= N
(
v2
f

∣∣∣B̃0
V V (α0

S ,m
0, µ, ε)

〉
+ a2

f

∣∣∣B̃0
AA(α0

S ,m
0, µ, ε)

〉)
, (3.6)

where we factored out the normalisation factor from eq. (2.18). The mixed coupling struc-

ture vfaf vanishes due to charge parity conservation. With the amplitudes outlined above

it is straightforward to compute the interference.

Bgg = 2Re
{〈
AABαβρ′σ′(α

(nl)
S ,m, µ, ε)

∣∣∣BAB,αβρσ(α
(nl)
S ,m, µ, ε)

〉
P ρ

′

Z,ρ(p3)P σ
′

Z,σ(p4)
}

= 2Re

{
N ∗ 8

3

sNA

s−m2
H

〈
A(α

(nl)
S ,m, µ, ε)

∣∣∣B(α
(nl)
S ,m, µ, ε)

〉}
(3.7)

= |N |2 16

3

sNA

s−m2
H

Re
{〈
A(α

(nl)
S ,m, µ, ε)

∣∣∣ [v2
f

∣∣∣B̃V V (α
(nl)
S ,m, µ, ε)

〉
+ a2

f

∣∣∣B̃AA(α
(nl)
S ,m, µ, ε)

〉 ]}
.

Writing eq. (3.7) in this way establishes that A(α
(nl)
S ,m, µ, ε) and B(α

(nl)
S ,m, µ, ε) are di-

mensionless quantities, i.e. we compute B(α
(nl)
S ,m, µ, ε) for s = 1 in the following.

3.2 Projected exact result at one loop

The leading-order amplitude for the SM continuum production of two Z bosons is known

exactly in d = 4 − 2ε dimensions. The usual normalisation factor eq. (2.22) is chosen.

We split the result, according to eq. (3.6), into vector-vector (V V ) and axial-axial (AA)

contribution.∣∣∣B̃(1)
V V (rt, µ, ε)

〉
= Sε cΓ · 2

{
4ε(1− ε)B{1,2} + 2ε

(
B{1,3} +B{2,3} − 2B{3}

)
(3.8)

+ sC{1,2}
[
8rt + 2ε(1− 4rt)− 2ε2

]
+ sC{23,1} [2(1− 4rt − 2rZ)(1− x)− 4ε(1− rZ)(1− x)]

+ sC{12,3} [ε (2(1− 4rt − 2rZ)− 2ε(1− 2rZ))]
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D{1,2,3} D0(q1, q2, q3;m,m,m,m) C{1,2} C0(q1, q2;m,m,m) B{1,2} B0(q12;m,m)

D{1,3,2} D0(q1, q3, q2;m,m,m,m) C{1,3} C0(q1, q3;m,m,m) B{1,3} B0(q13;m,m)

D{2,1,3} D0(q2, q1, q3;m,m,m,m) C{12,3} C0(q12, q3;m,m,m) B{2,3} B0(q23;m,m)

C{23,1} C0(q23, q1;m,m,m) B{3} B0(q3;m,m)

Table 1. Scalar integrals occurring in full LO SM continuum ZZ production. The momenta

are defined as q1 = p1, q2 = p2, q3 = −p3 and qij = qi + qj . The scalar integrals are defined in

appendix A.

+ sC{1,3} [2(1− 4rt − 2rZ)x− 4ε(1− rZ)x]

+ s2D{1,2,3}
[
4rt(1− 2rt − rZ) + ε ((1− 4rt)(1− rZ)− x) + ε2 (−1 + rZ + x)

]
+ s2D{2,1,3}

[
4rt(1− 2rt − rZ) + ε (4rt(−1 + rZ)− rZ + x) + ε2 (rZ − x)

]
+ s2D{1,3,2}

[
(1− 4rt − 2rZ)

(
2rt − rZ + x− x2

)
+ ε (4rt(−1 + rZ) + (1− 2rZ)(rZ − (1− x)x)) + ε2 (rZ − (1− x)x)

] }
.∣∣∣B̃(1)

AA(rt, µ, ε)
〉

=
∣∣∣B̃(1)
V V (rt, µ, ε)

〉
+ Sε cΓ · 2rt

{
sC{1,2}

[
(2− 4rZ)/r2

Z

]
(3.9)

+ sC{23,1} [4(1− 6rZ)(−1 + x)/rZ − 16ε(1− x)]

+ sC{12,3}
[
ε
(
24 + (2− 8rZ)/r2

Z − 16ε
)]

+ sC{1,3} [4 (6− 1/rZ)x− 16εx]

+ s2D{1,2,3}
[
− 4 + 24rt + 2rt/r

2
Z − 8rt/rZ

+ ε
(
10− 16rt + (1− x)/r2

Z − (3− 2x)/rZ
)
− 4ε2

]
+ s2D{2,1,3}

[
− 4 + 24rt + 2rt/r

2
Z − 8rt/rZ

+ ε
(
10− 16rt − (1 + 2x)/rZ + x/r2

Z

)
− 4ε2

]
+ s2D{1,3,2}

[
2rt/r

2
Z − 12rZ − (8rt+2(1−x)x)/rZ+2

(
1+12rt+6x−6x2

)
+ ε

(
8rZ−2

(
8rt−(1−2x)2

)
+(1−x)x/r2

Z−(1−2x+2x2)/rZ
)
− 4ε2

] }
.

The notation for the scalar integrals B,C and D is given in table 1. We re-introduced

factors of s in eq. (3.8) and eq. (3.9) to indicate the correct dimensionality of the expressions.

We note that, in contrast to the case where the Z bosons are off-shell and their decays

included, these formulae for the interference take a very simple form. Eq. (3.8), (3.9) extend

the results of ref. [16] to include the terms of order ε1 and ε2.

3.3 Large-mass expansion at one loop

Equivalently, eq. (3.8) and eq. (3.9) can be expressed by means of the large-mass expansion.

The result for the vector-vector part yields∣∣∣B̃(1)
V V (rt, µ, ε)

〉
= Sε cΓ

(
µ2

m2

)ε{
1

r2
t

[
1

10
− rZ

5
+ε2

(
− 1

10
+

4rZ
15
− x̃

15

)
+ε
(

1

15
− 17rZ

45
+

11x̃

45

)]
+

1

r3
t

[
2

315
+
rZ
21
− 4r2

Z

35
− 4x̃

315
+ε2

(
− 4

315
− 149rZ

3780
+

17r2
Z

315
+
(

143

3780
+

2rZ
45

)
x̃
)

+ ε
(
− 1

105
+

61rZ
945
− 68r2

Z

315
+
(

37

1890
+

8rZ
63

)
x̃
)]

+
1

r4
t

[
1

1080
− rZ

1260
+

41r2
Z

1890
− r3

Z

21
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+
(

1

945
− 2rZ

315

)
x̃+ε

(
131

45360
− 61rZ

4200
+

2171r2
Z

56700
− 59r3

Z

630
+
(
− 47

28350
+

319rZ
18900

+
16r2

Z

315

)
x̃

− 13x̃2

2700

)
+ε2

(
1

1008
− 31rZ

3240
− 7r2

Z

810
− 2r3

Z

945
+
(
− 7

1620
+

659rZ
22680

+
37r2

Z

945

)
x̃− 43x̃2

22680

)]
+

1

r5
t

[
4

17325
+

rZ
2475
− 43r2

Z

20790
+

r3
Z

110
− 4r4

Z

231
+
(
− 1

2079
+

13rZ
20790

− r2
Z

693

)
x̃+

x̃2

2310
(3.10)

+ε
(
− 1

4725
+

rZ
330
− 2671r2

Z

249480
+

2533r3
Z

138600
− 53r4

Z

1485
+
(

349

311850
− 733rZ

178200
+

67r2
Z

5940
+

188r3
Z

10395

)
x̃

+
(

37

59400
− 4rZ

825

)
x̃2
)

+ε2
(
− 67

103950
+

73rZ
32400

− 16871r2
Z

2494800
+

323r3
Z

831600
− 67r4

Z

8910

+
(

5939

2494800
− 451rZ

75600
+

839r2
Z

51975
+

611r3
Z

31185

)
x̃+
(
− 2083

2494800
− 61rZ

17325

)
x̃2
)]

+
1

r6
t

[
1

108108
+

5rZ
54054

+
569r2

Z

1801800
− 163r3

Z

108108
+

7r4
Z

1980
− 5r5

Z

858
+
(

1

9009
− 19rZ

42900
− r2

Z

90090
+

4r3
Z

19305

)
x̃

+
(
− 97

600600
+

29rZ
60060

)
x̃2+ε2

(
191

1853280
− 28507rZ

32432400
+

444149r2
Z

216216000
− 263839r3

Z

64864800
+

301471r4
Z

194594400

− 5743r5
Z

1297296
+
(
− 8269

16216200
+
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Z
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+

11041r3
Z
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+
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Z
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)
x̃+
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+
(
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Z
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)
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)

+ε
(
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+
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Z
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Z
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+
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Z
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Z
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+
(
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+
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Z
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+
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Z
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+
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Z
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)
x̃

+
(
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19404000
+
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Z
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)
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189189

)]
+O

(
1/r7

t , ε
3
)}

.

The result for the axial-axial part is∣∣∣B̃(1)
AA(rt, µ, ε)

〉
= Sε cΓ

(
µ2

m2

)ε{
1

rt

[
−2− 1

6r2
Z

+
2

3rZ
+ε2
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4
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+

1
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1
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Z
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2
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)
x̃
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(
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(

1
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Z
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2
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)
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1
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[
7
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+
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+
1
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)
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+ε2
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Z

+
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180rZ
+

7rZ
9

+
(

2

9
+

1

60r2
Z

)
x̃
)

+ε
(

1

180r2
Z

− 1

36rZ
+

4rZ
45

(3.11)

+
(

17

45
− 1

36r2
Z

+
7

90rZ

)
x̃
)]

+
1

r3
t

[
− 13

210
− 1

280r2
Z

+
13

630rZ
+

2rZ
21
− 6r2

Z

35
+
(

4

63
+

1

126r2
Z
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315rZ

)
x̃+ε2

(
149

1890
+

1

336r2
Z

− 403

15120rZ
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15
+

23r2
Z
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+
(
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+
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+
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+
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)
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(
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Z
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420rZ

)
x̃2
)

+ε
(
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336r2
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+
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+
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(

73

1890
+
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+
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(
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Z
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+
1
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[
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+

2
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Z
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+
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− 2

945r2
Z

+
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+
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(

1
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+ε
(
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+
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Z
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+
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Z
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Z
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+
(
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Z

+
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+
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Z
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+
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Z
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+
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(
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+
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+
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(
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+

1
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+
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[
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Z

+
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+
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+
8r3
Z

693
− r4

Z

77
+
(

83

6930
+

1

1980r2
Z

− 13

3465rZ
− 437rZ

20790
+
r2
Z

55

)
x̃+
(
− 1

315
− 1

1980r2
Z

+
1

420rZ

)
x̃2

+ε
(
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2494800
− 1

6480r2
Z

+
871

831600rZ
+

19651rZ
2494800

− 5209r2
Z

415800
+

167r3
Z

17325
− 43r4

Z

3780
+
(

5323

415800
+

223

277200r2
Z

− 244

51975rZ
− 21121rZ

1247400
+

3271r2
Z

207900
+

113r3
Z

10395

)
x̃+
(
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207900
− 313

277200r2
Z

+
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92400rZ
− 53rZ

5775

)
x̃2

+
(

1

4158r2
Z

+
1

2079rZ

)
x̃3
)

+ε2
(

16273

4989600
+

7

142560r2
Z

− 923

1247400rZ
− 3497rZ

453600
+

30463r2
Z

2494800

− 305r3
Z

24948
+

3089r4
Z

249480
+
(
− 1493

166320
+

47

311850r2
Z

+
4507

2494800rZ
+

5191rZ
226800

− 19627r2
Z

1247400
+

227r3
Z

17820

)
x̃

+
(
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1247400
− 4451

4989600r2
Z

+
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1663200rZ
− 3187rZ

207900

)
x̃2+

(
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249480r2
Z

+
137

124740rZ

)
x̃3
)]

+
1

r6
t

[
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2910600
+

1

56056r2
Z

− 1

5096rZ
− 1223rZ

491400
+

22381r2
Z
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− 34r3

Z

6435
+

19r4
Z

5148
− r5

Z
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+
(
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257400

− 1

8008r2
Z

+
941

900900rZ
+

11447rZ
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Z

540540
+

293r3
Z
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)
x̃+
(
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+

167

900900r2
Z
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600600rZ
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)
x̃2+

(
− 1

24024r2
Z

+
1

12012rZ

)
x̃3+ε2

(
− 50693

87318000
− 1

288288r2
Z

+
59

720720rZ

+
2049041rZ
1135134000

− 3861083r2
Z
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+

5078077r3
Z
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Z

194594400
+
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Z
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+
(
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378378000
− 1

51480r2
Z
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+
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Z

681080400
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Z

4864860
+
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Z

3243240

)
x̃+
(
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412776000
+

2917

11583000r2
Z

− 1741

3861000rZ
+

162983rZ
34927200

− 24883r2
Z

3243240

)
x̃2+

(
36731

22702680
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154440r2
Z

+
1

5616rZ

)
x̃3
)

+ε
(

2523253

2270268000
+

29

1121120r2
Z

− 23

86240rZ
− 932231rZ

324324000
+

503059r2
Z

108108000
− 674147r3

Z

113513400
+

3541r4
Z

926640

− 4051r5
Z

1081080
+
(
− 3717937

756756000
− 223

1121120r2
Z

+
63961

42042000rZ
+

908203rZ
94594500

− 802811r2
Z

75675600
+

3889r3
Z

491400

+
163r4

Z

54054

)
x̃+
(

862991

252252000
+

48721

126126000r2
Z

− 164711

84084000rZ
− 7159rZ

5821200
− 239r2

Z

54054

)
x̃2

+
(

283

378378
− 1789

10090080r2
Z

+
1009

5045040rZ

)
x̃3
)]

+O
(
1/r7

t , ε
3
)}

.

The leading term in the vector-vector expansion is sub-dominant with respect to the axial-

axial part. The reason for this difference has been given in [6].

3.4 Large-mass expansion at two loops

The two-loop SM continuum amplitude consists in total of 93 + 16 non-zero diagrams. 93

diagrams belong to topologies where both Z bosons couple to the same fermion string, as

illustrated in figure 5. Due to momentum conservation and assuming an anti-commuting

γ5 in d-dimensions, no γ5 contribution arises in the fermion traces of the respective dia-

grams. The large-mass expansion results for the vector-vector and axial-axial part of these

diagrams are shown in section 3.4.1.

The remaining 16 anomaly style diagrams belong to the topology shown in figure 6,

where the Z bosons couple to distinct fermion lines. These diagrams must, in principle, be

handled with care when using dimensional regularisation due to the non-conservation of the

axial-current. Furthermore, contributions from each quark-doublet have to be considered

simultaneously. Only the sum over one quark-doublet leads to a gauge anomaly free theory.
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In case of massless quark doublets all contributions vanish and we only have to consider

the third-generation quark doublet, i.e. top and bottom quarks. Results for these diagrams

are presented in section 3.4.2.

3.4.1 Non-anomalous diagrams

In this section we give explicit formulae for the large-mass expansions for the sum

of the 93 anomaly free diagrams. Including again only mass renormalisation, setting∣∣∣B̄(1)
XX(rt, µ, ε)

〉
=
(
SεcΓ (µ2/m2)ε

)−1
∣∣∣B̃(1)
XX(rt, µ, ε)

〉
and log(−rt) = log

(
m2/(−s− iε)

)
,

we can write the divergent two-loop V V part as∣∣∣B̃(2)
V V (rt, µ, ε)

〉
=

(
Sε cΓ

(
µ2

m2

)ε)2{
CA

[(
− 2

ε2

(
m2

−s−iε

)ε
+
π2

3

) ∣∣∣B̄(1)
V V (rt, µ, ε)

〉
+

1

r2
t

[
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540
− 317rZ

270
− 11x̃

135

]
+

1

r3
t

[
− 158129

1587600
+
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Z
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+
(
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)
x̃

+log(−rt)
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+
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105
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+

1
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[
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119070
+

4411999r2
Z

23814000
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Z
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+
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Z
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)
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(
1
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− 4rZ

945
− 4r2

Z
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+
(
− 2
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+

4rZ
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)
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)]

+
1
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t

[
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+
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Z
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+
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Z
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Z
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+
(
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+
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+

2r2
Z

231

)
x̃− 5x̃2

1386

)]
+

1

r6
t

[
132076261729

204528444120000
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+
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+
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+
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(
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+
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+
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(
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.

And the AA part as∣∣∣B̃(2)
AA(rt, µ, ε)
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+
(
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− 74

135r2
Z

+
28

27rZ

)
x̃
]

+
1

r3
t

[
− 49789

37800
− 2377

28350r2
Z

+
52057

113400rZ
+

104413rZ
56700

− 15919r2
Z

4725
+
(

38069

28350
+

347

1890r2
Z

− 7463

8100rZ

)
x̃
]

+
1

r4
t

[
1401083

3969000
+

179797

15876000r2
Z

− 115447

1134000rZ
− 618371rZ

793800
+

3248243r2
Z

3969000
− 36853r3

Z

33075

+
(
− 904243

992250
− 469939

7938000r2
Z

+
2780101

7938000rZ
+

643859rZ
661500

)
x̃+
(

11717

396900r2
Z

− 1907

33075rZ

)
x̃2
]

+
1

r5
t

[
− 30333497

261954000
− 154673

38808000r2
Z

+
18997889

628689600rZ
+

385440967rZ
1571724000

− 100907407r2
Z

261954000
+

250618673r3
Z

785862000
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(a) (b)

Figure 6. Two-loop anomaly style diagrams for the production of Z boson pairs.

− 4549253r4
Z

13097700
+
(

600883

1587600
+

138091

8316000r2
Z

− 2467709

20412000rZ
− 127455007rZ

196465500
+

6359273r2
Z

11907000

)
x̃

+
(
− 7134431

71442000
− 415409

24948000r2
Z

+
120692261

1571724000rZ

)
x̃2
]
+

1

r6
t

[
611068021

19209960000
+

10264144487

15732957240000r2
Z

− 5329718861

749188440000rZ
− 75765552307rZ

874053180000
+

2191285707617r2
Z

15732957240000
− 88529188963r3

Z

524431908000
+

12872473853r4
Z

112378266000

− 390253649r5
Z

3745942200
+
(
− 1119558376063

7866478620000
− 582826007

125863657920r2
Z

+
300649440137

7866478620000rZ
+

1495708237rZ
5016886875

− 983884905989r2
Z

2622159540000
+

27984051973r3
Z

112378266000

)
x̃+
(

60247899487

582702120000
+

7750560019

1123782660000r2
Z

− 335249449013

7866478620000rZ

− 756269740169rZ
7866478620000

)
x̃2+

(
− 1732023911

1123782660000r2
Z

+
70960381

23412138750rZ

)
x̃3
]]

+O
(
1/r7

t , ε
)}

.

The leading term in eq. (3.13) can be compared to the projected results of [6]. We find

agreement with their formula.6 We also performed a consistency check of the renormali-

sation scale dependence of the presented two-loop expansions by means of the technique

given in appendix B.

3.4.2 Anomalous diagrams

The two-loop gg → ZZ amplitude contains, in addition, two topologies which consist

of products of one-loop sub-diagrams. On the one hand diagrams containing gluon self-

energy contributions vanish due to color conservation. The diagrams in figure 6, on the

other hand, give a finite mass dependent contribution as long as both Z bosons couple to

distinct fermion loops. These diagrams are proportional only to the axial coupling of the Z

bosons to fermions; the vector component vanishes due to C invariance (Furry’s theorem).

The diagrams have been omitted in the previous section since they can be computed with

their full top mass dependence and, therefore, need no large-mass expansion [52, 53].

In brevity we repeat the results from [53] and give the result in terms of our conventions.

Let us denote the amplitude for a Z coupling to two gluons by TµνρAB . We calculate the

triangle shown in figure 7, where all momenta are outgoing q1 + q2 + q3 = 0 and to begin

with q2
1 6= 0, q2

2 6= 0. The result for the two triangle diagrams (including the minus sign for

6Both eq. (5) and eq. (7) of [6] contain typographical errors.
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Figure 7. Triangle diagrams representing the Zgg form factor at lowest order.

a fermion loop) is,

TµνρAB (q1, q2) = i
g2
s

16π2

1

2
δAB

( gW
2 cos θW

)
τf Γµνρ , (3.14)

where τf = ±1/2 and,

Γµνρ(q1, q2,m) =
2

iπ2

∫
ddl Tr

{
γργ5

1

6l −m
γµ

1

6l + 6q1 −m
γν

1

6l + 6q1 + 6q2 −m

}
. (3.15)

The most general form of Γ consistent with QCD gauge invariance,

qµ1 Γµνρ = qν2Γµνρ = 0 , (3.16)

can be written as,

Γµνρ = F1(q1, q2,m)
{

Tr[γργν 6q16q2γ5]qµ1 + Tr[γργµγν 6q2γ5]q2
1

}
+F2(q1, q2,m)

{
Tr[γργµ6q16q2γ5]qν2 + Tr[γργµγν 6q1γ5]q2

2

}
+F3(q1, q2,m) (qρ1 + qρ2)

{
Tr[γµγν 6q16q2γ5]

}
+F4(q1, q2,m) (qρ1 − q

ρ
2)
{

Tr[γµγν 6q16q2γ5]
}
. (3.17)

By direct calculation it is found that F4 = 0.

Contracting with the momentum of the Z boson we find that, q3 = −q1 − q2

(q3)ρ Γµνρ =
[
−q2

1 F1(q1, q2,m)+q2
2 F2(q1, q2,m)−q2

3 F3(q1, q2,m)
]
Tr[γµγν 6q16q2γ5] . (3.18)

The divergence of the axial current is found by direct calculation to be,

(q3)ρ Γµνρ =
[
4m2C0(q1, q2;m,m,m) + 2

]
Tr[γµγν 6q16q2γ5] (3.19)

showing the contribution of the pseudoscalar current proportional to m2 and the anomalous

piece. Summation over one complete quark doublet (τf = ±1/2) cancels the anomaly term

and solely the piece proportional to the top mass remains.

For the particular case at hand we are interested in on-shell Z’s and in q2
2 = ε2 · q2 =

0, ε3 · q3 = 0, q3 = −q1 − q2, so we get a contribution only from F1. The result for F1 is

F1(q1, q2,m) =
1

2q1 · q2

[
2 + 4m2C0(q1, q2;m,m,m)

+

(
2 +

q2
1

q1 · q2

)[
B0(q1 + q2;m,m)−B0(q1;m,m)

]]
, (3.20)

F1(q1, q2, 0) =
2

(q2
3 − q2

1)

[
1 +

q2
3

(q2
3 − q2

1)
log

(
q2

1

q2
3

)]
. (3.21)
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We further define a subtracted F1 to take into account the contribution of the top and

the bottom quarks,

F1(q1, q2,m) =
[
F1(q1, q2,m)− F1(q1, q2, 0)

]
. (3.22)

Analogous to eq. (3.4) we define the projected matrix element for the anomaly piece

∣∣B0
anom(α0

S ,m
0, µ, ε)

〉
=
δAB

NA
(gµν p1p2−pµ2p

ν
1)Pαρ

′

Z (p3)P βZ,ρ′(p4)
∣∣∣B0,AB

anom,µναβ(α0
S ,m

0, µ, ε)
〉
.

(3.23)

The amplitude defined in eq. (3.23) is UV and IR finite and requires no renormalisation.

Including the effect of both the b quark (taken to be massless) and the t quark we obtain

(No statistical factor for identical Z bosons is included).

∣∣∣Banom(α
(nl)
S ,m, µ)

〉
= a2

t s
2N ·

(
α

(nl)
S

4π

)2

(3.24)

×
{[

(rZ − x)
(
1 + (rZ − x)(1/rZ − 1/(2r2

Z))
)]

×F1(p1 − p3,−p1,m)F1(p3 − p1,−p2,m)

+
[
(rZ − 1 + x)

(
1 + (rZ − 1 + x)(1/rZ − 1/(2r2

Z))
)]

×F1(p1 − p4,−p1,m)F1(p4 − p1,−p2,m))
}
,

whereN is given in eq. (2.18). Again we include the factors s2 to indicate the correct dimen-

sionality of F1(p1, p2,m). For completeness we also give the mass expansion of eq. (3.24)

in case only the top quark contribution is considered, i.e. F1(p1, p2, 0) → 0. As expected

the expansion starts at 1/m4.

∣∣∣Banom,t(α
(nl)
S ,m, µ)

〉
= a2

tN ·
(
α

(nl)
S

4π

)2 {
1

r2
t

[
−1

9
+

rZ
9

+
1− x̃
18rZ

+
−1 + 2x̃

72r2
Z

]
+

1

r3
t

[
− 8rZ

135
+

2r2
Z

45
+

(13− 18x̃)

270
+

1− 3x̃

270r2
Z

+
−11 + 26x̃

540rZ

]
+

1

r4
t

[
− 22r2

Z

945
+

22r3
Z

1575
+

rZ(1511− 2362x̃)

56700
+
−3845 + 9892x̃

226800

−
191
(

1− 4x̃+ 2x̃2
)

226800r2
Z

+
646− 2129x̃+ 382x̃2

113400rZ

]
+

1

r5
t

[
− 38r3

Z

4725
+

19r4
Z

4725

+
r2
Z(113− 188x̃)

9450
+

rZ(−783 + 2104x̃)

75600
+
−111 + 472x̃− 306x̃2

75600rZ
+

1− 5x̃+ 5x̃2

5400r2
Z

+
197− 688x̃+ 194x̃2

37800

]
+

1

r6
t

[
− 1613r4

Z

623700
+

1613r5
Z

1455300
+

r3
Z(41432− 71573x̃)

8731800
(3.25)

+
r2
Z(−457682 + 1261401x̃)

87318000
+
−1049213 + 4652126x̃− 3464248x̃2

698544000

+
rZ

(
622783− 2250826x̃+ 764954x̃2

)
174636000

+
42658− 222727x̃+ 251038x̃2 − 18874x̃3

116424000rZ

+
9437

(
− 1 + 6x̃− 9x̃2 + 2x̃3

)
232848000r2

Z

]
+O

(
1/r7

t , ε
)}

.
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3.5 Visualisation of large-mass expansion results for gg → ZZ

Let us turn towards the graphical representations of the large-mass expansion results for

the SM continuum, eqs. (3.10)–(3.13), and their improvements. We proceed analogously to

section 2.2.3 and compute the UV+IR renormalised version of eq. (3.7) and again integrate

over the ZZ phase space. The setup from eq. (2.33) is utilised. Since we focus our discussion

in this section mainly on the different improvements of the large-mass expansions we, again,

do not take into account the full NLO correction. We merely focus on the unknown virtual

massive two-loop contribution of the SM continuum interfered with the Higgs-mediated

process. That is, we set

σLO
int ∼ 2 Re

〈
F (1)
A (m,µ)

∣∣∣F (1)
B (m,µ)

〉
and σNLO

virt,int ∼ 2 Re
〈
F (1)
A (m,µ)

∣∣∣F (2)
B (m,µ)

〉
,

(3.26)

which also excludes the anomaly style contribution from eq (3.24) since this part can be

computed without the necessity of any approximation.

It is important to notice the following conventions for our approximations using Padé

approximants below. As in section 2.2.3 the Padé approximants are computed at amplitude

level for each finite remainder FA,B, including the conformal mapping.7 We know from our

previous discussion that the best approximation of the LO as well as the virtual NLO

contribution of the Higgs-mediated process is given by F (1,2)
A,[5/5]. It is understood that we

will always use this approximant in the following considerations. In principle, we can also

substitute the approximated Higgs-mediated amplitude F (1)
A,[5/5] with its exact LO result.

Doing so would remove any uncertainties from the Higgs-mediated contribution. On the

other hand the numerical difference between both approaches is negligible as discussed in

section 2.2.3.

The vector-vector part of the SM continuum gives only a minor contribution to the

total cross section, σV V /σAA ∼ 10−3. This relies on the fact that the mass expansion of

the V V part starts only at 1/m4 whereas the AA part starts at 1/m2 and additionally

a2
t /v

2
t ∼ 7.

The interference including the exact top mass dependence is only known at leading-

order, which is shown in the left panel of figure 8. Comparing the exact result (black)

and its naive large-mass approximation up to 1/m12 (orange) shows excellent agreement

up to s ∼ 3m2, with approximately 1% deviation from the exact result. At threshold

the deviation rises to 12%. In contrast the Padé approximant F (1)
B,[3/3] (blue) deviates

from the exact result by 6% at threshold. The shaded grey area indicates the variation

from computing the Padé approximants [2/2], [2/3], [3/2], [3/3] with 3 − 8% deviation at

threshold. Due to the change of sign of their derivatives we get a better approximation

closely above threshold, as can be seen in the bottom plot of figure 8. Nevertheless, the peak

of the exact LO result at s ∼ 5.2m2 is with 10−11% deviation quite poorly approximated.

7Computing the Padé approximants for the expanded product
〈
F (1)

A

∣∣∣F (1,2)
B

〉
yield no reasonable result

above threshold. We have checked this by explicitly computing the homogeneous bivariate Padé Approxi-

mants [2/2]-[3/3] [54, 55] for the LO interference Re
〈
F (1)

A

∣∣∣F (1)
B

〉
, where we treated the mapped variable

w, eq. (2.29), and its complex conjugated w̄ as independent variables.
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Figure 8. Left panel: leading-order interference Re
〈
F (1)
A (m,µ)

∣∣∣F (1)
B (m,µ)

〉
. Exact result (black),

LME up to 1/m12 (orange) and envelope of Padé approximants [2/2], [2/3], [3/2] and [3/3] (blue)

as grey area. Bottom plot shows the relative deviation from the exact result. Right panel: next-

to-leading-order interference Re
〈
F (1)
A (m,µ)

∣∣∣F (2)
B (m,µ)

〉
. LME up to 1/m12 (black) and envelope

of Padé approximants [2/2], [2/3], [3/2] and [3/3] (orange) as grey area. The vertical dashed line

denotes the top quark pair-production threshold. See text for details.

Ineptly this is the region of interest for our later analysis of the Higgs boson width. Going

to large values of s the deviations inevitably become larger, but the contribution to the

cross section is small due to the suppression by the flux.

This situation seems to continue in case of the next-to-leading-order large-mass expan-

sion as shown in the right panel of figure 8. Evidently no exact result is available and we

have to rely on the approximate results. All Padé approximants [2/2], [2/3], [3/2], [3/3] for

F (2)
B show a stable trend over the entire s/m2 range. The deviations between the diagonal

and non-diagonal Padé approximants are again indicated by the shaded grey area and the

approximant F (2)
B,[3/3] is shown in orange. The steeper rise near the top threshold suggests

a better description of the actual threshold properties of the NLO result with exact top

mass dependence in contrast to the naive large-mass expansion (black). Comparing the

trend above threshold with its analogous LO situation we can only guess that we have to

expect comparable deviations from our Padé approximations with respect to the unknown

exact NLO result.

We can also consider rescaling the NLO large-mass expansion as described in eq. (2.26).

The resulting curves are shown in the left panel of figure 9. To guide the eye we also include

F (2)
B,[3/3] (black). The envelope of the different orders n in the expansion σNLO

imp,n is shown

as grey area. For s ≤ 20m2 the envelope is determined from n = {1, . . . , 6}, whereas for

s > 20m2 we only use n = {1, . . . , 5} due to the instabilities for n = 6 in the high energy

regime. The most interesting curves, namely the heavy-quark approximation n = 1 and the

highest order in the expansion n = 6, are shown in orange and blue, respectively. Factoring

out the exact LO result seems to give a more natural description of the threshold behaviour

and peak structure in comparison to the plain use of the Padé approximation.
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Figure 9. Next-to-leading-order interference Re
〈
F (1)
A (m,µ)

∣∣∣F (2)
B (m,µ)

〉
. Left panel: interference

by rescaling, eq. (2.26). Padé approximant [3/3] as comparison (black). Envelope of σNLO
imp,n for

n = {1, . . . , 6} as grey area; n = 1 (orange) and n = 6 (blue) shown explicitly. Right panel:

interference by alternative rescaling, eq. (3.27). Padé approximant [3/3] as comparison (black).

Grey area given by envelope of σNLO
imp,[n/m] with n,m = {2, 3}; [3/3] shown explicitly (orange). The

vertical dashed line denotes the top quark pair-production threshold. See text for details.

The origin of the numerical instabilities of the n = 6 expansion is probably due to

delicate numerical cancellations in the (s/m2)6 coefficients. One could try to cure this

problem by switching to a higher numerical precision or by a proper economisation [49] of

the power series. With the Padé approximation we already have an excellent method at

hand and we adopt the idea of factoring out the exact LO interference,

σNLO
imp,[n/m] = σLO

exact ·
σNLO

[n/m]

σLO
[n/m]

. (3.27)

Keeping our usual definition in mind σ
(N)LO
imp,[n/m] denotes the (virtual N)LO contribution us-

ing F (1)
A,[5/5] and F (1,2)

B,[n/m]. The result is shown in figure 9, right panel. We immediately see

the advantages of this approach. Firstly we also get a similar, more natural behaviour at

threshold and of the peak structure above threshold. Secondly we get a stable result across

the entire range of s/m2. The grey area is again given by the envelopes due to the vari-

ation between the (non-)diagonal Padé approximants [2/2], [2/3], [3/2] and [3/3](orange).

Ultimately by using the Padé approximants in contrast to eq. (2.26) we could entirely re-

move the uncertainty of having to use an approximation for the involved Higgs-mediated

amplitude and fall back to using the exactly known result for F (1)
A .

Some concluding remarks. In contrast to the purely Higgs-mediated case, section 2.2.3,

it turns out that we require the Padé approximation in the interference case. Using the

conformal mapping alone without an additional Padé approximant on top gives no rea-

sonable approximation for the quantities discussed above. On the other hand we have

seen that we hugely benefit by using Padé approximations due to their stability and the

possibility of removing any uncertainty besides the approximated virtual massive two-loop

gg → ZZ amplitude.

4 Real corrections to SM ZZ production

Representative diagrams for the real radiation contributions to this process are shown in

figures 10 and 11. The Higgs-mediated diagrams have previously been computed in [56].
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Figure 10. Representative diagrams for the 0→ ggHg and the 0→ gHqq̄ amplitudes.

Figure 11. Representative diagrams for the 0→ ggZZg and the 0→ gZZqq̄ amplitudes.

They can easily be adapted to our calculation by combining those results with the decay

amplitude given in eq. (2.16) and N from eq. (2.18). This procedure, together with the

strategy for handling the amplitudes for diagrams without a Higgs boson, is described in

detail in [16]. We adopt this implementation here. Our calculation of the pure-Higgs contri-

bution involves the computation of the square of the diagrams shown in figure 10, together

with all crossings of the quarks in figure 10 (right) into the initial state. Similarly, the inter-

ference contribution includes all crossings of the diagrams shown in figure 11. In principle

another contribution to the interference occurs at this order, between tree-level ampli-

tudes for the process qg → ZZq and the qg-initiated diagrams shown in figure 10 (right)

and 11 (bottom-left). However this contribution is subleading [16], particularly for high

invariant masses of the ZZ system, so we do not consider it here.

The real radiation diagrams contain infrared singularities, of soft and collinear ori-

gin, that must be isolated and combined with the corresponding poles in the two-loop

amplitudes. This is handled using the dipole subtraction procedure [57].
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5 Results

The individual components of the calculation that have been extensively discussed above

have been included in the parton-level Monte Carlo code MCFM [58–60]. The bulk of the

calculation is performed in a straightforward manner using the normal operation of MCFM

at NLO. The exception is the finite contribution to the two-loop amplitude containing a

closed loop of massless quarks. Since these contributions are computationally expensive

to evaluate, we choose to include their effects by reweighting an unweighted sample of

LO events.

For the two-loop amplitudes containing massive loops of quarks the approximations

used are as follows. The Higgs amplitude is evaluated using the [5/5] Padé approximant to

the LME after conformal mapping. As demonstrated in section 2, this is virtually identical

to the exact result. The massive quark box contributions are computed by factoring out the

exact LO amplitude according to eq. (3.27), with the Padé approximant corresponding to

n = m = 3 in the definition given in eq. (2.28). The anomalous diagrams of section 3.4.2 are

not included in the discussion of the massive quark loops below, but instead are accounted

for only when the sum of all loops is considered.

For massless quarks circulating in the loop the calculation is simplified by the fact

that the entire amplitude is proportional to the combination of couplings (v2
f + a2

f ), i.e.

in the decomposition given in eq. (3.6) the quantities
∣∣∣B̃0
V V

〉
and

∣∣∣B̃0
AA

〉
are equal. The

calculation requires the one-loop master integrals up to ε2, for which all orders results are

given in ref. [61] for bubble integrals and refs. [62–66] for the easy box (two opposite off-shell

legs). The necessary results for the three-mass triangle with massless propagators and the

hard box (two adjacent off-shell legs) can be taken from refs. [67] and [68] respectively. We

use the coproduct formalism [69, 70] to analytical continue the results to the physical phase

space regions. All master integrals have been numerically cross-checked with SecDec [71].

The two-loop master integrals for gg → ZZ are taken from ref. [17] and GiNaC is used

to evaluate the polylogarithms. Our results for this contribution agree with the earlier

calculation of ref. [22].

The parameters for the following results have already been specified in section 2.2.3.

Here we make only one change: our central scale corresponds to the choice µr = µf =

MZZ/2, where MZZ is the invariant mass of the ZZ pair. As an estimate of the theoretical

uncertainty we consider variations by a factor of two about this value. We also introduce

an uncertainty that is based on our combination of LME and Padé approximants in the

calculation of the massive quark loops, that has already been explored in figure 9 (right).

In order to obtain a more conservative error estimate we multiply the deviations of the

extremal values in the grey area with respect to σNLO
imp,[3/3] by a factor of two. The impact of

this variation on the complete NLO prediction for the massive loop is shown in figure 12.

Even for this choice, the impact of the approximation is estimated to be less than 20%

throughout the distribution. For the remaining plots in this section we no longer show the

impact of this uncertainty, but it will be explicitly included in tables 2 and 3 later on.

Results for both the massless and massive quark contributions to the interference,

including the effects of scale variation, are shown in figure 13. The interference is negative
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Figure 12. The uncertainty on the calculation of the massive loop interference contribution

stemming from the use of the LME expansion and Padé approximants. The central result is shown

as a solid histogram, with the dashed lines indicating deviations that correspond to the grey area

in figure 9, multiplied by a factor of two. All curves are computed for the central scale choice,

µr = µf = MZZ/2.

Figure 13. Left panel: interference of the Higgs amplitude and massless quark loops at LO and

NLO, with the scale uncertainty indicated by the dashed histograms. The ratio of the NLO and

LO results is shown in the lower panel. Right panel: the equivalent results for the interference of

the Higgs amplitude and the top quark loops.

for both the massless and massive quark contributions and is shown in figure 13 reversed

in sign. In both cases the K-factor decreases as the invariant mass of the Z-boson pair

increases. The K-factor at small invariant masses is larger for the massless loops; as the

invariant mass increases, the NLO corrections are more important for the massive loop.

The NLO corrections are larger for the top quark loops and exhibit a stronger dependence

on MZZ . In both cases the NLO result lies outside the estimated LO uncertainty bands

and the scale uncertainty is not significantly reduced at NLO.

The relative importance of the massive and massless loops can be better-assessed from

the NLO predictions shown in figure 14. At smaller invariant masses, below the top-pair
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Figure 14. Comparison of the effect of the massless (magenta) and massive (red) loops in the NLO

interference. Also shown is the sum (blue) and the corresponding result for the Higgs amplitude

squared (black). All curves are computed for the central scale choice, µr = µf = MZZ/2.

threshold, the massless loops are most important. Around the top-pair threshold the two

are of a similar size, but at high energies the massless loops are insignificant. In contrast,

the top quark loop quickly becomes the dominant contribution beyond this threshold and

exhibits a long tail out to invariant masses of around one TeV. The full prediction for

the interference that is obtained by summing over both massless and top quark loops, as

well as the numerically-small anomalous contribution discussed in section 3.4.2, is shown

in figure 15. The relative size of the massless and top quark loops discussed above means

that the behaviour of the K-factor for the sum of both contributions interpolates between

the massless-loop K-factor for small MZZ and the massive loop one for high MZZ . It

therefore decreases from around 3 at the peak of the distribution to approximately 1.8

in the tail. This is to be contrasted with the K-factor distribution for the pure Higgs

amplitudes alone, shown in the right panel of figure 15. In that case the K-factor decreases

slowly from around 2.2 at small invariant masses to around 1.8 in the far tail. We note that

the K-factor for the Higgs amplitudes alone, and the one for the interference with the top

quark loops, is almost identical. In the high-energy limit this is guaranteed to be the case,

due to the cancellation between these two processes. This behaviour is shown explicitly in

figure 16.

The integrated cross-sections for the interference contributions and the Higgs ampli-

tude squared are shown in table 2. Note that, in this table, the total interference differs

from the sum of the massive and massless loops by a small amount that is due to the anoma-

lous contribution. At this level the differences between the effects of the NLO corrections

on the various contributions is quite small, with all corresponding to a NLO enhancement

by close to a factor of two. The K-factor for the massless loops is slightly larger, which is

also reflected in the result for the total interference. In addition to the scale uncertainty, we

have also indicated our estimate of the residual uncertainty related to the LME expansion

that is indicated in figure 12. The impact of this uncertainty is relatively small, at the level

of around 5%, due to the fact that the integrated cross-section is dominated by the region

M2
ZZ . 5m2 where the LME is expected to work well.
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Figure 15. Left panel: interference of the Higgs amplitude and quark loops at LO and NLO, with

the scale uncertainty indicated by the dashed histograms. The ratio of the NLO and LO results is

shown in the lower panel. Right panel: the equivalent results for the Higgs amplitude squared.

Figure 16. The ratio of the K-factors for the square of the Higgs diagrams alone (Khiggs) and

the one for the interference (Kinter). The lines are fits to the individual histogram bins that are

good to the level of a few percent and are shown for the central scale (blue) as well as the scale

variations (red, green).

Contribution σLO [fb] σNLO [fb] σNLO/σLO

Higgs mediated diagrams 56.3+15.3
−11.4 111.0+20.1

−16.6 1.97

interference (total) −113.5+22.2
−29.5 −237.8+36.4

−45.4(scale)+5.4
−0.4(LME) 2.09

interference (massless loops) −60.2+11.0
−14.2 −132.7+20.5

−26.3 2.20

interference (massive loop) −53.3+11.2
−15.3 −104.2+15.8

−18.7(scale)+5.4
−0.4(LME) 1.95

Table 2. Integrated cross-sections at
√
S = 13 TeV, using the input parameters of section 2.2.3

and µ = MZZ/2. Uncertainties correspond to scale variation as described in the text and, for NLO

results that include massive quarks, an estimate of the limitations of the LME. The K-factor is

computed using only the central result.
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For obtaining a bound on the width of the Higgs boson it is useful to focus on a high-

mass region where backgrounds from the continuum processes, represented at tree-level by

qq̄ → ZZ, are small but the effect of the interference is still significant [2, 15]. To that

end, in table 3 we show the cross-sections after the application of the cut MZZ > 300 GeV.

We see that, as expected, the impact of the massive top loop on the interference is much

greater, compared to the massless loops. This also has the effect of ensuring that the

K-factors for the Higgs amplitude squared and the total interference are almost equal. To

estimate the cross-section after the decays of the Z-bosons into electrons and muons we can

simply take these results and multiply by a factor of 4×BR(Z → e−e+)2, where BR(Z →
e−e+) = 3.363 × 10−2. Assuming that the on-shell Higgs cross-section takes its Standard

Model value and that the Higgs boson couplings and width are related accordingly, we can

write the predictions for the off-shell region as,

σLO
4` (m4` > 300 GeV) =

(
0.190+0.055

−0.040

)
×
(

ΓH

ΓSMH

)
−
(
0.275+0.079

−0.058

)
×

√
ΓH

ΓSMH
fb , (5.1)

σNLO
4` (m4` > 300 GeV) =

(
0.365+0.064

−0.054

)
×
(

ΓH

ΓSMH

)
−
(
0.526+0.092

−0.103

)
×

√
ΓH

ΓSMH
fb . (5.2)

The linear terms derive from the Higgs cross-sections in table 3 while the terms that scale

as the square-root of the modified width reflect the total interference contributions. The

uncertainties reflect those shown in table 3, with the scale and LME uncertainties added

linearly. It is interesting to compare these results with the corresponding on-shell Higgs

cross-sections. These are given by,

σLO
4` (m4` < 130 GeV) = 1.654+0.249

−0.220 fb , σNLO
4` (m4` < 130 GeV) = 3.898+0.770

−0.560 fb , (5.3)

where the uncertainties correspond to our usual scale variation procedure. From the results

in eqs. (5.1) and (5.2) it is clear that the absolute rate of off-shell events varies considerably

between LO and NLO. On the other hand, the cross-sections in eq. (5.3) imply that the

ratio of the number of events in the off-shell region compared to the peak region is much

better predicted,

σLO
4` (m4` > 300 GeV)

σLO
4` (m4` < 130 GeV)

=
(
0.115+0.014

−0.010

)
×
(

ΓH

ΓSMH

)
−
(
0.166+0.020

−0.015

)
×

√
ΓH

ΓSMH
,

σNLO
4` (m4` > 300 GeV)

σNLO
4` (m4` < 130 GeV)

=
(
0.094+0.000

−0.002

)
×
(

ΓH

ΓSMH

)
−
(
0.135+0.000

−0.008

)
×

√
ΓH

ΓSMH
. (5.4)

The uncertainties in this equation are obtained by using both the LME uncertainty estimate

and the scale variation, but ensuring that the cross-sections that appear in the numerator

and denominator are evaluated at the same scale.

6 Conclusions

In this paper we have presented a calculation of on-shell Z-boson pair production via gluon-

gluon fusion at the two-loop level. This occurs both through diagrams that are mediated
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Contribution σLO [fb] σNLO [fb] σNLO/σLO

Higgs mediated diagrams 42.1+12.1
−8.8 80.7+14.2

−12.0 1.92

interference (total) −60.7+12.8
−17.4 −116.3+17.5

−19.9(scale)+5.4
−0.4(LME) 1.91

interference (massless loops) −12.5+2.5
−3.4 −22.5+3.2

−3.2 1.80

interference (massive loop) −48.2+10.3
−14.1 −93.0+14.0

−16.4(scale)+5.4
−0.4(LME) 1.93

Table 3. Cross-sections at
√
S = 13 TeV in the region defined by MZZ > 300 GeV, using the input

parameters of section 2.2.3. Uncertainties correspond to scale variation as described in the text

and, for NLO results that include massive quarks, an estimate of the limitations of the LME. The

K-factor is computed using only the central result.

by a Higgs boson, with H → ZZ, and by continuum contributions in which the Z bosons

couple through loops of quarks. We have considered contributions up to the two-loop

level, corresponding to NLO corrections, for the Higgs diagrams alone and also for the

interference between the two sets of diagrams.

In the continuum contribution the two-loop corrections containing loops of massless

quarks are known and we have reproduced results from the literature. Our treatment of

the massive quark loops is based on a large-mass expansion up to order 1/m12, that is

extended to the high-mass region by using a combination of conformal mapping and Padé

approximation. This procedure was shown to provide an excellent approximation of the

Higgs contribution alone, where the exact result is known. Additionally, applying the large-

mass expansion in combination with the conformal mapping and the Padé approximation to

the gg → ZZ amplitudes is obviously not limited to the interference calculation alone. The

same procedure can also be applied to the virtual two-loop gg → ZZ amplitude including

its full tensor structure. It might be desirable to apply the presented procedure also to

the Higgs boson pair-production process, because the latter offers identical kinematics.

Comparing those results with the recently published results including the full top mass

effects [72] could lead to interesting insights concerning the error estimate of the used

approximation. However, this is kept as future work.

We have used our calculation to provide theoretical predictions for the impact of the

interference contribution on the invariant mass distribution of Z-boson pairs at the 13 TeV

LHC. In the high-mass region we have shown that the impact of the NLO corrections to

the interference are practically identical to those for Higgs production alone. This explicit

calculation justifies using a procedure for estimating the number of off-shell events due to

the interference by rescaling the LO prediction by the on-shell K-factor.
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A Definition of scalar integrals

We work in the Bjorken-Drell metric so that l2 = l20 − l21 − l22 − l23. The definition of the

integrals is as follows

A0(m) =
µ4−d

iπ
d
2 rΓ

∫
ddl

1

(l2 −m2 + iε)
, (A.1)

B0(p1;m,m) =
µ4−d

iπ
d
2 rΓ

∫
ddl

1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)
, (A.2)

C0(p1, p2;m,m,m) =
µ4−d

iπ
d
2 rΓ

(A.3)

×
∫
ddl

1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)((l + p1 + p2)2 −m2 + iε)
,

D0(p1, p2, p3;m,m,m,m) =
µ4−d

iπ
d
2 rΓ

(A.4)

×
∫
ddl

1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)((l + p1 + p2)2 −m2 + iε)((l + p1 + p2 + p3)2 −m2 + iε)
,

We have removed the overall constant which occurs in d-dimensional integrals, (d = 4−2ε)

rΓ ≡ Γ(1 + ε) = 1− εγ + ε2
[
γ2

2
+
π2

12

]
(A.5)

with the Euler-Mascheroni constant γ = 0.57721 . . .. The large mass expansion of some of

these integrals are

B0

(
(p1 + p2)2,m,m

) s=1
=

(
µ2

m2

)ε{
1

ε
+

1

6

1

rt
+

1 + ε

60

1

r2
t

+
(1 + ε)(2 + ε)

840

1

r3
t

+
6 + 11ε+ 6ε2

15120

1

r4
t

+
24 + 50ε+ 35ε2

332640

1

r5
t

+
120 + 274ε+ 225ε2

8648640

1

r6
t

+
180 + 441ε+ 406ε2

64864800

1

r7
t

+
1260 + 3267ε+ 3283ε2

2205403200

1

r8
t

+
10080 + 27396ε+ 29531ε2

83805321600

1

r9
t

+
10080 + 28516ε+ 32575ε2

391091500800

1

r10
t

+O
(
1/r11

t , ε
3
)}

(A.6)

and

C0 (p1, p2,m,m,m)
s=1
= −

(
µ2

m2

)ε{
1

2
1

rt
+

1 + ε

24

1

r2
t

+
(1 + ε)(2 + ε)

360

1

r3
t

+
6 + 11ε+ 6ε2

6720

1

r4
t

(A.7)

+
24 + 50ε+ 35ε2

151200

1

r5
t

+
120 + 274ε+ 225ε2

3991680

1

r6
t

+
180 + 441ε+ 406ε2

30270240

1

r7
t

+
1260 + 3267ε+ 3283ε2

1037836800

1

r8
t

+
10080 + 27396ε+ 29531ε2

39697257600

1

r9
t

+
10080 + 28516ε+ 32575ε2

186234048000

1

r10
t

+O
(
1/r11

t , ε
3
)}

for p2
1 = p2

2 = 0 and s = (p1 + p2)2.

B Scale dependence of the finite remainder

In this section we shortly summarise a convenient, and well-known, way to determine the

dependence on the renormalisation scale µ = µr of the one- and two-loop finite remainders
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used within this work, i.e. processes with a loop-induced leading-order matrix element.

This determination is possible by exploiting the renormalisation group equation (RGE)

properties of the individual building block, e.g. α
(nf )
S (µ), as discussed below. Knowledge of

this scale dependence, in return, offers a simple way to compute finite remainder results at

arbitrary scales, provided the results at a starting scale µ0 are known. We mostly recycle

our definitions from section 2.1. In the following, however, we stick to a slightly more

general notation when applicable. To this end we drop the amplitude specifications A and

B from the finite remainder definition in eq. (2.11) and denote our previous amplitudes A
and B simply byM. We also replace our, to the gg → ZZ process specialised, IR constant

Ẑ
(nl)
gg from eq. (2.14) by a more general IR constant ẐIR following the notation in [34–36].

The finite remainder for nf quark flavours is thus defined by∣∣∣F(α
(nf )
S ,m, µ)

〉
=

1

ẐIR

∣∣∣Mr(α
(nf )
S ,m, µ)

〉
=
Z

(nf )
UV

ẐIR

(
N εZ

(nf )
αS α

(nf )
S (µ)

4π

)[ ∣∣∣M(1),0(m)
〉

+

(
N εZ

(nf )
αS α

(nf )
S (µ)

4π

)∣∣∣M(2),0(m)
〉]

+O
(

(α
(nf )
S )3

)
. (B.1)

The mass dependence does not play any important role in the subsequent discussion and,

hence, all results are valid for arbitrary masses m. Z
(nf )
UV denotes the process dependent UV

renormalisation constants and the mass renormalisation m0 = Zmm is again kept implicit.

The strong coupling constants αS is renormalised according to

α0
S = N εZ

(nf )
αS α

(nf )
S (µ) with N ε = µ2ε e

ε γE

(4π)ε
, (B.2)

where the explicit µ dependence from the loop measure in eq. (2.4) was shifted to N ε. The

renormalisation constant Z
(nf )
αS and the coefficient of the beta function β

(nf )
0 are given in

eq. (2.9). The explicit scale and flavour dependence of αS = α
(nf )
S (µ) is neglected in the

following for simplicity.

Equivalently to eq. (B.1) we define the perturbative expansion of the finite remainder as

|F(αS ,m, µ)〉 =
αS
4π

∣∣∣F (1)(m,µ)
〉

+
(αS

4π

)2 ∣∣∣F (2)(m,µ)
〉

+O
(
α3
S

)
. (B.3)

Taking the derivative with respect to µ2 of eq. (B.1) and eq. (B.3) leads to

µ2 d

dµ2
|F(αS ,m, µ)〉 =

(
µ2 d

dµ2

(αS
4π

)) ∣∣∣F (1)(m,µ)
〉

+
αS
4π

µ2 d

dµ2

∣∣∣F (1)(m,µ)
〉

(B.4)

+ 2
(αS

4π

)(
µ2 d

dµ2

(αS
4π

)) ∣∣∣F (2)(m,µ)
〉

+
(αS

4π

)2
µ2 d

dµ2

∣∣∣F (2)(m,µ)
〉
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= µ2 d

dµ2

{
Z

(nf )
UV

ẐIR

(
N εZ

(nf )
αS α

(nf )
S (µ)

4π

)[ ∣∣∣M(1),0(m)
〉

+

(
N εZ

(nf )
αS α

(nf )
S (µ)

4π

)∣∣∣M(2),0(m)
〉]}

.

The derivatives of Z
(nf )
UV and Zm vanish because these renormalisation constants are defined

in the on-shell scheme. The explicit µ dependence within these expressions cancels against

the αS scale dependence. The derivative of ẐIR with respect to µ is given by its RGE [34–

36] and therefore

µ2 d

dµ2

1

ẐIR

= − 1

Ẑ2
IR

1

2

d

d log µ
ẐIR︸ ︷︷ ︸

−Γ̂·ẐIR

=
αS
4π

Γ̂(1)

2
· 1

ẐIR

+O
(
α2
S

)
. (B.5)

The anomalous dimension operator Γ̂ can be taken from [36] and references therein. For

our gg → ZZ processes Γ̂ simplifies to

Γ̂ =
αS
4π

Γ̂(1) +O
(
α2
S

)
=
αS
4π

(
−4CA log

(
µ2

−s− iε

)
− 2β

(nf )
0

)
+O

(
α2
S

)
(B.6)

=
αS
4π

(
K̂(1) + D̂(1) · log

(
µ2

µ2
0

))
+O

(
α2
S

)
with

K̂(1) = −4CA log

(
µ2

0

−s− iε

)
− 2β

(nf )
0 and D̂(1) = −4CA . (B.7)

The remaining derivatives up to O
(
α2
S

)
µ2 d

dµ2

(
g2
s

4π

)
= αS

(
− ε− β(nf )

0

αS
4π

)
, (B.8)

µ2 d

dµ2
N ε = ε N ε and µ2 d

dµ2
Z

(nf )
αS = Z

(nf )
αS β

(nf )
0

αS
4π

(B.9)

combine to

µ2 d

dµ2

(
Z

(nf )
UV

ẐIR

N εZαSαS
4π

)
=
Z

(nf )
UV

ẐIR

N εZαSαS
4π

[
αS
4π

Γ̂(1)

2

]
. (B.10)

Using the shorthand notation µ2 d
dµ2
|F〉 = d

d log µ2
|F〉 =

∣∣∣F ′
〉

Equation (B.4) becomes

µ2 d

dµ2
|F(αS ,m, µ)〉 =

αS
4π

(
−ε− β(nf )

0

αS
4π

) ∣∣∣F (1)(m,µ)
〉

+
αS
4π

∣∣∣F (1)′(m,µ)
〉

+ 2
(αS

4π

)2 (
−ε−β(nf )

0

αS
4π

) ∣∣∣F (2)(m,µ)
〉

+
(αS

4π

)2 ∣∣∣F (2)′(m,µ)
〉

=
(αS

4π

)2 Γ̂(1)

2

∣∣∣F (1)(m,µ)
〉

+O
(
α3
S

)
. (B.11)
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Comparing each order in αS yields the system of differential equations

⇒
(αS

4π

)(∣∣∣F (1)′(m,µ)
〉
− ε
∣∣∣F (1)(m,µ)

〉)
= 0 (B.12)

⇒
(αS

4π

)2
(∣∣∣F (2)′(m,µ)

〉
− 2ε

∣∣∣F (2)(m,µ)
〉
−

(
β

(nf )
0 +

Γ̂(1)

2

)∣∣∣F (1)(m,µ)
〉)

= 0 .

(B.13)

Solving the homogeneous differential equations for the leading- and next-to-leading-order

finite remainder results in∣∣∣F (1)(m,µ)
〉

=

(
µ2

µ2
0

)ε ∣∣∣F (1)(m,µ0)
〉

and
∣∣∣F (2)(m,µ)

〉
h

=

(
µ2

µ2
0

)2ε ∣∣∣F (2)(m,µ0)
〉
.

(B.14)

The inhomogeneous equation for the NLO finite remainder can easily be solved by variation

of constants. We make an ansatz for the solution of the inhomogeneous equation and write

the homogeneous solution as∣∣∣F (2)(m,µ)
〉

= C(µ) eF (log µ2) with F (log µ2) =

∫ log µ2

log µ20

2ε d log µ2 . (B.15)

Reinsertion into eq. (B.12) yields the differential equation for C(µ)

C
′
(µ) = e−F (log µ2) ·

(
β

(nf )
0 +

Γ̂(1)

2

)∣∣∣F (1)(m,µ)
〉

(B.14)
=

(
µ2

µ2
0

)−ε(
β

(nf )
0 +

Γ̂(1)

2

)∣∣∣F (1)(m,µ0)
〉
. (B.16)

Solving eq. (B.16) by an elementary integration using the decomposition of Γ̂(1) into K̂(1)

and D̂(1) from eq. (B.7) and combining the particular solution with the homogeneous

solution from eq. (B.14) yields for the scale dependence of the one- and two-loop finite

remainders∣∣∣F (1)(m,µ)
〉
ε→0
=
∣∣∣F (1)(m,µ0)

〉
and (B.17)∣∣∣F (2)(m,µ)

〉
ε→0
=
∣∣∣F (2)(m,µ0)

〉
(B.18)

+

[
log

(
µ2

µ2
0

)(
β

(nf )
0 +

K̂(1)

2

)
+
D̂(1)

4
log2

(
µ2

µ2
0

)] ∣∣∣F (1)(m,µ0)
〉

=
∣∣∣F (2)(m,µ0)

〉
− 2CA log

(
µ2

µ2
0

)[
log

(
µ2

0

−s− iε

)
+

1

2
log

(
µ2

µ2
0

)] ∣∣F1(m,µ0)
〉
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 37 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
8
(
2
0
1
6
)
0
1
1

References

[1] N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson

signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

[2] F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the

LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

[3] C. Englert and M. Spannowsky, Limitations and opportunities of off-shell coupling

measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].

[4] ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the

high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).

[5] CMS collaboration, Constraints on the Higgs boson width from off-shell production and

decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].

[6] K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top

quark approximation, Phys. Lett. B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE].

[7] M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference

effects for gg → H →W+W− beyond leading order, Phys. Rev. D 88 (2013) 034032

[arXiv:1304.3053] [INSPIRE].

[8] S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms

in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [INSPIRE].

[9] M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC,

Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

[10] R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading

order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

[11] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and

master integrals for the production of a Higgs boson via a massive quark and a scalar-quark

loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

[12] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD

corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

[13] E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B

321 (1989) 561 [INSPIRE].

[14] N. Kauer, Signal-background interference in gg → H → V V , arXiv:1201.1667 [INSPIRE].

[15] J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full

analytic results for gg → e−e+µ−µ+, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].

[16] J.M. Campbell, R.K. Ellis, E. Furlan and R. Röntsch, Interference effects for Higgs boson

mediated Z-pair plus jet production, Phys. Rev. D 90 (2014) 093008 [arXiv:1409.1897]

[INSPIRE].

[17] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals

for qq → V V , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].

[18] F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735

(2014) 311 [arXiv:1405.2219] [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP08(2012)116
http://arxiv.org/abs/1206.4803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4803
http://dx.doi.org/10.1103/PhysRevD.88.054024
http://arxiv.org/abs/1307.4935
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4935
http://dx.doi.org/10.1103/PhysRevD.90.053003
http://arxiv.org/abs/1405.0285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0285
http://cds.cern.ch/record/1740973
http://dx.doi.org/10.1016/j.physletb.2014.06.077
http://arxiv.org/abs/1405.3455
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3455
http://dx.doi.org/10.1016/j.physletb.2015.03.030
http://arxiv.org/abs/1503.01274
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01274
http://dx.doi.org/10.1103/PhysRevD.88.034032
http://arxiv.org/abs/1304.3053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3053
http://dx.doi.org/10.1103/PhysRevD.49.2298
http://arxiv.org/abs/hep-ph/9310281
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9310281
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://arxiv.org/abs/hep-ph/9504378
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504378
http://dx.doi.org/10.1088/1126-6708/2005/12/015
http://arxiv.org/abs/hep-ph/0509189
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0509189
http://dx.doi.org/10.1088/1126-6708/2007/01/082
http://arxiv.org/abs/hep-ph/0611236
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611236
http://dx.doi.org/10.1088/1126-6708/2007/01/021
http://arxiv.org/abs/hep-ph/0611266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611266
http://dx.doi.org/10.1016/0550-3213(89)90262-9
http://dx.doi.org/10.1016/0550-3213(89)90262-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B321,561%22
http://arxiv.org/abs/1201.1667
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1667
http://dx.doi.org/10.1007/JHEP04(2014)060
http://arxiv.org/abs/1311.3589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3589
http://dx.doi.org/10.1103/PhysRevD.90.093008
http://arxiv.org/abs/1409.1897
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1897
http://dx.doi.org/10.1007/JHEP06(2014)032
http://arxiv.org/abs/1404.4853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4853
http://dx.doi.org/10.1016/j.physletb.2014.06.056
http://dx.doi.org/10.1016/j.physletb.2014.06.056
http://arxiv.org/abs/1405.2219
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2219


J
H
E
P
0
8
(
2
0
1
6
)
0
1
1

[19] F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity

amplitudes for the production of two off-shell electroweak bosons in quark-antiquark

collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].

[20] T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for

qq′ → V1V2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].

[21] F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity

amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06

(2015) 129 [arXiv:1503.08759] [INSPIRE].

[22] A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for

gg → V1V2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].

[23] C.S. Li, H.T. Li, D.Y. Shao and J. Wang, Soft gluon resummation in the signal-background

interference process of gg(→ h∗)→ ZZ, JHEP 08 (2015) 065 [arXiv:1504.02388] [INSPIRE].

[24] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283

[INSPIRE].

[25] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron

colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

[26] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD,

Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

[27] R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at

next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467

[arXiv:0907.2997] [INSPIRE].

[28] A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson

production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473

[arXiv:0907.2998] [INSPIRE].

[29] A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD

corrections, Phys. Lett. B 264 (1991) 440.

[30] V. A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts

Mod. Phys. volume 177, Springer, Germany (2002).

[31] A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson

production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

[32] J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the

LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].

[33] E. Braaten and J.P. Leveille, Higgs boson decay and the running mass, Phys. Rev. D 22

(1980) 715 [INSPIRE].

[34] P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of

hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279]

[INSPIRE].

[35] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive

scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676]

[INSPIRE].

[36] M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue

subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

– 39 –

http://dx.doi.org/10.1007/JHEP11(2014)041
http://arxiv.org/abs/1408.6409
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6409
http://dx.doi.org/10.1007/JHEP09(2015)128
http://arxiv.org/abs/1503.04812
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04812
http://dx.doi.org/10.1007/JHEP06(2015)129
http://dx.doi.org/10.1007/JHEP06(2015)129
http://arxiv.org/abs/1503.08759
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08759
http://dx.doi.org/10.1007/JHEP06(2015)197
http://arxiv.org/abs/1503.08835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08835
http://dx.doi.org/10.1007/JHEP08(2015)065
http://arxiv.org/abs/1504.02388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02388
http://dx.doi.org/10.1016/0550-3213(91)90061-2
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B359,283%22
http://dx.doi.org/10.1103/PhysRevLett.88.201801
http://arxiv.org/abs/hep-ph/0201206
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201206
http://dx.doi.org/10.1016/S0550-3213(02)00837-4
http://arxiv.org/abs/hep-ph/0207004
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207004
http://dx.doi.org/10.1016/j.physletb.2009.08.012
http://arxiv.org/abs/0907.2997
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2997
http://dx.doi.org/10.1016/j.physletb.2009.08.016
http://arxiv.org/abs/0907.2998
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2998
http://dx.doi.org/10.1016/0370-2693(91)90375-Z
http://dx.doi.org/10.1007/JHEP02(2010)025
http://arxiv.org/abs/0911.4662
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4662
http://dx.doi.org/10.1016/j.nuclphysb.2013.06.024
http://arxiv.org/abs/1305.7340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7340
http://dx.doi.org/10.1103/PhysRevD.22.715
http://dx.doi.org/10.1103/PhysRevD.22.715
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,715%22
http://dx.doi.org/10.1007/JHEP02(2014)078
http://arxiv.org/abs/1312.6279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6279
http://dx.doi.org/10.1088/1126-6708/2009/11/062
http://arxiv.org/abs/0908.3676
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3676
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.006
http://arxiv.org/abs/1408.2500
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2500


J
H
E
P
0
8
(
2
0
1
6
)
0
1
1

[37] L. Resnick, M.K. Sundaresan and P.J.S. Watson, Is there a light scalar boson?, Phys. Rev. D

8 (1973) 172 [INSPIRE].

[38] H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two

gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

[39] A.I. Davydychev and J.B. Tausk, Tensor reduction of two loop vacuum diagrams and

projectors for expanding three point functions, Nucl. Phys. B 465 (1996) 507

[hep-ph/9511261] [INSPIRE].

[40] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

[41] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron

colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

[42] S. Beerli, A new method for evaluating two-loop Feynman integrals and its application to
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applications: proceedings of a conference held in Antwerp, Belgium, 1979, L. Wuytack ed.,

Springer, Germany (1979).

– 40 –

http://dx.doi.org/10.1103/PhysRevD.8.172
http://dx.doi.org/10.1103/PhysRevD.8.172
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D8,172%22
http://dx.doi.org/10.1103/PhysRevLett.40.692
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,40,692%22
http://dx.doi.org/10.1016/0550-3213(96)00033-8
http://arxiv.org/abs/hep-ph/9511261
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9511261
http://arxiv.org/abs/math-ph/0010025
http://inspirehep.net/search?p=find+EPRINT+math-ph/0010025
http://dx.doi.org/10.1103/PhysRevD.58.115012
http://arxiv.org/abs/hep-ph/9805244
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9805244
http://arxiv.org/abs/cs/0004015
http://inspirehep.net/search?p=find+J+%22J.Symb.Comput.,33,1%22
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.016
http://arxiv.org/abs/0801.2544
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2544
http://dx.doi.org/10.1088/1126-6708/2009/11/088
http://arxiv.org/abs/0909.3420
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3420
http://dx.doi.org/10.1007/BF01560102
http://arxiv.org/abs/hep-ph/9403230
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9403230
http://dx.doi.org/10.1007/s002880050400
http://arxiv.org/abs/hep-ph/9605392
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605392
http://arxiv.org/abs/hep-ph/0102266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102266
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2241
http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
http://arxiv.org/abs/1412.7420
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7420
http://dx.doi.org/10.1016/0550-3213(90)90070-T
http://dx.doi.org/10.1016/0550-3213(90)90070-T
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B329,547%22
http://dx.doi.org/10.1088/1126-6708/2007/12/056
http://arxiv.org/abs/0710.1832
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1832


J
H
E
P
0
8
(
2
0
1
6
)
0
1
1

[55] P. Guillaume and A. Huard, Multivariate Padé approximation, J. Comput. Appl. Math. 121
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