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ABSTRACT

We review several exact sign-based tests that have been recently proposed for testing orthogonality between random

variables in the context of linear and nonlinear regression models. The sign tests are very useful when the data at the

hands contain few observations, are robust against heteroskedasticity of unknown form, and can be used in the presence

of non-Gaussian errors. These tests are also �exible since they do not require the existence of moments for the dependent

variable and there is no need to specify the nature of the feedback between the dependent variable and the current and

future values of the independent variable. Finally, we discuss several applications where the sign-based tests can be used

to test for multi-horizon predictability of stock returns and for the market e¢ ciency.
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1 Introduction

In this chapter we survey several recent developments on sign-based inference. The literature on sign tests is not new and

several books and monographs have be written on these tests in the context of i.i.d. data; see e.g. Boldin et al. (1997).

However, the focus here is on reviewing new sign-based tests that have been proposed to test orthogonality between

random variables in the context of linear and nonlinear regression models and in the presence of both independent and

dependent data. We also illustrate how these tests can be used to overcome well known problems encountered when

testing important �nancial theories.

As we know, regression errors in economic and �nancial data frequently exhibit non-normal distributions and het-

eroskedasticity. In the presence of several types of heteroskedasticity, usual �robust�tests �such as tests based on White

(1980)-type variance corrections - remain plagued by poor size control and/or low power. In addition, the available exact

parametric tests typically assume Gaussian disturbances. The latter assumption is often unrealistic and, in the presence

of heavy tails and asymmetric distributions, the associated tests may easily not perform well in terms of size control or

power. Moreover, statistical procedures for inference on parameters of nonlinear models are typically based on asymptotic

approximations, which may easily not be reliable in �nite samples; see Dufour (2003).

In the last two decades a number of new sign-based test procedures have been developed in the literature to deal with

the above problems. In the presence of only one explanatory variable, Campbell and Dufour (1991, 1995, 1997) and Luger

(2003) propose nonparametric analogues of the t-test, based on sign and signed rank statistics, which are applicable when

regressors involve feedback of the type considered by Mankiw and Shapiro (1986). These tests are exact even when the

disturbances are asymmetric, non-normal, and heteroskedastic. In the presence of non-stochastic regressors, Dufour and

Taamouti (2010) propose simple point-optimal sign-based tests in linear and nonlinear multivariate regressions, which are

valid under non-normality and heteroskedascticity of unknown form, provided the errors have median zero conditional

on the explanatory variables. The proposed tests are exact, distribution-free, and may be inverted to build con�dence

regions for the vector of unknown parameters. Furthermore, an important feature of these tests comes from the fact

that they trace out the power envelope, i.e. the maximum achievable power for a given testing problem. The power

envelope provides an obvious benchmark against which test procedures can be evaluated. Coudin and Dufour (2009)

extend the work by Boldin et al. (1997) to account for serial dependence and discrete distributions. In particular, they

develop �nite-sample and distribution-free sign-based tests and con�dence sets for the parameters of a linear multivariate

regression model, where no parametric assumption is imposed on the noise distribution. In addition to non-normality and

heteroscedasticity, their set-up allows for nonlinear serial dependence of unknown forms. To build their sign tests, they
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�rst consider a �mediangale� structure under which the signs of mediangale sequences follow a nuisance-parameter-free

distribution despite the presence of non-linear dependence and heterogeneity of unknown form.

The present chapter faithfully follows the text of the abovementioned papers to survey the exact sign-based tests that

have been recently proposed for testing orthogonality between random variables. These tests are very useful when the

data at the hands contain few observations, and they are very �exible since they do not require the existence of moments

for the dependent variable and there is no need to specify the nature of the feedback between the dependent variable and

the current and future values of the independent variable.

The above statistical procedures are motivated in at least two ways. First, it is well known that hypotheses on means

(moments) are not testable in nonparametric setups even under the apparently restrictive assumption that observation

are independent and identically distributed (i.i.d.): if a test has level � for testing the null hypothesis that the mean

of i.i.d. observations has a given value, then its power cannot be larger than the level � under any alternative of the

mean; see Bahadur and Savage (1956). Similar results hold for the coe¢ cients of regression models; see Dufour, Jouneau,

and Torrès (2008). In other words, moments are not empirically meaningful in many common nonparametric models.

This provides a strong reason for focusing on quantiles (such as median) in nonparametric models �instead of moments �

because quantiles are not a¤ected by such problems of nontestability. Second, in the presence of general heteroskedasticity,

Lehmann and Stein (1949) and Pratt and Gibbons (1981) show that sign methods are the only possible way of producing

valid inference in �nite samples; see also Dufour and Hallin (1991) and Dufour (2003). If a test has level � for testing

the null hypothesis that observations are independent each with a distribution symmetric about zero, then its level must

be equal to � conditional on the absolute values of the observations: in other words, it must be a sign test. For a more

detailed discussion of statistical inference impossibilities in nonparametric models, see Dufour and Hallin (1991) and

Dufour (2003).

Finally, we discuss several applications where sign-based tests are used to test the multi-horizon predictability of stock

returns (Liu and Maynard (2007)) and for the market e¢ ciency (Gungor and Luger (2009)).

The plan of the chapter is as follows. In Section 2, we present a general framework for reviewing di¤erent sign-based

tests. In Section 3, we review many tests that have been proposed in the context of simple regression model. In Section

4, we survey several sign-based tests for testing parameters in multivariate linear and nonlinear regressions and in the

presence of both independent and dependent data. In Section 5, we discuss two applications where sign-based tests are

used to test the multi-horizon predictability of stock returns and market e¢ ciency. We conclude in Section 6.
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2 General framework

In this section, we describe a general framework for reviewing several exact sign-based tests that have been recently

proposed for testing orthogonality between random variables. These tests are motived in the context of the following

regression

Yt = �+ f (Xt;�) + "t; (1)

where di¤erent assumptions on the error term "t, on the functional form f (:), on the randomness and dimension of X;

and on the presence or absence of the intercept � lead to di¤erent tests. In particular, we discuss several �nite-sample

tests of independence between Y and X which are exact under weak assumptions concerning the distribution of Y and

the relationship between Y and X. These tests can also di¤er depending on whether or not the concept of optimality

(power) is under consideration.

For the �rst group of exact sign-based tests that we review below, the functional form f (:) is assumed to be linear

and X is stochastic. However, both Y and X cannot be multivariate and we simply assume that Y has median zero. No

additional assumption other than the independence of Yt with respect to the past (hereafter It�1) governs the relationship

between Y and X. In other words, this �rst group of sign-based tests are developed within the framework of the following

general speci�cation involving the random variables Y1,..., Yn, X0,..., Xn�1, and the corresponding information vectors

It = (X0, X1; ::::; Xt, Y1; :::; Yt)0, where t = 0; :::; n� 1, with the convention It = (X0):

Yt is independent of It�1, for each t = 1; ::::; n; (2)

P [Yt > 0] = P [Yt < 0]; for t = 1; :::; n: (3)

Assumption (2) indicates that Yt is independent of the past values of Yt and Xt, while Assumption (3) states that Y1,...,

Yn have median zero. As discussed in Campbell and Dufour (1995), these assumptions leave open the possibly of feedback

from Yt to current and future values of the X-variable without specifying the form of feedback. Furthermore, the variables

Y and X may have discrete distributions, which includes the possibility of non-zero probability mass at zero; as well, the

variables Y need not be Gaussian nor identically distributed. In what follows, the additional assumption that Y1,..., Yn

have distributions symmetric about zero (m0) is also considered:

Y1; :::; Yn have continuous distributions symmetric about zero (m0). (4)

For the second group of sign-based tests that we discuss below, X can be multivariate. Furthermore, two sets of

assumptions are separately considered depending on whether or not Y is assumed to be independent. When the process

of Y is supposed to be independent, then it is assumed that
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Y1; : : : ; Yn are independent conditional on X (5)

and the error term in the regression (1) satis�es:

P["t > 0 j X] = P["t < 0 j X] =
1

2
; t = 1; : : : ; n; (6)

where X = [X1; : : : ; Xn]
0
is an n�k matrix. Note that Assumption (6) entails that the error term "t has no mass at zero,

i.e. P["t = 0 j X] = 0 for all t: Moreover, it is clear that assumptions (5) and (6) are more restrictive than assumptions

(2) and (3) ((4)). The former will help to build optimal sign-based tests which are valid for both X univariate and

multivariate. Optimality here is in the Neyman-Pearson sense, thus these tests maximize the power function under the

level constraint; see for example Lehmann (1959, page 65). Finally, when the process of Y is supposed to be dependent,

it is mainly assumed that the the error term "t is a mediangale process, where the latter term is de�ned in Coudin and

Dufour (2009); see also Section 4.2.

3 Sign-based tests for simple regressions

In the presence of only one explanatory variable, Campbell and Dufour (1991, 1995, 1997) and Luger (2003) propose

nonparametric analogues of the t-test, based on sign and signed rank statistics, which are applicable when regressors

involve feedback of the type considered by Mankiw and Shapiro (1986). These tests are exact even when the disturbances

are asymmetric, non-normal, and heteroskedastic. Campbell and Dufour (1991, 1995) have proposed exact sign and signed

rank statistics in the absence of a nuisance parameter (drift parameter �), and Campbell and Dufour (1997) and Luger

(2003) build sign and signed rank statistics in the presence of a nuisance parameter (drift parameter �).

3.1 Sign-based tests without nuisance parameters

Campbell and Dufour (1991) have introduced non-parametric analogues of the t-test, based on sign statistics and Wilcoxon

signed-rank statistics, that are applicable in the context of an important variant of the Mankiw and Shapiro (1986) model.

Using Monte Carlo techniques, the latter found that the standard testing procedure, such as t-test, that are used to assess

the rationality of expectations may be considerably greater than its nominal level in a fairly simple model and in the

presence of large samples. Campbell and Dufour (1995) have considerably generalized the results in Campbell and Dufour

(1991), where various nonparametric statistics are introduced to deal with a variant of the Mankiw and Shapiro (1986)

model. In particular, the nature of the allowed feedback is considerably more general in Campbell and Dufour (1995) and
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exact distributional results are established. For these reasons, in what follows we focus on only reviewing the results in

Campbell and Dufour (1995).

Campbell and Dufour (1995) consider the following linear simple regression model:

Yt = �Xt�1 + "t; (7)

where the drift parameter is equal to zero, X is a scalar independent covariate, and the error term "t has the same

properties as Yt in (2) and (3) ((4)). Suppose we wish to test the null hypothesis:

H0 : � = �0: (8)

To test the nullH0 in (8), Campbell and Dufour (1995) propose to use nonparametric analogues of Student�s t-statistics

based on sign (rank) of the observations, which is derived from

T =
�
�̂ � �0

�
=�̂2

 
nX
t=1

X2
t�1

!�1=2
=

nX
t=1

Vt (9)

where �̂ =
nX
t=1

YtXt�1=
nX
t=1

X2
t�1, �̂

2 =
nX
t=1

�
Yt � �̂Xt�1

�2
= (n� 1) ; and

Vt = (Yt � �0Xt�1)Xt�1=�̂2
 

nX
t=1

X2
t�1

!1=2
:

The nonparametric test procedures of Campbell and Dufour (1995) abstract from the speci�c values of Vt to consider

simply its sign and possibly the rank of its absolute value among jV1j ; :::; jVnj : Those procedures consider the products

Zt = (Yt � �0Xt�1)Xt�1 as the basic building block in the de�nition of various nonparametric statistics. Thus, a

nonparametric analogue of the t-statistic in (9) is the sign statistic given by:

Sg =
nX
t=1

u ((Yt � �0Xt�1) gt�1) ; (10)

where

u (z) =

8>><>>:
1, if z � 0

0, if z < 0;
(11)

with gt = gt(It); t = 0; :::; n� 1; is a sequence of measurable functions of the information vector It: The latter functions

allow one to consider various transformations of the data, provided gt depends only on past and current values of X� and

Y� (� � t). A special case of (10) is the following test statistic

S0 =
nX
t=1

u ((Yt � �0Xt�1)Xt�1) :

Without loss of generality, in what follows we focus on testing H0 : � = 0; which corresponds to testing orthogonality

between Y and X. The following proposition establishes the exact distribution of Sg when Yt and gt are continuous

variables (have no probability mass at zero).
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Proposition 1 (Campbell and Dufour, 1995) Let Y = (Y1; :::; Yn)
0 and X = (X0; :::; Xn�1)

0 be two n � 1 random

vectors which satisfy assumptions (2) and (3). Suppose further that P [Yt = 0] = 0; for t = 1; :::; n and let gt = gt(It);

t = 0; :::; n� 1; be a sequence of measurable functions of It such that P [gt = 0] = 0; for t = 0; :::; n� 1. Then the statistic

Sg de�ned by (10) follows a Bi(n; 0:5) distribution, i.e.

P [Sg = x] = C
x
n (1=2)

n for x = 0; 1; :::; n, (12)

where Cxn = n!= [x!(n� x)!] :

Assumption P [Yt = 0] = P [gt = 0] = 0 in Proposition 1 means that Yt and gt have no mass at zero, which holds

when these variables have continuous distributions. In addition, the conditions of Proposition (1) are quite �exible since

there are no assumptions concerning the existence of moments of Yt; heteroskedasticity of unknown form is permitted;

the nature of the feedback between Yt and current and future values of Xt+s (s � 0) is not speci�ed.

Campbell and Dufour (1995) consider other test statistics that are based on sign and ranks under the further assumption

in (4), with m0 = 0. In particular, they consider the following signed rank statistics

Wg =

nX
t=1

u(Ytgt�1)R
+
1t; (13)

SRg =

nX
t=1

u(Ytgt�1)R
+
2t; (14)

where R+1t is the rank of jYtgt�1j ; i.e. R+1t =
nX
j=1

u (jYtgt�1j � jYjgj�1j) the rank of jYtgt�1j when jY1g0j ; :::; jYngn�1j are

put in ascending order, while R+2t denotes the rank of jYtj among jY1j ; :::; jYnj : Special cases of signed rank statistics in

(13) and (14) are obtained by taking gt = Xt:

W0 =

nX
t=1

u(YtXt�1)R
+
1t; SR0 =

nX
t=1

u(YtXt�1)R
+
2t;

computed by weighting the sign of each positive product YtXt�1 by the rank of its absolute value. As pointed out by

Campbell and Dufour (1995), the possibility of feedback makes it impossible to establish in general that W0 and Wg are

distributed as a Wilcoxon signed rank variate, i.e., as W =
nX
t=1

tBt where B1; :::; Bn are independent random variables

such that P [Bt = 0] = P [Bt = 1] = 0:5; for t = 1; :::; n. However, in the absence of feedback, Campbell and Dufour

(1995) derive the following result.

Proposition 2 (Campbell and Dufour, 1995) Let Y = (Y1; :::; Yn)
0 and X = (X0; :::; Xn�1)

0 be independent n � 1

random vectors such that (2) and (4), for m0 = 0; hold. Let gt = gt(X), t = 0; :::; n � 1; be a sequence of measurable

functions of the vector X such that P [gt = 0] = 0. Then the statistic Wg de�ned in (13) is distributed as a Wilcoxon

signed rank variate, i.e., as W =
nX
t=1

tBt, where B1; :::; Bn are independent uniform Bernoulli variables on f0; 1g :
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The distribution of W in Proposition (2) has been extensively tabulated by Wilcoxon, Katti and Wilcox (1970) among

others, and the normal approximation with E (W ) = n(n+ 1)=4 and V ar(W ) = n(n+ 1)(2n+ 1)=24 works well even for

small values of n.

The following proposition establishes exact distribution for the statistic SRg in (14) without the additional assumption

that the vectors Y and X are independent as in Proposition 2.

Proposition 3 (Campbell and Dufour, 1995) Let Y = (Y1; :::; Yn)
0 and X = (X0; :::; Xn�1)

0 be two n � 1 random

vectors such that (2) and (4), with m0 = 0; hold. Let gt = gt(It), t = 0; :::; n� 1; be a sequence of measurable functions of

It = (X0, X1; ::::; Xt, Y1; :::; Yt)0 such that P [gt = 0] = 0 for t = 0; :::; n� 1; let jY j = (jY1j ; :::; jYnj)0 ; and de�ne the sign

variables st = u (Ytgt�1) for t = 1; :::; n: Then the following two properties hold:

(a) the signs s1; :::; sn are mutually independent and, provided jYtj 6= 0 for t = 1; ::; n,

P [st = 0 jjY j ] = P [st = 1 jjY j ] = 0:5; for t = 1; ::; n;

(b) the statistic SRg de�ned by (14) follows the same distribution as the Wilcoxon signed rank variate W =
nX
t=1

tBt,

where B1; :::; Bn are independent uniform Bernoulli variables on f0; 1g :

Finally, Campbell and Dufour (1995) extend the above results by relaxing totally or partially the assumptions that Yt

and Xt (or more generally gt) have no probability mass at zero; see Campbell and Dufour (1995, Proposition 4). Their

Proposition 4-(b) shows that, provided g0; :::; gn�1 have no probability mass at zero, tests based on Sg in (10) can be

performed conditionally on the non-zero Y 0t s; i.e. after dropping the zero Ytgt�1 products. For the more general case where

g0; :::; gn�1 may have a mass at zero, the distribution of Sg appears di¢ cult to determine. However, their Proposition

4-(a) shows that a simple alternative consists in replacing Sg by the closely related statistic �Sg =
nX
t=1

u (Yt�gt�1) ; where

�gt = gt + � (gt) ; with � (x) = 1 if x = 0, and � (x) = 0 if x 6= 0; to which the result of their Proposition 4-(b) applies.

Similarly, under assumption (4) and for m0 = 0; they show that one can use the statistic SRg =
nX
t=1

u (Yt�gt�1)R
+
2t instead

of SRg in (14); by their Proposition 4-(c), SRg follows the usual Wilcoxon distribution.

3.2 Sign-based tests with nuisance parameters

Campbell and Dufour (1997) extend the �nite-sample nonparametric tests of Campbell and Dufour (1995) to allow for

an unknown drift parameter. Their tests remain exact in the presence of general forms of feedback, non-normality and

heteroskedasticity. They motivate their tests in the context of the following simple linear regression model with non-zero

intercept:

Yt = �+ �Xt�1 + "t: (15)
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They consider similar assumptions to those in Campbell and Dufour (1995), with the di¤erence that the variable Yt has

now median m0 instead of zero. Formally, they assume that Y1; :::; Yn and X0; :::; Xn�1 have continuous distributions such

that:

Yt is independent of It�1; for each t = 1; :::; n; (16)

P [Yt > m0] = P [Yt < m0] ; for t = 1; :::; n: (17)

Assumptions (16) and (17) leave open the possibility of feedback from Yt to current and future values of the X-variable,

without specifying the form of feedback or any other property of the X-process. In addition, the variables Yt need not be

normal nor identically distributed. They also consider the following additional assumption:

Y1; :::; Yn have continuous distributions symmetric about m0: (18)

The di¤erence with Campbell and Dufour (1995) is the presence of an unknown median parameter m0; which will

complicate the construction of nonparametric tests. However, to obtain methods applicable for unknown m0; Campbell

and Dufour (1997) �rst consider the case where the nuisance parameter m0 is known. In this case, the techniques of

Campbell and Dufour (1995) can be applied to build exact nonparametric tests. Campbell and Dufour (1997) consider

the sign statistic

Sg (m) =
nX
t=1

u [(Yt �m) gt�1] ; (19)

where the functions u [:] and gt�1 (:) are de�ned in Section 3.1. Under the further assumption in (18), they also consider

an aligned signed rank statistics with general form:

SRg(m) =
nX
t=1

u [(Yt �m) gt�1]R+t (m); (20)

whereR+t (m) is the rank of jYt �mj ; i.e. R+t (m) =
nX
j=1

u (jYt �mj � jYj �mj) the rank of jYt �mj when jY1 �mj ; :::; jYn �mj

are put in ascending order. The following proposition establishes the �nite-sample distributions of Sg (m) in (19) and

SRg(m) in (20) when m = m0 is assumed to be a known parameter.

Proposition 4 (Campbell and Dufour, 1997) Let Y = (Y1; :::; Yn)
0 and X = (X0; :::; Xn�1)

0 be two n � 1 random

vectors which satisfy Assumptions (16) and (17). Suppose further that P [Yt = m0] = 0 for t = 1; :::; n; and let gt = gt(It),

t = 0; :::; n� 1 be a sequence of measurable functions of It such that P [gt = 0] = 0 for t = 0; :::; n� 1:

(a) Then the sign statistic Sg (m0) de�ned by (19) follows a Bi(n; 0:5) distribution, that is

P [Sg (m0) = x] =

0BB@ n

x

1CCA (1=2)n for x = 0; 1; :::; n; where
0BB@ n

x

1CCA = n!= [x!(n� x)!] :
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(b) If Assumption (18) also holds, then the signed rank statistic SRg (m0) de�ned in (20) is distributed as the Wilcoxon

signed rank variate W =
nX
t=1

tBt, where B1; :::; Bn are independent Bernoulli variables such that P [Bt = 0] = P [Bt = 1] =

1=2; t = 1; :::; n:

Now one has to deal with fact that the centering parameter m0 is unknown. To obtain provably valid �nite-sample

procedures for an unknown m0; Campbell and Dufour (1997) adopt a three-stage approach introduced in Dufour (1990):

First, they �nd an exact con�dence set for the nuisance parameter m0 which is valid at least under the null hypothesis.

Second, corresponding to each value m in the con�dence set, they construct a nonparametric test based on the methods

discussed in Section 3.1. Third, the latter are combined with the con�dence set for m0 using Bonferroni�s inequality to

obtain valid nonparametric tests at the desired level �: Formally, let CS(�1) be a con�dence set for m0 with level 1� �1

(P [m0 2 CS(�1)] � 1 � �1; for �1 < �), which is valid either on the assumption that Yt has median m0 for t = 1; :::; n

or that Yt is symmetric about m0 for each t. Di¤erent approaches to the construction of CS(�1) based on counting

procedures are discussed in Campbell and Dufour (1997, pages 157-158). The following proposition provides probability

bounds for the events that Sg (m) in (19) is signi�cant (or nonsigni�cant) at an appropriate level for all m 2 CS(�1) for

both one-sided and two-sided tests, and similarly for SRg (m) in (20):

Proposition 5 (Campbell and Dufour, 1997) Let Y = (Y1; :::; Yn)
0 and X = (X0; :::; Xn�1)

0 be two n � 1 random

vectors which satisfy Assumptions (16) and (17) with P [Yt = m0] = 0 for t = 1; :::; n; and let gt = gt(It), t = 0; :::; n� 1

be a sequence of measurable functions of It such that P [gt = 0] = 0 for t = 0; :::; n� 1: Let also Sg (m) ; SRg (m) ; �Sg (:)

and SRg (:) be de�ned by (19), (20) and

P
�
Sg (m0) > �Sg (�)

�
� �; P

�
SRg (m0) > SRg (�)

�
� �; for any 0 � � � 1;

let ~Sg (�) = n� �Sg (1� �) and fSR (�) = (n (n+ 1) =2)� SRg (1� �) for any 0 � � � 1, and choose �; �1; �2; and �3 in
the interval [0; 1] such that 0 � �2 � �� �1 � �+ �1 � �3 � 1:

(a) If CS(�1) is a con�dence set for m0 such that P [m0 2 CS(�1)] � 1� �1; then

P
�
Sg (m) > �Sg (�2) ; 8m 2 CS(�1)

�
� �1 + �2 � �; (7a)

P
�
M � Sg (m) > �Sg (�2) ; 8m 2 CS(�1)

�
� �1 + �2; (7b)

P
�
max fSg (m) ;M � Sg (m)g > �Sg (�2=2) ; 8m 2 CS(�1)

�
� �1 + �2 (7c)

P
h
Sg (m) < ~Sg (�3) ; 8m 2 CS(�1)

i
� 1� (�3 � �1) � 1� �; (7d)

P
h
M � Sg (m) < ~Sg (�3) ; 8m 2 CS(�1)

i
� 1� (�3 � �1); (7e)
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P
h
max fSg (m) ;M � Sg (m)g < ~Sg (�3=2) ; 8m 2 CS(�1)

i
� 1� (�3 � �1); (7f)

with M = n.

(b) If the additional Assumption (18) holds and K (�1) is a con�dence set for m0 such that P [m0 2 K (�1)] � 1��1;

then the inequalities (7a) to (7f) also hold with Sg (m) replaced by SRg (m) ; �Sg (:) by SRg (:) ; ~Sg (:) by fSRg (:) ; CS(�1)
by K (�1) ; and M by M 0 = n(n+ 1)=2:

The above proposition suggests the following bounds test for the hypothesis that Yt is orthogonal to past information

It�1; for t = 1; :::; n. Using the notations adopted in Proposition 5, Campbell and Dufour (1997) de�ne

QL(Sg) = Inf fSg (m) : m 2 CS(�1)g ; QL(SRg) = Inf fSRg (m) : m 2 K(�1)g (8a),

QU (Sg) = Sup fSg (m) : m 2 CS(�1)g ; QU (SRg) = fSupSRg (m) : m 2 K(�1)g (8b).

Using Proposition 5(a), it is clear that

P
�
QL(Sg) > �Sg (�2)

�
� �; P

h
QU (Sg) < ~Sg (�3)

i
� 1� �; (8c)

where the conjunction of the events QL(Sg) > �Sg (�2) and QU (Sg) < ~Sg (�3) has probability zero, and similarly for

QL(SRg) and QU (SRg): Thus, as pointed out in Campbell and Dufour (1997), a reasonable right one-sided test would

reject the hypothesis of conditional independence (H0 : � = 0) ifQL(Sg) > �Sg (�2) (alternatively, ifQL(SRg) > SRg (�2)),

and would accept it if QU (Sg) < ~Sg (�3) (alternatively, if QU (SRg) < SRg (�3)); otherwise, the test is considered

inconclusive. Based on the results of Proposition 5, Campbell and Dufour (1997) suggest to set �2 = � � �1 and

�3 = � + �1: Now, to obtain a left one-sided test, one can proceed in exactly the same way with Sg (m) replaced by

M � Sg (m) = n � Sg (m) ; and SRg(m) by M 0 � SRg (m) : Finally, a two-sided sign test with level � is obtained by

considering

QBL(Sg) = Inf fmax fSg (m) ;M � Sg (m)g : m 2 CS(�1)g ;

QBU (Sg) = Sup fmax fSg (m) ;M � Sg (m)g : m 2 CS(�1)g ;

and then taking QBL(Sg) > �Sg (�2) ; and QBU (Sg) < ~Sg (�3=2) as the rejection and acceptance regions, respectively.

Luger (2003) extends the nonparametric approach of Campbell and Dufour (1997) to testing for a random walk with

an unknown drift. Instead of using the three-stage approach of Dufour (1990), which requires to �nd an exact con�dence

set for the nuisance parameter m0; Luger (2003) suggests to eliminate the drift term using long di¤erences in a way that

preserves the properties of the original errors "t. In particular, he shows that long di¤erencing does not introduce any

correlation among the error terms as subtracting an estimated drift would.
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Formally, Luger (2003) proposes a sign-based test for testing H0 : � = 1 in the context of regression model in (15).

To this end, he considers the �rst-di¤erence �yt = yt � yt�1; for t = 1; 2:::; n. The basic building block of his testing

procedure is the following quantity:

zt = �yt+l ��yt; for t = 1; 2:::; l; where l =
n

2
:

He assumes that n is even, so that the midpoint l is an integer. As in Campbell and Dufour (1995, 1997), he considers

the class of linear signed rank statistics de�ned by:

SRl =
lX

t=1

u (�yt+l ��yt) al
�
R+t
�
; (21)

where u (:) is de�ned in the previous sections, al (:) is some weighting function, and R
+
t is the rank of j�yt+l ��ytj

de�ned in a similar way as in the previous sections.

To establish the �nite-sample distribution of the test statistic in (21), Luger (2003) considers the following assumptions.

He �rst assumes that

the density of the vector of the error terms "n = ("1; :::; "n)
0 is symmetric. (22)

He also assumes that

P ["n = 0] = 0: (23)

Assumptions (22) and (23) imply that the error terms may have discrete distributions provided the assumption (23) is

satis�ed, i.e., there no mass at zero. Furthermore, as shown in Luger (2003) several models of time-varying conditional

variance, such as GARCH-type or stochastic volatility models, satisfy the multivariate symmetric assumption in (22).

Luger (2003) derives the following �nite-sample distribution for the test statistic in (21) based on the following two

observations: (i) under the null hypothesis (� = 1) the test statistic in (21) is a function only of ("t+l�"t), for t = 1; 2; :::; l;

and (ii) under assumptions (22) and (23), the sign u ("t+l � "t) is distributed as a Bernoulli variable Bi(1; 0:5).

Theorem 1 (Luger, 2003) Let "1; :::; "n be a sequence of random variables that satisfy Assumptions (22) and (23).

Then, the null distribution of any linear signed rank statistic de�ned by (21) has the property that

SRl =
lX

t=1

u (�yt+l ��yt) al
�
R+t
� d
=

lX
i=1

Bial (i) ;

where B1; :::; Bl are mutually independent uniform Bernoulli variables on f0; 1g.

Two special cases of the test statistic in (21) that have the usual distributions are:

Sl =
lX

t=1

u (�yt+l ��yt) ; (24)

12



Wl =
lX

t=1

u (�yt+l ��yt)R+t ; (25)

where the �rst one is obtained from the score function al (i) = 1 and the second one (Wilcoxon signed rank statistic)

is obtained with al (i) = i: The following result, which is an immediate corollary to the above Theorem, provides the

�nite-sample distributions of the test statistics (24) and (25).

Corollary 1 (Luger, 2003) Let the model given by (15) hold with Assumptions (22) and (23). Then, under the null

H0 : � = 1;

(i) The statistic Sl de�ned by (24) is distributed according to Bi(l; 0:5).

(ii) The statistic Wl de�ned by (25) is distributed like W (l) =
lX

t=1

iBi; where B1; :::; Bl are mutually independent

uniform Bernoulli variables on f0; 1g :

The sign-based statistics Sl and Wl have the virtues of those in Campbell and Dufour (1997): they have known

�nite-sample distributions, they are robust to departures from Gaussian conditions that underlie many parametric tests,

and they are invariant to unknown forms of conditional heteroscedasticity. However, as pointed out by Luger (2003),

the cost of these procedures is that only half the sample (l = T=2) is used to detect departures from the null. Using

simulation experiments, Luger (2003) argues that this is still less than the cost of the Campbell and Dufour (1997) three-

step approach. In other words, although the procedures proposed by Luger (2003) only use half the sample observations,

their power can be considerably superior to the bounds tests of Campbell and Dufour (1997), especially for alternatives

close to the null.

4 Sign-based tests for multiple regression

In this section, we review several recent sign-based tests that have been proposed for testing the orthogonality between

random variables in the context of linear and non-linear multiple regressions. We distinguish between tests that are valid for

independent and dependent data. We start with point-optimal sign-based tests (hereafter POS test) proposed by Dufour

and Taamouti (2010) for testing the parameters of linear and nonlinear multiple regression models with independent data.

For these tests, we consider in turn two problems. The �rst one consists in testing whether the conditional median of

a vector of observation is zero against a linear regression alternative. The second one tests whether the coe¢ cients of a

possibly nonlinear median regression function have a given value against another nonlinear median regression. We next

discuss the sign-based tests proposed by Coudin and Dufour (2009) in the context of linear multiple regression models

with dependent data.
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4.1 Sign-based tests for independent data

4.1.1 Sign-based tests for testing the zero coe¢ cient hypothesis in linear regressions

We consider the regression model in (1), with f (Xt;�) is taken as a linear function of the parameters of interest:

Yt = X
0

t� + "t ; t = 1; : : : ; n; (26)

where Xt is a k � 1 vector of explanatory variables, � 2 Rk is an unknown parameter vector, and the errors "1; : : : ; "n

are independent conditional on X with

P["t > 0 j X] = P["t < 0 j X] =
1

2
; t = 1; : : : ; n; (27)

where X = [x1; : : : ; xn]
0
is an n� k matrix. Assumption (27) entails that "t has no mass at zero, i.e. P["t = 0 j X] = 0

for all t: Suppose we wish to test the null hypothesis

H0 : � = 0 (28)

against the alternative hypothesis

H1 : � = �1: (29)

Dufour and Taamouti (2010) propose the following POS test for the null hypothesis (28) against the alternative

hypothesis (29). We then have the following result.

Proposition 6 (Dufour and Taamouti, 2010) Under the assumptions (26) and (27), let H0 and H1 be de�ned by

(28)-(29);

SLn(�1) =

nX
t=1

at(�1)u(Yt);

where u(:) is de�ned in equation (11),

at(�1) = ln

�
1� P["t � �X 0

t�1 j X]
P["t � �X 0

t�1 j X]

�
; (30)

and suppose the constant c1(�1) satis�es P [
Pn

t=1 at(�1)u(Yt) > c1(�1)] = � under H0; with 0 < � < 1: Then the test that

rejects H0 when

SLn(�1) > c1(�1) (31)

is most powerful (conditional on X) for testing H0 against H1 among level-� tests based on the signs
�
u(Y1); : : : ; u(Yn)

�0
:

Under H0, the signs u(Y1); : : : ; u(Yn) are i.i.d. according to a Bernoulli Bi(1; 0:5). The distribution of the test

statistic only depends on the weights at(�1) and thus does not involve any nuisance parameter under the null hypothesis.
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In view of the nonparametric nature of assumption (27), this means that tests based on SLn(�1), such as the test given by

(31), are distribution-free and robust against heteroskedasticity of unknown form. It is a nonparametric pivotal function.

Under the alternative hypothesis, however, the power function of the test based on SLn(�1) depends on the form of

the distribution function of "t. An interesting special case is the one where "1; : : : ; "n are i.i.d. according to a N(0; 1)

distribution. Then the optimal test statistic SLn(�1) takes the form:

SL�n(�1) =
nX
t=1

ln

�
�(X 0

t�1)

1� �(X 0
t�1)

�
u(Yt); (32)

where �(�) is the standard normal distribution function.

In view of the above characterization of the distribution of SLn(�1); its distribution can be simulated under the

null hypothesis and the relevant critical values can be evaluated to any degree of precision with a su¢ cient number of

replications. Since the test statistic (32) is a continuous variable, its quantiles are easy to compute. To simulate SL�n(�1)

we �rst generate a sequence fu(yt)gni=1 under the null hypothesis. In particular, we generate a sequence fu("i)g
n
i=1 which

satis�es the condition (27). The variable u("t) takes only two values 0 and 1; so the computation of test statistic SL�n(�1)

reduces to generating a sequence of Bernoulli random variables of given length with subsequent summation and the

corresponding weights. The algorithm for implementing the POS test can be described as follows:

1. compute the test statistic SL�n(�1) based on the observed data, say SL
�
n(�1)

(0);

2. generate a sequence of Bernoulli random variables fu("i)gni=1 satisfying (27);

3. compute SL�n(�1)
(j) using fu("i)gni=1 and the corresponding weights fai(�1)g

n
i=1 ;

4. choose B such that �(B + 1) is an integer and repeat steps 1-3 B times;

5. compute the (1� �)�quantile, say c(�1); of the sequence
�
SL�n(�1)

(j)
	B
j=1

;

6. reject the null hypothesis at level � if SL�n(�1)
(0) � c(�1).

4.1.2 Sign-based tests for testing general full coe¢ cient hypotheses in nonlinear regressions

We now consider the nonlinear regression model in (1):

Yt = f(Xt; �) + "t; t = 1; : : : ; n, (33)

where Xt is an observable k � 1 vector of �xed explanatory variables, f( � ) is a scalar function, � 2 Rk is an unknown

vector of parameters, and the errors "1; : : : ; "n are independent conditional on X with a distribution that satis�es (27).

Here it is not required that the parameter vector � is identi�ed.
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Suppose we wish to test the null hypothesis

H(�0) : � = �0 (34)

against the alternative hypothesis

H(�1) : � = �1. (35)

Dufour and Taamouti (2010) show that a point optimal sign-based test for H(�0) against H(�1) can be constructed as

in Section 4.1.1. They derive the following sign-based test for the null hypothesis H(�0) against H(�1).

Proposition 7 (Dufour and Taamouti, 2010) Under the assumptions (33) and (27); let H(�0) and H(�1) be de�ned

by (34)-(35);

SNn(�0j�1) =
nX
t=1

~at(�0j�1) u (Yt � f(Xt; �0)) ; (36)

where

~at(�0j�1) = ln
�
1� p(Xt; �0; �1 j X)
p(Xt; �0; �1 j X)

�
;

and suppose the constant c1(�0; �1) satis�es P [
Pn

t=1 ~at(�0j�1) u (Yt � f(Xt; �0)) > c1(�0; �1)] = � under H(�0); with

0 < � < 1: Then the test that rejects H(�0) when

SNn(�0j�1) > c1(�0; �1)

is most powerful (conditional on X) for testing H(�0) against H(�1) among level-� tests based on the signs
�
u(Y1 �

f(X1; �0)); : : : ; u(Yn � f(Xn; �0))
�0
:

The test statistic SNn(�0j�1) in (36) depends on a particular alternative hypothesis �1. In practice, the latter

is supposed to be unknown which makes the proposed POS test unfeasible. To overcome this problem, Dufour and

Taamouti (2010) propose an approach (called adaptive approach) to choose the alternative �1 at which the power of POS

test is close to the power envelope. They suggest to use what is known as �split-sample technique�to choose �1 such that

the power of POS test is close to the power envelope. The alternative hypothesis �1 is unknown and a practical problem

consists in �nding its independent estimate. To make size control easier, Dufour and Taamouti (2010) estimate �1 from

a sample which is independent of the one used to compute the POS test statistic. This can be easily done by splitting

the sample. The idea is to divide the sample into two independent parts and use the �rst one to estimate the value of the

alternative and the second one to compute the POS test statistic. For more details about the above adaptive approach

the reader can consult Section 4 of Dufour and Taamouti (2010).

16



Finally, Dufour and Taamouti (2010) have also describe how to build con�dence regions with known signi�cance level

�, say C�(�); for a vector of unknown parameters � and its individual components using the above POS tests. For more

details the reader is referred to their Section 5.

4.2 Sign-based tests for dependent data

Coudin and Dufour (2009) develop �nite-sample and distribution-free sign-based tests and con�dence sets for the para-

meters of a linear regression model, where no parametric assumption is imposed on the noise distribution. In addition

to non-normality and heteroscedasticity, their set-up allows for nonlinear serial dependence of unknown forms. To build

their sign tests, they �rst consider a mediangale structure� the median-based analogue of a martingale di¤erence� under

which they show that the signs of mediangale sequences follow a nuisance-parameter-free distribution despite the presence

of non-linear dependence and heterogeneity of unknown form. The mediangale assumption is crucial for the construction

of their tests. They distinguish between weak and strict conditional mediangale. Roughly speaking, the process of the

error term " = f"t : t = 1; 2; :::g is a weak mediangale conditional on X i¤:

P ["1 < 0 jX ] = P ["1 > 0 jX ] and P ["t < 0 j"1; :::; "t�1;X ] = P ["t > 0 j"1; :::; "t�1;X ] ; for t > 1: (37)

The de�nition of weak conditional mediangale allows "t to have a discrete distribution with a non-zero probability mass

at zero. A more restrictive version, called strict conditional mediangale, imposes a zero probability mass at zero. Then,

P ["1 < 0 jX ] = P ["1 > 0 jX ] = 0:5 and P ["t < 0 j"1; :::; "t�1;X ] = P ["t > 0 j"1; :::; "t�1;X ] = 0:5, for t > 1.

Coudin and Dufour (2009) show that for the regression model in (26) and under strict conditional mediangale as-

sumption on the process "; the residual sign vector

s (Y �X�) = [s (Y1 �X 0
1�) ; :::; s (Yn �X 0

n�)]
0

has a nuisance-parameter-free distribution (conditional on X), i.e. it is a �pivotal function�. This implies that its distri-

bution is easy to simulate from a combination of n independent uniform Bernoulli variables. Consequently, any statistic

of the form T = T (s(Y �X�); X) is pivotal, conditional on X. Once the form of T is speci�ed, the distribution of the

statistic T is totally determined and can also be simulated.

If we wish to test H0 : � = �0 against H1 : � 6= �0, than using the above result and under H0; s (Yt �X 0
t�0) = s ("t) ;

t = 1; :::; n; and conditional on X,

T (s(Y �X�0); X) � T (Sn; X) ;
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where Sn = (s1; :::; sn) and s1; :::; sn
i:i:d:� Bernoulli(1=2): This means that a test with level � rejects H0 when

T (s(Y �X�0); X) > cT (X;�);

where cT (X;�) is the (1� �)-quantile of the distribution of T (Sn; X). Coudin and Dufour (2009) extend the above result

to the distributions with a positive mass at zero; see their Proposition 3.2.

As a particular case of T (s(Y �X�0); X); they consider the following test statistic:

DS (�0;
n) = s(Y �X�0)0X
n (s(Y �X�0);X)X0s(Y �X�0);

where 
n (s(Y �X�0);X) is a p � p weight matrix that depends on the constrained signs s(Y �X�0) under H0. They

argue that the weight matrix 
n (s(Y �X�0);X) provides a standardization that can be useful for power considerations

as well as to account for dependence schemes that cannot be eliminated by the sign transformation. Furthermore, statistics

of the form DS (�0;
n) include as special cases the ones studied by Koenker and Bassett (1982) and Boldin et al. (1997).

In other words, by taking 
n = Ip and 
n = (X0X)�1, we get:

SB(�0) = s(Y �X�0)0XX0s(Y �X�0) = kX0s(Y �X�0)k
2
;

SF (�0) = s(Y �X�0)0X(X0X)�1X0s(Y �X�0) = kX0s(Y �X�0)k
2
M :

Boldin et al. (1997) show that SB(�0) and SF (�0) can be associated with locally most powerful tests in the case of i.i.d.

disturbances under some regularity conditions on the distribution function. Coudin and Dufour (2009) have extended the

proof of Boldin et al. (1997) to disturbances that satisfy the mediangale property and for which the conditional density

at zero is the same ft(0 jX ) = f(0 jX ), t = 1; :::; n. They provide the following form of the locally optimal test statistic

which is associated with the mean curvature, i.e. the test with the highest power near the null hypothesis according to a

trace argument.

Proposition 8 (Coudin and Dufour, 2009) In model (26), suppose the mediangale Assumption (37) holds, and the

disturbances "t are heteroscedastic with conditional densities ft(: jX ), t = 1; 2; :::, which are continuously di¤erentiable

around zero and such that f 0t(: jX ) = 0. Then, the locally optimal sign-based statistic associated with the mean curvature

is

gSB(�0) = s(Y �X�0)0 eXeX0s(Y �X�0);

where eX = diag (f1(: jX ); :::; fn(: jX ))X:

When fi(: jX )�s are unknown, the optimal statistic is not feasible. In this case, the optimal weights must be replaced

by approximations, such as weights derived from the normal distribution.
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Coudin and Dufour (2009) discuss the implementation of the above test in the case of linearly dependent processes.

In the case of discrete distribution and to reach the nominal level when using the above test, they propose to use the

technique of Monte Carlo tests with a randomized tie-breaking procedure.

Finally, Coudin and Dufour (2009) discuss how to build con�dence sets for the vector � or for its individual components.

For more details the reader is referred to their Section 4.

5 Applications

5.1 Testing the long-horizon predictability of stock returns

One of the main issues of stock return predictability regressions in �nance is the persistent or near-nonstationary behavior

of the regressors such as dividend-price ratio, which leads to well known problems of size distortion in predictability

testing, see Mankiw and Shapiro (1986). This issue has generated substantial interest in both econometrics and empirical

�nance; see Cavanagh, Elliott and Stock (1995); Stambaugh (1999); Campbell and Yogo (2006); Jansson and Moreira

(2006), among many others.

To overcome this problem, Liu and Maynard (2007) have recently suggested to use the sign and signed rank tests

of Campbell and Dufour (1995, 1997). Their motivation is that the sign-based tests provide correct size without any

modeling assumptions whatsoever on the regressor. In addition, these tests o¤er exact �nite sample inference under weak

conditions.

However, Liu and Maynard (2007) point out that one practical limitation of �nite sample sign and signed rank tests

is that they require white noise assumptions on the dependent variable under the null hypothesis, which rules out the

direct application of these robust tests to long-horizon predictability regressions. The reason that sign tests cannot be

directly applied to long-horizon regressions is that the return horizon in these regressions (e.g. 4 years) typically exceeds

the sampling frequency (e.g. 1 month). Thus, the returns on the left-hand side (LHS) of the predictive regression overlap

for multiple periods thereby violating the required white noise assumptions.

To make the sign and signed rank tests applicable to long-horizon predictability regressions, Liu and Maynard (2007)

suggest to rearrange the predictive regression considered earlier in the �nance literature such as in Jegadeesh (1991) and

Cochrane (1991). The latter show that the regression of a long-horizon return on a single period predictor may be replaced

by a regression of a one period return on a long-horizon regressor without fundamentally altering the interpretation of

the null hypothesis. Thus, replacing a long-horizon LHS variable with a long-horizon right-hand side (RHS) variable one

recover the white noise assumption on the LHS variable under the null hypothesis. Formally, Liu and Maynard (2007)
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�rst consider the following traditional predictive regression:

Y kt+k = � (k) + � (k)Xt + "
k
1;t+k; (38)

where Y kt+k = Yt+1 + :::+ Yt+k de�nes the k-period return and residual, "
k
1;t+1, satis�es

"k1;t+1 = "1;t+1 + :::+ "1;t+k

when the null hypothesis of unpredictability (H0 : � (k) = 0) is true. Since in practice Xt is typically a persistent regressor

and its process might present some correlation with the error term "k1;t+1; this a¤ects the statistical behavior of the OLS

estimator �̂ (k) and leads to invalid inference when using the classical t-test or F-test; see Cavanagh, Elliott and Stock

(1995); Stambaugh (1999); Campbell and Yogo (2006); Jansson and Moreira (2006) among many others.

Because of the persistence in Xt and the loss of white noise assumption on the dependent variable Y kt+k under the

null hypothesis, instead of employing the sign and signed rank methods to test (38) directly, Liu and Maynard (2007)

instead follow an approach similar to that of Jegadeesh (1991) and Cochrane (1991) who base their test of � (k) = 0 on a

simple rearrangement of (38) under the null hypothesis, that avoids the serial correlation in the residuals. They de�ne a

long-horizon version of the regressor Xt as:

Xk
t = Xt�k+1 +Xt�k+2 + :::+Xt

and they show that when Xt is stationary, the long-horizon non-predictability restriction � (k) = 0 is equivalent to the

orthogonality condition cov(Y kt+k; Xt) = 0 and

cov(Y kt+k; Xt) = cov(Yt+1; X
k
t );

where the latter covariance is the numerator of the slope coe¢ cient 
 (k) in the regression of Yt+1 on Xk
t :

Yt+1 = 
0 (k) + 
 (k)X
k
t + vt+1: (39)

Thus, the restriction of the null hypothesis, � (k) = 0 in (38) is equivalent to the null restriction that 
 (k) = 0 in (39).

Consequently, Liu and Maynard (2007) test the null hypothesis � (k) = 0 using the following sign and signed rank test

statistics:

Skn =
n�1X
t=1

u
�
(Yt+1 �m0)X

k�
t

�
; SRkn =

n�1X
t=1

u
�
(Yt+1 �m0)X

k�
t

�
R+t+1 (m0) ;

where the functions u [:] and R+t+1 are de�ned in the previous sections, m0 is the unconditional median for Yt; and

Xk�
t � Xk

t �medt1
�
Xk
t

�
is the value of Xk

t centred about the sample median of X
k
1 ; :::; X

k
t : Campbell and Dufour (1997)

argue that centering of this type is known to improve test power, but does not a¤ect size as medt1
�
Xk
t

�
is predetermined.
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The �nite sample distributions of Skn and SR
k
n which one can use to make a decision about H0 are de�ned in Campbell

and Dufour (1997).

Using the one-month treasury bill and the dividend-price ratio as predictors of stock returns, with return horizons

ranging from one-month to four years, Liu and Maynard (2007) con�rm the existing evidence of stock return predictability

using the treasury bill at short to medium horizons, but �nd no signi�cant evidence of predictability at either short or

long-horizons employing the dividend-price ratio as a predictor.

5.2 Testing the mean-variance e¢ ciency

Using the results of Luger (2003) discussed above, Gungor and Luger (2009) develop exact distribution-free sign-based

tests of unconditional mean-variance e¢ ciency. To derive their tests, Gungor and Luger (2009) consider the following

traditionally used excess-return system of equations:

rit = �i + �irpt + "it; for t = 1; :::; T and i = 1; :::; N , (40)

where rit and rpt are the time-t returns on asset i and portfolio p, respectively, in excess of the riskless rate, and "it is a

random error term for asset i in period t with the property that E ["it] = 0:

The mean-variance e¢ ciency condition that states that

E [rit] = �irpt; i = 1; :::; N; (41)

can be assessed by testing:

H0 : �i = 0; i = 1; :::; N; (42)

in the regression equation (40). This null hypothesis follows from a comparison of the unconditional expectation in (41)

to the mean-variance e¢ ciency condition in equation (40). If H0 does not hold, it would be possible to obtain a higher

expected return with no higher risk, contradicting the hypothesis that portfolio p is mean-variance e¢ cient.

To test H0 using exact sign-based tests, Gungor and Luger (2009) �rst consider the following transformation of the

regression model in (40)

rit
rpt

=
�i
rpt

+ �i +
"it
rpt
;

where the slope parameter �i is viewed now as an intercept. Thereafter, the nuisance parameter �i can be eliminated

from the inference problem via the long di¤erences, and this leads to the following new regression:

d
(T2 )
t = �ixpt +

 
"it+T

2

rp;t+T
2

� "it
rpt

!
; (43)
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where the new dependent variable d
(T2 )
t = ri;t+T

2
=rp;t+T

2
�rit=rpt and the new independent variable xpt =

�
rpt � rp;t+T

2

�
=

rptrp;t+T
2
. Using the results in Luger (2003) and based on the regression model in (43), Gungor and Luger (2009) suggest

to test H0 using the test statistics

SB = max
1�i�N

jSij ; WB = max
1�i�N

jSRij ;

where the sign-based statistics Si =
T=2X
t=1

u

�
d
(T2 )
t xpt

�
and SRi =

T=2X
t=1

u

�
d
(T2 )
t xpt

�
R+t . They also consider the following

asymptotic versions of the test statistics SB and WB that are based on the normally distributed approximations of the

statistics Si and SRi :

SB� = max
1�i�N

jS�i j ; WB� = max
1�i�N

jSR�i j ; (44)

where

S�i =
Si � T=4p

T=8
; SR�i =

SRi � T (T + 2)=16p
T (T + 2) (T + 1) =96

: (45)

As shown in Gungor and Luger (2009), the maximal statistics in (44) correspond to the ones with the smallest p-values,

since the individual test statistics in (45) are identically distributed. The motivation behind using the maximal statistics

is because H0 in (42) can be viewed as the intersection of the N sub-hypotheses H0i : �i = 0; i = 1; :::; N . Consequently,

the decision rule is then built from the equivalence that H0 is false if any of its sub-hypotheses is false; i.e., one rejects

H0 if any one of the separate tests, say S�1 ,..., S
�
N , rejects it.

Finally, Gungor and Luger (2009), based on the results of Sidak (1967), argue that the asymptotic marginal null

distributions of SB� and WB� satisfy the inequalities

P
�
SB� � !��=2

�
� (1� �) and P

�
WB� � !��=2

�
� (1� �) ; (46)

where !��=2 is the upper ��=2 critical point of the standard normal distribution and �� = 1 � (1 � �)1=N . The above

inequalities in (46) indicate that asymptotically the level of the test of H0 that compares either SB� or WB� to !��=2 is

equal to �. This means that if the ordinary two-sided p-value of SB� or WB� is, say pv, then the multiplicity-adjusted

two-sided p-value is calculated from the equation pv� = 1� (1� pv)N .

Finally, an extension of the mean-variance e¢ ciency sign-based test of Gungor and Luger (2009) can be found in

Gungor and Luger (2013). The latter provide a sign-based statistical procedure that allows one to test the beta-pricing

representation of linear factor pricing models, instead of the single market factor model in (40). Exploiting results from

Coudin and Dufour (2009), Gungor and Luger (2013) obtain tests of multi-beta pricing representations that relax three

assumptions of the prominent mean-variance e¢ ciency test of Gibbons, Ross, and Shanken (1989): (i) the assumption

of identically distributed disturbances, (ii) the assumption of normally distributed disturbances, and (iii) the restriction
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on the number of assets. A very attractive feature of Gungor and Luger�s (2013) test is that it is applicable even if the

number of assets is greater than the length of the time series. This stands in sharp contrast to the Gibbons, Ross, and

Shanken�s (1989) test and other approaches that are based on usual estimates of the disturbance covariance matrix. It is

worth mentioning that, the main drawback of Gibbons, Ross, and Shanken�s (1989) approach is that to avoid singularities

and be computable, this test requires the size of the cross section (number of assets) to be less than that of the time series.

Consequently, the power of this test and others is negatively a¤ected by the number of assets under consideration. In other

words, the number of covariances that need to be estimated grows rapidly with the number of included assets. As a result,

the precision with which this increasing number of parameters can be estimated deteriorates given a �xed time-series

length, which decreases the power of the tests. In contrast, a simulation experiment that compares the performance of the

Gungor and Luger�s (2013) test with several standard tests, including Gibbons, Ross, and Shanken�s (1989) test, shows

that the power of Gungor and Luger�s (2013) test increases as the cross section becomes larger.

6 Conclusion

We have reviewed several �nite-sample sign-based tests for testing the orthogonality between random variables in the

context of linear and nonlinear regression models. The sign tests are very useful when the data at the hands contain few

observations, are robust against heteroskedasticity of unknown form, and can be used in the presence of non-Gaussian

errors. These tests are also �exible since they do not require the existence of moments for the dependent variable and

there is no need to specify the nature of the feedback between the dependent variable and the current and future values

of the independent variable. Finally, we discussed several applications where the sign-based tests can be used to test for

multi-horizon predictability of stock returns and for the market e¢ ciency.
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