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We present a comprehensive derivation of linear perturbation equations for different matter species,
including photons, baryons, cold dark matter, scalar fields, and massless and massive neutrinos in the
presence of a generic conformal coupling. Starting from the Lagrangians, we show how the conformal
transformation affects the dynamics. In particular, we discuss how to incorporate consistently the scalar
coupling in the equations of the Boltzmann hierarchy for massive neutrinos and the subsequent fluid
approximations. We use the recently proposed K-mouflage model as an example to demonstrate the
numerical implementation of our linear perturbation equations. K-mouflage is a new mechanism to
suppress the fifth force between matter particles induced by the scalar coupling, but in the linear regime the
fifth force is unsuppressed and can change the clustering of different matter species in different ways. We
show how the cosmic microwave background, lensing potential and matter power spectra are affected by
the fifth force and find ranges of K-mouflage parameters whose effects could be seen observationally. We
also find that the scalar coupling can have the nontrivial effect of shifting the amplitude of the power spectra
of the lensing potential and density fluctuations in opposite directions, although both probe the overall
clustering of matter. This paper can serve as a reference for those who work on generic coupled scalar field
cosmology or those who are interested in the cosmological behavior of the K-mouflage model.
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I. INTRODUCTION

The confirmation that our Universe is experiencing a
phase of accelerated expansion (see, e.g., [1–3]) has
provoked extensive research aiming to find out an under-
lying driving force. The majority of models proposed so far
involve one or more scalar fields, which experience self-
interactions either through a self-potential, such as the
quintessence model (e.g, [4,5]), or via nonstandard kinetic
terms, such as the K-essence model (e.g., [6,7]). If a scalar
field is present, it is both theoretically and phenomeno-
logically interesting to assume that it interacts with either
matter or curvature, considerations of which have led to the
developments of coupled quintessence (e.g., [8]) and
extended quintessence (e.g. [9]) models, with both types
of models having a standard kinetic term for the scalar field.
The existence of a scalar field coupling to matter or

curvature can be problematic, because the scalar field can
mediate a so-called fifth force between matter particles, in

conflict with local gravity tests (e.g., [10]). To avoid this
problem, it is often assumed that either the scalar field does
not interact with baryonic components of matter, such as in
the coupled dark energy model, or there is some mecha-
nism to suppress the fifth force where gravity experiments
are carried out. The latter idea may sound odd, but it can be
a natural consequence of the nonlinearity of the self-
interacting potential of the scalar field. Some well known
examples of such ‘screening mechanisms’ are the chame-
leon [11], dilaton [12] and symmetron [13] mechanisms. In
these models, the interaction of matter can give a heavy
mass to the scalar field [11], or trap it to values that make
the interaction strength very weak [12,13], in regions of
high matter density. In these models the kinetic term of the
scalar field is assumed to be standard.
Nonstandard (noncanonical) kinetic terms can also

naturally lead to suppression of the fifth force, such as
in the case of the Dvali-Gabadadze-Poratti (DGP) [14] and
the Galileon [15,16] models, where the matter density, or
equivalently ∇2Φ, is high. This is known as the Vainshtein
mechanism [17]. Another example of a coupled scalar field
with a nonstandard kinetic term is the K-mouflage model
[18–20], which is a K-essence-type scalar field coupled
to matter.
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The idea of K-mouflage offers a novel perspective on the
screening of scalar interactions in dense environments. It
differs from the chameleon mechanism, for which the
screening takes place in regions where the Newtonian
potential is larger than a threshold value determined by the
scalar field itself. It is also different from the Vainshtein
mechanism that operates in Galileon models, in which the
screening occurs in regions of large scalar curvature.
Instead, in the case of K-mouflage, the screening happens
in regions where the gravitational acceleration is large
enough. The phenomenology of the K-mouflage screening
can, therefore, be qualitatively different from that of the
chameleon and Vainshtein screenings and has been studied
less intensively so far (see, e.g., Sec. II of [18] for a brief
comparison of these three types of screening mechanisms).
In the static regime, the existence of a K-mouflage

radius, below which the screening happens, and of a static
solution of the Klein-Gordon equation, depends crucially
on the form of the Lagrangian, M4KðσÞ, where
σ ≡ ð∇φÞ2=2M4, M is the dark energy scale and KðσÞ
is a nonlinear function (cf. Eq. (39) below); if KðσÞ ¼ σ,
the kinetic term becomes canonical. K-mouflage models
can also be extended to nonstatic cosmological back-
grounds for a restricted class of K functions. Healthy
K-mouflage models are those where the screening can be
achieved in the static regime and cosmological solutions
can be defined down to arbitrarily early cosmic times. This
implies that the potentials defined asW�ðyÞ≡ yK0ð�y2=2Þ
are monotonic and go to infinity at large positive y.1

Moreover, the value of K0ð−y2=2Þ must be large for large
enough y2 to suppress the scalar fifth force inside the K-
mouflage radius—the 0 above means a derivative with
respect to the argument of K (see [21] for more details).
Cosmologically, the effects of the scalar interaction

appear both at the background and perturbation levels.
At the background level [18], healthy K-mouflage models
all cross the phantom divide in the recent past and the
effective energy density of the scalar becomes negative in
the distant past. This does not lead to instabilities as the
Hubble rate squared is always positive: the K-mouflage
field is subdominant, i.e., cosmologically screened, in
dense cosmological densities. At late times, the growth
of density perturbations is changed as the effective gravi-
tational strength can either be increased (K0 > 0) or
decreased (K0 < 0) in a scale independent way [19].
Examples of healthy K-mouflage models are polynomials
whose higher degree monomial, K0σ

m, is such that K0 > 0
and m is an odd integer, where K0 and m are model
parameters [see Eq. (127)]. Models with K0 < 0 have a
ghostlike behavior and require a contrived UV cutoff at a
rather low-energy scale. In this paper, we will focus on
cases with either m ¼ 2 or m ¼ 3, and K0 of both signs.

The reader should bear in mind that this is done for
illustration purposes. Only the case with m ¼ 3 and K0 >
0 is both healthy and ghost free (in both the cosmological
regime and the small-scale static regime).
In this paper, we numerically study the evolution of

linear perturbations in the K-mouflage model. One of our
main goals is to analyze the model predictions for observ-
ables such as the CMB temperature, CMB lensing, and
matter power spectra.
We shall start by deriving the perturbation equations in

the presence of a conformally coupled scalar field.
Although some of these equations have been derived in
the past and are scattered in the literature, we feel that a
more complete and consistent derivation is needed, for the
following reasons:

(i) In cosmological studies, we are often interested in a
universal coupling of the scalar field with all matter
species, and thus the effect of the coupled scalar field
must be consistently included for all these species.
We shall do this from the Lagrangian level.

(ii) some matter species, e.g., massive neutrinos, have
not been extensively studied in the presence of a
scalar coupling, although the role played by massive
neutrinos in cosmology is increasingly becoming a
topic of interest. There are previous works along this
direction, (e.g., [22,23]), but there the neutrino
perturbation equations are derived in the synchro-
nous gauge rather than in a more general gauge-
invariant formalism, and these works are focused on
a coupling between the scalar field and massive
neutrinos only. A subtler point relates to the neutrino
equations in the so-called fluid approximation,
which are not present in those works—this is not
necessarily problematic, but we should bear in mind
that standard Boltzmann codes, such as the one used
in this paper and in Ref. [22], usually silently switch
to this approximation at late times for efficiency
considerations, and inconsistency would arise if
these approximation equations are not modified
accordingly to take into account the scalar field
coupling. Here we will present the modified equa-
tions in the fluid approximation for neutrinos.

To obtain cosmological predictions, we have modified
the CAMB code [24] to solve our linear perturbation
equations. In this paper, it is not our goal to perform a
thorough exploration of the parameter space of the
K-mouflage model. Instead, we shall focus on a number
of illustrative parameter values to try to build intuition
about the regions of the parameter space that are more
likely to be ruled out or, alternatively, provide a good fit to
the data. We shall pay particular attention to the potential
degeneracies between the K-mouflage parameters and the
mass of active neutrinos.
The present paper is organized as follows. In Sec. II we

will describe the conformal transformation between the
1Here, y ¼ ffiffiffiffiffiffiffiffiffi�2σ

p
and note that σ ∝ −ð~∂φÞ2=2 < 0, where ~∂

denotes the spatial derivative, in the static case.
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Jordan and Einstein frames, and apply this to the
Lagrangian densities of photons, neutrinos (massless and
massive), classical particles (baryonic and cold dark mat-
ter), and general scalar fields to derive their respective
conservation equations in the Einstein frame, where our
calculations are done. The scalar field is a K-mouflage field
for this work, although some of our derivations hold
generically for any coupled scalar field. In Sec. III we
present the covariant and gauge invariant linear perturba-
tion equations for standard gravity and, using the results of
Sec. II, derive the perturbation equations for matter species,
with particular attention paid to the case of massive
neutrinos. In Sec. IV we present and discuss our numerical
results. We start by describing the details of our numerical
setup and then discuss the model predictions for the CMB
temperature, CMB lensing and matter power spectra.
Finally, we summarize our findings in Sec. V, where we
also briefly compare the K-mouflage model with other
popular modified gravity models.

II. EQUATIONS IN CONFORMALLY COUPLED
SCALAR FIELD COSMOLOGY

A. The general field equations

The Einstein Hilbert action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PlRþ LφðφÞ
�
þ Sm; ð1Þ

with

Sm ¼
X
i

Z
d4x

ffiffiffiffiffiffi
−~g

p
~Lmð ~ψ ðiÞ

m ; ~gμνÞ; ð2Þ

where g (~g) is the determinant of the Einstein (Jordan)
frame metric tensor gμν (~gμν), ~Lm is the matter Lagrangian
density in the Jordan frame and ~ψ ðiÞ

m symbolically denotes
the ith species of matter fields. The Jordan and Einstein
frame metric tensors are related by a conformal
transformation,

~gμν ¼ A2ðφÞgμν; ð3Þ

with A a function of the scalar field φ. Above and
throughout, Mpl is the reduced Planck mass, and it is
related to Newton’s constant G by M−2

Pl ¼ 8πG.
It can be shown straightforwardly that the Christoffel

symbols in the two frames are related by

Γλ
μν ¼ ~Γλ

μν − ½δλμðlnAÞ;ν þ δλνðlnAÞ;μ − gμνðlnAÞ;λ�; ð4Þ

where a comma denotes the partial derivative
φ;μ ≡ ∂φ=∂xμ, and φ;μ ≡ gμνφ;ν.
In the Jordan frame, matter is uncoupled to the scalar

field and the energy-momentum tensor for a given species

(the superscript ðiÞ is dropped to lighten the notation) is
defined as

~Tμν ¼ −
2ffiffiffiffiffiffi
−~g

p δ½ ffiffiffiffiffiffi
−~g

p
~Lm ~ψð; ~gμνÞ�
δ~gμν

; ð5Þ

which satisfies the following conservation equation,

~∇ν
~Tν

μ ¼ 0; ð6Þ

where ~∇ is the covariant derivative compatible with the
metric ~gμν. The lack of a coupling between the scalar field
and matter in the Jordan frame is an assumption of this
paper. In practice, if all matter species are coupled to the
scalar field conformally in the same way in the Einstein
frame, as we assume here, one could always redefine the
Jordan-frame metric to remove the coupling in the latter.
Theories involving disformal couplings or different cou-
plings for different matter species can be more complicated
and will not be covered here.
Similarly, the energy-momentum tensor defined in the

Einstein frame is

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp

Lmðψ ; AðφÞ; gμνÞ�
δgμν

; ð7Þ

which satisfies the following (non)conservation equation,

∇νTν
μ ¼

d lnAðφÞ
dφ

T∇μφ; ð8Þ

where ∇ is the covariant derivative compatible with the
metric gμν and T ¼ Tμ

μ. The energy-momentum tensor Tμν

is related to ~Tμν by2

Tμ
ν ¼ A4ðφÞ ~Tμ

ν; ð9Þ

where indices for (un)tilded quantities are raised and
lowered by the (un)tilded metric. One can check Eq. (8)
by using Eqs. (4), (6), and (9).
In the next few subsections, wewill look at the individual

matter species and see how the above equations hold for
each of them.

B. Photons

In the Jordan frame, the action for photons is

Sγ ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p 1

4α
~Fμν ~Fμν; ð10Þ

2This can be done by noticing that in Eqs. (5) and (7) the terms
in the brackets are the same because the matter action is invariant
under the conformal transformation. Then by using Eq. (3), it is
straightforward to show that Tμν ¼ A2ðφÞ ~Tμν.
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where α is the gauge coupling constant. To change this to
the Einstein frame, we define a new gauge field strength as

Fμν ≡ ~Fμν;

Fμν ≡ gμαgνβFαβ ¼ A4ðφÞ~gμα ~gνβ ~Fαβ ¼ A4ðφÞ ~Fμν; ð11Þ

and the above action can be reexpressed as

Sγ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

4α
FμνFμν; ð12Þ

leaving α unchanged.
From the above actions, using Eqs. (5) and (7), one

obtains the energy-momentum tensors for photons in the
two frames,

~Tμ
ν ¼ ~Fμλ ~Fνλ −

1

4
δμν ~F

αβ ~Fαβ; ð13Þ

Tμ
ν ¼ FμλFνλ −

1

4
δμνFαβFαβ; ð14Þ

so that Eq. (9) is satisfied as expected.
In the case of photons, note that the trace T ≡ Tμ

μ ¼ 0 in
Eq. (8), so that Tμν is conserved even in the Einstein frame.

C. Neutrinos

Neutrinos are fermions and their action in the Jordan
frame can be written as

Sν ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p
½i ~̄Ψ~γμ ~Dμ

~Ψ − ~m ~̄Ψ ~Ψ�; ð15Þ

where ~Ψ denotes a Dirac fermion field, ~̄Ψ its conjugate, ~m
its mass, and ~γμ are the Dirac matrices satisfying

~γμ ~γν þ ~γν ~γμ ¼ 2~gμνI; ð16Þ

with I being the identity matrix, and

~Dμ ¼ I
∂
∂xμ þ

1

4
~ωλρμ ~γ

λ ~γρ ð17Þ

is the covariant derivative of a spinor with respect to the
connection ~ωλρμ.
Transforming from the Jordan to the Einstein frame,

from the above relations we have

γμ ¼ AðφÞ~γμ; ð18Þ

ωλρμγ
λγρ ¼ ~ωλρμ ~γ

λ ~γρ − 6½lnAðφÞ�;μI: ð19Þ

If we further consider the following definitions,

Ψ ¼ A3=2ðφÞ ~Ψ; ð20Þ

m ¼ AðφÞ ~m; ð21Þ

then the above fermion action can be recast in canonical
form as

Sν ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½iΨ̄γμDμΨ −mΨ̄Ψ�: ð22Þ

Therefore, if we assume, rather reasonably, that in the
Jordan frame the bare mass of the fermionic particle, ~m, is a
constant, then in the Einstein frame the mass depends on
the scalar field φ, and changes in time and space via
Eq. (21). Since the field redefinitions do not affect the
spinor indices of fermions, the same reasoning applies to
Majorana spinors. Majorana masses are thus also rescaled
by a factor AðφÞ in the Einstein frame.
Let us consider now the energy-momentum tensor of

neutrinos on a FRW background. In the Jordan and Einstein
frames, the line elements for the background universe can
be written, respectively, as

d~s2 ¼ ~a2ðdt2 − dx2Þ; ð23Þ

ds2 ¼ a2ðdt2 − dx2Þ; ð24Þ

where ~a and a are the scale factors in these two frames, and
they satisfy

~a ¼ AðφÞa; ð25Þ
according to Eq. (3). τ and x are respectively the conformal
time and comoving coordinates, which are invariant under
the conformal transformation. Note that for the physical
time t and coordinate r we have instead d~t ¼ AðφÞdt
and d~r ¼ AðφÞdr.
Without loss of generality, consider active neutrinos

whose mass can reach up values of a few eV [25,26]. At
early times, before decoupling from other species, these
neutrinos satisfy the equilibrium Fermi-Dirac (FD) distri-
bution:

f0 ¼ f0ðϵÞ ¼
gs
ℏ3

1

1þ exp ðϵ=kBTaÞ
; ð26Þ

where ℏ is the reduced Planck constant, kB is the
Boltzmann constant, T is the equilibrium temperature at
scale factor a, gs is the number of fermionic degrees of
freedom, and

ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðmaÞ2

q
ð27Þ

is the energy of a neutrino particle with mass m and
comoving momentum q. Note that we have not specified
which frame is used in the above expression, but instead
tried to make general statements (hence no tildes are used
until we start talking about frames below).
Because neutrinos are highly relativistic when they

decouple, then we have ϵ ≈ q ≫ ma, and so the distribu-
tion before decoupling can be written as
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f0ðqÞ ¼
gs

1þ expðqÞ ; ð28Þ

in which, and in what follows, the unit ℏ ¼ 1 is used and q
is expressed in units of kBTa. In a unperturbed universe Ta
is a constant equal to the temperature today, T0.
The decoupling of neutrinos could be approximately

considered as an instantaneous process, in which case the
equilibrium distribution above is preserved after neutrino
decoupling [27], since the momentum and the temperature
redshift in the same way. We neglect any possible effects of
a scalar coupling on the neutrino decoupling, which
happens at very early times when neutrinos are highly
relativistic so that the scalar field is essentially decoupled
from it (though the neutrino mass could still be time
varying).
In a perturbed Universe, f is no longer a strict FD

distribution, but instead can have time and space depend-
ences:

fðx;q; tÞ ¼ f0ðqÞ½1þΨðx;q; tÞ�
¼ f0ðqÞ½1þΨðx; q;n; tÞ�; ð29Þ

in which Ψ (not to be confused with the fermion field
above) denotes the deviation from the FD distribution. In
addition to the spatial and time dependences, f also
depends on q, in particular its direction n.
The components of the energy-momentum tensor are

given by

T0
0 ¼ a−4

Z
dΩdqq2ϵf0ðqÞ½1þΨðx; q;n; tÞ�; ð30Þ

T0
i ¼ a−4

Z
dΩdqq3nif0ðqÞΨðx; q;n; tÞ; ð31Þ

Ti
j ¼ −a−4

Z
dΩdq

q4

ϵ
ninjf0ðqÞ½1þΨðx; q;n; tÞ�; ð32Þ

in which ni is the unit vector in the ith direction and dΩ is
the solid angle of the volume element in momentum space,
d3q. One important observation here is that, ϵ in these
expressions depends on the combination am ¼ ~a ~m, such
that the integrations above are the same in both the Jordan
and the Einstein frames. Consequently, Eq. (9) is satisfied
for both massive and massless neutrinos (as it should be),
because ~ϵ ¼ ϵ, and the only transformation of Tμ

ν between
the Einstein and Jordan frames in the above equations is
through the scale factor a therein.
Recall that Tμ

ν is not conserved in the Einstein frame,
even though it has the same functional form as ~Tμ

ν (though
with the quantities expressed in the Einstein frame). This is
because in this frame the mass of the neutrinos depends
explicitly on φ [cf. Eq. (21)]. For massless neutrinos, on the

other hand, due to the vanishing trace of the energy-
momentum tensor, we have that ~∇ν

~Tν
μ ¼ ∇νTν

μ ¼ 0.

D. Dark matter and baryons

In the context of cosmological structure formation, it is
reasonable to treat cold dark matter particles and baryons as
free (collisionless) point masses at the microscopic level,
and the Lagrangian is given by ~L ¼ − ~Γ ~m, where
~Γ≡ d~s=dτ. In the Jordan frame, the action for a classical
point particle is given by Sm ¼ R

~md~s ¼ R
~Ldτ and can be

re-expressed as

Sm ¼ −
Z

d4x ~m
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gμν

dxμ

dτ
dxν

dτ

r
δð3Þðx − yiÞ; ð33Þ

in which ~m stands generally for the bare mass of the
particles, and the Dirac δ function reflects the fact that the
point mass is located at position yi. In this expression, we
have assumed that the system contains N particles for
illustration purposes.
In the Einstein frame, the action structure remains the

same, but must be expressed in terms of the metric gμν and a
redefined mass,

Sm ¼ −
Z

d4xm
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dxμ

dτ
dxν

dτ

r
δð3Þðx − yiÞ; ð34Þ

where m≡ AðφÞ ~m. As in the case of massive neutrinos, in
the Einstein frame the particle mass depends on the scalar
field and therefore can vary in both space and time.
By applying Eqs. (5) and (7), one finds the energy-

momentum tensor in the two frames as

~Tμ
νðxÞ ¼

~mffiffiffiffiffiffi
−~g

p
XN
i¼1

�
~gαβ

dxα

dτ
dxβ

dτ

�−1=2

× ~gνλ
dxμ

dτ
dxλ

dτ
δð3Þðx − yiÞ; ð35Þ

Tμ
νðxÞ ¼

mffiffiffiffiffiffi−gp
XN
i¼1

�
gαβ

dxα

dτ
dxβ

dτ

�−1=2

× gνλ
dxμ

dτ
dxλ

dτ
δð3Þðx − yiÞ: ð36Þ

Aquick inspection confirms that the above equations satisfy
Eq. (9). Note that the energy-momentum tensor has mass
dimension four as expected, as the three-dimensional Dirac
function δð3ÞðxÞ has mass dimension four.
Equations (35) and (36) hold for a number of discrete

point particles, while in the real world cold dark matter
and baryons are usually collectively treated as fluids on
macroscopic scales. To this end, the standard practice is to
perform a volume average in microscopically large but
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macroscopically small volumes, and the resulting energy-
momentum tensor describes an effective fluid. The relevant
perturbed equations will be derived in Secs. III C 1
and III C 2.
In the Einstein frame, although the particle number of

nonrelativistic species is conserved, their energy-momentum
tensor is not, because of thevarying particlemass induced by
the scalar coupling [cf. Eq. (21)]. As a result, it is convenient
to separate the effects of the varying mass by writing the
energy-momentum tensor for matter as

Tμ
ν ≡ AðφÞT̂μ

ν; ð37Þ

so that T̂μ
ν is conserved at the background level. This can be

checked by substituting the above relation into Eq. (8)
to get

∇μT̂
μ
ν ¼ −

d lnAðφÞ
dφ

ðT̂μ
ν − T̂δμνÞ∇μφ; ð38Þ

where the covariant derivatives are still taken with respect to
the metric gμν and T̂ ¼ T̂μ

μ. Indeed, at the background level,
the right-hand side of Eq. (38) vanishes for nonrelativistic
particles (T0

0 ¼ T).3 At the perturbed level, however, T̂μν is
not conserved. The interpretation of this is that dark matter
and baryon particles feel a fifth force and a frictional force
induced by the scalar coupling (see Secs. III C 1 and
III C 1 below).
In what follows, we will neglect the overhat of T̂μ

ν and
on its components when referring to baryons and cold dark
matter, to lighten our notation. However, bear in mind that
when T̂μ

ν (or Tμ
ν hereafter) enters the Einstein equation

and the scalar field equation Eq. (41), it should always be
multiplied by an extra factor of AðφÞ compared with the
Tμ

ν for other matter species.

E. The scalar field

The scalar field Lagrangian in Eq. (1) is already written
in the Einstein frame, and thus there is no need to change
frames. In the case of the K-mouflage field, the Lagrangian
is purely kinetic,

LðφÞ ¼ −M4KðσÞ; ð39Þ

in which M is the characteristic mass scale of the model,
and we have defined the dimensionless variable

σ ≡ X
M4

≡ 1

2M4
∇ρφ∇ρφ ð40Þ

to lighten the notation.
By varying the action in Eq. (1) with respect to the scalar

field φ, one obtains the K-mouflage equation of motion,

∇λ½KσðσÞ∇λφ� ¼ −
d lnAðφÞ

dφ
TðνÞ −

X
i¼c;b

dAðφÞ
dφ

TðiÞ; ð41Þ

in which the subscript σ denotes partial derivative with
respect to σ, and Tðν;c;bÞ are, respectively, the traces of the
energy-momentum tensors for massive neutrinos, cold dark
matter and baryons. As photons and massless neutrinos are
traceless, they do not contribute to this equation. Note that,
as we mentioned at the end of the previous subsection:
Tðc;bÞ should be understood as the hatted quantities, and so
is multiplied by an extra factor of AðφÞ compared with TðνÞ,
which is why it has a coefficient of dA=dφ instead
of d lnA=dφ.

III. LINEAR PERTURBATION EQUATIONS

In this section, applying the method of 3þ 1 [28]
spacetime decomposition, we derive and summarize the
fully covariant and gauge invariant (CGI) linearly perturbed
equations in the K-mouflage model. We shall first present
the general formalism of the 3þ 1 decomposition, and then
focus on the perturbations of the individual matter species.
We pay particular attention to the perturbations of the
massive neutrinos, which we believe have not been
thoroughly explored in the past. We hope that the treatment
outlined in this section can serve as a useful reference for
future works.

A. The 3þ 1 decomposition

The idea of 3þ 1 decomposition is to make spacetime
splits of physical quantities with respect to an observer’s
4-velocity, uμ. One can define a projection tensor hμν as

hμν ≡ gμν − uμuν; ð42Þ

which can be used to obtain covariant tensors which reside
on three-dimensional hyperspaces perpendicular to uμ. For
example, the covariant spatial derivative ∇̂α of a tensor
field, Tβ…γ

σ…λ, is defined by the following relation:

∇̂αTβ…γ
σ…λ ≡ hαμh

β
ν…hγκh

ρ
σ…hηλ∇μTν…κ

ρ…η: ð43Þ
Using this, the general energy-momentum tensor of

matter and covariant derivative of the 4-velocity can be
split, respectively, as

Tμν ¼ πμν þ 2qðμuνÞ þ ρuμuν − Phμν; ð44Þ

3The fact that the hatted energy-momentum tensor satisfies
the standard conservation law in background cosmology makes it
more straightforward to calculate its background density
evolution.
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∇μuν ¼ σμν þϖμν þ
1

3
θhμν þ uμwν; ð45Þ

in which πμν is the projected symmetric and trace-free
(PSTF) anisotropic stress, qμ is the heat flux vector, P is the

isotropic pressure, σμν the PSTF shear tensor,ϖμν ≡ ∇̂½μuν�
the antisymmetric vorticity tensor, θ≡∇αuα the expansion
scalar4 and wμ ≡ _uμ; the overdot denotes a time derivative

defined as _ϕ ¼ uα∇αϕ, square brackets denote antisym-
metrization and parentheses symmetrization of indices
(below we will also use angle brackets to denote symmet-
rization and removal of the trace part). The normalization is
such that uαuα ¼ 1, which is consistent with our metric
sign convention ðþ;−;−;−Þ. The quantities πμν, qμ, ρ and
P are usually called dynamical quantities and σμν, ϖμν, θ
and wμ are called kinematical quantities. The dynamical
quantities can be derived from the energy-momentum
tensor Tμν, Eq. (44), as

ρ ¼ Tμνuμuν;

P ¼ −
1

3
hμνTμν;

qμ ¼ hνμuρTνρ;

πμν ¼ hρμhτνTρτ þ Phμν: ð46Þ

B. Einstein equations

The Einstein field equations can also be split in the 3þ 1
framework [28], to obtain a set of five propagation
equations (those which govern the time evolution of
perturbation variables) and five constraint equations (those
which specify the relations between different perturbation
variables). The structure of Einstein equations,

Gμν ¼ κTμν; ð47Þ

with κ ≡ 8πG, holds for all models, such as the K-mouflage
model, as long as the extra terms are properly absorbed in
Tμν. Decomposing the Riemann tensor, and after lineari-
zation, the five constraint equations are given by

0 ¼ ∇̂αðϵμναβuβϖμνÞ; ð48Þ

κqμ ¼ −
2∇̂μθ

3
þ ∇̂νσμν þ ∇̂νϖμν; ð49Þ

Bμν ¼ ½∇̂ασβðμ þ ∇̂αϖβðμ�ϵνÞγαβuγ; ð50Þ

∇̂νEμν ¼
1

2
κ

�
∇̂πμν þ 2

3
θqμ þ

2

3
∇̂μρ

�
; ð51Þ

∇̂νBμν ¼
1

2
κ½∇̂αqβ þ ðρþ PÞϖαβ�ϵμναβuν; ð52Þ

whereas the five propagation equations are given by

0 ¼ _θ þ 1

3
θ2 − ∇̂ · wþ κ

2
ðρþ 3PÞ; ð53Þ

0 ¼ _σμν þ
2

3
θσμν − ∇̂hμwνi þ Eμν þ

k
2
πμν; ð54Þ

0 ¼ _ϖμν þ
2

3
θϖμν − ∇̂½μwν�; ð55Þ

0 ¼ κ

2

�
_πμν þ

1

3
θπμν

�
−
κ

2
½ðρþ PÞσμν þ ∇̂hμqνi�

− ½ _Eμν þ θEμν − ∇̂αBβðμϵνÞγαβuγ�; ð56Þ

0 ¼ _Bμν þ θBμν þ ∇̂αEβðμϵνÞγαβuγ ð57Þ

þ κ

2
∇̂απβðμϵνÞγαβuγ: ð58Þ

In these equations, ϵμναβ is the four-dimensional covariant

permutation tensor, ∇̂ · w≡ ∇̂αwα (for any vector wα), and
Eμν and Bμν are, respectively, the electric and magnetic
parts of the Weyl tensor, Wμναβ, defined by Eμν ≡
uαuβWμανβ and Bμν ≡ − 1

2
uαuβϵμαγδWγδνβ.

In addition to the above equations, it is often useful to
express the projected Ricci scalar, R̂, onto the hyper-
surfaces orthogonal to uμ, as

R̂ ¼ 2κρ −
2

3
θ2: ð59Þ

The covariant spatial derivative of the projected Ricci
scalar, ημ ≡ a∇̂μR̂=2, can be derived from the above
equation, as

ημ ¼ κa∇̂μρ −
2a
3
θ∇̂μθ; ð60Þ

and its time evolution is governed by the following
propagation equation:

_ημ þ
2θ

3
ημ ¼ −

2aθ
3

∇̂μ∇̂ · w − aκ∇̂μ∇̂ · q: ð61Þ

The total energy-momentum tensor satisfies the con-
servation (continuity and Euler) equations,

4θ is the full expansion scalar and contains a background part
and perturbations around it. To lighten notations, in this paper we
use the same symbol θ for both the full quantity and its
background part. Since we are only interested in linear perturba-
tions, the exact meaning should be clear in a given context; for
example, when it is multiplied by a perturbation quantity, then θ
means only its background part.
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_ρþ ðρþ PÞθ þ ∇̂ · q ¼ 0; ð62Þ

_qμ þ
4

3
θqμ þ ðρþ PÞwμ − ∇̂μPþ ∇̂νπμν ¼ 0: ð63Þ

In this paper, we focus on spatially flat cosmologies, for
which the spatial curvature vanishes at the background
level, R̂ ¼ 0. Therefore, from Eq. (59), we obtain the first
Friedmann equation

θ2

3
¼ κρ: ð64Þ

Recall that at the background level only the zeroth-order
terms contribute to the equations. The second Friedmann
equation and the energy-conservation equation can be

obtained by taking the zeroth-order parts of Eqs. (53)
and (62), as

_θ þ 1

3
θ2 þ κ

2
ðρþ 3PÞ ¼ 0; ð65Þ

_ρþ ðρþ PÞθ ¼ 0: ð66Þ

For the purpose of facilitating the numerical calculations,
it is customary to work in k space (Fourier space), in which
spatial partial derivatives can be replaced with products of k
(here k denotes the wave number of a given perturbation).
This also simplifies the equations. To move the equations to
Fourier space, we use the following harmonic expansions
for the perturbed quantities that enter the above equations,

Eμν ¼ −
X
k

k2

a2
ϕQk

μν; ∇̂μθ ¼
X
k

k2

a2
ZQk

μ; ημ ¼
X
k

k3

a2
ηQk

μ; wμ ¼
X
k

k
a
wQk

μ; σμν ¼
X
k

k
a
σQk

μν;

∇̂μρ ¼
X
k

k
a
XQk

μ; ∇̂μP ¼
X
k

k
a
XpQk

μ; qμ ¼
X
k

qQk
μ; πμν ¼

X
k

ΠQk
μν; ∇̂μφ ¼

X
k

k
a
ξQk

μ; ð67Þ

where Qk is the eigenfunction of the comoving spatial
Laplacian a2□̂ operator, which satisfies

□̂Qk ¼ k2

a2
Qk; ð68Þ

and Qk
μ and Qk

μν are, respectively, defined by Qk
μ ≡ a

k ∇̂μQk

and Qk
μν ≡ a

k ∇̂hμQνi. We represent the scalar field pertur-
bation mode in Fourier space as ξ, not δφ, to highlight the
fact that this has been obtained in a covariant way
(typically, δφ is used in the literature to denote gauge-
noninvariant scalar field perturbations).
In terms of these harmonic expansion variables,

Eqs. (49), (51), (54), (56), (60), and (61) can be rewritten
as

2

3
k2ðσ − ZÞ ¼ κqa2; ð69Þ

k3ϕ ¼ −
1

2
κa2½kðΠþ χÞ þ 3Hq�; ð70Þ

kðσ0 þHσÞ ¼ k2ðϕþ wÞ − 1

2
κa2Π; ð71Þ

k2ðϕ0 þHϕÞ ¼ 1

2
κa2½kðρþ PÞσ þ kq − Π0 −HΠ�; ð72Þ

k2η ¼ κχa2 − 2kHZ; ð73Þ

kη0 ¼ −κqa2 − 2kHw; ð74Þ

in which H≡ a0=a and a prime represents the derivative
with respect to the conformal time τ (adτ ¼ dt, with t the
physical time).
Similarly, the conservation equations, (62) and (63), can

be written in k space as

χ0 þ ðkZ − 3HwÞðρþ PÞ þ 3HðX þ XpÞ þ kq ¼ 0; ð75Þ

q0 þ 4Hqþ ðρþ PÞkw − kXp þ 2

3
kΠ ¼ 0: ð76Þ

In the numerical implementation of the CAMB code we
use for this study, Eqs. (75) and (76) are solved numerically
for individual matter species to compute χ and q for those
species at any given time (for photons and neutrinos we
solve the Boltzmann hierarchies instead of solving these
equations directly; see discussions below). Then the total χ
and q are used in Eqs. (69)–(74) to solve the curvature
variables Z, ϕ, σ and η (w will be set to 0 as a choice of
frame). The anisotropic stress Π receives contributions
from photons and neutrinos (both massless and massive)
and can be computed using the integration of Eq. (32).

C. Perturbation equations of the individual species

In this subsection we present the linear perturbation
equations for the evolution of each of the individual
matter species that we consider: cold dark matter,
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baryons, photons, massless and massive neutrinos and the
K-mouflage field.

1. Cold dark matter

The cold dark matter fluid is collisionless and, as a result,
generates no pressure or anisotropic stress. Hence, one
obtains the energy-momentum tensor for cold dark matter
as

TðcÞ
μν ¼ ρðcÞuμuν þ 2uðμq

ðcÞ
νÞ ; ð77Þ

in which we have omitted the “hat” on the different
components of the tensor defined in Eq. (37). By applying
Eq. (38) and keeping the terms that are parallel to the
4-velocity of the observer, we obtain the continuity
equation

_ρðcÞ þ θρðcÞ þ ∇̂ · qðcÞ ¼ 0; ð78Þ

whose background part gives the usual energy conservation
equation

_̄ρðcÞ þ 3Hρ̄ðcÞ ¼ 0: ð79Þ
The terms perpendicular to the observer’s 4-velocity give
the Euler equation up to linear order,

_qðcÞμ þ 4

3
θqðcÞμ þ ρðcÞwμ þ

d lnAðφÞ
dφ

_φqðcÞμ

−
d lnAðφÞ

dφ
ρðcÞ∇̂μφ ¼ 0; ð80Þ

in which we have dropped the overbars for θ; ρðcÞ and _φ,
since the context determines that these are background
quantities.
The fact that cold dark matter satisfies the standard

continuity equation, at both the background [cf. Eq. (79)]
and the linear perturbation [cf. Eq. (78)] level, is a
consequence of the redefinition of the energy-momentum
tensor in Eq. (37). However, even after this redefinition,
cold dark matter particles do not satisfy the standard Euler
equation. Instead, they experience an additional “fifth”
force, as determined by the last term of Eq. (80). In addition
to the fifth force, the scalar coupling to the cold dark matter
particles induces also an additional friction term, as
represented by the second last term. This implies changes
in the dark matter perturbation evolution.
In k space, the continuity and Euler equations can be

written as

Δ0
ðcÞ þ kZ − 3

a0

a
wþ kvðcÞ ¼ 0; ð81Þ

v0ðcÞ þ
a0

a
vðcÞ þ kwþ d lnAðφÞ

dφ
ðφ0vðcÞ − kξÞ ¼ 0; ð82Þ

in which we have defined qðcÞ ≡ ρ̄ðcÞvðcÞ, and ΔðcÞ is the
density contrast for cold dark matter. Equations (81) and
(82) are directly used in our modified CAMB code.

2. Baryons

Baryons are similar to cold dark matter, with the
difference that they produce a non-negligible pressure at
the linear perturbation level. The pressure, however, van-
ishes on the cosmological background. The energy-
momentum tensor is then given by

TðbÞ
μν ¼ ρðbÞuμuν − PðbÞhμν þ 2uðμq

ðbÞ
νÞ ; ð83Þ

and following the same steps as for cold dark matter we
obtain the continuity equation

_ρðbÞ þ θðρðbÞ þ PðbÞÞ þ ∇̂ · qðbÞ ¼ −3PðbÞ d lnAðφÞ
dφ

_φ;

ð84Þ

and the modified Euler equation

_qðbÞμ þ 4

3
θqðbÞμ þ ρðbÞwμ − ∇̂μPðbÞ

þ d lnAðφÞ
dφ

_φqðbÞμ −
d lnAðφÞ

dφ
ρðbÞ∇̂μφ ¼ 0; ð85Þ

up to linear order in real space. We have neglected terms
such as PðbÞwμ and PðbÞ∇̂μφ, which are higher than first
order in perturbations because PðbÞ is a perturbed quantity
(i.e. P̄ðbÞ ¼ 0). On the cosmological background, taking the
zeroth-order terms, we obtain the standard energy con-
servation equation

_̄ρðbÞ þ 3Hρ̄ðbÞ ¼ 0: ð86Þ

In k space, the continuity and Euler equations for
baryons become, respectively,

Δ0
ðbÞ þ kZ − 3

a0

a
wþ kvðbÞ

þ 3

�
a0

a
þ d lnAðφÞ

dφ
φ0
�
c2sΔðbÞ ¼ 0; ð87Þ

v0ðbÞ þ
a0

a
vðbÞ þ kw − kc2sΔðbÞ

þ d lnAðφÞ
dφ

ðφ0vðbÞ − kξÞ ¼ 0; ð88Þ

in which we have defined the baryon sound speed squared
c2s as c2s ≡ Xp;ðbÞ=X ðbÞ, and vðbÞ, ΔðbÞ are, respectively, the
peculiar velocity and density contrast of baryons.
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Note that the above Euler equation is derived assuming
no interaction between baryons and photons. To account for
this, we simply add the term that describes the Thomson
scattering to the equation to get

0 ¼ v0ðbÞ þ
a0

a
vðbÞ þ kw − kc2sΔðbÞ

þ d lnAðφÞ
dφ

ðφ0vðbÞ − kξÞ

þ aneσT
ρ̄ðγÞ

ρ̄ðbÞ

�
4

3
vðbÞ − vðγÞ

�
; ð89Þ

in which ne is the free electron number density, σT is the
cross section for Thomson scattering, vðγÞ is the peculiar
velocity for the photon fluid, and ρ̄ðγÞ is the background
energy density of photons. Equations (87) and (88) are used
our modified CAMB code; when the Thomson scattering is
not negligible, Eq. (89) is used instead of Eq. (88).

3. Photons

As we have found in Sec. II, the photon Lagrangian
density is conformally invariant, and the photon energy-
momentum tensor is conserved in the Einstein frame (the
frame where we perform our calculations). Consequently,
the evolution of the photon fluid is the same as it would be
in the case of the absence of the scalar coupling.
Nevertheless, for completeness, we simply note that the
first two moments of the angular expansion of the photon
distribution function lead to the following continuity and
Euler equations in real space [28],

_ρðγÞ þ 4

3
θρðγÞ þ ∇̂ · qðγÞ ¼ 0; ð90Þ

_qðγÞμ þ 4

3
θqðγÞμ þ 4

3
ρðγÞwμ −

1

3
∇̂μρ

ðγÞ þ ∇̂νπðγÞμν

− neσT

�
4ρðγÞ

3ρðbÞ
qðbÞμ − qðγÞμ

�
¼ 0; ð91Þ

in which we have added the Thomson scattering term. As
expected, at the background level, we recover the standard
radiation conservation equation

_̄ρðγÞ þ 4Hρ̄ðγÞ ¼ 0: ð92Þ

In k space, the perturbed continuity and Euler equations
become

Δ0
ðγÞ þ

4

3
kZ − 4

a0

a
wþ kvðγÞ ¼ 0; ð93Þ

v0ðγÞ þ
4

3
kw −

1

3
kΔðγÞ þ

2

3
kπðγÞ

þ aneσT

�
vðγÞ −

4

3
vðbÞ

�
¼ 0; ð94Þ

in which vðγÞ ≡ qðγÞ=ρ̄ðγÞ, πðγÞ ≡ ΠðγÞ=ρ̄ðγÞ [π here should
not be confused with the real space quantity πμν in Eq. (44)]
and ΔðγÞ is the density contrast of photons. Equations (93)
and (94) are used directly in our modified CAMB code.
For brevity, the higher order moments of the angular

expansion of the photon distribution function are not
shown here.

4. Massless neutrinos

Massless neutrinos are very similar to photons, except
that they do not interact with the baryons via Thomson
scattering. The real space continuity and Euler equations
are therefore given by

_ρðrÞ þ 4

3
θρðrÞ þ ∇̂ · qðrÞ ¼ 0; ð95Þ

_qðrÞμ þ 4

3
θqðrÞμ þ 4

3
ρðrÞwμ −

1

3
∇̂μρ

ðrÞ þ ∇̂νπðrÞμν ¼ 0: ð96Þ

We use ðrÞ to denote massless neutrinos quantities, to
distinguish them from the massive neutrinos ones, which
we denote by (ν). At the cosmological background level,
the energy density satisfies the usual radiation conservation
equation

_̄ρðrÞ þ 4Hρ̄ðrÞ ¼ 0: ð97Þ

In k space, the perturbed continuity and Euler equations
become

Δ0
ðrÞ þ

4

3
kZ − 4

a0

a
wþ kvðrÞ ¼ 0; ð98Þ

v0ðrÞ þ
4

3
kw −

1

3
kΔðrÞ þ

2

3
kπðrÞ ¼ 0; ð99Þ

in which vðrÞ ≡ qðrÞ=ρ̄ðrÞ, πðrÞ ≡ ΠðrÞ=ρ̄ðrÞ, and ΔðrÞ is the
density perturbation of massless neutrinos. Equations (98)
and (99) are used directly our modified CAMB code.
For brevity, we shall not show the full hierarchy of

equations satisfied by the higher-order angular moments of
the massless neutrinos distribution function.

5. Massive neutrinos

The case for massive neutrinos is slightly subtler. For
typical masses within the allowed observational bounds
[25,26], the equation-of-state parameter of massive neu-
trinos evolves from wðνÞ ¼ 1=3 at earlier times (when they
are highly relativistic) to wðνÞ ≈ 0 at later times (once they
become nonrelativistic). For this reason, we can not simply
redefine their energy-momentum tensor such that ρ̄ðνÞ
evolves as a power-law function of the scale factor, a
(as we have done for cold dark matter and baryons).
However, this fact does not make the computation of
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ρ̄ðνÞ in the K-mouflage model any more complicated.
Indeed, it is straightforward to check that, at the back-
ground level, Eqs. (30) and (32) satisfy the conservation
equations, (8), provided one takes into account the fact that
the mass, m, in these equations, is time varying. The
evolution ρ̄ðνÞ is normally computed by working out the
integrals in Eq. (30) numerically. In our case, we do
the same except that we must replace m with AðφðaÞÞ ~m,
to account for the scalar coupling (where the bare neutrino
mass ~m is known). In this sense, the calculation of ρ̄ðνÞ in
the K-mouflage model does not involve any more work
compared to the standard uncoupled scenario, except for
the operation of multiplying ~m by AðφðaÞÞ.
The linear perturbation evolution of massive neutrinos

with no scalar coupling is well understood [29]. Although
adding a nonminimal coupling is only a straightforward
generalization, for completeness, we shall nevertheless
summarize the main steps of the derivation. Let us start
with the geodesic equation of a point particle in the
presence of the scalar coupling (in the Einstein frame),

dxμ

ds
∇μ

�
AðφÞ dx

ν

ds

�
¼ dAðφÞ

dφ
∇νφ; ð100Þ

where ds is the proper length of the line element. In this
equation, the AðφÞ factor on the left-hand side represents
the varying particle mass (or an effective frictional force),
while the AðφÞ factor on the right-hand side is responsible
for the fifth force. In the case of nonrelativistic particles,
these terms correspond, respectively, to the extra friction
and fifth force terms identified e.g. in Eq. (80). For highly
relativistic particles, on the other hand, the proper length
vanishes, ds → 0, and the geodesic equation reduces to

Uμ∇μUν ¼ 0; ð101Þ

as in the usual uncoupled case.
In the K-mouflage model, massive neutrinos can still

be described by the collisionless Boltzmann equation in
the eras we are interested in, but are subject to an external

force due to the scalar coupling. Up to linear order in
perturbed quantities, the Boltzmann equation is approx-
imately given by

∂f
∂τ þ

dxi

dτ
∂f
∂xi þ

dq
dτ

∂f
∂q ¼ 0; ð102Þ

where q is the magnitude of neutrino momentum (not the
heat flux), and remember that f ¼ fðx; q;n; τÞ. Using
Eq. (100) to replace dq=dτ in this equation, and moving
to k space, we reach the following evolution equation for
Ψðx; q;n; τÞ:

Ψ0 þ iðk̂ · n̂Þ q
ϵ
kΨ

þ d ln f0ðqÞ
d ln q

��
1

3
kσ − h0

�
− ðk̂ · n̂Þ2kσ

�

þ iðk̂ · n̂Þ d ln f0ðqÞ
d ln q

k
�
d lnAðφÞ

dφ
a2m2

qϵ
ξ −

ϵ

q
w
�
¼ 0;

ð103Þ

where i ¼ ffiffiffiffiffiffi
−1

p
, k̂ and n̂ are, respectively, the unit vectors

in the directions of k and n, and

h0 ¼ 1

3
kZ −

a0

a
w ð104Þ

in a general frame.
To solve the above Boltzmann equation, one can expand

the angular dependence of Ψ in a series of Legendre
polynomials Plðk̂ · n̂Þ as

Ψðk; q;n; τÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1ÞΨlðk; q; τÞPlðk̂ · n̂Þ;

ð105Þ

so that each l mode satisfies the following mode equation:

0 ¼ Ψ0
l þ

k
2lþ 1

q
ϵ
½ðlþ 1ÞΨlþ1 − lΨl−1� þ

d ln f0ðqÞ
d ln q

�
δ2l

2

15
kσ − δ1l

ϵ

3q
kwþ δ1l

d lnAðφÞ
dφ

k
a2m2

3qϵ
ξ − δ0lh0

�
; ð106Þ

in which δ0l, δ1l and δ2l are Kronecker δ functions. One
can check this equation by verifying, with its help, that
Eqs. (30)–(32) satisfy the conservation equation, Eq. (8), to
linear order.
The δ0l term in the Boltzmann equation makes sure that

the local perturbations of the expansion rate [30] (recall that
h0 ∝ Z, which is the k-space mode of ∇̂θ) are properly
taken into account in the calculation of the density contrast,

which shall be expressed as an integral of Ψ0 according to
Eq. (107). The δ1l terms contain the contributions from
the scalar coupling and the 4-acceleration. Note how the
equation reduces to that of massless neutrinos, whenm ¼ 0
or AðφÞ ¼ 1.
Equation (106) indicates that only the l ¼ 1 mode is

affected by the scalar coupling. As l ¼ 0; 1; 2 contribute,
respectively, to the energy density, heat flux and anisotropic
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stress of neutrinos (see the definition and discussion of Il
below), it might seem that the scalar coupling only changes
the evolution of neutrino heat flux. Wewill show below that
this is not the case, and that the density and pressure of
massive neutrinos are also affected by the coupling.
Equation (106) is used in our modified CAMB code to
solve the Boltzmann hierarchy of massive neutrinos accu-
rately at early times, when the fluid approximation (dis-
cussed in the next paragraph) is not switched on.
At late times, neutrino momenta redshift away, and the

so-called fluid approximation [30] (which involves con-
sidering only the modes l ≤ 2) is often used to speed up the

numerical calculations. The evolution equations under this
approximation can be derived as follows. For each value of
l ¼ 0; 1; 2, we (i) define

Il ≡ 4π

ρ̄ðνÞa4

Z
dqq2ϵ

�
q
ϵ

�
l
f0ðqÞΨl; ð107Þ

(ii) multiply Eq. (106) with 4π=ρ̄ðνÞa4, and (iii) integrate the
resulting equation over dqq2ϵðq=ϵÞlf0ðqÞ. Doing so,
we find

I00 þ
a0

a

�
J0 − 3

P̄ðνÞ

ρ̄ðνÞ
I0

�
þ kI1 þ 3

�
1þ P̄ðνÞ

ρ̄ðνÞ

�
h0 þ

�
J0 − 3

P̄ðνÞ

ρ̄ðνÞ
I0

�
d lnAðφÞ

dφ
φ0 ¼ 0; ð108Þ

I01 þ
a0

a

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
I1 þ

2

3
kI2 −

1

3
kJ0 þ

�
1þ P̄ðνÞ

ρ̄ðνÞ

�
kwþ d lnAðφÞ

dφ

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
φ0I1 −

d lnAðφÞ
dφ

�
1 − 4

P̄ðνÞ

ρ̄ðνÞ

�
kξ ¼ 0;

ð109Þ

I02 þ
a0

a

�
2 − 3

P̄ðνÞ

ρ̄ðνÞ

�
I2 þ

3

5
kI3 −

2

5
kJ1 − 2

P̄ðνÞ

ρ̄ðνÞ
kσ þ

�
2 − 3

P̄ðνÞ

ρ̄ðνÞ

�
d lnAðφÞ

dφ
φ0I2 ¼ 0; ð110Þ

in which we have defined

Jl ≡ 4π

ρ̄ðνÞa4

Z
dqq2ϵ

�
q
ϵ

�
2þl

f0ðqÞΨl; ð111Þ

whose evolution can be obtained by multiplying Eq. (106)
by 4π=ρ̄ðνÞa4 and integrating over dqq2ϵðq=ϵÞ2þlf0ðqÞ:

J00 þ
a0

a

�
2 − 3

P̄ðνÞ

ρ̄ðνÞ

�
J0 þ kJ1 þ 15

P̄ðνÞ

ρ̄ðνÞ
h0

þ
�
2 − 3

P̄ðνÞ

ρ̄ðνÞ

�
d lnAðφÞ

dφ
φ0J0 ¼ 0: ð112Þ

Note that the fluid approximation is characterized by l ¼
0; 1; 2 for Il, and l ¼ 0; 1 for Jl. We note also that to
ensure consistency we have used the following approxi-
mation:

Z
dqf0

q4

ϵ3
a2m2 ≈

Z
dqf0

q4

ϵ
:

The above equations do not reduce to the equations for the
l ¼ 0; 1; 2 moments of massless neutrinos in the limit
m → 0. This can be confirmed by observing that, if
P̄ðνÞ → ρ̄ðνÞ=3, then the terms that involve d lnA=dφ do
not vanish, as they should formassless neutrinos (cf. Sec. III
C 4). The reason for this is that the fluid approximation
itself relies on the assumption that massive neutrinos are

nonrelativistic. Consequently, the fluid approximation
breaks down in the case of massless neutrinos, for which
am ¼ 0 < q instead of am ≫ q. The case of standard
massive neutrinos with no scalar coupling, on the other
hand, can be recovered by setting AðφÞ ¼ 1.
One may wonder whether or not I0; J0; I1; I2 can be

identified withΔðνÞ; 3Xp;ðνÞ=ρ̄ðνÞ, vðνÞ andΠðνÞ=ρ̄ðνÞ, respec-
tively, where ΔðνÞ is the neutrino density contrast and vðνÞ
the peculiar velocity. This is the case for standard
uncoupled massive neutrinos. However, in the coupled
case the answer is no, and one could check that the
conservation equation, Eq. (8), does not hold in this case
if the above mapping is done. The reason lies in the spatial
variation of the neutrino mass m ¼ AðφÞ ~m, whose con-
tribution should be added to the components of the
perturbed energy momentum. Doing so, the above quan-
tities are then related as

ΔðνÞ ¼ I0 þ
4π

ρ̄ðνÞa4

Z
dq

q2

ϵ
a2m2f0

d lnAðφÞ
dφ

ξ

¼ I0 þ
�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
d lnAðφÞ

dφ
ξ; ð113Þ

Xp;ðνÞ

ρ̄ðνÞ
¼ 1

3
J0 −

P̄ðνÞ

ρ̄ðνÞ
d lnAðφÞ

dφ
ξ; ð114Þ

vðνÞ ¼ I1; ð115Þ

BARREIRA et al. PHYSICAL REVIEW D 91, 063528 (2015)

063528-12



ΠðνÞ
ρ̄ðνÞ

¼ I2 ≡ πðνÞ; ð116Þ

which are valid up to the linear order in perturbations and
consistent with the fluid approximation. Note that the
corrections to the heat flux and anisotropic stress due to

the spatial variation of the neutrino mass are at most second
order in perturbations and can therefore be neglected in
our study.
Finally, it can be checked that the completed variables,

defined in Eqs. (113)–(116), satisfy the conservation
equations in the Einstein frame, Eq. (8), up to linear order:

Δ0
ðνÞ þ 3

�
a0

a
þ d lnAðφÞ

dφ
φ0
��

Xp;ðνÞ

ρ̄ðνÞ
−
P̄ðνÞ

ρ̄ðνÞ
ΔðνÞ

�
þ
�
1þ P̄ðνÞ

ρ̄ðνÞ

�
kZ þ kvðνÞ − 3

a0

a

�
1þ P̄ðνÞ

ρ̄ðνÞ

�
w

−
d lnAðφÞ

dφ

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
ξ0 −

d2 lnAðφÞ
dφ2

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
φ0ξ ¼ 0; ð117Þ

v0ðνÞ þ
a0

a

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
vðνÞ − k

Xp;ðνÞ

ρ̄ðνÞ
þ 2

3
kπðνÞ þ

�
1þ P̄ðνÞ

ρ̄ðνÞ

�
kwþ d lnAðφÞ

dφ

�
1 − 3

P̄ðνÞ

ρ̄ðνÞ

�
ðφ0vðνÞ − kξÞ ¼ 0. ð118Þ

These equations reduce to those in the case of massless
neutrinos when P̄ðνÞ → ρ̄ðνÞ=3 and Xp;ðνÞ → ρ̄ðνÞΔðνÞ=3.
Moreover, when P̄ðνÞ → 0 and Xp;ðνÞ → 0 the Euler equa-
tion reduces to the case of nonrelativistic matter, but note
that this is not the case for the continuity equation due to
our redefinition in Eq. (37).
Equations (108)–(112) are used in our modified CAMB

code when the fluid approximation is switched on at late
times. Note that CAMB switches on this approximation at
different times for different k modes [30], based on some
rough estimate of when a given mode becomes non-
relativistic. Also notice that other Boltzmann codes may
treat the fluid approximation in slightly different ways, and
special care needs to be taken if one is to use these
equations in codes other than CAMB.

D. Scalar field equation

From the Lagrangian density of the K-mouflage field
specified in Eq. (39), one obtains the energy-momentum
tensor for the scalar field as

TðKÞ
μν ¼ Kσ∇μφ∇νφ −M4Kgμν; ð119Þ

in which the superscript ðKÞ stands for K-mouflage. Using
Eqs. (46), up to linear order, its components are given by

ρðKÞ ¼ Kσ _φ
2 −M4K; ð120Þ

PðKÞ ¼ M4K; ð121Þ

qðKÞμ ¼ Kσ _φ∇̂μφ; ð122Þ

πðKÞμν ¼ 0: ð123Þ

These reduce to the results of a quintessence scalar field
with no potential when KðσÞ ¼ σ.
The background equation of motion of the scalar field

can be read from Eq. (41) as

0 ¼ ðKσ þ 2σKσσÞφ̈þ 3KσH _φþ d lnAðφÞ
dφ

ðρ̄ðνÞ − 3P̄ðνÞÞ

þ dAðφÞ
dφ

ðρ̄ðcÞ þ ρ̄ðbÞÞ; ð124Þ

where we have omitted the overbars on quantities such as K
and φ, to lighten the notation. This equation is numerically
solved in our modified CAMB code to obtain the back-
ground evolution.
The perturbed equation of motion can be obtained by

taking the covariant spatial derivative of Eq. (41), and
we get

ðKσ þ 2σKσσÞ∇̂αφ̈þ ð6σKσσ þ 4σ2KσσσÞ
φ̈

_φ
∇̂α _φþ Kσθ∇̂α _φþ Kσ _φ∇̂αθ þ 2σKσσθ∇̂α _φþ Kσ∇α∇̂2φ

þ d lnAðφÞ
dφ

ð∇̂αρ
ðνÞ − 3∇̂αPðνÞÞ þ dAðφÞ

dφ
ð∇̂αρ

ðcÞ þ ∇̂αρ
ðbÞÞ

þ d2 lnAðφÞ
dφ2

ðρ̄ðνÞ − 3P̄ðνÞÞ∇̂αφþ d2AðφÞ
dφ2

ðρ̄ðcÞ þ ρ̄ðbÞÞ∇̂αφ ¼ 0. ð125Þ

Moving the above equation to k space yields
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ðKσ þ 2σKσσÞξ00 þ
�
ð2Kσ − 2σKσσ − 4σ2KσσσÞ

a0

a
þ ð6σKσσ þ 4σ2KσσσÞ

φ00

φ0

�
ξ0

þ
�
Kσk2 þ

d2 lnAðφÞ
dφ2

ðρ̄ðνÞ − 3P̄ðνÞÞa2 þ d2AðφÞ
dφ2

ðρ̄ðcÞ þ ρ̄ðbÞÞa2
�
ξ

þ Kσφ
0kZ þ d lnAðφÞ

dφ
ðρ̄ðνÞΔðνÞ − 3Xp;ðνÞÞa2 þ dAðφÞ

dφ
ðρ̄ðcÞΔðcÞ þ ρ̄ðbÞΔðbÞÞa2

þ ðKσ þ 2σKσσÞφ0w0 þ
�
2ðKσ þ 5σKσσ þ 2σ2KσσσÞφ00 þ ðKσ − 4σKσσ − 4σ2KσσσÞ

a0

a
φ0
�
w ¼ 0: ð126Þ

This equation is numerically solved in our modified CAMB

code to compute the scalar field perturbations, the con-
tribution of which, through Eqs. (120)–(123), is included in
the computation of curvature variables in Eqs. (69)–(74).
Using this equation, one could check that the total

energy-momentum tensors for matter species that couple
to the scalar field (cold dark matter, baryons and massive
neutrinos) satisfies Eq. (8) up to linear order and are not
conserved (though recall that the energy-momentum ten-
sors for photons and massless neutrinos are not affected by
this coupling and, therefore, are indeed individually con-
served). However, the total energy-momentum tensor,
including the contribution from the scalar field, is con-
served as can also be easily checked. Such a check of the
global conservation equations constitutes a robust valida-
tion of the equations derived so far.

IV. NUMERICAL RESULTS

A. Numerical implementation and model parameters

For the numerical implementation one needs to specify
the following: (i) the functional form of KðσÞ in Eq. (39)
and its parameters, (ii) the functional form of AðφÞ in
Eq. (3) and the parameters therein, and (iii) the value of the
K-mouflage mass scale M, which appears in the defini-
tion σM4 ¼ 1

2
∇μφ∇μφ.

In this paper, we follow [18,19] and consider

KðσÞ≡ −1þ σ þ K0σ
m; ð127Þ

in which K0 is a real dimensionless parameter and m ≥ 2 a
dimensionless integer. Note that the model contains an
effective cosmological constant M4 even though there is
no explicit Λ term in the actions Eqs. (1) and (2). We
consider also

AðφÞ≡ exp ðβφ=MPlÞ; ð128Þ

where β is a another dimensionless model parameter
that determines the strength of the coupling. Note that if
β ¼ 0, then AðφÞ ¼ 1, which corresponds to the standard
uncoupled case.

For numerical considerations, it is more convenient to
treat the scalar field with units of MPl; i.e., we make the
following field redefinition:

φ ← φ=MPl: ð129Þ

We can also write M4 as

M4 ≡ λ2M2
PlH

2
0; ð130Þ

in which λ is the newly defined dimensionless parameter.
The condition that the K-mouflage field drives the current
accelerated cosmic expansion implies that λ ∼Oð1Þ.
According to these considerations, the K-mouflage

model is specified by four dimensionless parameters—
fK0; m; β; λg. However, the value of λ can be fixed by the
condition that the K-mouflage field has a present-day
energy density that makes the Universe spatially flat
(nonflat models can also be considered, but these are
beyond the scope of the current paper):

Ωφ0 ¼ 1 − Ωγ0 −Ωc0 −Ωb0 − Ωr0 −Ων0; ð131Þ

where Ωi0 ≡ ρ̄i0=ρ̄cr0 is the fractional energy density of the
ith species today and ρ̄cr0 ¼ 3H2

0M
2
Pl is the critical density

(note that, for generality, we have included both massless
(r) and massive (ν) neutrinos). This way the dimensionality
of the K-mouflage part of the parameter space is reduced
from four to three. The expression for σ can then be written
as

σ ¼ 1

2H2
0λ

2
∇μφ∇μφ; ð132Þ

and the coupling function as

AðφÞ≡ exp ðβφÞ: ð133Þ

Accordingly, in Eqs. (124), (125), and (126), φ and ξ are
considered as dimensionless, provided the energy densities
and pressure for dark matter, baryons and massive neu-
trinos are divided by M2

Pl. We will use the redefined
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equations in our numerical calculations, but for brevity will
not present these redefined equations here.
For numerical convenience, linear perturbations are

implemented in the frame where w ¼ 0. This is the so-
called cold dark matter frame (which is coincident with the
synchronous gauge) in standard uncoupled models, but in
the coupled cases the frame comoving with cold dark
matter and the one where w ¼ 0 are not the same. This will
not affect our conclusions, since the choice of frame has a
negligible impact on the matter power spectrum on the
scales where we have data, and since CMB temperature
anisotropies and the lensing potential are frame
independent.
We set ξ and ξ0 to zero as our initial conditions for the

scalar field perturbation, and we have checked that chang-
ing them to values different from zero does not affect the
numerical results noticeably, provided the values are not
too exotic (nonexotic here means that the values chosen
should guarantee that the K-mouflage density perturbation
is much smaller than its background density to remain in
the linear perturbation regime).
We choose to implement the homogeneous and linear

perturbation dynamics of the K-mouflage model into the
publicly available CAMB code [24]. We independently
developed two versions of modified CAMB code which
are in excellent agreement. We have also checked that our
CAMB solutions satisfy the global conservation equations at
both the background and linear perturbations levels, and for
all matter species. For λ, we adopt a simple bisection trial-
and-error method to find its value with a 10−5 accuracy. Our
results also agree very well with the numerical solver used
in [18,19]. These robust tests make us confident about our
codes and results.
In this paper, we are interested in measuring the devia-

tions induced by the K-mouflage coupling relative to the
standard ΛCDM paradigm. For this reason, we shall
compare these two model predictions for the fixed set of
cosmological parameters,

fTCMB; Neff ; Ω̂c0h2; Ω̂b0h2; h; ns; 109As; τg
¼ f2.73; 3.046; 0.118; 0.0221; 0.68; 0.964;2.17; 0.864g;

ð134Þ

where h≡H0=ð100 km=s=MpcÞ is the dimensionless
present-day Hubble expansion rate, ns, As are, respectively,
the scalar spectral index and amplitude (at kpivot ¼
0.05 Mpc−1) of the power spectrum of the primordial
scalar fluctuations, TCMB is the CMB monopole temper-
ature today (in K), τ is the optical depth to reionization and
Neff is the effective number of neutrinolike relativistic
degrees of freedom. Note that Ω̂b0 and Ω̂c0 are hatted and
defined as Ω̂b;c ≡ ρ̂b;c=ρcr. This choice is somewhat arbi-
trary but will have some impact when comparing
K-mouflage effects on the matter and lensing potential

power spectra. (The motivation for this choice is that it is
the hatted matter density ρ̂ that obeys the usual continuity
equation and decreases as a−3 at the background level.)
In the following section, we will focus on the perturba-

tion properties of our K-mouflage models. In Fig. 1, we
nevertheless have recalled how the most relevant back-
ground quantities evolve in K-mouflage cosmology. The
difference of the Hubble rate from ΛCDM, the equation of

FIG. 1 (color online). Evolution with the scale factor of the
differencebetween theK-mouflageandΛ-CDMHubble rates, of the
darkenergyequationofstatewðaÞandofAðφÞ − 1, for the following
parameter set combinations:K0 ¼ 100, β ¼ 0.2 (blue, lower curves
in top and bottom panels, right-hand curves in the middle panel),
K0 ¼ 100, β ¼ 0.1 (red),K0 ¼ −5, β ¼ 0.2 (orange, upper curves
in the top and bottom panels, non-singular curves in the middle
panel), for m ¼ 3 (solid lines) and m ¼ 2 (dashed lines).
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state, and the factor AðφÞ − 1 are displayed for the same
parameters that will be considered in the following sub-
sections. The Hubble rate is lower than in ΛCDM at late
times when K0 > 0 and larger when K0 < 0. Similarly, the
equation of state at late times is either larger than −1 when
K0 < 0 or smaller than −1 when K0 > 0. Notice that in the
latter case, it passes through a singularity at earlier times
(but the product wðaÞΩφ remains finite [18,19]). Finally,
we have plotted the factor AðφÞ which enters in the time
evolution of particle masses such as electrons and quarks.
The mass of the proton, to leading order, is only dependent
on the QCD scale which is independent of φ, as the
K-mouflage field couples conformally to matter and leaves
no effect on gauge fields. The factor AðφÞ also plays an
important role in the perturbative analysis which follows.
When K0 > 0 it becomes lower than one, and inversely
for K0 < 0.
Below,we analyze the impact theK-mouflage field has on

the CMB temperature, CMB lensing potential and linear
matter power spectra. We shall focus on a number of
combinations of K-mouflage parameters to illustrate the
relatively rich phenomenology of the model, paying par-
ticular attention to the degeneracies between theK-mouflage
parameters and the summed mass of active neutrinos, Σmν.
This will help us predict the types of observational con-
straints that can be placed upon this model.
For the time being, we analyze the following three

scenarios: (i) K-mouflage with Σmν ¼ 0, (ii) ΛCDMmodel
with Σmν ≠ 0, and (iii) K-mouflage with Σmν ≠ 0. Notice
that the effects of K-mouflage cannot easily be separated
into the ones coming from a modification of the back-
ground cosmology compared to ΛCDM and a change in the
perturbation evolution. Indeed, the effects of K-mouflage
are driven by the presence of the coupling to matter β and
the nonlinear terms in the Lagrangian. Setting β ≠ 0 affects
both the background cosmology and perturbations. If we
were to analyze only the effect of β on perturbations by
keeping the background cosmology similar to ΛCDM (or
vice versa), the equations of motion would not be
consistent.

B. K-mouflage with Σmν ¼ 0

Considering first the effects on the matter power
spectrum (bottom panels of Fig. 2), compared to the
ΛCDM paradigm, we find that the result depends qualitatively
on the sign ofK0. In particular, the K-mouflage model predicts
more clustering thanΛCDM forK0 > 0, and less clustering for
K0 < 0. On super horizon scales (k≲ 2 × 10−4h Mpc−1), the
modifications are scale-independent on the matter power
spectrum. On very large scales, terms involving powers of k
become negligible, which effectively eliminates the k depend-
ence from the equations. The modifications to ΛCDM on these
large scales are driven by the modified expansion history, time
variation of particle masses and clustering of the K-mouflage
field (similar to that of the quintessence field on horizon scales).

For k≳ 0.01h Mpc−1, the modifications are again scale
independent, but the size is different. This “plateau” in the
relative difference from ΛCDM is reached at smaller scales
if the deviation from ΛCDM is larger. On these subhorizon
scales, the terms involving powers of k dominate in the
equations, and the static approximation of [19] holds, in
which the scalar field density perturbation is negligible
compared with the matter density perturbation (see
Sec. III.C1 of [19]). In this regime, the scalar field affects
matter clustering through the modified expansion history,
the varying particle masses, the fifth force, and the fric-
tional force, which is itself a consequence of varying
particle masses.
The bottom panels of Fig. 2 also show that increasing the

coupling strength β leads to a stronger deviation from
ΛCDM. This can be seen by comparing the blue (β ¼ 0.2)
and the red (β ¼ 0.1) curves. Finally, for the K-mouflage
models studied here, the effect of increasing the exponent
m is to boost the size of the modifications on all scales, if
K0 > 0. However, for K0 < 0 (orange curves), we find that
increasingm increases the difference from ΛCDM on small
scales, but suppresses it on large scales. The detailed
interplay of the impact of K0, m and β on the growth of
structure gives room for degenerate effects to arise. Some
of these degeneracies might be broken by considerations of
theoretical stability [21] and/or observational constraints
with different data sets (as we discuss below).
The above results for the matter power spectrum are in

good agreement with the estimations presented in [19]. In
the latter, it is shown that if K0 > 0 is sufficiently large,
then the K-mouflage model approaches ΛCDM. We have
confirmed this result with our CAMB versions, as well. This
suggests that the data from galaxy clustering (lower left
panel of Fig. 2) should not put any upper limits on K0,
given that ΛCDM currently provides a reasonably good fit.
Our results indicate that for K0 ∼Oð100Þ and β ∼Oð0.1Þ,
the size of the deviation from ΛCDM is at the level of a few
percent. We have also checked that decreasing K0 and
increasing β boosts these differences further (not shown).
From this we anticipate that current and future data should
at least be able to place lower bounds on K0 and upper
bounds on β. The stringency of such bounds can only be
fully determined through a detailed exploration of the
parameter space. Nevertheless, a robust comparison
between theory and galaxy clustering data requires also
a proper modelling of the effects of galaxy and halo bias,
redshift space distortions, and mode couplings on smaller
scales induced by nonlinearities in the density field. All of
these can only be properly addressed with N-body simu-
lations, which is beyond the scope of the present work.
Due to these complications in comparing linear theory

predictions with the large scale clustering of galaxies, it is
likely that the CMB data (which is more robust and less
prone to the effects of nonlinearities) will be more useful
in constraining the K-mouflage model. The effects of the
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K-mouflage field on the CMB temperature power spectrum
are shown in the top panels of Fig. 2. On small angular
scales (high l’s), the relative difference from ΛCDM shows
a series of oscillations that are roughly in phase opposition
for the two values of K0 shown. These oscillations of the
relative difference follow from small horizontal shifts in the
CMB power spectrum (barely visible in the upper left panel
of Fig. 2) caused by the modifications to the expansion
history in the K-mouflage model. The fact that these
oscillations are in phase opposition for K0 ¼ 100 and

K0 ¼ −5, indicates that these two cases shift the overall
spectrum in opposite directions. Indeed, as first shown in
[18], if K0 > 0, then the Hubble expansion rate is smaller
than in ΛCDM at late times. This shifts the spectrum
towards higher l. Conversely, the spectrum gets shifted
towards lower l values if K0 < 0. On large scales (low l),
we find again that the deviations from ΛCDM depend
qualitatively on the sign of K0. This region of the CMB
power spectrum is mostly determined by the integrated
Sachs-Wolfe (ISW) effect, which is a secondary anisotropy
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FIG. 2 (color online). CMB temperature angular power spectrum (top left), lensing potential power spectrum (middle left) and matter
power spectrum (bottom left), as well as the corresponding relative difference between the K-mouflage and LCDM models (right
panels), for the following parameter set combinations:K0 ¼ 100, β ¼ 0.2 (blue, upper curves in the top and bottom panels, lower curves
in the middle panels), K0 ¼ 100, β ¼ 0.1 (red, middle curves), K0 ¼ −5, β ¼ 0.2 (orange, lower curves in the top and bottom panels,
upper curves in the middle panels), for m ¼ 3 (solid lines) and m ¼ 2 (dashed lines). The ΛCDM model used in the ratios is that with
Σmν ¼ 0 (solid black). In the upper left and middle left panels, the data points with error bars correspond, respectively, to the CMB
temperature and lensing potential power spectra as measured by the Planck satellite [31]. In the lower left panel, the data points show the
SDSS-DR7 Luminous Red Galaxy (LRG) host halo power spectrum as presented in [32].
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induced on the temperature of CMB photons as they cross
time-evolving gravitational potentials. The ISW effect is
sensitive to the details of the late-time background expan-
sion history, but in the K-mouflage models, the fifth force
can also have a strong impact on the time variation of the
potential. However, for these very large angular scales, the
cosmic variance makes it difficult for stringent constraints
to be derived. As for the case of the matter power spectrum,
changes in the values of the coupling strength β and
exponent m can amplify the size of the modifications
to ΛCDM.
The K-mouflage model has also an important effect on

the lensing potential power spectrum (middle panels of
Fig. 2). For the range of l-values spanned by the Planck
data, we find that the two values of K0 lead to different
amplitudes for the spectrum, indicating that these data may
be able to put strong constraints on K0. For the parameter
values shown, the differences to ΛCDM are more pro-
nounced at lower l for which there is currently no data
available. The amplitude of the CMB lensing potential
power spectrum can also be affected by the values of β and
m, and as a result, we expect that current data may be able
to place constraints on these parameters as well.
It is often said that both thematter power spectrum and the

lensing potential power spectrum are sensitive probes of the
clustering of matter in the Universe. The linear matter power
spectrumis theFourier transformof the two-point correlation
functionof the lineardensitycontrastofmatter,δ ¼ δρm=ρ̄m.
The lensing potential, on the other hand, is a weighted
projection of the gravitational potential on the two-dimen-
sional sky,which is obtained by integrating along the lines of
sight from today up to the recombination epoch [33]. The
CMB lensing potential power spectrum therefore probes the
matter density perturbations, since the latter directly control
the gravitational potential via Eq. (70). Hence, it might be
confusingtoobserve that someof theK-mouflageparameters
seem to have opposite effects on the amplitudes of these two
spectra. In particular, the case for K0 ¼ −5 < 0 in Fig. 2,
boosts theamplitudeof the lensingpotentialpower spectrum,
but suppresses that of the matter power spectrum, and vice
versa forK0 ¼ 100 > 0. This seemscontradictory sinceboth
probesareexpectedtobeproportional totheamountbywhich
matter clusters.
The above apparent tension follows from a nontrivial

consequence of the scalar coupling in the K-mouflage
model. For all the model considered, the input cosmologi-
cal parameters Ω̂b0 and Ω̂c0 are identical and, as already
mentioned, they are defined as the fraction of hatted matter
densities, scaling as a−3 and being conserved at the
background and perturbed levels. This choice is somewhat
arbitrary and alternatively we could have normalized the
models with fixed values of Ωb0 and Ωc0. Background and
linear perturbations in our modified CAMB are solved in the
Einstein frame, where the hatted matter densities and
perturbations (but not the density contrasts) are multiplied

by AðφÞ. Indeed, the nonmininal coupling of nonrelativistic
particles to the scalar field induce a time variation of the
particle mass in the Einstein frame and this extra scaling on
the particle masses translates directly into the energy
density of the matter particles, at both the background
and perturbation levels [recall the discussion about
Eq. (37)]. Since the gravitational potential is related to
the Einstein-frame matter perturbations, it is also sensitive
to the effects of the coupling. On the other hand, the density
contrast is the ratio of two densities, thus it is not affected
by the coupling and is frame independent. This explains the
opposite effect we get on the matter and lensing potential
power spectra: considering negative values of K0, the
resulting fifth-force weakens the density contrast and the
matter power spectrum, but on the other hand, AðφÞ > 1 at
z ¼ 0which amplifies the density perturbations sufficiently
to change the sign of the deviation of the gravitational
potential from ΛCDM in the Poisson equation. The
amplified gravitational potential then leads to an enhance-
ment of the lensing potential power spectrum. A similar
conclusion can be drawn when K0 > 0. This rather non-
trivial aspect of the K-mouflage model illustrates its rich
phenomenology, and will be the focus of a more in-depth
analysis in future work, in which we will present a full
analysis of the parameter space of K-mouflage models with
m ¼ 3. This should help to disentangle the degeneracies
between parameters, and will be useful to determine
whether the discriminatory effects between lensing and
matter power spectra can be used to further constrain the
model while preserving a good agreement with CMB
measurements by the Planck mission.

C. ΛCDM with Σmν ≠ 0

Before analysing the effects of massive neutrinos in the
K-mouflage model, it is instructive to remind ourselves of
their role in standard ΛCDM. This is shown in Fig. 3 for
three values of Σmν. We consider three active neutrinos
with a degenerate mass spectrum, because for the current
level of precision of the data one can safely ignore the mass
splittings. For fixed Ωc0h2 and Ωb0h2, increasing the value
of Σmν increases the expansion rate at late times, after the
neutrinos become nonrelativistic. Consequently, adding
massive neutrinos also leads to the appearance of oscil-
lations with l when one takes the relative difference to a
model without massive neutrinos (upper right panel of
Fig. 3). In particular, increasing Σmν shifts the power
spectrum slightly towards lower l, which is opposite to the
effect of positive values of K0 displayed in Fig. 2 (note that
the oscillations induced by Σmν in the ΛCDM model are in
phase opposition to those induced by K0 > 0). This
suggests that the peak positions of the CMB temperature
data might determine a strong degeneracy between K0 and
Σmν. The impact neutrinos have on larger angular scales
should be harder to distinguish because of the weaker
constraining power of the CMB data there.
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Furthermore, massive neutrinos also lower the ampli-

tudes of the linear matter and CMB lensing potential power

spectra. Note that here, contrary to the effects of the scalar

coupling, the changes in the amplitude of these two spectra

are consistent with one another. The presence of a suffi-

ciently large fraction of massive neutrinos can also lead to

scale dependence in the growth of the matter fluctuations,

because of the free streaming of massive neutrinos
(cf. lower panels of Fig. 3).

D. K-mouflage with Σmν ≠ 0

Figure 4 serves to confirm and illustrate some of the
degeneracies between the K-mouflage parameters and Σmν,
which have been anticipated in the discussion above. In
particular, in terms of the high-l part of the CMB
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FIG. 3 (color online). CMB temperature angular power spectrum (top left), lensing potential power spectrum (middle left) and matter
power spectrum (bottom left) for ΛCDM with Ωνh2 ¼ 0.64 × 10−3 (dotted brown) corresponding to

P
νmν ¼ 0.06 eV, Ωνh2 ¼

1.28 × 10−3 (dashed brown) corresponding to
P

νmν ¼ 0.12 eV and Ωνh2 ¼ 1.92 × 10−3 (solid brown) corresponding toP
νmν ¼ 0.18 eV. We consider three active neutrinos with a degenerate mass spectrum. The results for the K-mouflage model with

K0 ¼ −5, β ¼ 0.2, m ¼ 3 are also displayed for comparison (solid orange, respectively upper/lower line in middle/bottom panels). The
right panels show the corresponding relative differences to ΛCDM with Σmν ¼ 0 (solid black). In the upper left and middle left panels,
the data points with error bars correspond, respectively, to the CMB temperature and lensing potential power spectra as measured by the
Planck satellite [31]. In the lower left panel, the data points show the SDSS-DR7 Luminous Red Galaxy (LRG) host halo power
spectrum as presented in [32].
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temperature power spectrum in the K-mouflage models, we
note that the presence of massive neutrinos can consid-
erably cancel out the oscillations that appear in the relative
difference to a ΛCDM model without massive neutrinos.
Following from the discussion above, this is because the
massive neutrinos and the K-mouflage parameters can shift
the spectrum horizontally in opposite directions, and in
such a way to preserve the position of the acoustic peaks
(pink curve in the upper right panel of Fig. 4).

Massive neutrinos cluster less strongly than cold dark
matter, and so their presence leads to an overall suppression
of the total matter clustering power. Their free streaming
introduces also scale dependences in the growth of struc-
ture, which become more prominent on smaller scales.
These effects could conspire with the scale-independent
boosts in the clustering predicted by some of the
K-mouflage parameter combinations on subhorizon scales
(e.g. K0 > 0) to leave the matter power spectrum nearly
unchanged compared with ΛCDM (cf. lower-right panel of
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FIG. 4 (color online). CMB temperature angular power spectrum (top left), lensing potential power spectrum (middle left) and matter
power spectrum (bottom left), as well as the corresponding relative difference between the K-mouflage and ΛCDM models (right
panels), for K0 ¼ 50, β ¼ 0.2, m ¼ 3 and Σmν ¼ 0.18 eV (Ωνh2 ¼ 1.92 × 10−3, in pink). The ΛCDM model used in the ratios is that
with Σmν ¼ 0 (solid black). For comparison, the results for the LCDM model with massive neutrinos and Ωνh2 ¼ 1.92 × 10−3 (brown,
lower curve in top and bottom panels, middle curve in middle panels) and for the K-mouflage model with same parameters and Σmν ¼ 0
(blue, upper curve in right-hand panels) have been displayed. In the upper left and middle left panels, the data points with error bars
correspond, respectively, to the CMB temperature and lensing potential power spectra as measured by the Planck satellite [31]. In the
lower left panel, the data points show the SDSS-DR7 Luminous Red Galaxy (LRG) host halo power spectrum as presented in [32].
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Fig. 4 for k≳ 0.1h=Mpc). However, the differences in the
scale-dependent features introduced by Σmν and the
K-mouflage parameters on the growth of structure leave
room for some breaking of degeneracies, although we
recall, comparisons with galaxy clustering data require a
better modelling of certain aspects of nonlinear structure
formation.
Finally, since massive neutrinos also lower the amplitude

of the lensing potential power spectrum, then some of the
boosting effects of the K-mouflage field for negative values
of K0 (cf. Fig. 2) can be cancelled out. However, recall that
the peak positions of the CMB are likely to determine a
degeneracy between larger values of Σmν and positive
values K0, not negative. As a result, combined constraints
from the CMB temperature and lensing spectrum have the
potential to partly break this degeneracy. For instance, the
middle panels of Fig. 4 show that increasing Σmν on the
K-mouflage model with K0 > 0 (pink curve), further
suppresses the amplitude of the lensing power spectrum,
compared to a ΛCDM model without massive neutrinos.
Consequently, if the CMB peak positions could cope with
large massive neutrino fractions for a positive K0, this may
still lead to an amplitude of the lensing power spectrum that
is too low to be compatible with the observations.

V. SUMMARY AND DISCUSSION

A. Summary

In this paper, we have derived the fully covariant and
gauge invariant linearly perturbed equations for cosmolo-
gies where a scalar degree of freedom couples directly to
matter. In our derivation we have analyzed, in detail, the
case for each of the species that make up the energy content
of the Universe. We aimed at being comprehensive, in the
hope that the equations presented in this paper can serve as
useful references for future works.
Although our equations are general, we have focused

specifically on the case where the scalar field is a
K-mouflage field. The Lagrangian structure of such a field
is characterized by noncanonical kinetic terms that can hide
the effects of the coupling to matter in regions where the
gravitational acceleration (i.e. first derivatives of the gravi-
tational potential) exceeds some threshold. The study
presented here, however, focuses on linear theory, for
which the effects of the screening mechanism do not play
a role. We have solved our set of equations in a suitably
modified version of the CAMB code.
One of our main goals was to determine the impact of the

K-mouflage model on observables such as the CMB
temperature, CMB lensing potential, and linear matter
power spectrum. We want to compare our results with
those of the standard ΛCDM paradigm, and as a result, we
have used a fixed set of cosmological parameters for both
models. With this spirit, we only allowed ourselves to vary
the summed mass of the three active neutrinos (to illustrate

potential degeneracies) and the parameters that enter the
K-mouflage Lagrangian.
We found that the coupled K-mouflage field modifies the

background dynamics and hence shifts the CMB temper-
ature power spectrum horizontally. This translates into a
series of oscillations when we look at the relative difference
to ΛCDM. For certain K-mouflage parameters, however,
this effect can be cancelled by having massive neutrinos.
This can potentially lead to interesting degeneracies
between the modification to gravity and neutrinos masses.
The K-mouflage model can also have a visible impact on
the larger angular scales of the CMB temperature power
spectrum, through its modifications to the ISW effect.
However, it is unlikely that this signal would lead to
significant constraints, given the large size of the error bars
due to cosmic variance.
Our results show that matter clustering can also be

significantly affected by the coupled K-mouflage field,
especially on subhorizon scales, where the scalar coupling
with matter has the strongest impact. Again, massive
neutrinos can cancel out some of the effects, but introduce
also scale dependences on the growth that might be used to
break some degeneracies and impose constraints on the
model parameters. We remark that a proper use of galaxy
clustering data to constrain models of modified gravity
should only be performed after a more careful analysis of
the nonlinear regime of structure formation (see e.g.
Sec. IV.D. of [34]).
The K-mouflage models which enhance (suppress) the

amplitude of the linear matter power spectrum, seem to
suppress (enhance) the amplitude of the lensing potential
power spectrum. This seems to be contradictory at first
sight, since both observables should probe the overall
matter clustering. This is because of a rather nontrivial
effect of the scalar coupling on the magnitude of the
gravitational potentials. The latter are essentially deter-
mined by the sizes of the (absolute) density perturbations,
which are rescaled in the same way as matter particle
masses. However, when one computes the density contrast
to calculate the matter power spectrum, the time depend-
ences in the matter density perturbation and background
matter density caused by varying particle masses cancel
out. This effectively leads to different qualitative predic-
tions on the amplitudes of the matter and lensing potential
power spectra. Such a feature of the K-mouflage model
may lead to interesting constraints on the model’s param-
eter space.
Although we have presented our results in the case of

cubic K-mouflage models (with m ¼ 3), they are quite
general as long as the K-mouflage Lagrangian is dominated
by a monomial of power m > 1 with coupling constant K0.
In this case, the models which have both an early Universe
behavior with a vanishing influence of the scalar field in the
radiation era and a static screening of the scalar interaction
must satisfy K0 > 0 for oddm and K0 < 0 for even m. The
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latter leads to ghost instabilities and should be discarded. In
the case of oddm’s, whenK0 > 0, all the conclusions stand
similarly to the cubic case, in particular structure growth is
enhanced while the lensing spectrum is reduced. Moreover,
the excursion of the field φ is small enough compared to the
Planck scale that one can always expand the function AðφÞ
to linear order with no significant difference.

B. Discussion and outlook

We conclude by briefly comparing the predictions of the
K-mouflage model with those of other recently studied
modified gravity models.
The background evolution of the covariant Galileon

model does not admit a ΛCDM limit (see e.g. [35]). In
particular, the effective dark energy equation-of-state
parameter of the Galileon field is phantom (smaller than
−1) in the recent past, which is similar to the K-mouflage
model forK0 > 0 [18]. This lowers the expansion history at
late times, which shifts the CMB temperature power
spectrum to higher l. In the case of the Galileon model,
this feature is responsible for a strong preference of the
model for significantly large massive neutrino fractions
(Σmν ≳ 0.4 at ∼6σ) [36,37]. We have seen in Sec. IV that a
similar trend might also arise in the K-mouflage model.
However, the nontrivial effects that a scalar coupling can
have on the lensing power spectrum (cf. Sec. IV B) are
absent in the Galileon model [16]. Nonlocal formulations
of gravity [38–40] can also lead to background solutions
that are different from ΛCDM, in a way that its impact on
the peak positions might also prefer nonzero values for
Σmν. On the other hand, chameleon models typically
possess free functions that can be tuned to yield exact
ΛCDM expansion histories.
On linear subhorizon scales, the effects of the

K-mouflage and Galileon fields on the growth of structure
are both scale independent. On even smaller scales, how-
ever, the two models react differently to the nonlinear
density field due to their different screening mechanisms.
For Galileons, N-body simulations [34,41,42] show that the
effects of the screening mechanism start to become impor-
tant on scales k≳ 0.1h=Mpc, which correspond to the
typical size of dark matter clusters. In the K-mouflage
model, on the other hand, the screening mechanism only
becomes important on much smaller scales k≳ 10h=Mpc

[19,21]. On scales of 0.1h Mpc−1 ≲ k≲ 10h Mpc−1, the
nonlinear regime of structure formation in the K-mouflage
model should therefore resemble more the case of nonlocal
gravity models [38], for which the modifications to gravity
are not screened. For chameleon models, the environmen-
tally dependent Compton wavelength of the chameleon
field leads to a scale-dependent growth, even on linear
scales. However, the current observational constraints on
chameleon model parameters essentially make these mod-
els’ large scale structure predictions to be nearly undis-
tinguishable from ΛCDM (see e.g. [43]).
As we hope to have shown above, the variety and size

of the observational signatures that characterize the
K-mouflage model leave us with an interesting playground
to explore several degeneracies with a number of cosmo-
logical parameters. In this paper, we have focused specifi-
cally on the case of massive neutrinos, but we note that
degeneracies with other parameters, such as h and Ωc0h2,
could also be present, because both have an impact on the
expansion history and clustering strength. The
K-mouflage model is different from other popular modified
gravity models, making it of interest for further inves-
tigations. In particular, in a coming work we will determine
its overall goodness-of-fit, by exploring the global cosmo-
logical parameter space with Monte Carlo Markov chain
methods.
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