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Abstract

In cases where field (or experimental) measurements are not available, computer models
can model real physical or engineering systems to reproduce their outcomes. They are usually
calibrated in light of experimental data to better reproduce the real system. Statistical
methods, based on Gaussian processes, for calibration and prediction have been especially
important when the computer models are expensive and experimental data limited. In
this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard
Gaussian process calibration methods to deal with non-stationarity computer models and/or
their discrepancy from the field (or experimental) data. Our proposed method partitions
both the calibration and observable input space, based on a binary tree partitioning, into
subregions where existing model calibration methods can be applied to link a computer
model with the real system. The estimation of the parameters in the proposed model is
carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different
strategies have been applied to improve mixing. We illustrate our method in two artificial
examples and a real application that concerns the capture of carbon dioxide with AX amine
based sorbents. The source code and the examples analyzed in this paper are available as
part of the supplementary materials.

Keywords: Calibration, Bayesian tree, Gaussian process, Markov chain Monte Carlo, Computer

Experiments
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1 Introduction

The direct observation of a complex physical or engineering system (e.g., climate change,

nuclear reactor performance, carbon capture system) for the whole input space usually is im-

possible due to the high cost, limited resources, rare events, etc. The need to replace a physical

or engineering system with an accurate computer model is crucial for further investigation and

better understanding of the problem. Accurate computer models (simulators) have been made

possible by advances in processing power and parallel computing. To evaluate and use computer

model to predict a physical or engineering system, it may initially be necessary to calibrate it

using some observed data. Improving the level of detail and model resolution may increase the

fidelity of simulations to real systems, yet the rise in the associated computation cost may be

significant. In spite of the availability of powerful computational resources, it often is computa-

tionally too expensive to run such complex models for all possible input conditions.

Model calibration is an important tool in problems where there are expensive computer

models and experimental (or field) data available from the true system. Typically, experimental

data are collected from some region of the input space called observable input space. The re-

maining input space consist of the calibration parameter input space, which is associated with

parameters necessary to run the computer model. A statistically rigorous model based frame-

work for computer model calibration has been suggested by Kennedy and O’Hagan (2001),

Higdon et al. (2004), Williams et al. (2006) and Vernon et al. (2010). These approaches pro-

vide a posterior distribution for the computer model and the discrepancy term. Moreover, this

model can be used to make predictions about outcomes in regions of the input space where

data are not available, as well as to accurately estimate the parameters that are usually not

observed but are necessary to run the computer model. Often, there are multiple outcomes

(e.g., temperature and pressure) of interest, and the field data measure, at least, some of them.

An extension to high dimensional output via functional decomposition has been considered in

Higdon et al. (2008) and Bayarri et al. (2007). Calibration with categorical parameters are

described in Storlie et al. (2013). In Higdon et al. (2008) the discrepancy term is also modeled

with a non-stationary process-convolution approach Higdon (1998) where the number and the

locations and central locations are determined in an ad hoc manner. Well known limitation of

process-convolution approach such as dimensionality problem and smooth transition over space

also should be taken into consideration. Although, this calibration model has been applied suc-

cessfully to practical problems, an overall calibration approach available that can appropriately

handle a non-stationary computer model and/or discrepancy term is still in the search. The

mean is usually modeled with a smooth function, and the covariance function is considered

stationary. In practice, the mean, variation, and/or variance of the computer model and/or
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discrepancy may changes for different parts of the input space. The computer model and/or

the experimental nugget effect may also depend on the input space.

The motivation for addressing the preceding problem comes from a project, associated with

the Carbon Capture Simulation Initiative (CCSI), that is related to the effects of man-made

greenhouse gases on the global environment, notably an important issue at the moment. Briefly,

the task we are mostly interested in concerns modeling the capture of carbon dioxide using an

amine sorbent. The amine sorbent, comprised of small chemically reactive particles flowing

through the adsorber reactor device, is capable of reacting with carbon dioxide and removing

it from thermal power plant exhaust. The properties of the sorbent used, coded name AX,

and its CO2 adsorption characteristics can be found in Krutka and Sjostrom (2013). The

experimental data are limited in size because they are collected via a time-demanding experiment

that involves complex multiphase reactive flow phenomena, such as hydrodynamics, thermal

transfer, and chemical reaction, simultaneously. For similar reasons, it is equally challenging to

design effective modeling simulations capable of solving all physics aspects. The computational

cost of such computer models (simulations) is expected to be extremely high. In these types of

studies, sudden changes and discontinuities in the output for both the real system or computer

model may occur (explained later in Section 7). Consequently, standard statistical calibration

methods that do not account for non-stationarity can give inaccurate results.

Bayesian treed models have been successful in handling non-stationarity for the purpose of

uncertainty quantification and prediction in computer models (experiments). They partition

the input space into non-overlapping subregions by making binary splits recursively using a

Markov chain Monte Carlo (MCMC) algorithm. Each of these non-overlapping subregions

corresponds to a terminal node of a binary tree. The output within a terminal node is considered

“homogeneous” and modeled independently from the output of the other nodes. Within a

terminal node, Chipman et al. (1998, 2002) propose a regression model while Gramacy and Lee

(2008) generalize it to the Gaussian process. An extension to the multivariate case is given

by Konomi et al. (2014a). Bayesian treed techniques provide a straightforward mechanism for

creating a non-stationary model by applying simple stationary models within each terminal

node. Moreover, it reduces the computational cost by applying simpler models to less data in

every MCMC iteration.

Lee et al. (2010) uses the treed Gaussian process (TGP) to facilitate a two step model

calibration. In the first step TGP is used to help an adaptive sampling procedure to find the

most informative input points for the observed data similar to Gramacy and Lee (2009). In the

second step TGP is used to help an optimization algorithm to minimize an objective function

for the distance between simulated and observed data. The observed and the simulated input
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space have to be the same. In the minimization process the TGP is used to provide a more

robust solution since the function is usually multi-modal. Also their model do not count for

discrepancy.

In this paper, we use Bayesian treed techniques to propose a general approach for calibration

in situations where: (a) a physical or engineering system is observed in some region of the input

space, (b) the computer model(s) are computationally expensive to run and possibly have non-

stationary output behavior, and (c) the discrepancy between the computer model and the real

system may be non-stationary. We develop a Bayesian treed calibration (BTC) model which

partitions the input space (both observable and calibration input space) into disjoint subregions

where we can apply independent standard calibration models, such as those in Kennedy and

O’Hagan (2001) and Higdon et al. (2004). The proposed likelihood depends on the tree structure,

calibration parameters, and the terminal node standard calibration models. Appropriate choice

of the likelihood and prior specification lead to a properly defined posterior distribution, where

inference is carried out through an MCMC sampler. Special care is taken in the formulation

of the problem when we propose θ in different subregions and in the Bayesian tree operations

(grow, prune, change, swap and rotate). In addition, the MCMC sampler has been facilitated by

integrating out the linear term of the Gaussian processes used to model the computer model and

the discrepancy in each terminal nodes. To perform prediction, we use Bayesian model averaging

(BMA) (Hoeting et al., 1999) and use covariance functions that can link different subregions

at each MCMC iteration. We also offer an extension of the proposed model when dealing with

multiple outcomes. Artificial cases have been constructed to demonstrate the usefulness of the

proposed BTC with existing calibration models. Finally, BTC is applied to calibrate computer

model and real data in the adsorber device with AX amine based sorbents from a carbon capture

plant where non-stationary models are supported from data. The proposed BTC method can

be used in cases where the non-stationarity is associated to the computer model output, the

discrepancy function, or the nugget effects.

The rest of the paper is organized as follows: in Section 2, we review the Bayesian calibration

approach. In Section 3, we describe the Bayesian treed calibration (BTC). In Section 4, we

describe the Bayesian inference and prediction strategies. In Section 5, we conduct a simulation

study for artificial examples. In Section 6, we demonstrate the benefits of our proposed method

by analyzing AX data. Conclusions are presented in Section 7.
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2 Review on Bayesian Calibration

In this section, we present a brief review of the calibration problem similar to Kennedy and

O’Hagan (2001), and Higdon et al. (2004).

2.1 Model calibration

The calibration data are composed of field (experimental) measurements and computer

model data. We denote the response of the n field measurement by z = (z1, . . . , zn), where

each component zi is being subject to:

zi = ζ(xi) + ei,

where ζ(xi) denotes the response of the actual physical system, xi are the observable inputs,

and ei denotes the nugget error for the ith observation.

The computer model aims to simulate the real system. The input of the computer model

consists of q−dimensional observable input x and p−dimensional calibration input values t.

Without loss of generality, we also use the term calibration parameters for the tuning parameters,

which are necessary to run the computer model, as in Higdon et al. (2004). The computer model

output is an unknown function η(x, t) of the observable and calibration input, which simulates

a physical system.

The observations zi, the true process ζ( · ), and the computer model function η( · , · ) are

linked through:

zi = ζ(xi) + ei = η(xi,θ) + δ(xi) + ei, (1)

where the term δ( · ) is a model disagreement between the real system from the computer model,

and it is usually known as the discrepancy function. The discrepancy function is assumed to be

independent of the computer model true value η( · ,θ), and θ denotes the best fixed but unknown

setting for the calibration input t. Each of the n field measurements η( · , · ) consists of the

known observable input value xi, and the unknown p−dimensional vector calibration parameter

θ, which is considered fixed (for each of the n field measurements). Direct sampling from the

posterior of the calibration parameters θ is impossible in practice because the computation of

η(x, t) is often expensive. To overcome these difficulties, η(x, t) is modeled with a Gaussian

process-based emulator (Kennedy and O’Hagan, 2001).

Although some computer models are generated by deterministic solvers with no random

error, to avoid an infinite differentiability covariance function it is better to add a nugget effect

in the statistical model (Stein, 1999). Moreover, Gramacy and Lee (2012) argue that the use of
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a nugget helps protect against poor fit when assumptions are violated. Statistical emulators for

computer models are not exact in practice. The output of the computer model is y = η(x, t)+v,

where v represents the nugget error of the computer model. For m computer experiment runs

at input points ((x∗1, t1), . . . , (x
∗
m, tm)) (both observable and calibration input) we denote the

output as y = (y1, . . . , ym), where yj = η(x∗j , tj) + vj .

2.2 Calibration with Gaussian process

Typically, the unknown functions η( · , · ) and δ( · ) are modeled as two independent Gaussian

processes (GP) (Kennedy and O’Hagan, 2001; Higdon et al., 2004; Williams et al., 2006; Higdon

et al., 2008), that is: η( · , · ) ∼ N(µη( · , · ), cη(( · , · ), ( · , · ))) and δ( · ) ∼ N(µδ( · ), cδ( · , · )).
We will refer to this method as standard Bayesian Gaussian process calibration (SBGPC). For

η( · , · ) and δ( · ) the mean is usually assumed to be a linear model as: µη(x, t) = hη(x, t)
Tβη

and µδ(x) = hδ(x)Tβδ. The covariance function of η( · , · ) is modeled in a separable form, as

in Kennedy and O’Hagan (2001):

cη((x, t), (x
′, t′)) = σ2ηρ(x,x′;φη,x)ρ(t, t′;φη,t),

and the covariance function of δ( · ) is:

cδ(x,x
′) = σ2δρ(x,x′;φδ,x),

where σ2η and σ2δ are the variance of η( · , · ) and δ( · ), correspondingly, and ρ denotes the

correlation function.

The correlation function, ρ, is of particular importance as it defines the smoothness of

the random field. Different choices, such as Matérn and power exponential covariance family,

can be made. The separable power exponential covariance family is considered as a standard

choice in the computer experiments (Santner et al., 2003) where the dimensionality of the

input can be usually high. In specific, for the squared exponential family ρ(x,x′;φη,x) =

exp

(
−1

2

∑
l=1:q

||xl−x′l||
2

φ2l,x

)
, where φl,x is the correlation strength in the l direction. Different

inputs usually have different meaning. Therefore, it is preferable to have different correlation

parameters. The same formulations can be applied for ρ(t, t′;φη,t) and ρ(x,x′;φδ,x). When the

data are sampled in a grid, this covariance matrix can be expressed in a Kronecker product of

one-dimensional matrices. Finally, this correlation function is invariant to the value of xi when

considered along xj when i 6= j.
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3 The Bayesian treed calibration

In many calibration problems, a stationary model for the computer model or the discrepancy

function may not be appropriate since the mean, variance, and the spatial dependency may

differ from one input subregion to another. The Bayesian tree (Chipman et al., 1998) provides

a straightforward mechanism for modeling non-stationary data by partitioning the input space

into subregions using binary splitting rules. Each partition then is modeled independently.

3.1 Modeling with a binary tree both the computer model output and the

discrepancy

For simplicity in the formulation, we denote as D the (q+ p) dimensional input space, both

observational and calibration. We also denote the observable input points of the n field measure-

ments byD1 = {x1, . . . ,xn}, and the set of observable input points augmented with the calibra-

tion parameter by D1(θ) = {(x1,θ), . . . , (xn,θ)}. In addition, we denote the set of input points

(both observable and calibration) of the computer model by D2 = {(x∗1, t1), . . . , (x∗m, tm)}. We

also represent all of the input dataset augmented by θ as D = (D1(θ),D2) and their output as

d = (z,y).

We apply a binary tree T to partition the input space in {D1, . . . ,DK} disjoint subregions,

such thatD =
⋃K
k=1Dk corresponds to a tree structure T withK external nodes. Each subregion

consists of Dk = {D1
k(θ),D2

k} input points and the corresponding output dk = (zk,yk). We

model the output of the kth subregions {dk} with the SBGPC (explained in Section 2). Inside

each treed partition, the unknown functions ηk( · , · ) and δk( · ) are modeled as two independent

GPs. The calibration model formulation is independent for each partition, and the created mean

and the covariance parameters have a step function form. Moreover, for a given θ, some of the

input subregions may not contain θ. In these cases, the Bayesian formulation with the prior

distributions helps to define the model. In the Bayesian framework, for a given subregion k,

we update the prior of ηk( · , · ) and δk( · ) in light of the data. For subregions that do not have

experimental observations, the unknown function δk( · ) is updated from the prior distribution.

We chose to work with a unique Bayesian tree for the output d. Another alternative is

to separately model the computer model output η( · , · ) and the discrepancy function δ( · )
with a Bayesian treed Gaussian process (BTGP). Because we are modeling both functions

independently from each other, it may be more appropriate to deal separately with η( · , · )
and δ( · ). However, this translates into two independent Bayesian treed models: one for the

computer model and the other for its discrepancy from the real system. In spite of the logical

flow of this approach, it would make the structure of the model very complicated. For more

7



details see Appendix A. Instead, if we work with only one Bayesian tree directly to the response

d, the inference is more direct.

Likelihood: For a given tree T , calibration parameter θ, and GP parameters Θ = {Θk}k=1:K =

{βk,φk,σ2
k, τ

2
k }k=1:K = (β,φ,σ2, τ 2), the likelihood is a product of K independent different

components,

f(d|T ,Θ,θ) ∝
∏

k=1:K

|Vdk |−1/2 exp[−1

2
(dk − E(dk))

TV −1dk
(dk − E(dk))],

where E(dk) and Vdk are the mean and variance of the output in the kth partition (subregion)

dk. WhenD1
k(θ) = ∅, the likelihood of the kth partition does not depend on θ. As a result, some

of the partitions will not depend on the calibration parameter θ and the parameters associated

with the discrepancy.

In order to represent more explicitly the mean and variance of each component in the pre-

ceding formulation, we introduce some new symbols. Let Hη(D
2
k) denote the matrix with rows

hη(x, t) for each (x, t) ∈D2
k, and Hδ(D

1
k) denotes the matrix with rows hδ(x) for each x ∈D1

k.

Let Vη(Dk) = Cη(Dk,Dk) be the covariance matrix with (i, i′) elements, cη((xi, ti), (xi′ , ti′) for

every pair (xi, ti) ∈ Dk, and (xi′ , ti′) ∈ Dk. Similarly, we define Vδ(D
1
k) = Cδ(D

1
k,D

1
k). The

mean of the output in the kth partition is:

E(dk) = Hkβk =

Hη(D
1
k(θ)) Hδ(D

1
k)

Hη(D
2
k) 0

βη,k
βδ,k

 ,
and its covariance matrix is:

Vdk = cov(dk,dk) = Vηk(Dk) +

Vδk(D1
k) + τ2ekInk

0

0 τ2vkImk

 ,

where τ2ek and τ2vk are the variances of the nuggets, and Ink
and Imk

are identity matrices of

dimension nk × nk and mk ×mk respectively.

Prior: We assign a prior distribution on the parameter (T ,θ,Θ), such as:

π(T ,θ,Θ) = π(T )π(θ)π(Θ|T ) = π(T )π(θ)
∏

k=1:K

π(βηk , σ
2
ηk

)π(φηk)π(βδk , σ
2
δk

)π(φδk)π(τ2ek)π(τ2vk).

In the Bayesian framework, a binary tree (T ) is treated as random and assigned with a prior
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distribution through a tree-generating process (Chipman et al., 1998). Starting with a null tree

(all data in a single region), a leaf node ξ ∈ T , representing a subregion of the input space,

splits with probability Psplit(ξ, T ) = a(1 + uξ)
−b, where uξ is the depth of ξ ∈ T , a controls the

balance of the shape of the tree, and b controls the size of the of the tree.

The marginal treed prior distribution is:

P (T ) = Prule(ρ|ξ, T )
∏
ξi∈I

Psplit(ξi, T )
∏
ξj∈E

(1− Psplit(ξj , T )),

where I and E denote the internal and terminal nodes, respectively. Prule(ρ|η, T ) involves

the splitting process, which initially chooses the splitting variable ω from a discrete uniform

distribution. Then the split location s is chosen uniformly from a continuous subset of the

locations in the ωth variable. We call the pair of the values {ω, s} the splitting rule. The

parameters a and b are determined from a priori knowledge or from a pilot study.

The GP parameters (βηk ,φηk , σ
2
ηk

) and (βηk ,φδk , σ
2
δk

) are a priori independent between

different partitions and independent of each other within the partitions of the input domain.

As in Gramacy and Lee (2008), hyper-parameters φηk and φδk are considered to be a mixture

of Gamma distributions. We choose non-informative priors for (βηk , σηk) and (βδk , σ
2
δk

). More

precisely, the prior distributions of the GP hyper-parameters in the kth partition are:

π(βηk , σ
2
ηk

)π(φηk) ∝ 1

σ2ηk

∏
l=1:(q+p)

[G(φηk,l|αG,1, βG,1) +G(φηk,l|αG,2, βG,2)]/2

π(βδk , σ
2
δk

)π(φδk) ∝ 1

σ2δk

∏
l=1:p

[G(φδk,l|αG,1, βG,1) +G(φδk,l|αG,2, βG,2)]/2,

where (q+p) is the dimension of the experimental input and calibration space, q is the dimension

of the experimental input space, and αG,1, βG,1, αG,2, βG,2 express a prior knowledge. Moreover,

we define the prior for θ with a modified Beta distribution with parameters defined to represent

previous studies or the domain scientist opinion. We also assign priors for the nugget hyper-

parameter π(τ2ek) and π(τ2vk) as exponential distribution to ensure positive values.

Illustration: For illustration purposes, we assume a calibration problem with one experimen-

tal variable (x) and one calibration variable (t). Given a binary tree of depth two, three external

nodes, and two splitting rules {x, s1} and {t, s2} we manage to partition the space into three

different subregions as shown in Figure 1. For this particular tree and value of θ, subregions

D2 and D3 contain experimental data, while subregion D1 does not contain experimental data.

The data inside the subregions depend on the tree and the value of θ. Despite the fact that D1
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does not have field (experimental) measurements, for the particular θ, the discrepancy function

δ2( · ) is updated from its prior.

{x, s1}

{t, s2}

{D1,d1}

D[:, t] < s2

{D2,d2}

D[:, t] > s2

D[:, x] < s1

{D3,d3}

D[:, x] > s1

(a) T : Diagram

D3

D1

D2

s
2

θ

s
1

 t

 x

(b) T : Graphically

Figure 1: Bayesian treed calibration in two forms: (a) T : Diagram and (b) T : Graphically

Posterior: The posterior distribution is known up to a normalizing constant as:

p(Θ,θ, T |d) ∝ π(T )π(θ)
∏

k=1:K

π(φηk ,βηk , σ
2
ηk

)|Vdk |−1/2 × exp[−1

2
(dk − E(dk))

TV −1dk
(dk − E(dk))].

(2)

Posterior inference for the proposed model can be facilitated by MCMC methods.

4 Bayesian Inference and Computational Strategies

We follow a three-step scheme of the MCMC sampler as (θ|T ,Θ,d), (Θ|θ, T ,d), and

(T |Θ,θ,d). Predictive distributions and uncertainty quantification are also derived through

the MCMC algorithm. In this section, we present in details the steps of the MCMC algorithm

and prediction analysis.

4.1 Posterior GP given tree T and calibration parameters θ

Conditional on the calibration parameters θ and the tree T , the full joint posterior dis-

tribution of the GP hyperparameters (Θ|d,θ, T ) is analytically intractable. Exact posterior

inference is performed by a customized MCMC algorithm. Analytically, for each external node

k = 1, . . . ,K, we firstly sample from the closed posterior distribution of βk|θ,φk, τ 2
k ,dk. Then,

we sample from the posterior distribution of φk,σ
2
k, τ

2
k |dk,θ, which we find by integrating out

βk with Metropolis-Hastings (M-H).
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Given the prior specification for βk and σ2
k in Section 3, for each external node k = 1, . . . ,K,

the posterior distribution of βk given θ,φk, τk,dk is a multivaraite Normal distribution with

mean β̂k = WkH
T
k V

−1
dk
dk and variance Wk = HT

k V
−1
dk
Hk is:

βk|θ,φk, τk,dk ∼ N (β̂k,Wk). (3)

Both β̂k and Wk depend on (φk, τ
2
k ) and θ. In Eq. 2 we integrate out βk and compute the joint

posterior distribution of φk,σ
2
k, τ

2
k |d,θ as:

p(φk,σ
2
k, τ

2
k |dk,θ) ∝ π(φk)π(σ2

k)π(τ 2
k )|Vdk |−1/2|Wk|1/2 exp[−1

2
(dk −Hkβ̂k)

TV −1dk
(dk −Hkβ̂k)].

(4)

The conditional posteriors of φk|σ2
k, τ

2
k , σ2

k|φk, τk and τ 2
k |σ2

k,φk cannot be sampled directly.

Therefore, we use Metropolis-Hastings updates within a Gibbs sampler, (Mueller, 1993; Gelfand

and Smith, 1990; Hastings, 1970). For more details, refer to Appendix B.

Remark: Given the values of θ, some of the partitions may not have experimental observa-

tions. In this case, the likelihood of the output is a function of η( · , · ) and experimental nugget

τ2v . However, the parameters of the discrepancy (except βδk) and the observational error are

updated and determined from their prior distribution.

4.2 Posterior inference calibration parameters given the tree T and GP hy-

perparameters

Conditional on the tree T , and GPs parameters φ,σ2 and τ , the posterior distribution of

the calibration parameter θ is:

p(θ|d, T ,φ,σ2, τ 2) ∝ p(θ)

K∏
k=1

|Vdk |−1/2|Wk|1/2 exp[−1

2
(dk −Hkβ̂k)

TV −1dk
(dk −Hkβ̂k)], (5)

which is analytically intractable. At least for one of the external nodes k′, Hk′ , β̂k′ ,Vdk′ , and

Wk′ are functions of θ. Posterior inference is performed by a Metropolis-Hastings algorithm

(we propose a values θ and decide with an M-H step whether or not we accept or reject). By

changing θ, we change part of the calibration input which is associated with D1
k(θ). This may

change the number of observations inside each external node of the binary tree. When we

propose θ in a different terminal node from the current one we have to update also the GP

hyperparameters of the discrepancy δ( · ). The parameters associated with the linear term, β,
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are updated by sampling directly form posterior distribution, while the other parameters are

updated from the prior distribution.

4.3 Bayesian tree given GP and the calibration parameter θ

The structure of the binary tree given the calibration parameter θ and the GP parameters

β,φ, τ is updated through a random scan MCMC sweep that includes as updates the Grow,

Prune, Change, and Swap operations introduced by Chipman et al. (1998) and Rotate operator

introduced by Gramacy and Lee (2008). The first three operations are Metropolis-Hastings

updates operating on fixed parametric dimensional spaces while the last two are a reversible

jump (RJ) pair of moves (Green, 1995) that perform changes to the dimension of the parameter

space. The calibration parameters θ do not change dimension in the RJ type of moves in the

Bayesian tree. As such, we can update them given the Bayesian tree and ignore its update in

the tree operations.

Because we can integrate out the linear model parameter β, we do not need to generate

proposed values for these parameters in the RJ pair of moves. In the grow and prune operation,

we can propose in the kth partition (φk,σ
2
k) ≡ (φηk , σ

2
ηk
,φδk , σ

2
δk

) from their prior specifica-

tions. However, to increase the acceptance ratio of the RJ type of moves, we build proposal

distributions that can change in the MCMC moves. The proposal distribution used is of the

form:

q(φk,σ
2
k) = q(φηk , σ

2
ηk
,φδk , σ

2
δk

) = π(φηk)π(φδk)p(σ2ηk |φηk ,yk)p(σ
2
δk
|φηk ,φδk , σ2ηk , zk),

where π(φηk) and π(φδk) are the prior specifications for φηk and φδk , respectively. The proposal

distribution of σ2ηk is equal to the conditional distribution p(σ2ηk |φη,k,yk), ignoring the infor-

mation gained from experimental data. This conditional distribution has an inverse Gamma

distribution:

σ2ηk |yk,φηk ∼ IG((r + nk), (nk −m)σ̂ηk + σ0ηk),

where σ̂2ηk is the generalized least squares (GLS) estimator of σ2ηk . Similarly, we ignore the

simulated data and compute the conditional posterior distribution of σ2δk |φηk ,φδk , σ
2
ηk
, zk to

build the proposal distribution for σδk . To ensure reversibility of the Markov chain, we follow

the same strategy for the grow and the prune operation.

Given the current state is at binary tree T , the Grow operation involves several steps. We

randomly select an external node ξj0 that corresponds to a subregion Dj0 with data {Dj0 ,dj0}
and GP calibration model with parameters (φj0 ,σ

2
j0

). We propose node ξj0 to split into two new

child nodes ξj1 and ξj2 according to the splitting rule Prule used in the priors, and we denote
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the proposed tree as T ′. We consider that nodes ξj1 and ξj2 correspond to disjoint subregions

Dj1 and Dj2 , the union of which is Dj0 , with data {Dj1 ,dj1} and {Dj2 ,dj2}, respectively. Let

(φj1 ,σ
2
j1

) and (φj2 ,σ
2
j2

) denote the vector parameters of the GP calibration associated with the

new nodes ξj1 and ξj2 . A newly formed child, e.g., ξj1 , is randomly chosen to receive values for

(φj1 ,σ
2
j1

) from the parent such that (φj1 ,σ
2
j1

) = (φj0 ,σ
2
j0

). Meanwhile, for the other, (φj2 ,σ
2
j2

),

we generate values from a proposal q(φj2 ,σ
2
j2

) per our earlier explanation.

The Grow operation is accepted with probability min{1, A}, where

A =
1− a(1 + uξj0 )−b

a(1 + uξj0 )−b(1− a(2 + uξj0 )−b)2
|G|
|P ′|

p(φj1 ,σ
2
j1
|dj1 ,θ)p(φj2 ,σ

2
j2
|dj2 ,θ)

p(φj0 ,σ
2
j0
|dj0 ,θ)q(φj2 ,σ

2
j2

)
, (6)

where G the set of growable node in the current tree T and P ′ the set of prounable nodes

in the proposed tree T ′. The Prune operation is the reverse analog of Grow, from tree T ′ to

T , and designed so the detailed balance condition is satisfied. The operation is accepted with

probability min{1, 1/A}.
In the change operation, the parameters of the discrepancy function δ( · ), which are associ-

ated with observations, may also change. The mean is directly updated from the closed form

given in Section 4.1, while the correlation parameters are updated from the prior specification

and the variance from the conditional representation.

4.4 Prediction and uncertainty quantification

The predictive distribution ζ(x) in partition k for a given tree T , hyperparamters Θ, and

the calibration parameter θ is a Gaussian process with mean:

E(ζ(x)|θ, T ,Θ,d) = hk(x,θ)T β̂k + t(x,θ)TV −1dk
{dk −Hkβ̂k},

where hk(x,θ)=(hηk(x,θ), hδk(x))T , tk(x,θ) = Cηk((x,θ), Dk) + (Cδk(x, Dk,1) ,0)T ,

and covariance function:

cov(ζ(x), ζ(x′)|θ, T ,Θ,d) =cηk((x,θ), (x′,θ)) + cδk(x,x′)− tk(x,θ)TV −1dk
tk(x

′,θ)

+ (hk(x,θ)−HT
k V

−1
dk
tk(x,θ))TWk(hk(x

′,θ)−HT
k V

−1
dk
tk(x

′,θ))

(7)

for x′ ∈ Dk. When x /∈ Dk, the covariance is equal to zero due to the assumption of independent

external nodes associated with the Bayesian tree.

The Bayesian predictive density function is calculated through Bayesian model averaging

13



(BMA) as:

p(ζ(x)|d) =
∑
T

∫
θ,Θ

p(ζ(x)|θ, T ,Θ,d)π(θ, T ,Θ|d)dθdΘ. (8)

We approximate the preceding equation with Monte Carlo samples as:

1. Generate MCMC samples (θ(1),Θ(1), T (1)), . . . , (θ(M),Θ(M), T (M)) from p(θ,Θ, T |d) as

described in Section 4.

2. Approximate p(ζ(x)|d) by: p̂(ζ(x)|d) = 1
M

∑M
k=1 p(ζ(x)|θ(k),Θ(k), T (k),d).

When we do not have discontinuity in the mean, this predictive process tends to smoothen

the prediction surface around the tree limit subregion edges (refer to Gramacy and Lee (2008)).

Using covariance functions similar to those in Paciorek and Schervish (2006) and Konomi

et al. (2014b), we can knit together multiple different subregions so the predictions depend

from all the outputs in every MCMC iteration. Usually, the global covariance leads to better

predictions as shown in Konomi et al. (2014b). Given the partition and the calibration parame-

ters, we can construct global parametric non-stationary covariance functions for the calibration

formulation.

Specifically, if an isotropic correlation function, ρ0( · ), is positive definite on R(q+p), then a

valid non-stationary covariance function on R(q+p) is defined by:

cNS(xi,xj) = σ(xi)σ(xj)|B(xi)|
1
4 |B(xj)|

1
4

∣∣B(xi) +B(xj)

2

∣∣ 12 ρ0(√Q(xi,xj)), (9)

where Q(xi,xj) = (xi−xj)′
(
(B(xi) +B(xj))/2

)−1
(xi−xj), a weighted Mahalanobis distance

between xi and xj . σ(xi) is the standard deviation at xi, and B(xi) is referred to as the

(q + p) × (q + p) kernel covariance matrix at location xi. The separable square exponential

correlation function, used in this paper, is a special case of the described covariance function

where Bi is diagonal. The square roots of the eigenvalues of Bi control the range of the spatial

dependence.

The proposed Bayesian tree models the kernel covariance matrices B(xi) and the standard

deviations σ(xi) as a step function. If ξ(xi) ∈ {1, · · · ,K}, denote the region that xi belongs to.

Each region has its corresponding kernel matrix and standard deviation, that is, Bi = Bξ(xi) ∈
{Bk, ξ = 1, · · · ,K} and σi = σξ(si) ∈ {σξ, ξ = 1, · · · ,K}. Both Vη(D) and Vδ(D1) can be

modeled separately with the above covariance function, leading to a non-stationary covariance

function Vd for the calibration model.

When one or more variables X are subject to parametric variability, the task of the uncer-

tainty quantification is to make inference about the distribution of ζ(X). We use the close form
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of the distribution ζ(x) for particular values of x to help us compute the distribution properties

of ζ(X), e.g., the first moment of ζ() is EX(ζ(X)) =
∫
X ζ(x)dGx, where Gx is the distribution

of X.

5 Case Studies

To better evaluate the proposed BTC method, we first consider a case scenario where η( · , · )
and δ( · ) are known functions. We assume to know exactly the calibration values θ. Despite

explicitly knowing the functions of interest, we assume the simulator is computationally demand-

ing and must be evaluated at some specific design points prior to the calibration procedure. We

select the design points (x∗1, t1), . . . , (x
∗
m, tm) via a space filling design, such as Latin hypercube

sampling (LHS) (McKay et al., 1979). We follow the same sampling strategy for the experimen-

tal observable input points (x1, . . . ,xn). The calibration parameters can usually be confounded

with the discrepancy in cases where different combinations of θ and δ give the same posterior

distribution for the prediction. In our case studies we have observed that selecting the right

prior distributions for the calibration parameters and using constant discrepancy functions can

usually minimize the confounding problem. For the purpose of this paper, we will not explore

this issue further.

First case study: In our first example, we assume a function of η( · ) in a three-dimensional

input space (one observable input x1 and two calibration inputs t1, t2):

η(x1, t1, t2) =

(1− x1) cos(πt1) + 0t2, 0 ≤ x1 < 0.4

(1− x1) cos(πt1) + 0t2 + 0.5, 0.4 ≤ x1 < 1,

where the calibration variable t2 does not affect the output of the η( · , · , · ). From this formu-

lation, it is clear that the computer model has a discontinuity in the observable input x1. To

make the case more realistic, we assume the computer model output has a normally distributed

nugget effect with zero mean and variance τ2v = 0.1. We also assume the discrepancy function

is δ(x1) = 0.1, and the real experimental output is ζ(x1) = η(x1, 0.5, 0.5) + δ(x1) + e for cali-

bration parameters θ = (0.5, 0.5). The nugget effect e is considered independent and normally

distributed with mean zero and variance τ2e = 0.1. We evaluate n = 13 times ζ(x1), using the

LHS design, and assume these to be the “real” experimental measurements.

For both the calibration parameters θ1 and θ2, we assume a Beta(1, 1) prior distribution.

The parameters in the prior distribution of the Bayesian tree are set at a = 0.6 and b =

2. Since the variation of the functions in the two subregions is similar the prior distribution
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Figure 2: MCMC for the calibration parameter θ1 for two different calibration methods (a) GP
calibration and (b) proposed TGP calibration.

for the correlation parameters can be expressed with only a simple Gamma distribution or a

mixture of Gamma distributions which have similar parameter values. This is way, the priors

for the correlation parameters are chosen as a mixture of two Gamma distributions, π(λ) =

0.5G(λ|5, 3) + 0.5G(λ|5, 2). The prior for σ2δ is exponential with parameter 0.005 and for τ2v , τ
2
e

is exponential with parameter 0.01.

For model calibration, we use two methods:(a) the SBGPC and (b) our proposed BTC. We

run the two MCMC algorithms for 50, 000 iterations, the first 10, 000 of which are taken as burn-

in. Convergence is diagnosed based on examination of trace plots in a pilot study. The posterior

distribution of θ1 using the SBGPC is shown in Figure 2(a), and the posterior distribution of θ1

using the proposed BTC is shown in Figure 2(b). The results favor the BTC. The SBGPC gives

an obvious bias and larger variance for the posterior distribution of θ1. The mean squared error

(MSE) for the proposed calibration method is 0.0031, while the MSE when using the SBGPC is

0.0264. Both methods give similar posterior distribution of θ2 and are basically the same with

the prior distribution.

We compare the SBGPC and proposed BTC’s prediction abilities. The prediction of the real

system mean and 95% credible interval using SBGPC is shown with black lines in Figure 4(a),

and using the proposed BTC is shown in Figure 4(b). The proposed BTC predictions are more

accurate with less variance than the SBGPC predictions. Substantial disagreement between

the real system and SBGPC prediction means are observed close to the discontinuity point.

The mean squared prediction error (MSPE) for 200 equally spaced observable input values

is MSPEBTC = 0.021 when using BTC and MSPESBGPC = 0.086 when using SBGPC. The

MSPEBTC is approximately four times smaller than the MSPESBGPC . In addition, prediction

mean variance using SBGPC is larger for the observable input. Gaussian processes are unable

to model the discontinuity in the response surface of the computer model η. Figure 4(a) shows

16



0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

x

η

(a) Prediction of the η using GP calibration

0

0.5

1

0

0.5

1
−1

0

1

2

xt

η

(b) Prediction of η using TGP calibration

Figure 3: MCMC for the calibration parameter θ1 for two different calibration methods (a) GP
calibration and (b) proposed TGP calibration.

the predicted mean for the response surface of the computer model η(x, t1) using SBGPC.

Figure 4(b) shows the predicted mean for the response surface of the computer model η(x, t1)

using the proposed BTC. The predicted mean response surface using the BTC model has a

discontinuity at 0.4 similar to the computer model η(x, t1).
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Figure 4: Prediction mean and 95% prediction intervals using two different calibration methods
(a) GP calibration and (b) proposed TGP calibration.

Second case study: In our second case study, we consider a six-dimensional input (one

observable input x1 and five calibration inputs (t1, . . . , t5)) example with a real computer model

function:

η(x1, t1, t2, t3, t4, t5) = (t1 + 0.5) exp{sin((0.9(x1 + 0.48)10))}+ t2t3,

on the hypercube [x1, t1, . . . , t5] = [0, 1]6. This function varies wildly as a function of x1 and t1,

and it is quadratic with respect to t2 and t3, and constant with respect to t4 and t5. Localized

features with respect to x1 are observed on η. To generate a link between this computer model
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and “real” system, we assume the discrepancy function is constant δ(x1) = 2. We evaluate

η(x1, t1, . . . , t5) at m = 120 LHS design points and add a nugget effect with variance τ2v = 0.1

to represent the output of the computer model. Let θ = (0.8, 0.8, 0.8, 0.5, 0.5) is the calibration

parameter vector. We evaluate 40 times ζ(x1) = η(x1, 0.8, 0.8, 0.8, 0.5, 0.5) + δ(x1) + e, which

acts as the “real” experimental data. The nugget e is considered independent with variance,

depending on the location x1: τ
2
e = 1 for x1 < 0.4 and τ2e = 0.2 for x1 > 0.4.

For the Bayesian inference, the prior distribution for calibration parameters (θ1, θ4, θ5) are

assumed Beta(2.5, 2.5). We also assume Beta(2.5, 1.25) prior distributions for the other two

parameters (θ2, θ3). The prior distributions of the Bayesian tree and covariance functions are

chosen similar to the first case study. The parameters in the prior distribution of the Bayesian

tree are set at a = 0.6 and b = 2. Since the variation of the functions in the two subregions

are different, it is preferable the prior distribution for the correlation parameters to be mixture

of Gamma distributions with two distinct modes. This is why the priors for the correlation

parameters are chosen two be π(λ) = 0.5G(λ|2, 1)+0.5G(λ|20, 2). The prior for σ2δ is exponential

with parameter 0.4 and for τ2v , τ
2
e is exponential with parameter 0.3.

We apply the BTC MCMC algorithm, described in Section 4, to this artificial calibration

problem. We run 25, 000 MCMC iterations, the first 5, 000 of which are taken as burn-in.

Figure 5 shows the marginal posterior distribution of the calibration parameters (θ1, . . . , θ5) with

the prior densities (blue curves) and real values (red stars). Although it has a slight preference

toward the prior distribution centered at 0.5, the posterior distribution of θ1 is closer to the real

value. From the Bayesian point of view, this is expected behavior. The posterior distributions

of θ2 deviate a bit from the prior distribution toward the real value. This possibly indicates that

the first calibration parameter θ1 is more important than θ2 in this model calibration problem.

The posterior distribution of θ3 prefers posterior values close to the prior distribution, even

though the real value of θ3 is 0.8 and the prior distribution is left skewed. The same happens

with SBGPC as well. We believe this has to do mostly with the restricted information (sample

size) in this problem. As the sample size of the computer model increases, we have observed

considerable improvement on the posterior distributions of the calibration parameters. Finally,

the posterior distributions of θ4 and θ5 are close to their prior distributions, which is expected

because the real model calibration does not depend on these parameters.

To demonstrate the proposed BTC method’s performance in correctly estimating the cal-

ibration parameters, we compare its posterior calibration parameter distributions with those

obtained using SBGPC (Figure 6). Compared to our method, we observe the bias and variance

of the posterior distribution of θ1 using SBGPC have increased. The same is observed for the

posterior distribution of θ2, where the bias is toward the central values. For θ3, the posterior
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distribution using SBGPC method is similar to the one obtained using BTC. The posterior

distributions of θ4 and θ5 are similar to the prior distribution and the posterior distributions us-

ing the proposed BTC method. Our experience with the problem is that significant differences

between the two methods are observed in only a few parameters. The two methods usually

agree in most posterior distributions of the calibration parameters.
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Figure 5: Marginal posterior distributions for the model parameters from the MCMC sample
(histograms after 10, 000 iterations) along with the prior density (blue curves) using the proposed
BTC.
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Figure 6: Marginal posterior distributions for the model parameters from the MCMC sample
(histograms after 10, 000 iterations) along with the prior density (blue curves) using SBGPC.

A better comparison between the two methods is the predictive distribution for the real
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Figure 7: Prediction mean and 95% prediction intervals using: (a) the proposed BTC and (b)
the SBGPC.

system as a function of the observable input. The MSPE for 200 equally spaced observable input

values is MSPEBTC = 0.0139 when using BTC and MSPESBGPC = 0.0385 using SBGPC. To

better visualize the prediction performance, Figure 7(a) shows the prediction mean with a 95%

prediction interval using BTC, while Figure 7(b) illustrates the prediction mean with a 95%

prediction interval using SBGPC. In Figure 7, the red stars (*) represent real data, the blue

dots (.) represent computer experiment output, the red line is the mean of the real output, the

black solid line shows the predicted mean, and the dashed lines represent the 95% prediction

interval. From these two graphs, it is obvious that the proposed TGP calibration gives better

prediction for the mean. The black solid line in Figure 7(a) is closer to the red solid line than

the black solid line in Figure 7(b). Moreover, the 95% prediction interval are larger in the

subregion with large variance and small in the subregion with smaller variance. Conversely,

SBGPC tends to underestimate the predicted variance in the first half and overestimate it in

the second half of the input parameter. The prediction variance using BTC better represents

the field output for all values of the observable input x. The advantage of our approach is

that the mean, variation, and variance for both the computer model and the discrepancy term

can change as a function of the observable and/or calibration inputs. The variance of the two

nugget terms can also change. This flexibility results in better predictions for the real system

and calibration posterior distributions closer to the real values.

6 Application: AX Cold Flow

The conceptual carbon capture system developed by Carbon capture sequestration initiative

(CCSI) group is a post-combustion solid-sorbent system composed of two main components: the

adsorber and the regenerator (Figure 8). These modeling tools involve multiphysics simulations,
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which include hydrodynamics, heat transfer, and chemical reactions in the system. To achieve

the ultimate modeling and simulation goal of quantifying predictive confidence in large commer-

cial devices, a hierarchical validation methodology has been developed and implemented, from

basic unit problems and upscaling with filtering models, to Carbon Capture Unit (C2U) batch

and eventually to large scale systems.

Figure 8: Schematic of a carbon capture unit with adsorber and regenerator.

In this paper we focus on the cold and non-reacting flow involving an amine based sorbent

in the adsorber. The properties of this chosen sorbent with coded name AX including its

CO2 adsorption characteristics can be found in Krutka and Sjostrom (2013). The AX sorbent,

comprised of small chemically reactive particles flowing through the device, is capable of reacting

with the carbon dioxide and removing it from the thermal power plant exhaust.

6.1 Experiment setup and computer model

The C2U unit is a cylinder with 1.003 m in height and 0.0685 m in radius. A cooling coil

stacks up in the lower 1/3 of the C2U unit and forms the inner coil and outer coil. Cooling or

heating oil is circulating in the coil to achieve a desired bed temperature. A specific amount of

sorbent, either 3.1 kg of AX particles or 1.62 kg of 32D powder is placed inside the C2U unit.

The gas with specific flow rate, composition, and temperature is blown from the bottom of the

unit by a flow transmitter controller (FTC). The gas exits at the top via a 1-inch diameter tube.

In the cold flow experiments with sorbent AX, the inlet gas consists of mainly of nitrogen

N2 with limited H2O. Without CO2 in the gas inlet, there is no reaction. Thus, no heat is

generating and the coil is not filled with heating or cooling oil. The main quantity of interest
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in this set of experiments has been the pressure drop, noted as PDT3820. Forty experiments

with various flow rates have been performed, and PDT3820 has been recorded in a one-minute

interval, as the main quantity of interest (QOI). For all cold flow experiments, gas flow rate

through the plenum were controlled at different flow rates, ranging from 15 to 60 slpm.

The efficiency of CO2 adsorption by sorbent particles is partially determined by the hydro-

dynamics of the multi-phase flow. If the bed is not fully fluidized, the solid particles stay packed

or semi-packed at the bottom, and as a result, there is not enough mixture between the solid

particles and air. This leads to inadequacy in both spatial and temporal space for reaction, as

well as a very low CO2 adsorption efficiency. If the fluidized bed height is too large, some solid

particles will escape, and the inventory loss reduces the adsorption capacity. The bed height of

a fluidized flow is characterized by the distribution of void fraction, and this hard-to-measure

quantity is closely related to the easy-to-measure quantity pressure distribution. PDT3820 is

for pressure drop at the lower bed.

An open source software, named Multiphase Flow with Interphase eXchanges (MFIX), has

been used to conduct computational fluid dynamics (CFD) simulations. The effectiveness of CO2

adsorption in a C2U unit depends on how well sorbent is mixed with gas in the fluidized bed.

The characteristic multiphase fluidized flow pattern is determined by many physics variables,

among them, the so-called minimum fluidized velocity Umf. The bed height of a fluidized

flow is characterized by the distribution of void fraction, which is quantitatively related to

the pressure distribution. Pressure drop is highly dependent on Umf. Among many earlier

researchers in the field of fluidized beds, Wen and Yu (1966) suggested that for a laminar flow,

Umf is proportional to the square of the solid particle size. The relationship is based on solid

phase with one uniform size. In reality, the sorbent size is a random quantity that follows a

distribution. One simplification in MFIX simulations is to use one single particle size for all of

the solid phase. One can reasonably foresee that Umf and the flow pattern of this AX flow will

depend on an average of particle size of some sort, such as Sauter mean diameter (SMD), which

is around 115− 118 µm for AX particles. SMD is defined as the diameter of a sphere that has

the same volume/surface area ratio as a particle of interest. Even with a uniform solid particle

size, matching the CFD predictions of fluidized beds to lab-scale experimental measurements

can be difficult, especially given the idealizations and simplifications often made in the CFD

models. With a distributed solid particle size, it becomes even more challenging to use numerical

simulations to predict an accurate pressure distribution in the multiphase fluidized bed.
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6.2 Model calibration

Table 1 summarizes the experimental output, inputs, and simulation model parameters

with their corresponding prior distribution. All six calibration parameters are assumed to be

independent and were obtained through a review of CFD literature on fluidized beds (Li et al.,

2011; Chao et al., 2011; Herzog et al., 2012; Asegehegn et al., 2011, 2012; Yusuf et al., 2012). The

first five calibration parameters are also used by Storlie et al. (2013) with some small deviations

in the boundaries of the calibration parameters.

Table 1: Summary of inputs, outputs, and the CFD model parameters with their corresponding
prior using the AX sorbent
Outputs d : Pressure drop PDT3820.

Experimental Inputs x: Gas Velocity (GV ), [15, 60] SLPM which stands for standard liter per minute.

CFD Model parameters t:
θ1 : Coefficient of restitution, particle-particle (Res.PP), θ1 ∼ Beta(2.5, 2.5, 0.8, 0.997)
θ2 : Coefficient of restitution, particle-wall (Res.PW ), θ2 ∼ Beta(2.5, 2.5, 0.8, 0.997)
θ3 : Friction angle, particle-particle (FA.PP), θ3 ∼ Beta(1.2, 2.5, 25.0, 45.0)
θ4 : Friction angle, particle-wall (FA.PW ), θ4 ∼ Beta(1.2, 2.5, 25.0, 45.0)
θ5 : Packed bed void fraction (PBVF ), θ5 ∼ Beta(2.5, 2.5, 0.3, 0.4)
θ6 : Particle size (PSize), θ6 ∼ Beta(1.2, 2.5, 105.0, 135.0)

An LHS is used to sample values of the observable input (x1) in n = 40 points, where we

obtain experimental measurements. An LHS is also used to determine where to sample m = 120

observable input and CFD model parameters (x1, t1, . . . , t6) for the computer model simulations.

We have a model calibration problem with n = 40 experimental measurements and m = 120

computer model outputs. Two calibration methods have been used to analyze this problem: the

proposed BTC and the SBGPC. Table 1 illustrates the prior distribution of the six calibration

parameters θ = (θ1, . . . , θ6) used for the two Bayesian methods. The parameters in the prior

distribution of the Bayesian tree are set at a = 0.6 and b = 2.

Table 1 illustrates the prior distribution of the six calibration parameters θ = (θ1, . . . , θ6)

used for the two Bayesian methods. The parameters in the prior distribution of the Bayesian

tree are set at a = 0.6 and bF = 2 to ensure relatively small number of external nodes. A

preliminary analysis was done to determine the other parameters in BTC.

We start by applying the proposed BTC algorithm to this model calibration problem. We

run 25, 000 MCMC iterations, the first 5, 000 of which are taken as burn-in. Along with the prior

input distributions (blue curves), Figure 10 shows the marginal posterior distributions with their

MCMC trace plots of the calibration parameters (θ1, . . . , θ6). We observe the sampler mixes well,
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Figure 9: Experimental and computer model data: Experimental observations are denoted by
red cross and the computer model observations are depicted by blue stars.
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Figure 10: MCMC for the calibration parameter (θ1, . . . , θ6) for the proposed TGP calibration.

and the associated ergodic averages, which correspond to the point estimates, converge quickly.

The posterior distributions of Res.PP (θ1), Res.PW (θ2), θ3 and θ4 are similar to their prior

distributions. This indicates that the model calibration is not sensitive to these calibration

parameters. The posterior distribution of θ5 has a slight deviation from the prior density

indicating a possible sensitivity of the model calibration to packed bed void fraction (PBVF ).

The most distinct differences between the posterior and prior distributions are observed for the

particle size θ6 calibration parameter. The posterior distribution of θ6 is concentrated in the

first half of the possible values. Values smaller than 118 for the particle diameter are more
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possible than values larger than 118.
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Figure 11: MCMC for the calibration parameter (θ1, . . . , θ6) for the SBGPC calibration.

Following the same settings in the MCMC algorithm, we calculate the posterior distributions

of the calibration parameters using SBGPC (Figure 11). The prior distribution also is noted

with blue curves. SBGPC gives almost exact posterior distributions with BTC for Res.PP,

θ1, and Res.PW, θ2. When using the SBGPC method, the posterior distribution of θ3 and θ4

slightly deviate from the prior distribution. Minor differences between the two methods are

observed in these posterior distributions. Both methods show slight deviation of the posterior

from the prior for θ5. However, in the BTC this deviation is more distinct than that observed

with SBGPC. Finally, the difference between the two methods estimated posterior distribution

of the calibration parameters is more apparent in the particle size, θ6. The posterior distribution

of θ6 using SBGPC has two modes (one for 121µm and one for 115µm) and appears to have

larger variance.

In a real calibration problem, there is no direct evidence to support whether or not one

calibration value is better than the other. Finding an effective particle size applied in the

simulations from a distribution is a difficult task. Among many compelling factors in the multi-

physics multiphase flow, it is believed that the most important factor is the drag because the drag

on the solid particles determines how the solid float and mixed in the gas, and thus the fluidized

bed height and other important CFD quantities of interest. The drag which results from the

relative velocity between the gas and solid provides a lifting force balancing. The downward

gravity is approximately proportional to the surface area of the particle. Therefore if the drag is

the primary concern, the effective particle size would be close to the SMD. Considering the fact
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that drag being proportional to the surface area is a rough approximation and other factors such

as the particles are not necessary in a uniform sphere form, SMD only provides a reasonable

estimate and it is highly valuable to calibrate the effective particle size for CFD simulations.

When the posterior distribution of particle size is used, the MFIX simulation results are more

in line with the experiment data. When the sorbent particle size falls beyond the posterior

distribution, the gas-solid drag force is either too large or too small, resulting in the fluidized

bed being either too high or too low. The SMD in our example is equal to 116µm which is

closer to the BTC posterior mean for the particle size, θ6.
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Figure 12: Prediction with confidence intervals for the experimental data as a function of the
Gas Velocity using BTC (a) and SBGPC (b). Experimental observations are noted by red cross,
and the computer model observations are denoted by blue stars.

An important tool for comparing the two methods is the prediction of the real system
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for each observable input. Figures 12(a) and 12(b) show the prediction mean (solid black

line), the 95% prediction bands (two black dashed lines), real system output observation (red

stars), and computer model observation as a function of observable input (Gas Velocity) for

the BTC and SBGPC, correspondingly. Differences in the prediction means are observed when

possible discontinuity has been captured from BTC around Gas Velocity 20 and 30, while in

the rest of the observable input the prediction means are very similar. BTC better represents

the experimental data on the part where the two models disagree. More difference are observed

on the 95% prediction bands (two black dashed lines). SBGPC gives larger prediction bands

for the real system as a function of the observable input, while the BTC gives a more realistic

representation of the variance as a function of the observable input. BTC seems to split the

observable input in two parts where it applies different mean and covariance functions for the

surrogate model of the computer model and the discrepancy. The discrepancy function changes

as a function of the observable input. For values of Gas Velocity smaller than 24 SLPM, the

discrepancy is negative. For Gas Velocity greater than 24 SLPM the discrepancy seems to be

close to zero. The variance of the computer model changes also as a function of Gas Velocity.
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Figure 13: MAP estimation of tree partitioning (dashed lines) for the proposed TGP calibration
with the locations and the output of the computer model as a function of the observable input
x1 and each of the six calibration inputs (t1, . . . , t6).

From the prediction, it is evident that the BTC model has captured a type of non-staitonarity

of the output across the observable input. To better understand the BTC model’s usefulness,

we present the output as a function of the observable input and one calibration input. Figure 13

shows six different graphs of the computer model output as a function of the observable input and

one calibration input. We also show the maximum a posterior (MAP) Bayesian tree calibration

partitions with black dashed lines. Two partitions are obvious in this binary tree, which lead

to three subregions. For the MAP Bayesian tree, no other partitions occur as a function of

two calibration parameters. From these graphs, it is clear that there is a non-stationarity in

the computer model. The computer model has different mean and variance as a function of

observable input (x1) Gas Velocity the particle size (t6). When the Gas Velocity is below 24

SLPM, the fluidized bed is more smooth. When it gets pass that value, the fluidized bed

becomes more turbulent. Higher gas flow make the two-phase flow more dynamic, and the
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particle size will have greater impact on the fluidized bed condition. This is possibly the reason

on why at higher inlet flow rate, the bifurcation becomes more apparent and there is a type of

discontinuity.

7 Conclusions and Further Work

In this article, we have developed the Bayesian treed calibration (BTC) method for model

calibration, which can deal with non-stationarity in the mean, variation, and variance of the

computer model and/or its discrepancy function from the true system. The method also is

adequate for non-stationarity in the variance of nugget terms. The proposed BTC can be seen

as an extension of the standard Gaussian process Bayesian calibration (SGPBC) (Kennedy

and O’Hagan, 2001) using Bayesian tree techniques (Gramacy and Lee, 2008; Chipman et al.,

1998). Appropriate formulation of the problem, in terms of defining the likelihood and prior

distributions, lead to a well-defined Bayesian hierarchical model. Both the observational and

calibration inputs are subject to partition. Each output of the binary tree’s external nodes

represents a model calibration problem where prior distributions are updated in the presence of

real data. In the Bayesian inference, we can explore the whole parametric space of the calibration

parameters, regardless of the number and the positions of the subregions. We also integrate

out all the linear terms associated with the model calibration inside each external node. This,

combined with appropriate proposals for the other parameters, leads to more efficient (in terms

of acceptance ratio) local proposals in the Grow and Prune operations. The proposed model

is also suitable for parallel computing to speed up computations as suggested in Bayesian treed

operations.

A special case of the proposed model involves using many linear terms, such as basis function

for the mean, and model the spatial error as independent. The linear terms will explicitly

model the large-scale variation and have been proven to work well in relatively smooth response

surfaces. The Bayesian smoothing spline analysis of variance (BSS) ANOVA and polynomial

chaos are two such examples. One more observation in our examples is the fact that, without the

right combination of the proposal for the calibration parameter theta and the GP parameters,

the posterior distribution of the calibration parameter θ may be trapped to local maxima. We

leave this for future work. Despite the observed sensitivity of the posterior distribution in the

calibration parameter, the posterior of the predictions tends to be less sensitive (more robust).

Another possible extension of the proposed model is to the multivariate setting. We can model

the covariance function of computer code and discrepancy similar to the one proposed by Konomi

et al. (2014a).
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In several artificial examples, we have shown that the proposed BTC performs better than the

SGPBC (Kennedy and O’Hagan, 2001; Higdon et al., 2004) when the output of the computer

model or the real experiment has discontinuity or localized features. Finally, we apply the

proposed method to the multiphase flow simulations of the adsorber within a carbon capture

system. The CFD model did show some discrepancy to the reality of experimental data, but it

also captures the trend of the physical reality reasonably well. The discrepancy term depends on

the value of the Gas Velocity. Gas Velocity values smaller than 24 have a negative discrepancy,

while those greater than 24 seems to be close to zero with bigger variance. The proposed

BTC can capture these different behaviors, as well as those of the output when we change the

calibration parameter associated with the particle size (PSize) θ6.

Source code

Matlab-code for BTC: The BTC JASA file contains the main code (written in Matlab) to

perform the proposed BTC described in the article. The file also contains the three examples

described in this paper. Details on using
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A Modeling with two independent trees for the computer model

output and the discrepancy

Let assume that we use two independent trees for the computer model output and the

discrepancy. One further assumption which will facilitate the model, in this case, is that the error

term of the computer model output depends on the tree structure of η( · , · ) and the error term of

the experiment depends on the tree structure associated with δ( · ). Both these assumptions are

made such that we do not construct other trees for these quantities. Additionally, assume that

Tη and Tδ are the two trees associated with the computer code and the discrepancy respectively.

The mean of zi is E(zi) = βTη,khη(xi;θ) + βTδ,k′hδ(xi) where k and k′ represent the kth and

k
′ th external node of the computer code and the discrepancy respectively. The mean of yj is

E(yj) = βTη,khη(xi;θ).
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The variance for the experimental and the computer code output are:

V ar(zi) = cη,k((xi,θ), (xi,θ)) + cδ,k′(xi,xi) + σ2ε

V ar(yj , yj′) = cη,k((xj , tj), (xj′ , tj′)) + σ2v

For the covariance function we have to distinguish among four cases which depend on the

location of the input points.

• First case: Two different inputs belong at the same external node k of the tree for the

computer code (Tη) and at the same external node k′ of the tree for the discrepancy

function (Tδ). This means that for the observation of experiment the input (xi,θ) and

(xi′ ,θ) belong to the external node k of Tη and the external node k′ of Tδ.

• Second case: Two different inputs belong to the same external node k of the tree for the

computer code (Tη) but different external nodes of the tree for the discrepancy function

(Tδ).

• Third case: Two different inputs belong to different external nodes of Tη but same external

node k′ of Tδ.

• Forth case: Two different inputs belong to different external nodes of Tη and different

external node of Tδ.

Given the form of the mean and the covariance function, the Bayesian inference is more

challenging. It is not straightforward how unknown parameters, such as the linear coefficients

the GP mean function, can be integrated out. Therefore, the dimension of the sampling space

in the RJ moves can be large and cause the RJ to perform poorly. Also, the number of the

parameters increases significantly.

B Metropolis within Gibbs Sampler for the GP Parameters at

External Node k

Let χk = (φk,σ
2
k, τk) = (φη,k,1, . . . , φη,k,(q+p), φδ,k,1, . . . , φη,k,q, σ

2
η, σ

2
δ , τ

2
e,k, τ

2
3,k). For each

component of χk, χk,j for j = 1, . . . , (2q + p + 4), we perform Metropolis within Gibbs as in

(Mueller, 1993). For any step of the Gibbs sampler that does not have a close form condi-

tional posterior distribution p(χk,j |dj , χk,1, . . . , χk,j−1, χk,j−1, . . . , χj,(2q+p+4)), substitute a MH

sampler.

For j = 1, . . . , (2q + p+ 4), given χ
(t)
k,(−j) = (χt+1

k,1 , . . . , χ
t+1
k,j−1, χ

t
k,j−1, . . . , χ

t
k,(2q+p+4)):
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1. Generate χ∗k,j ∼ qj(χ∗k,j |χ
(t)
k,j) ≡ logN(χ∗k,j |χ

(t)
k,j) from a log Normal distribution.

2. Calculate:

rk =
p(χ∗k,j |dk,χ

(t)
k,(−j))qj(χ

(t)
k,j |χ∗k,j)

p(χ
(t)
k,j |dk,χ

(t)
k,(−j))qj(χ

∗
k,j |χ

(t)
k,j)

. (10)

3. Set χ
(t+1)
k,j = χ∗k,j with probability min (1, rk) and χ

(t+1)
k,j = χ

(t)
k,j with the remaining proba-

bility.

In this algorithm, the MH step is performed only once at each iteration. Chen and Schmeiser

(1998) note that multiple MH steps are unnecessary. A precise approximation of the conditional

probability does not automatically lead to a better approximation of the join distribution, and

a single step may be beneficial to the sampler’s speed.
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