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ABSTRACT
We determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the
Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly
modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and
fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing
convergence profiles of the clusters. We discuss a number of important issues that need to
be taken into account, associated with the use of non-parametric and parametric lensing
methods, as well as assumptions about the background cosmology. Our results show that
the concentration and mass estimates in the modified gravity models are, within the error
bars, the same as in � cold dark matter. This result demonstrates that, for the Nonlocal
model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon
model, the screening mechanism is very efficient inside the cluster radius. However, at distances
∼(2–20) Mpc h−1 from the cluster centre, we find that the surrounding force profiles are
enhanced by ∼20–40 per cent in the Cubic Galileon model. This has an impact on dynamical
mass estimates, which means that tests of gravity based on comparisons between lensing and
dynamical masses can also be applied to the Cubic Galileon model.

Key words: gravitational lensing: strong – gravitational lensing: weak – galaxies: clusters:
general – cosmology: theory.

1 IN T RO D U C T I O N

Over the past decade, the � cold dark matter (�CDM) paradigm
has established itself as the standard model of cosmology. Most of
the matter in this model is in the form of CDM, and a cosmological
constant, �, plays the role of the dark energy that is responsible
for the late-time accelerated expansion of the Universe. Photons,
massive neutrinos and baryons make up the rest of the energy
budget. The final ingredient is Einstein’s theory of General Rel-
ativity (GR) which describes the gravitational interaction between
these components. Although it is true that this model is in remark-
able agreement with most of the cosmological data gathered to
date (Planck Collaboration XIII 2015), it is also the case that, in
some aspects, the model still lacks compelling theoretical and obser-
vational support. Perhaps the most worrying of these shortcomings
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(BL); ejennings@kicp.uchicago.edu (EJ)

is the unnaturally small value of � compared to the predictions from
quantum field theory. Another problem relates to the extrapolation
of the regime of validity of GR from the Solar system (where it
has been very well tested; Will 2014) to cosmological scales, where
there is still a shortage of stringent model-independent tests of grav-
ity. These two problems of �CDM have been fuelling interest in
cosmological models with modified theories of gravity, which is
now a well-developed branch of cosmology on both the theoretical
(Clifton et al. 2012; Joyce et al. 2015) and observational (Jain &
Zhang 2008; Jain et al. 2013; Barreira et al. 2014c; Huterer et al.
2015; Koyama 2015) levels.

Here, we focus on observational determinations of galaxy cluster
masses derived from lensing in theories of modified gravity. This is a
topic that has not been extensively investigated in the literature. The
reason for this, we believe, is historical as many of the first modi-
fied gravity models to be compared to observations were models like
f(R) (Sotiriou & Faraoni 2010) or Dvali–Gabadadze–Porrati (DGP;
Dvali, Gabadadze & Porrati 2000) gravity, which do not modify
the lensing potential directly through a modified Poisson equation.
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In these models, which are conformally equivalent to scalar–tensor
theories, lensing mass estimates are automatically the same as in
GR, whereas dynamical mass estimates are not (Zhang et al. 2007;
Schmidt 2010). This led to the development of a number of tests
of gravity. For instance, Schwab, Bolton & Rappaport (2010) and
Smith (2009) compared galaxy lensing masses from strong lens-
ing with dynamical masses inferred from stellar velocities to probe
gravity on kpc scales. Also, Lam et al. (2012, 2013) and (Zu et al.
2014) developed methods to probe the modified dynamical poten-
tial in f(R) and DGP models in the infall regions around massive
clusters, given the lensing mass. More recently, Wilcox et al. (2015)
used comparisons between the X-ray surface brightness and lens-
ing profiles of galaxy clusters to constrain models like f(R) (see also
Terukina & Yamamoto 2012). The unmodified lensing potential in
these theories also allowed for cluster lensing masses to be used
as a relatively model-independent ingredient in observational tests
of gravity. For instance, in the work of Schmidt, Vikhlinin & Hu
(2009), Lombriser et al. (2012b) and Cataneo et al. (2015), the au-
thors used the fact that f(R) models modify the halo mass function
to place observational constraints using data from the abundance of
clusters as a function of their lensing mass.

Recently, there has been growing interest in models that also mod-
ify the way in which the lensing potential depends on matter density
perturbations, such as Nonlocal gravity (Deser & Woodard 2007,
2013; Barreira et al. 2014d; Dirian et al. 2014, 2015; Maggiore &
Mancarella 2014), Galileon gravity (Deffayet, Deser & Esposito-
Farese 2009b; Deffayet, Esposito-Farèse & Vikman 2009a; Nicolis,
Rattazzi & Trincherini 2009), massive gravity (Gabadadze 2009; de
Rham 2010; de Rham & Gabadadze 2010a,b; de Rham et al. 2011a;
de Rham, Gabadadze & Tolley 2011b; Hassan & Rosen 2012),
K-mouflage gravity (Babichev, Deffayet & Ziour 2009; Brax &
Valageas 2014a,b; Barreira et al. 2015) and several other subclasses
of Horndeski’s general theory (Horndeski 1974). These modifica-
tions to the lensing signal give rise to a broader range of ways to test
gravity. For example, (Wyman 2011) and (Park & Wyman 2015)
presented forecasts for future galaxy–galaxy lensing observations
(Mandelbaum et al. 2013) showing characteristic signatures of some
models of massive gravity. Models that change the lensing signal
can also have a strong impact on the power spectrum of cosmic shear
(Battye, Moss & Pearson 2015; Leonard, Baker & Ferreira 2015)
and the lensing of cosmic microwave background (CMB) photons
(Zhao et al. 2009; Barreira et al. 2012, 2014c). Moreover, photons
are a direct probe of the time evolution of gravitational potentials,
which allows strong constraints to be placed upon modified grav-
ity models via the integrated Sachs–Wolfe (ISW) effect (Kimura,
Kobayashi & Yamamoto 2012; Barreira et al. 2014c; Enander et al.
2015).

Another consequence of the modifications to the lensing poten-
tial is that this may introduce model-dependent systematics in the
estimation of cluster masses from lensing. The investigation of such
biases and their connection with some of the above-mentioned tests
of gravity is one of the main goals of this paper. We choose the
Galileon and Nonlocal gravity cosmologies as working examples
of models that directly modify the lensing potential. In the Galileon
model, an extra scalar degree of freedom gives rise to a fifth force at
late times. The effects of this fifth force are appreciable on large cos-
mological scales, but are suppressed near massive bodies by means
of a screening mechanism known as the Vainshtein effect (Vainshtein
1972; Babichev & Deffayet 2013; Koyama, Niz & Tasinato 2013).
This model has been shown to provide a good fit to the CMB tem-
perature, CMB lensing and baryonic acoustic oscillations (BAO)
data in Barreira et al. (2014a,c). Non-linear structure formation in

this model has been studied in Barreira et al. (2013b) using the
spherical collapse model and in Barreira et al. (2013a) and Li et al.
(2013) using N-body simulation. Barreira et al. (2014b) studied the
properties of dark matter haloes which were used to develop a halo
model of structure formation for Galileon gravity. This model is,
however, under observational tension as it predicts a negative sign
for the ISW effect (Barreira et al. 2014c), which is at odds with
recent observations (Planck Collaboration XXI 2015). In the case
of the Nonlocal gravity model, the modifications to gravity on clus-
ter scales can be fully parametrized by a time-dependent effective
gravitational strength. This model has no screening mechanism, but
Kehagias & Maggiore (2014) and Maggiore & Mancarella (2014)
have shown that, if the background evolution can be neglected lo-
cally, then the model becomes compatible with Solar system tests
of gravity. Linear structure formation has been studied by Dirian
et al. (2014, 2015) and Barreira et al. (2014d) performed the first
N-body simulations of Nonlocal gravity cosmologies, which were
used to study halo properties and to also construct a halo model
formalism. In addition to the modified gravitational law, both the
Galileon and Nonlocal gravity models also modify the expansion
rate at late times. This is different from models such as f(R) or DGP
gravity for which the expansion rate can be tuned to match that of
�CDM.

To estimate lensing masses in Galileon and Nonlocal cosmolo-
gies, we model galaxy clusters as Navarro–Frenk–White (NFW)
haloes (Navarro, Frenk & White 1997), and fit the predicted lens-
ing convergence signal to the data obtained from weak and strong
lensing observations for 19 X-ray selected clusters from the Clus-
ter Lensing and Supernova Survey with Hubble (CLASH; Postman
et al. 2012; Umetsu et al. 2014; Merten et al. 2015). Our analysis
is similar to that performed in the context of GR in Merten et al.
(2015). In most of the current data analysis, one often makes model-
dependent assumptions which may lead to results that are biased
towards the assumed models. For example, the analysis of Merten
et al. (2015) assumes a fiducial �CDM background to compute an-
gular diameter distances. Assumptions like these must be identified
and carefully assessed before using the observations to test alterna-
tive models. On the other hand, the lensing data analysis of Merten
et al. (2015) makes no assumptions about the mass distribution of
the clusters, which reduces the model dependency of the conclu-
sions drawn from the observations, and makes it particularly well
suited to tests of modified gravity. Given the subtle nature of some
steps involved in the analysis of lensing data we shall pay special
attention to them and explain how they can be taken into account.

The rest of this paper is organized as follows. In Section 2,
we describe the calculation of the lensing convergence of NFW
haloes in �CDM, Galileon and Nonlocal gravity models, and in
Section 3 we analyse the general predictions for each model. We
describe our fitting methodology in Section 4, where we comment
also on the extra steps that one needs to take, in order to account for
certain model-dependent assumptions made in the data analysis. In
Section 5, we present our main results for the cluster lensing mass
and concentration estimates in the three models we consider. We
also discuss the link between the results found here and tests of
gravity on large scales, namely those that were first designed for
models that do not modify lensing. We summarize in Section 6.

2 LENSI NG EQUATI ONS

In this section we specify our notation and describe the calculation
of the lensing quantities in the models we consider.
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2.1 Cluster lensing basics

Throughout, we work under the commonly adopted set-up for clus-
ter lensing studies (see e.g. Bartelmann & Schneider 2001; Bartel-
mann 2010; Umetsu 2010 for comprehensive reviews). In particu-
lar, we consider a set of source galaxies at redshift zs, whose light
gets deflected by a galaxy cluster at zd. We use Dd, Ds and Dds

to denote, respectively, the angular diameter distances between the
observer and the lens, the observer and the sources and the lens and
the sources. We assume clusters are spherically symmetric and use
the thin-lens approximation in which one neglects the thickness
of the galaxy cluster compared to the much larger values of Dd, Ds

and Dds. We also neglect the lensing distortions induced by fore-
ground and background structures, compared to the lensing signal
of the cluster. In our notation, r =

√
x2 + y2 is a two-dimensional

radial coordinate defined on the lens plane and with origin at the
cluster centre (x and y are Cartesian coordinates); l denotes the opti-
cal axis (line of sight) direction, perpendicular to the lens plane, and
with origin also at the cluster centre and R = √

r2 + l2 is a three-
dimensional radial coordinate with origin at the cluster centre.

Light rays coming from the sources are deflected at the lens
position by an angle α, which is related to the true (unobserved)
angular position, β, and the observed one, θ , by

β = θ − α(θ ). (1)

The local properties of the lensing signal are fully determined by
spatial second derivatives of the scaled projected lensing potential
of the galaxy cluster, ψ , which is given by

ψ(θ = r/Dd) = Dds

DdDs

2

c2

∫ Dds

−Dd

�len(r, l)dl, (2)

where c is the speed of light and �len ≡ (� + �)/2 is the total three-
dimensional lensing potential. The two Newtonian potentials �

and � are defined by the perturbed Friedmann–Robertson–Walker
(FRW) line element:

ds2 = (
1 + 2�/c2

)
c2dt2 − a2

(
1 − 2�/c2

)
dx2, (3)

where a = 1/(1 + z) is the cosmological scale factor (z is
the redshift). The Jacobian matrix of the lensing mapping of
equation (1) is given by

∂β

∂θ
(θ) =

[
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

]
, (4)

where

κ(θ ) = 1

2
∇̄2

θ ψ = 1

2

(
∂2

θx
+ ∂2

θy

)
ψ

= D2
d

2
∇̄2

r ψ = D2
d

2

(
∂2

x + ∂2
y

)
ψ (5)

is the lensing convergence,1 and

γ1 = 1

2

(
∂2

θx
− ∂2

θy

)
ψ,

γ2 = ∂θx ∂θy ψ (6)

are the two components of the complex lensing shear, |γ | =√
γ 2

1 + γ 2
2 . The convergence is responsible for an isotropic focus-

ing (or defocusing) of the light rays, whereas the shear field causes
distortions in the shapes of the observed source galaxies.

1 The overbar on the ∇ operator indicates that it is the two-dimensional
Laplacian. Also, note that r = Ddθ .

In lensing studies, one can split the analysis into the weak and
strong lensing regimes. In the weak lensing regime, the directly
observable quantity is the locally averaged complex ellipticity field
in the lens plane, 〈ε 〉, which can be constructed from measurements
of background galaxy shapes. At each point of the lens field, an
average is taken over a number of nearby sources to smooth out the
intrinsic ellipticity of the galaxies from that caused by the lens (see
e.g. Bartelmann & Schneider 2001; Kitching et al. 2012; Massey
et al. 2013). Observationally, the field 〈ε 〉 is directly related to the
reduced shear, g (see e.g. section 4 of Bartelmann & Schneider
2001),

〈ε〉 ←→ g ≡ γ /(1 − κ). (7)

The strong lensing regime takes place in the innermost regions
of the lens. There, the lensing quantities κ and γ become large
and the equations become highly non-linear. As a consequence,
highly distorted images like giant arcs or arclets and multiple images
of the same background source can form. This happens close to
the location of the critical curves of the lens which are defined
as the set of points on the lens plane where the lensing matrix,
equation (4), becomes singular, i.e.

det (∂β/∂θ) = (1 − κ)2 − γ 2 = 0. (8)

Observationally, one identifies multiple images and giant arcs to
infer the position and shape of the critical lines. Then, given a
theoretical prediction for κ and γ , one can check if det (∂β/∂θ)
vanishes at the location of the critical lines.

2.2 Convergence in �CDM

In GR, in the absence of anisotropic stress, � = �, and as a result
the lensing potential is equal to the dynamical potential, �len = (�
+ �)/2 = � = �. Both satisfy the Poisson equation:

∇2
(r,l)�(r, l) = 4πGρ(r, l), (9)

where G is Newton’s constant and ρ(r, l) is the three-dimensional
density distribution. The lensing convergence is obtained by inte-
grating equation (9) along the line of sight,∫

∇2
(r,l)�(r, l)dl = 4πG

∫
ρ(r, l)dl = 4πG�(r), (10)

where �(r) is the surface mass density. The left-hand side of this
equation can be manipulated as follows:∫

∇2
(r,l)�(r, l)dl =

∫
∇̄2

r �(r, l)dl +
∫

∂2
l �(r, l)dl

= ∇̄2
r

∫
�(r, l)dl + [∂l�(r, l)]+∞

−Dd
≈ DdDsc

2

2Dds
∇̄2

r ψ(r)

= Dsc
2

DdsDd
κ(r = θDd), (11)

where we have used equations (2) and (5), and also the fact that
first spatial derivatives of � are negligible at cosmological dis-
tances away from the lens (thin-lens approximation). Combining
equations (10) and (11) yields

κ(θ ) = 4πG

c2

DdsDd

Ds
�(θ ) ≡ �(θ )

�c
, (12)

where

�c = c2

4πG

Ds

DdsDd
(13)
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is called the critical surface mass density for lensing. Therefore, in
GR, the calculation of the lensing convergence reduces to the evalu-
ation of the projected two-dimensional density profile of the cluster,
which can often be done analytically (see Section 2.5 below). The
Hubble expansion rate in �CDM is given by(

H (z)

H0

)2

= E2(z) = 
m0(1 + z)3 + (1 − 
m0), (14)

where H0 = 100 h km s−1 Mpc−1 is the present-day Hubble expan-
sion rate (the subscript ‘0’ denotes present-day values) and 
m0

is the fractional background energy density of pressureless mat-
ter. Here, and throughout, we assume a spatially flat Universe and
neglect the contribution to the expansion rate from radiation and
massive neutrinos. Equation (14) is used in the calculation of the
angular diameter distances that enter equation (13) and the relation
between radial and angular scales, r = Ddθ .

2.3 Convergence in Galileon gravity

We focus on the cubic sector of the Galileon gravity model (Deffayet
et al. 2009a,b; Nicolis et al. 2009). Its action is given by

S =
∫

d4x
√−g

[ R
16πG

− 1

2
c2L2 − 1

2
c3L3 − Lm

]
, (15)

where R is the Ricci scalar, g is the determinant of the metric gμν ,
c2 and c3 are dimensionless constants and L2 and L3 are given by

L2 = ∇μϕ∇μϕ, L3 = 2

M3
�ϕ∇μϕ∇μϕ, (16)

in which ϕ is the Galileon field, M3 = MPlH
2
0 , M2

Pl = 1/(8πG) is
the reduced Planck mass, � = ∇μ∇μ is the d’Alembert operator,Lm

is the matter Lagrangian density and Greek indices run over 0, 1, 2, 3.
In flat space–time, the above action is invariant under the Galilean
shift ∂μϕ → ∂μϕ + bμ (where bμ is a constant four-vector). In
spherical coordinates, the Poisson equation in the Galileon model
leads to the following force law (see Barreira et al. 2013a,b for
details about the derivation):

�,R

R
= GM(< R)

R3
− c3

M3
˙̄ϕ2 δϕ,R

R
, (17)

where δϕ(R) is the spatial perturbation of the Galileon scalar field
about the background value, ϕ̄(z), M(<R) = 4π

∫ R

0 ρ(r ′)r ′2dr ′ is
the mass enclosed inside radius R and , R denotes partial differen-
tiation with respect to R. Equation (17) differs from GR by having
an extra source term which is governed by

δϕ,R

R
= 4

3

MPl

β2

(
R

rV

)3
[√( rV

R

)3
+ 1 − 1

]
GM(<R)

R3
, (18)

with

r3
V = 16

9

MPl

β1β2M3
GM(<R), (19)

where β1 and β2 are two dimensionless functions of time. The
quantity rV is a radial scale (often called the Vainshtein radius) that
roughly determines the distance from the halo/cluster centre within
which the modifications to gravity are suppressed. The combination
of equations (17) and (18) and its derivatives leads to

�,R

R
=

{
1 − 4

3

c3

MPlM3

˙̄ϕ2

β2

(
R

rV

)3
[√( rV

R

)3
+ 1 − 1

]}

×GM(<R)

R3
, (20)

�,RR = G

[
M(<R),R

R2
− 2M(<R)

R3

]
− 3

4

c3β1 ˙̄ϕ2

M2
Pl

×
[√( rV

R

)3
+ 1 − 1 + 3

2

(rV /R)2√
(rV /R)3 + 1

(
rV ,R − rV

R

)]
.

(21)

In the limit of large R, equation (20) can be written as (note that
r3
V → constant as R increases)

�,R

R
= Glin

M(<R)

R3
, (22)

with

Glin = G

(
1 − 2

3MPlM3

c3 ˙̄ϕ2

β2

)
, (23)

being an effective ‘linearized’ time-dependent gravitational
strength. On the other hand, when R becomes small, it is straightfor-
ward to show that (using, for instance, the NFW expressions shown
below)

�,R

R
≈ GM(<R)

R3
. (24)

That is, at sufficiently small radii, the force in the Galileon model
is approximately the same as in GR, which is a direct consequence
of the Vainshtein screening mechanism.

In the Cubic Galileon model one also has that � = � (Barreira
et al. 2013b), which implies, like in GR in the absence of anisotropic
stress, that the lensing potential is equal to the dynamical potential.
We compute the convergence in the Cubic Galileon model by nu-
merically integrating the three-dimensional Laplacian of the total
potential, ∇2�, along the line of sight as

κ(θ ) = DdsDd

Dsc2

∫ Dds

−Dd

∇2
(r,l)�(r, l)dl

= 1

4πG�c

∫ Dds

−Dd

(
�,RR (r, l) + 2

�,R

R
(r, l)

)
dl

(25)

(recall that in spherical coordinates, ∇2� → �,RR +2 �,R
R

).
All that is left to specify is the time dependence of the background

quantities that enter the above equations of the Galileon model. The
time evolution of the Hubble parameter, ˙̄ϕ, β1 and β2 are given,
respectively, by (Barreira et al. 2014c)

E(a)2 = 1

2

[

m0a

−3 +
√


2
m0a

−6 + 4(1 − 
m0)

]
, (26)

˙̄ϕ = ξH0/E(a), (27)

β1 = 1

6c3

[
−c2 − 4c3

M3

(
¨̄ϕ + 2H ˙̄ϕ

) + 2c2
3

M2
PlM6

˙̄ϕ4
]

, (28)

β2 = 2M3MPl

˙̄ϕ2 β1. (29)

As in (Barreira et al. 2014c), we take c2 = −1 and the other two
Galileon parameters are determined by 
m0 as

ξ =
√

6(1 − 
m0), (30)

c3 = 1/(6ξ ). (31)
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2.4 Convergence in non-local gravity

We take the model of Maggiore & Mancarella (2014) and Dirian
et al. (2014) as the representative case of a Nonlocal gravity model.
The action is given by

A = 1

16πG

∫
dx4√−g

[
R − m2

6
R�−2R − Lm

]
. (32)

This (non-local) action can be cast in a more familiar (local) form
given by (Nojiri & Odintsov 2008; Capozziello et al. 2009; Koshelev
2009)

A = 1

16πG

∫
dx4√−g

[
R − m2

6
RS − ξ1 (�U + R)

−ξ2 (�S + U ) − Lm] , (33)

where ξ 1 and ξ 2 are two Lagrange multipliers and we have intro-
duced two auxiliary scalar fields, U = −�−1R and S = �−2R. For
completeness, we note that these two formulations are not equiva-
lent and that care must be taken when matching the solutions asso-
ciated with the above two actions (see e.g. Koshelev 2009; Koivisto
2010; Barvinsky 2012; Deser & Woodard 2013; Foffa, Maggiore &
Mitsou 2014a,b; Maggiore 2014 for a discussion).

Following Dirian et al. (2014) and Barreira et al. (2014d), for
the scales relevant for large-scale structure formation, the modified
Poisson equation in this Nonlocal model can be written as

∇2
(r,l)� = 4πGeff (z)ρ(r, l), (34)

which takes the same form as in GR, equation (9), but with an
effective time-dependent gravitational strength given by

Glin = G

[
1 − m2S̄(z)

3

]−1

, (35)

where S̄ is the background part of the field S. The time evolution of
the background quantities in the Nonlocal model has to be obtained
by numerically integrating the background differential equations
(see e.g. Dirian et al. 2014; Barreira et al. 2014d). The parameter
m in equations (32) and (33) controls the amount of dark energy
in the Universe. In a flat Universe, the value of m is therefore
determined by the energy densities of the remaining matter species,
which means this Nonlocal gravity model has the same number of
free parameters as �CDM.

Just as in the cases of �CDM and Cubic Galileon gravity, in
the Nonlocal model we also have that � = � = �len, in the ab-
sence of anisotropic stress. Moreover, since the Poisson equation
in this model is obtained from GR by a simple rescaling of the
gravitational strength, it follows that the convergence can also be
computed analytically as

κ(θ ) =
(

Glin

G

)
�(θ )

�c
. (36)

Note, however, that the Nonlocal expansion rate must be used in the
calculation of the angular diameter distances that enter �c.

Contrary to the case of Galileon gravity, the Nonlocal model does
not possess a screening mechanism, which may raise some concerns
about the ability of this model to pass Solar system constraints
(Will 2014). For instance, Barreira et al. (2014d) showed that the
rate of change of the gravitational strength on cosmological scales,
Ġlin, if applied directly to Solar system tests, results in the model
becoming inconsistent with current lunar laser ranging experiments
(Williams, Turyshev & Boggs 2004). However, the time variation
of Glin follows from the background expansion rate, and it is not
clear what its impact is in the Solar system. In fact, the authors of

Kehagias & Maggiore (2014) and Maggiore & Mancarella (2014)
have shown that if the cosmological expansion is neglected, i.e. if
the space–time about the Sun is perturbed Minkowskii (as opposed
to FRW), then the model predictions become compatible with the
current bounds. Here, we shall bear these discussions in mind, but
focus instead on the model predictions for cluster scales, which are
sufficiently large for one to consider the gravitational strength given
by equation (35).

2.5 NFW halo expressions

In order to compute the lensing convergence in any of the cosmo-
logical models considered above, we need to specify the density
profile of the lenses, which we model as dark matter haloes with
NFW density profiles (Navarro et al. 1997),

ρNFW(R, z) = ρs(z)

(R/rs)(1 + R/rs)2
. (37)

This profile is fully specified by two parameters known as the scale
radius, rs, and the characteristic density, ρs. The mass enclosed
inside radius R in a NFW halo is given by

MNFW(<R) = 4πρsr
3
s

[
ln (1 + R/rs) − R/rs

1 + R/rs

]
.

(38)

We define halo masses in the usual way

M� = 4π

3
�ρcR

3
�, (39)

where R� is the radius within which the mean density is equal to
� times the critical density of the Universe at a given redshift,
ρc = 3H 2(z)/(8πG). Equating M� = MNFW( <R�) one finds

ρs = 1

3
�ρcc

3
�

[
ln (1 + c�) − c�

1 + c�

]−1

, (40)

where we have defined the concentration parameter

c� = R�/rs. (41)

We take � = 200 and instead of characterizing the NFW haloes by
ρs and rs, we use the equivalent and more common parametrization
in terms of M200 and c200 (as in Merten et al. 2015).

The surface mass density of a NFW halo admits an analytical
solution given by (Bartelmann 1996; Oaxaca Wright & Brainerd
2000; Umetsu 2010)

�NFW(r = Ddθ ) =
∫

ρNFW(r, l)dl (42)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2rsρs
x2−1

(
1 − 2√

1−x2
arctanh

[√
1−x
1+x

])
x < 1,

2rsρs
3 x = 1,

2rsρs
x2−1

(
1 − 2√

x2−1
arctan

[√
x−1
1+x

])
x > 1,

where x = r/rs. The calculation of the lensing convergence in
Galileon gravity also requires the evaluation of the gradient of
MNFW(<R), which is given by

MNFW(<R),R = 4πρsr
3
s

R

(rs + R)2
. (43)
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Figure 1. The upper and middle panels show, respectively, the time evo-
lution of the Hubble expansion rate, H(z)/H0, and of the effective linear
gravitational strength, Glin, for the Galileon (red) and Nonlocal (blue) mod-
els, plotted as the relative difference to �CDM. The shaded band in these two
panels indicates the redshift range spanned by the CLASH clusters analysed
in this paper. The lower panel shows the density (solid) and enclosed mass
(dashed) profiles for the Galileon (red) and Nonlocal (blue) models, plotted
as the relative difference to �CDM. The NFW parameters and redshift are
M200 = 5.0 × 1014 M� h−1, c200 = 4.0, zd = 0.5. To guide the eye, the
shaded band in the lower panel indicates the radial scales outside R200 in
�CDM.

3 M O D E L P R E D I C T I O N S FO R F I X E D
C L U S T E R PA R A M E T E R S

To develop intuition about our results, we first analyse the model
predictions for fixed cluster parameters, M200, c200, and cosmologi-
cal matter density 
m0. Fig. 1 shows the time evolution of H(z)/H0

(top panel) and Glin (middle panel) for the Galileon and Nonlo-
cal models, plotted as the difference relative to �CDM. The lower
panel of Fig. 1 shows the NFW density (solid) and enclosed mass
(dashed) profiles for a halo at zd = 0.5, and with M200 = 5.0 ×
1014 M� h−1 and c200 = 4. For all models, the cosmological mat-
ter density is 
m0 = 0.27. We note, for completeness, that if h is
absorbed into unit definitions (e.g. M� h−1 for masses or Mpc h−1

for distances), then our analysis becomes completely independent
of its value, for all models.

Fig. 1 shows that the amplitude of the halo density profiles near
their centre is lower in the Galileon and Nonlocal models than it is
in �CDM. This is because of the lower values of ρc(zd) in these
models. Specifically, in the innermost part, the density profile of the
halo becomes approximately

ρNFW(R) ≈ ρsrs

R
∝ ρc(zd)2/3

R
, (44)

as can be checked by noting that ρs ∝ ρc and rs ∝ ρ−1/3
c , and

recalling that we are assuming fixed M200 and c200. As a result,
if H(z) is smaller than in �CDM at zd (upper panels), then so is
ρ2/3

c (zd) ∝ H 4/3(zd), which effectively leads to a less dense halo.
The same qualitative reasoning also applies to the regime where the
NFW density scales as ∝ R−2. However, far from the halo centre,
we have

ρNFW(R) ≈ ρsr
3
s

R3
∝ 1

R3
. (45)

In this case, the dependence on ρc(zd) cancels out, and hence, all
models have the same density values, as seen in the lower panel
of Fig. 1 (R � 10 Mpc h−1). The enclosed mass profiles show a
qualitatively similar trend. Perhaps the only noteworthy difference
is that the M(<R) profiles for the different models do not agree at
large radii. In this limit, the enclosed mass (equation (38)) scales
with radius as

M(<R) ∝ [ln (1 + R/rs) − 1] , (46)

which retains a cosmological dependence (1/rs ∝ ρ1/3
c ) in the log-

arithmic divergence of the mass. In particular, in the Galileon and
Nonlocal models, ρc is smaller than in �CDM, which implies that
M(<R) is also smaller, as shown.

Another important consequence of the modified Hubble expan-
sion rates in the Galileon and Nonlocal models is in the calculation
of the angular diameter distances that determine �c and the relation
between radial and angular scales. In particular, the smaller val-
ues of H(z)/H0 in the Galileon and Nonlocal models lead to larger
angular diameter distances, since these are ∝ ∫

1/H(z)dz.
Fig. 2 shows, for the same parameters as in Fig. 1, the radial

profiles of ∇2� (solid) and �,R (dashed) for the Galileon (upper
left, red) and Nonlocal (upper right, blue) models. For both models,
the figure also shows the predictions from models called QCDM
(green), which are illustrative models with the same background
cosmology as their respective modified gravity models, but keep-
ing the gravitational law of GR. Comparing the QCDM variants
with the respective full models allows one to isolate the effects of
the modified background from those due to the modified gravita-
tional law. Since both QCDM models differ from �CDM only via
the modified background, their relative differences in the profiles of
∇2� ∼ ρ and �,R ∼ M(<R) are determined only by the background
dependence of the density and mass profiles of the haloes. As a re-
sult, the QCDM curves in Fig. 2 follow the same behaviour seen in
the lower panel of Fig. 1. It is therefore more interesting to analyse
the impact of the fifth forces. In the case of the Nonlocal model,
we have seen that the modifications to gravity can be parametrized
by a scale-independent, but time-evolving effective gravitational
strength, Glin(z), according to equation (34). Consequently, the ef-
fect of the fifth force in this model is to boost the amplitude of ∇2�

and �,R by the same amount on all scales. From Fig. 1, at zd = 0.5
one has Glin ≈ 0.022, which corresponds to the difference between
the predictions of the QCDM and Nonlocal models seen in Fig. 2.

The effects of the fifth force in the Galileon model are slightly
more complex due to the non-linear screening mechanism. By
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Cluster lensing masses in modified gravity 4091

Figure 2. Upper left: radial profiles of the Laplacian (∇2�, solid) and gradient (�,r, dashed) of the total gravitational potential, �, for the Galileon model
(red), plotted as the relative difference to �CDM (black). The NFW parameters and redshift are M200 = 5.0 × 1014 M� h−1, c200 = 4.0, zd = 0.5. Also shown
are the predictions for a model called QCDM (green), which has the same background cosmology as the Galileon model, but with the force calculated as in
GR. To guide the eye, the shaded band indicates the radial scales outside R200 in �CDM. Upper right: same as the upper left-hand panel but for the Nonlocal
gravity model (blue). Lower panels: same as the upper panels but for the lensing convergence, κ(θ ), and assuming zs = 1. In the lower panels we show θ on
the x-axis which, in the different models, relates differently to physical distances due to the modifications to Dd.

comparing the predictions of the full Galileon model with those of
the corresponding QCDM variant, one can identify three regimes.
The first is a ‘fully screened’ regime, R � 0.1 Mpc h−1, where the
effects of the fifth force are almost negligible (� ≈ �GR), as seen
by the overlap between the red and green sets of curves. The second
regime is a ‘partly screened’ regime which occurs on scales 0.1
� R � 50 Mpc h−1. On these scales, we can write � = α(r)�GR,
where the function α encapsulates the scale dependence of the fifth
force. Finally, on scales r � 50 Mpc h−1, the fifth force becomes
completely unscreened and one effectively has � = Glin(z)�GR,
where Glin is given by equation (23) for the Galileon model. This
translates into a constant boost in the values of ∇2� and �,R at
large radii. The size of this boost in the unscreened regime of the
Galileon model (15–20 per cent) is larger than that in the Nonlocal
gravity model (2–3 per cent). This follows from the higher value of
Glin in the Galileon model at zd = 0.5, as shown in the middle panel
of Fig. 1.

The lower panels of Fig. 2 show the lensing convergence angular
profiles for the Galileon (red) and Nonlocal (blue) models, as well
as their respective QCDM (green) variants, plotted as the difference
relative to �CDM and assuming zs = 1. These convergence angular
profiles relate to the radial profiles of ∇2� by (i) the integration
along the line of sight; (ii) the overall amplitude scaling set by �c;
(iii) and also importantly, horizontal shifts caused by the fact that
the same angular scales correspond to different distance scales at the
cluster position because of the different Dd values. In the Galileon
and Nonlocal model backgrounds, Dd becomes larger, and as a
result, the same radial scales correspond to smaller angular scales.
The net result of these effects is to reduce slightly the relative

differences of κ in the Galileon model with respect to �CDM,
compared to the relative differences observed in ∇2�. The same
holds for the case of the Nonlocal model, for which the relative
difference becomes also very weakly dependent on the angular
scale (the slope of the curves is hardly noticeable in the scale of the
figure).

4 M E T H O D O L O G Y

We estimate cluster masses in Cubic Galileon and Nonlocal gravity
cosmologies using the radially binned lensing convergence profiles
obtained from the reconstructions of the lensing potential for 19
X-ray selected galaxy clusters from CLASH (Postman et al. 2012).
In this section, we describe our methodology, paying particular at-
tention to a number of subtleties that need to be accounted for to
self-consistently compare the data with predictions from the alter-
native models studied here.

4.1 Cluster convergence profiles in alternative models

We use the convergence profile data that was obtained for the
CLASH clusters in Merten et al. (2015). There, the analysis was
performed with a numerical algorithm called SAWLENS (Merten
et al. 2009), which iteratively reconstructs the lensing potential for
each cluster on a two-dimensional grid that covers the cluster field.
The analysis is non-parametric, i.e. it makes no assumptions about
the mass distribution of the cluster. We refer the reader to Merten
et al. (2009, 2011, 2015) for the details about how SAWLENS oper-
ates. For the discussion here, what is important to note is that what
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SAWLENS actually reconstructs is the lensing potential scaled to a
source redshift of infinity, ψ∞ = ψ(zs = ∞), by assuming a fiducial
cosmological model. We use κ∞ to denote the lensing convergence
associated with ψ∞, which is related to the convergence at the true
source redshift, zs, via

κzs = Zfid(zd, zs)κ∞, (47)

where we use the subscript ‘zs’ to emphasize that κzs corresponds
to the convergence associated with zs. The function Z ≡ Z(zd, zs)
transports the convergence from a source redshift of infinity to the
source redshift that corresponds to the galaxies on each SAWLENS

grid cell/pixel (we use the words cell and pixel interchangeably). It
is given by

Zfid(zd, zs) = Dfid
s,∞Dfid

ds

Dfid
ds,∞Dfid

s

, (48)

where the superscript ‘fid’ indicates angular diameter distances that
are calculated assuming the fiducial background cosmology and
the subscript ∞ means that the calculation assumes that zs = ∞.
In the reconstruction process of Merten et al. (2015), the fiducial
cosmology is a �CDM model with 
m0 = 0.27. From here on,
we use κfid

∞ to denote the convergence profiles obtained in this way,
where the superscript ‘fid’ makes it explicit that the data are linked
to the fiducial model. It is therefore important to investigate the
extent to which the κfid

∞ profiles can be used in studies of alternative
cosmologies.

Consider the case that we wish to estimate the lensing masses of
the CLASH clusters in a model with a cosmological background
that is different from the fiducial model originally used to analyse
the observations in Merten et al. (2015). In principle, we could
suitably modify the SAWLENS algorithm to reconstruct the conver-
gence maps in the alternative model, κalt

∞ , instead of κfid
∞ . However,

this would not be practical as it would imply rerunning the entire
analysis pipeline for different background cosmologies. A more
economical strategy is to note that the two convergence maps, κfid

∞
and κalt

∞ , can be related by

Zfid(zd, zs)κ
fid
∞ = Zalt(zd, zs)κ

alt
∞ , (49)

where Zalt is defined as in equation (48) but with the distances
calculated in any alternative, and not the fiducial, cosmology. The
above equation holds (up to a correction that we discuss in the next
subsection) since both Zfidκfid

∞ and Zaltκalt
∞ correspond to κzs , i.e. the

convergence at the true source redshift.2 Using the above equation,
the radially binned convergence profiles obtained using the fiducial
cosmology in Merten et al. (2015), κfid

∞ (θ ), can be directly compared
to the prediction of the alternative model κalt

∞ , provided the latter is
multiplied by the factor Zalt(zd, zs)/Zfid(zd, zs). This is the approach
that we adopt in this paper. Specifically, we aim to obtain constraints
on M200, c200 and 
m0 in non-fiducial backgrounds by minimizing
the χ2 quantity,

χ2 = VC−1
κ V , (50)

where

V i = κfid
∞,i − ϒκalt

∞ (M200, c200, 
m0, θi) (51)

is the ith entry of the vector V ; κfid
∞,i is the reconstructed lensing

convergence in the ith radial bin, θ i; Cκ is the covariance matrix of

2 For example, for �CDM with an alternative background and for fixed
surface mass density, for simplicity, equation (49) becomes �(θ )/�alt

c =
�(θ )/�fid

c −→ �alt
c = �fid

c .

the radially binned data3 and for brevity of notation, we introduce
the scaling factor

ϒ(zd, zs) = Zalt(zd, zs)

Zfid(zd, zs)
. (52)

In equation (51), κalt
∞ is given by equation (12) for �CDM,

equation (25) for Galileon gravity and equation (36) for Nonlo-
cal gravity, but using zs = ∞, in the calculation of �c.

Unless otherwise specified, we assume flat priors on the free
parameters, 
m0 ∈ [0.1, 0.5], M200 ∈ [0.3, 3.0] × 1015 M� h−1 and
c200 ∈ [1, 8].

4.2 The validity of equation (49) and the choice of
source redshifts

As discussed above, κfid
∞ is reconstructed by applying the transfor-

mation of equation (47) in each cell of the SAWLENS grid that covers
the cluster field. In this process, the value of zs is determined by the
redshift of the galaxies used to measure the ellipticity field at that
pixel, or by the redshift of the galaxies associated with a given mul-
tiple image system. On the other hand, our methodology is based
on equation (49), in which one scales the lensing quantities from zs

= ∞ to a source redshift zs, but neglects the redshift distribution of
the background lensed galaxies. The validity of equation (49) then
becomes linked to the impact of the spread of the redshift distribu-
tion of the source galaxies across each cluster field. For the CLASH
clusters analysed in Merten et al. (2015), the redshift distribution of
the background galaxies is manifest in four main aspects:

(i) in the weak lensing regime, different ellipticity pixels are asso-
ciated with different source redshifts since the shapes are measured
using different galaxies across the cluster field;

(ii) related to the above, the ellipticity of each pixel results from
a local average of neighbouring galaxy shapes which can have
different redshifts;

(iii) the ellipticity field used by SAWLENS is a combined catalogue
of measurements from space- and ground-based telescopes which
probe different galaxy redshift ranges; the measurements of these
two catalogues (see Merten et al. 2015) are corrected for this, but
assuming the fiducial cosmology;

(iv) in the strong lensing regime, each pixel is associated with
the redshift of the multiple images contained within it, which can
be different in different multiple image systems for the same cluster
and also different from the galaxy populations used in the weak
lensing measurements.

To get a feeling for the size of our approximation, we show in
Fig. 3 the zs dependence of the factor ϒ (equation 52) for the
Galileon (red) and Nonlocal (blue) models, and a �CDM model
with 
m0 = 0.4 (black). The quantity ϒ encapsulates all of the de-
pendence on zs in the χ2 minimization used to estimate the cluster
parameters. For illustrative purposes, we choose zd = 0.35. This
corresponds roughly to the mean redshift of the CLASH clusters
(cf. Table A1), although the exact value is not important for the dis-
cussion here. We note that what is relevant is the slope of the curves
and not their absolute value. Consider for the sake of argument an

3 The bootstrap realizations used to derive the covariance matrices in Merten
et al. (2015) also make use of the fiducial cosmological background. Here,
we use the errors as obtained for the fiducial cosmology and do not attempt to
estimate the dependence of the covariance matrix on the assumed cosmology.
This does not alter our conclusions as this choice only affects the precise size
of the confidence intervals, without introducing any important systematics.
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Figure 3. Dependence of the factor ϒ = Zalt(zd, zs)/Zfid(zd, zs),
equation (52), on the source redshift zs for a �CDM model with 
m0

= 0.4 (black), Galileon gravity (red) and Nonlocal gravity (blue). The cos-
mological background of these models is different from the fiducial �CDM
model with 
m0 = 0.27 used by Merten et al. (2015). In this figure, zd =
0.35, which is typical for the CLASH clusters.

extreme case where the source galaxies are distributed between zs

= [1, 3], but that we choose to use zs = 2 in equation (52). Focusing
on the case of the Galileon model, we have that ϒ(zs = 1) ≈ 1.019,
ϒ(zs = 2) ≈ 1.011 and ϒ(zs = 3) ≈ 1.007. These values differ
by no more than ≈1 per cent, and hence our choice of zs should
not lead to serious biases in the results. The error would be even
smaller in the Nonlocal model or �CDM with 
m0 = 0.40, since in
these cases the ϒ(zs) curves are shallower than in the Galileon case.
The error of neglecting the redshift distribution becomes smaller for
higher values of zs, for which the curves in Fig. 3 become visibly
flatter. This is relevant for strongly lensed systems, which tend to
be associated with galaxies at higher redshifts.

In cluster weak lensing studies, it is common to determine an
effective source galaxy redshift, zs,eff , defined as

Dds

Ds

(
zs,eff

) =
〈

Dds

Ds

〉
, (53)

where 〈Dds/Ds〉 is an average over all source galaxies. Merten et al.
(2015) quote zs,eff values for the CLASH clusters (see also Umetsu
et al. 2014). For example, Abell 209 (zd = 0.206) has 〈Dds/Ds〉 =
0.75 ± 0.04 (1σ ), which corresponds to zs,eff = 1.03+0.25

−0.15 (this esti-
mate comes from table 3 of Umetsu et al. 2014). This uncertainty on
zs,eff is much smaller than our rather extreme example above (zs = 2
± 1), which further convinces us that the approximation of equation
(49) is a good one. For completeness, we note that the determination
of these values of zs,eff involves knowledge of the background cos-
mology, and hence they are also model dependent. However, again
taking Abell 209 as an example, in the Galileon model one has
Dds/Ds(zs,eff = 1.03) = 0.76, which is well within the uncertainty
(±0.04) quoted above for this cluster. We can therefore neglect this
model dependency and use the values of zs,eff listed in Merten et al.
(2015). In particular, in our χ2 minimization, we shall use the ef-
fective source redshift values found for the background sources of
the ground-based ellipticity measurements, which we list in Table
A1.

To summarize this discussion, although equation (49) is only
approximate, the results shown in Fig. 3 suggest that our results are
insensitive to the exact choice of zs.

4.3 Other subtleties in using cluster lensing data to test gravity

Before proceeding further into estimating the CLASH cluster
masses in modified gravity models, we discuss some other sub-
tle issues that may arise when combining current lensing modelling
techniques with modified gravity. Although it turns out these other
issues do not play a direct role in the results of this paper, we believe
such a discussion is instructive and leads to a clearer and broader
understanding of the results of this and other work in the literature.

4.3.1 Parametric versus non-parametric analysis

The non-parametric reconstruction of the lensing potential used
in this paper builds solely upon the observed lensing constraints,
without making any assumptions about the mass distribution of
the cluster. Such a model-independent4 method is particularly well
suited to modified gravity studies. Consider the alternative sce-
nario of a parametric approach. In this case one starts by making
an ansatz about the mass distribution in the cluster. Typically, this
can involve describing the main dark matter distribution using a
single (or more in the case of mergers) NFW profile. Then, one
could also model substructure by identifying the position of the
most massive cluster galaxies and assigning them a given density
profile (see e.g. Kneib et al. 1996; Broadhurst et al. 2005; Smith
et al. 2005; Halkola, Seitz & Pannella 2006; Jullo et al. 2007, 2014;
Zitrin et al. 2009; Oguri 2010; Umetsu et al. 2011b; Oguri et al.
2012; Newman et al. 2013; Jauzac et al. 2014, 2015, 2015; John-
son et al. 2014; Monna et al. 2014). The free parameters of such a
mass model are then iterated over until the lensing constraints are
satisfied. In the context of modified gravity there are at least two
subtle issues associated with such a parametric lensing analysis.
First, in order to compute the lensing effects due to the postulated
mass distribution one must assume a theory of gravity: for the same
mass distribution, different models of gravity could induce different
lensing effects. Parametric methods are therefore biased towards the
assumed theory of gravity. Second, the lensing properties of a given
point in the cluster field are determined by the sum of the lensing
signal predicted by each element of the mass model (main halo
plus the substructures). This superposition is valid in GR (which
is linear in the Newtonian limit), but not necessarily in alternative
(typically non-linear) models of gravity. These issues can be cir-
cumvented if one reconstructs directly the lensing potential and its
derivatives but not the mass distribution. It is for this reason that we
choose to use the SAWLENS results of Merten et al. (2015) in our
analysis.

For clarity, it is worth pointing out that the problem with para-
metric mass modelling is less severe if it is only applied to the
strong lensing part of the data analysis. In this regime (well within
R200), the effects of the modifications to gravity in a model like
the Galileon may be small by virtue of the screening mechanism.
As a result, the assumptions made in the data analysis may turn
out to be a good approximation. This is the case for some of the
Galileon-type models explored in Narikawa & Yamamoto (2012)
and Narikawa et al. (2013), which were compared to (parametric)
cluster data from Umetsu et al. (2011b) and Oguri et al. (2012).
However, it is reasonable to expect that the screening efficiency is
different in different models of gravity. For instance, the Nonlocal
gravity model predicts a constant enhancement of the gravitational

4 Apart from the issue of the fiducial cosmological background model dis-
cussed above.
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Figure 4. Two-dimensional marginalized constraints on the c200–M200 (left), 
m0–M200 (middle) and 
m0–c200 (right) planes, for the CLASH clusters
RX J2129 (blue) and CL J1226 (red), assuming a �CDM cosmology. The solid contours depict the marginalized 68 and 95 per cent confidence limits when all
three parameters are varied. The dashed contours in the left-hand panel are the same as the solid ones, but with the cosmological matter density held fixed at

m0 = 0.27 (barely noticeable in the case of RX J2129). The grey dots show the points accepted in the Monte Carlo chains built by the COSMOSIS code.

strength on all relevant scales. One must therefore be always cau-
tious and check for the compatibility of the data analysis with the
specific theory of gravity to be tested.

4.3.2 Interpretation of stacked cluster lensing profiles

To overcome systematic effects due to intervening structure, clus-
ter substructure and cluster asphericity, it has become common to
build average (stacked) lensing profiles by using cluster lensing
data from independent lines of sight (Umetsu et al. 2011a,b; Oguri
et al. 2012). The averaged profiles are then fitted again to infer an
average mass and concentration that characterizes the stack. From
a conceptual point of view, the same procedure can be applied
assuming modified gravity models. Here, we comment that the in-
terpretation of the stacked data may be somewhat more complex
due to the effects of modified gravity. Consider for simplicity the
stacking of the convergence radial profiles of N clusters at redshifts
z1...N with mass and concentration values M1...N and c1...N, respec-
tively. The background galaxies can be assumed to lie at the same
source redshift. For instance, Umetsu et al. (2011b) stack four mas-
sive clusters by co-adding (with some weighting) their profiles. The
resulting mean profile is then refitted to determine a mean mass
and concentration of the stack. Now consider fitting such a stack
to two gravity models which display different time evolution for
an unscreened gravitational strength. For these two models, clus-
ters located at different redshifts would contribute differently to the
mean mass/concentration estimate since their lensing signal is am-
plified differently. For such a scenario, an interesting analysis would
be to split the stack into smaller ones binned by cluster redshift
and check for differences in the resulting mean mass/concentration
of the smaller stacks. The situation becomes even more complex
(but interesting) in models with screening, due to its scale de-
pendence, whose efficiency is in general redshift dependent as
well.

We stress that the above issues do not pose a serious problem to
using stacked data to test modified gravity, but simply that the extra
physics can enrich the interpretation of the results. In this paper,
however, we shall not be concerned with these issues since we fit
each of the CLASH clusters individually.

5 R ESULTS: LENSING MASS ESTIMATES

In this section, we present our main results for the mass and con-
centration estimates of the CLASH clusters in the three models of
gravity we consider. We also discuss the impact of our results in the
context of recently proposed observational methods to test gravity
on large scales.

5.1 The impact of �m0 on cluster lensing mass estimates

Fig. 4 shows the constraints in the c200–M200 (left), 
m0–M200

(middle) and 
m0–c200 (right) planes for the RX J2129 (blue)
and CL J1226 (red) CLASH clusters, assuming a �CDM model.
The solid contours show the parameter constraints obtained using
a three-dimensional grid search. The grey dots correspond to the
points accepted in the chains of a Monte Carlo exploration of the
parameter space using the recently developed and publicly avail-
able COSMOSIS5 package (Zuntz et al. 2015). COSMOSIS is a highly
modular parameter estimation code to which we have added likeli-
hood modules based on the convergence profiles of each of the 19
CLASH clusters. Given that our grid code and the Markov chain
Monte Carlo (MCMC) sampler in COSMOSIS are independent ways
of sampling the parameter space, it is reassuring that their results
agree as shown in Fig. 4. We will be making the CLASH likelihood
modules developed in this paper publicly available in future releases
of the COSMOSIS standard library.

The middle and right-hand panels of Fig. 4 show that the data
from each cluster do not place any meaningful constraints on 
m0

(this conclusion holds for all of the other CLASH clusters as well).
Furthermore, there is no clear degeneracy between 
m0 and the clus-
ter parameters M200, c200, which indicates that the constraints on the
mass and concentration are unbiased with respect to a particular
choice of 
m0. This point is also illustrated by the dashed contours
in the left-hand panel of Fig. 4, which show the constraints when
the cosmological matter density is held fixed at 
m0 = 0.27. The
comparison of the solid and dashed contours shows that there is no
significant deterioration of the constraints when one allows 
m0 to
be a free parameter. The cases of CL J1226 (red) and MACS J0744

5 The Bitbucket webpage of the COSMOSIS code is
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Cluster lensing masses in modified gravity 4095

Figure 5. Lensing convergence κ(θ ) for �CDM (black), Galileon gravity
(red) and Nonlocal gravity (blue) models, plotted as the difference relative
to their respective models with base parameters M200 = 5 × 1014 M� h−1,
c200 = 4 and 
m0 = 0.27. The blue and black curves are almost overlapping.
We assume zd = 0.5 and zs = 1.0. The dashed, dotted and dot–dashed lines
correspond, respectively, to cases for which the values of M200, c200 and 
m0

are enhanced by 10 per cent. To guide the eye, the shaded region indicates
the radial scales beyond R200 in the base �CDM model.

(not shown) are those for which the deterioration is the most pro-
nounced (although still very small). For the rest of the clusters, the
two sets of contours (solid and dash) are barely distinguishable, just
as in the case of RX J2129 (blue). This illustrates that, in observa-
tional determinations of cluster masses from lensing, the impact of
assuming a specific value of 
m0 (as is often done in the literature)
is negligible.6

To help understand the above result (and others that will follow),
it is instructive to look at the impact of M200, c200 and 
m0 on the
lensing convergence profiles. This is shown in Fig. 5 for �CDM
(black), Galileon gravity (red) and Nonlocal gravity (blue). For all
models:

(i) an increase in c200 (keeping all other parameters fixed) tilts
the convergence profile, boosting its amplitude in the inner regions
and lowering it in the outer regions of the halo;

(ii) larger mass values enhance the lensing convergence on all
scales shown, with the effect being slightly more pronounced at
large radii;7

(iii) A boost in 
m0 has three main effects. First, it increases the
value of ρc(z) at the cluster redshift, which effectively increases
the density of the halo for fixed M200 (recall the discussion of
Section 3). This should boost the convergence at small radii. Second,
an increase in 
m0 also has an impact on the cosmological distances
that enter �c, which has the overall effect of lowering the amplitude
of κ , by a constant factor. Third, a change in 
m0 also changes the

6 The changes in the constraints when one allows 
m0 to vary are so small
that they are of the same magnitude as the error of the approximation of
equation (49), which is expected to be negligible in any case, as discussed
in Section 4.2.
7 Note that for θ � 102 arcsec, the effects of increasing halo mass start to
become degenerate with the effects of decreasing the concentration. Strong
lensing analysis, which probes the inner most regions of the cluster, therefore
helps to break this concentration–mass degeneracy. Umetsu et al. (2014)
also determine the lensing profiles of some of the CLASH clusters used in
Merten et al. (2015). However, the latter includes strong-lensing constraints
in the analysis, which allows for more accurate concentration estimations.
This is why we choose to work with the results of Merten et al. (2015).

angular diameter distance to the cluster, Dd, which causes horizontal
shifts in the lensing convergence, when plotted as a function of the
observed angular scales θ = Dd/r.

The net effect of varying 
m0 results in almost no visible shift
(dot–dashed) in the amplitude of κ for the radial scales that are better
probed by the CLASH radially binned profiles, θ � 500–700 arcsec
(cf. Fig. 7). This is why the constraints on 
m0 in Fig. 4 are so weak.
We note also that since the effect of 
m0 is always subdominant with
respect to the effects of varying M200 and c200 (in terms of fractional
change), it is unlikely that future lensing data from experiments
such as Euclid (Laureijs et al. 2011) and Large Synoptic Survey
Telescope (LSST; LSST Dark Energy Science Collaboration 2012)
will change this conclusion.

From here on in, we fix the cosmological matter density to be

m0 = 0.27 for all our models. In this way, the �CDM model
becomes the fiducial one used in Merten et al. (2015). This value
is also consistent with the CMB observational constraints for the
Cubic Galileon and Nonlocal models as found, respectively, by
Barreira et al. (2014c) and Dirian et al. (2015).

5.2 Cluster lensing masses in Galileon and non-local gravity

Fig. 6 shows the constraints on the c200–M200 plane obtained for each
of the CLASH clusters in �CDM (black), Galileon (red) and Non-
local gravity (blue) cosmologies. The dots indicate the position of
the best-fitting values. The best-fitting lensing convergence profiles
are shown in Fig. 7 (what is shown is ϒκ∞(θ )). The concentration–
mass relation of the CLASH clusters for the three models is shown
in Fig. 8, together with results from N-body simulations (Duffy
et al. 2008; Barreira et al. 2014b,d). First, we note that our cluster
mass and concentration estimates for �CDM are in agreement with
those obtained in Merten et al. (2015). Second, these three figures all
show that the constraints on the cluster parameters are, within error
bars, the same in the three cosmological models. Although there are
tiny differences in the resulting best-fitting values of M200 and c200

for the three models (�5 per cent), they all lie well within the 1σ

limits (whose precision varies within ∼50–80 per cent). The shapes
of the contours are also remarkably similar and the goodness-of-fit
is essentially the same in all models, as can be seen by compar-
ing the respective χ2 values in Fig. 6. In Fig. 7, one notes that
for almost all of the clusters, the best-fitting convergence profiles
underpredict the data points at large angular scales (although well
within the error bars). However, close to the edge of the clusters, the
contribution from the surrounding large-scale structure may have a
non-negligible impact. This can partly explain why the data points
tend to go up at large scales, as investigated, for instance, in Oguri
& Hamana (2011).

The shaded bands in Fig. 8 show the best-fitting mean
concentration–mass relations found in N-body simulations for the
�CDM (grey) model in Duffy et al. (2008),8 the Cubic Galileon
model (red) in Barreira et al. (2014b) and the Nonlocal model (blue)
in Barreira et al. (2014d). In these bands, the lower and upper bounds
correspond, respectively, to the relations at z = 0.666 (a = 0.60)
and z = 0 (a = 1) (this redshift range is approximately that of the
CLASH clusters). Fig. 8 shows that there is good agreement be-
tween the simulation results and the concentration/mass estimates
of the CLASH clusters in the three models of gravity. However, there
are a number of issues that prevent a direct comparison between the

8 See fig. 9 of Merten et al. (2015) for the comparison of the CLASH c200–
M200 relation in �CDM with other relations in the literature.
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Figure 6. Two-dimensional 68 and 95 per cent confidence limits on the c200–M200 plane for all of the CLASH clusters assuming �CDM (black), Galileon
gravity (red) and Nonlocal gravity (blue). The position of the best-fitting points is marked by the dots, and their respective χ2 values are shown in each panel.

simulation results and the estimated concentration and mass values.
First, the shaded bands of the Galileon and Nonlocal models in
Fig. 8 have been extrapolated to masses larger than the mass range
used to fit the best-fitting concentration–mass relations in the simu-
lations of Barreira et al. (2014b,d). Second, the concentration–mass
relation was fitted using all haloes, without applying any selection
criteria to consider only relaxed ones (Neto et al. 2007). This may
be particularly relevant for the CLASH clusters, which are charac-
terized by regular X-ray surface brightness morphologies (Postman
et al. 2012), and are therefore expected to be relaxed and close to
virial equilibrium (see also Schaller et al. 2015a,b for a recent dis-
cussion on the impact of baryonic processes in the density profiles
of clusters). Third, the concentration–mass relation in the simula-
tions was obtained by fitting NFW profiles to the three-dimensional
spherically averaged mass distribution of the haloes, whereas the
symbols in Fig. 8 are the values obtained by also assuming spher-
ical symmetry, but fitting to two-dimensional (projected) lensing
convergence profiles (see e.g. section 6.2 of Merten et al. 2015 for
an analysis of the impact of this projection bias in the CLASH sam-
ple). Finally, the upper and lower bounds of the bands correspond to
the mean relation found in the simulations, but the intrinsic scatter
around the mean concentration–mass relation should also be taken
into account. Nevertheless, to guide the eye, we opted to keep the
simulation results in Fig. 8, but advise that further work is needed
before performing a more thorough comparison (see the analysis of
Meneghetti et al. 2014 in �CDM models for an illustration of the
steps to follow).

The left-hand panel of Fig. 9 shows the best-fitting lensing
convergence for all of the CLASH clusters in the Galileon (red)
and Nonlocal (blue) cosmologies, plotted as the respective differ-
ence to the best-fitting profiles in �CDM. As expected from the
above results, on the scales that are probed by the CLASH data,
θ � 500–700 arcsec, the three models are in very good agreement.

In the case of the Galileon model, this is because the screening is
very effective on these scales inside R200 (Falck, Koyama & Zhao
2015 find a similar screening efficiency inside R200 for DGP gravity,
which employs also the Vainshtein mechanism). This can be noted
by comparing the enhancement in the amplitude of κ on larger
scales, where the screening becomes less efficient. In the case of
the Nonlocal model, although the modifications to the gravitational
strength are not screened, they are not strong enough to have a
significant impact on the lensing convergence profiles. We therefore
conclude that, for the case of the CLASH clusters analysed here, the
impact of modifying the lensing gravitational potential according
to Cubic Galileon or Nonlocal gravity is completely negligible in
the estimation of their lensing masses.

Before this paper, there have been other works investigating the
impact of Galileon-like effects on cluster lensing profiles. Narikawa
& Yamamoto (2012) used a parametrization of the fifth force, which
was constrained using the stacked cluster lensing shear profiles from
(Umetsu et al. 2011b; Oguri et al. 2012). Their parametrization en-
compasses the Galileon model studied here, and for this case, there
is good agreement with our conclusions. Narikawa et al. (2013)
performed similar investigations, but took as a test case a model
inspired by massive gravity. The authors do not consider the time
evolution of the cosmological background and their equations of
motion include higher order terms than the Galileon model studied
here, which prevents a direct comparison with our results. A par-
ticularly interesting feature described in Narikawa et al. (2013) is
that some model parameters predict a ‘dip’ in the amplitude of the
convergence profiles, which happens for r � R200 (see e.g. fig. 4 of
Narikawa et al. 2013). These scales are sufficiently well probed by
the lensing data which allow some of these specific models to be
ruled out already. Such features, however, do not show up in our
convergence profiles for the Cubic Galileon model (cf. Fig. 7), but
which is a different model from the one studied in Narikawa et al.
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Cluster lensing masses in modified gravity 4097

Figure 7. Best-fitting lensing convergence profiles, κ(θ ) = ϒκ∞, obtained for all of the CLASH clusters assuming �CDM (black), Galileon gravity (red) and
Nonlocal gravity (blue). The green dots are the radially binned data as described in Merten et al. (2015) and the error bars are the square root of the diagonal
entries of the covariance matrix of the data. To guide the eye, the dotted vertical lines indicate the inferred values of R200, which are barely distinguishable for
the three models.

(2013). In the context of f(R) models, although the lensing signal is
not modified directly, it can be via modified mass distributions. For
instance, the enhanced dynamical potential in these models boosts
the accretion rate of matter on to the clusters, which results in an
excess of mass in their infall region. This can be probed with lensing
measurements, as was done in Lombriser et al. (2012a). Since the
Galileon and Nonlocal models also directly modify the dynamical
potential, then in principle, similar investigations can be performed.
In the case of these models, the lensing signal should be amplified
both by the excess of mass that surrounds the cluster, and by the
intrinsically enhanced lensing effects. A detailed investigation of
this is, however, beyond the scope of the present paper.

5.3 The connection with tests of gravity

5.3.1 Dynamical masses from the phase-space density around
massive clusters

Recently, the authors of Lam et al. (2012, 2013), (Zu et al. 2014)
and (Wilcox et al. 2015) have proposed methods to test the law of
gravity on Mpc scales by using information from the galaxy ve-
locity field in the infall regions around massive clusters (see also
Hellwing et al. 2014). These techniques were designed with mod-
els of gravity that modify the dynamical potential (i.e. that felt by
non-relativistic objects like galaxies), but do not modify the lensing
potential (i.e. that felt by relativistic particles like photons). Popular
models such as f(R) and DGP gravity fall in the above category, and
as such, the lensing mass estimates, Mlen, for these models would
automatically be the same as in GR. On the other hand, the velocity
dispersion of surrounding galaxies as they fall towards the clusters
would be affected by the modifications to gravity. Therefore, if one
would interpret these observations assuming GR, then one would

infer dynamical masses, Mdyn, which are different from those esti-
mated using lensing. A mismatch in the estimates of the lensing and
dynamical masses would therefore be a smoking gun for modified
gravity (Smith 2009; Schmidt 2010; Zhao, Li & Koyama 2011)
(see however, Hearin 2015 for a discussion of how complications
associated with assembly bias could affect these tests).

The merit of the test of gravity described above becomes less
clear when applied to models that also modify the lensing potential.
Consider, for simplicity, a model that boosts the dynamical and
lensing potential by the same constant factor, α > 1, i.e. �dyn =
�len ∼ α�GR. In such a model, the mass of a cluster inferred from
the surrounding galaxy velocity field would be biased low with
respect to GR. This is because, due to the enhanced gravitational
strength felt by the galaxies, the cluster does not need to be as
massive as in GR to accelerate the galaxies by the same amount.
Following the same reasoning, the lensing mass estimates would
also tend to be biased low compared to GR: due to the fifth force
felt by the photons, the cluster can be less massive to induce lensing
effects of the same magnitude. In such a model, both Mdyn and Mlen

shift in the same direction. This therefore makes it harder to tell the
two values apart, and hence harder to detect a signature of modified
gravity.

The Galileon model also modifies the lensing potential, but adds
complexity to the case described above in the sense that the mod-
ifications to gravity are scale dependent with screening inside the
cluster radius. Just outside the cluster radius, the screening becomes
less efficient and the fifth force significantly boosts the lensing con-
vergence, as shown in Fig. 9. Although these larger scales are not
accurately probed by the current cluster lensing data, they corre-
spond roughly to the regions associated with galaxy infall, 2 � r
� 20 Mpc h−1. For these radial scales, the right-hand panel of Fig.
9 shows that the total force profile which surrounds the CLASH
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Figure 8. Concentration–mass relation of the CLASH clusters assuming
�CDM (black), Galileon gravity (red) and Nonlocal gravity (blue). The
error bars indicate the marginalized 68 per cent confidence limits. We use
different symbols for different clusters to facilitate the identification of
which cluster is across the three models. The shaded bands indicate the
mean concentration–mass relations from N-body simulations between z =
0.66 (lower bound) and z = 0 (upper bound) found for �CDM (grey) in
Duffy et al. (2008), Cubic Galileon model (red) in Barreira et al. (2014b) and
Nonlocal model (blue) in Barreira et al. (2014d). This redshift range roughly
brackets the redshift range spanned by the CLASH clusters (cf. Table A1).
We stress also that extra modelling is needed before robustly comparing the
simulation results with the best-fitting mass and concentration values (see
text).

clusters in a Galileon cosmology can be up to 10–40 per cent higher
than in �CDM. As a result, galaxies located at these distances from
the cluster centre should feel the boost in the total force, which
should translate into their velocity distribution. On these scales, both
the lensing and dynamical masses would be different in a Galileon
cosmology compared to �CDM. Inside the cluster radius, on the
scales that are probed by the CLASH data, θ � 500–700 arcsec, the
left-hand panel of Fig. 9 shows that the differences in the conver-
gence profiles compared to those in �CDM are small enough for the

mass estimates to be almost the same in the two models. Therefore,
inside the cluster radius, this leaves us with a similar picture to that
in f(R) or DGP models: the lensing mass estimates are not affected
by the modifications to gravity, but dynamical mass estimates using
infalling galaxies are changed. We therefore conclude that, despite
it being a model that modifies the lensing potential, the fact that
dynamical and lensing mass estimates are sensitive to radial scales
of different screening efficiency allows the Cubic Galileon model to
be tested by the methods proposed in Lam et al. (2012, 2013) and
Zu et al. (2014).

In the case of the Nonlocal model, although the lensing mass es-
timates are also practically the same as in �CDM, the enhancement
of the force profile on scales 2 � r � 20 Mpc h−1 is kept below the
∼5 per cent level. This makes it more challenging for this model to
be tested by these methods.

5.3.2 Galaxy–galaxy lensing

The left-hand panel of Fig. 9 also shows that although the conver-
gence profiles are very close in the three models for R � R200, they
can be visibly higher (by ∼20–80 per cent) in the Galileon model
on larger scales. The enhanced lensing signal outside dark matter
haloes in Galileon-like models has been analysed by Wyman (2011)
and Park & Wyman (2015), but in the context of theories that emerge
from massive gravity scenarios (Gabadadze 2009; de Rham 2010; de
Rham & Gabadadze 2010a,b; de Rham et al. 2011a,b). In particular,
the authors investigate the possibility of such a signal being detected
in galaxy–galaxy lensing observations (see e.g. Mandelbaum et al.
2013). The latter can be measured by cross-correlating the posi-
tion of foreground galaxies (the lenses) with their background shear
field. Our results in Fig. 9 are in good qualitative agreement with the
solutions explored in Wyman (2011) and Park & Wyman (2015).
For instance, we also find the appearance of a bump in the relative
difference to �CDM, which we checked occurs at ∼10R200. Quan-
titatively, the comparisons become less straightforward. On the one
hand, in this paper we show the results for cluster mass scales in the
range ≈[0.5, 1.5] × 1015 M� h−1, which are higher than the galaxy
group mass scales (1013–1014 M� h−1) probed in Wyman (2011)

Figure 9. Left: best-fitting lensing convergence profiles, κ(θ ) = ϒκ∞, for the all of the CLASH clusters in the Galileon (red) and Nonlocal (blue) gravity
models, plotted as the difference relative to the best-fitting profiles in �CDM (black). To guide the eye, the shaded band represents approximately the regions
that lie beyond R200 for all clusters. Right: same as the left-hand panel, but for the total force profile �,R. The shaded band encloses the scales 2 � R �
20 Mpc h−1 which are approximately those associated with the infall of surrounding galaxies.
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and Park & Wyman (2015). Moreover, our models also differ at the
level of the cosmological background, exact screening efficiency
and time evolution of the linearized effective gravitational strength.
Nevertheless, it seems reasonable to expect that the predictions of
the Galileon model studied here are also likely to be scrutinized by
galaxy–galaxy lensing observations. A more detailed investigation
of the model predictions for galaxy–galaxy lensing is beyond the
scope of the present paper.

In the case of Nonlocal gravity, the modifications to the lensing
convergence are small (�5 per cent) on all scales, which makes it
much harder to distinguish from standard �CDM with galaxy–
galaxy lensing data.

5.3.3 Weak lensing on larger scales

The picture depicted in the left-hand panel of Fig. 9 that the lensing
signal gets significantly enhanced on larger scales in the Galileon
model should, in principle, also have an impact on the lensing of
CMB photons. Indeed, Barreira et al. (2012, 2014c) have shown
that the amplitude of the CMB lensing potential angular power
spectrum, C

ψψ
l , is very sensitive to the modifications to gravity in

the Galileon model. To the best of our knowledge, the effect of the
Nonlocal model on the CMB lensing potential power spectrum has
never been investigated in detail. However, since the modifications
to gravity on large scales are not as strong as in the Galileon model
(cf. middle panel of Fig. 1), the effects on the amplitude of C

ψψ
l

should be less pronounced.
By the same reasoning the weak lensing cosmic shear power

spectrum should also be sensitive to the modifications to gravity
in the Galileon model, but less so in the Nonlocal case. Again
to the best of our knowledge, cosmic shear data, such as that
gathered by the Canada–France–Hawaii Telescope Lensing Survey
(CFHTLens; Heymans et al. 2012), have never been used in di-
rect tests of the models studied here, although Battye et al. (2015),
Leonard et al. (2015) and Planck Collaboration XIV (2015) have
used these data to constrain general parametrizations of modified
gravity.

6 SU M M A RY A N D O U T L O O K

We have estimated cluster lensing masses in alternative theories of
gravity that modify the lensing gravitational potential. For this, we
varied the mass (M200) and concentration (c200) of NFW haloes to
fit the predicted lensing signal in modified gravity to the radially
binned lensing convergence profiles obtained from non-parametric
reconstructions of the lensing potential for 19 X-ray selected clus-
ters from the CLASH survey (Postman et al. 2012; Umetsu et al.
2014; Merten et al. 2015). The methodology we adopted is similar
to that first employed in Merten et al. (2015) in the context of GR.

We focused on the Cubic Galileon and Nonlocal models which
modify the gravitational law in qualitatively different ways. In the
case of the Nonlocal model, the modifications to gravity can be
parametrized by an effective time varying gravitational strength,
which is independent of length scale (cf. equation 35 and Fig. 1). In
the Galileon model, the gravitational law can also be parametrized
by a scale-independent gravitational strength on large scales (cf.
equation 23 and Fig. 1). However, close to massive bodies, the
Vainshtein mechanism (manifest in non-linearities in the equations
of the model) introduces a scale dependency to the gravitational
strength, which acts to suppress the amplitude of the modifications
with respect to standard GR/�CDM. The cosmological background

in both models is also modified relative to �CDM (cf. Fig. 1), which
has an impact on the conversion between angular and radial scales,
ρc(z) and also on the values of �c.

We paid particular attention to the compatibility of the data analy-
sis with the modified gravity models we wished to test. Namely, we
pointed out that the CLASH cluster convergence profiles obtained
by Merten et al. (2015) are particularly suited for modified gravity
studies since the analysis makes no a priori assumptions about the
mass distribution, and it is therefore less model dependent. If one
constructs first a mass model for the cluster, then one must postulate
a theory of gravity to compute the lensing signal associated with
that mass distribution. The lensing convergence maps obtained from
such an approach could therefore be biased towards the assumed
theory of gravity, which would prevent a direct comparison with
other models. We have also pointed out that the analysis of Merten
et al. (2015) is, however, not completely model independent, as
it assumes a fiducial �CDM background model (
m0 = 0.27) to
compute angular diameter distances. In Section 4.1, we explained
that this extra model dependency can nevertheless be taken into
account by applying a correction factor, equation (52), to the con-
vergence profiles predicted by models with different cosmological
backgrounds. This correction factor holds under the approximation
that all background source galaxies lie at the same redshift, which
as we argued in Section 4.2, turns out to be a good approximation
with negligible impact on our conclusions.

Our main results can be summarized as follows.

(i) Although 
m0 is a parameter that enters the calculation of the
lensing convergence, its impact is very small compared to the size
of the effects of M200 and c200 (cf. Fig. 5). This means that assuming
a particular value for 
m0 does not introduce any significant biases
in the cluster mass and concentration estimates. We have shown
this explicitly for �CDM by simultaneously varying 
m0, M200 and
c200, and found barely any difference from the constraints on the
cluster parameters obtained when the cosmological matter density
is fixed at 
m0 = 0.27.

(ii) The M200 and c200 values obtained for the CLASH clusters
using GR, Cubic Galileon and Nonlocal gravity agree to better than
5 per cent, which is much smaller than the ∼50–80 per cent preci-
sion allowed by the data at the 1σ level (cf. Table A2). In the case of
the Galileon model, this is because the screening mechanism sup-
presses the modifications to gravity very efficiently on the scales
probed by the lensing data, R � R200. In the case of the Nonlocal
gravity model, there are no systematic shifts in the values of M200

and c200 relative to those in �CDM because the boost in the gravi-
tational strength is not strong enough at the redshift of the CLASH
clusters, z ∼ 0.2–0.9.

(iii) The practically unmodified lensing masses in the Galileon
model have interesting implications for tests of gravity that are
designed to detect differences between lensing and dynamical mass
estimates (Lam et al. 2012, 2013; Zu et al. 2014). These tests were
first put forward in the context of models like f(R) and DGP that
modify the dynamical potential (probed by e.g. infalling galaxies
outside R200), but not the lensing potential. Our results show that,
although the Galileon model also modifies the lensing potential,
this does not translate into modified lensing masses because of the
screening. However, outside R200, the force profile of the CLASH
clusters in the Galileon model can be 10–40 per cent higher than in
�CDM (cf. Fig. 9), which can affect the velocity distribution of
infalling galaxies, and hence, the dynamical mass estimates. The
picture is therefore qualitatively similar to that of f(R) and DGP
gravity, and as a result, the techniques of Lam et al. (2012, 2013)
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and Zu et al. (2014) can also be applied to models like the Galileon
model studied here.

The existence of screening mechanisms in modified gravity mod-
els (such as the Galileon which leads to practically unmodified lens-
ing masses) motivates research into the lensing effects associated
with cosmic voids. There, the density is low, and as a result, the
fifth force effects are manifested more prominently. The lensing
signal associated with voids has been detected recently in Melchior
et al. (2014) and Clampitt & Jain (2014) by stacking voids found in
the galaxy distribution of Sloan Digital Sky Survey catalogues (see
also Krause et al. 2013 for an earlier forecast study). In the context
of modified gravity, Cai, Padilla & Li (2015) showed that voids
found in simulations are on average emptier in f(R) gravity than in
�CDM. This happens because the enhanced gravity facilitates the
pile up of matter in the surrounding walls and filaments, leaving
less mass inside the void. This translates into a stronger signature
in the lensing signal from voids. By the same reasons, the expecta-
tion is that voids should also be emptier in the Cubic Galileon and
Nonlocal gravity models. However, in these models, one has also
the effects of the modified lensing potential, which should amplify
the size of an eventual signature for modified gravity. This suggests
that lensing by voids could become a very powerful tool to test the
law of gravity outside of the Solar system. Such an investigation is
the subject of on-going work (Barreira et al. 2015).
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APPENDIX A : C LUSTER REDSHIFTS AND
BEST-FITTING PARAMETERS IN �CDM,
G A L I L E O N A N D N O N - L O C A L G R AV I T Y

Table A1. CLASH cluster redshifts, zd, and the effective source redshift used in the fitting, zeff
s . The values of

zeff
s are those quoted in table 4 of Merten et al. (2015), which correspond to the weak lensing source redshifts

coming from the ground-based observations. CL J1226+3332 is an exception since the ground-based data for
this cluster are not of sufficient quality (see section 4.1 of Merten et al. 2015). For this cluster we used the
value of zeff

s associated with the space-based observations. The table shows also the values of Dd (Mpc h−1) and
�c (1015 M� h Mpc−2) for �CDM, Galileon and Nonlocal gravity models.

Cluster name zd zeff
s D�CDM

d ��CDM
c DGalileon

d �Galileon
c DNonlocal

d �Nonlocal
c

Abell 383 0.188 1.16 455.62 4.60 462.88 4.48 461.47 4.52
Abell 2261 0.225 0.89 524.38 4.52 534.31 4.37 532.09 4.43
MACS J1206−08 0.439 1.13 827.59 3.74 856.42 3.54 846.15 3.64
RX J1347−1145 0.451 1.17 840.69 3.67 870.65 3.67 859.80 3.58
MACS J0329−02 0.450 1.18 839.62 3.65 869.48 3.65 858.67 3.56
MS 2137−2353 0.313 1.23 666.70 3.67 683.94 3.65 679.02 3.58
MACS J0744+39 0.686 1.41 1037.60 3.84 1087.94 3.84 1065.27 3.73
MACS J1115+0129 0.352 1.15 721.39 3.68 742.14 3.68 735.72 3.59
Abell 611 0.288 1.13 629.07 3.86 644.13 3.86 640.08 3.77
RX J1532.8+3021 0.363 1.15 735.97 3.67 757.73 3.67 750.86 3.58
MACS J1720+3536 0.391 1.13 771.54 3.69 795.89 3.69 787.81 3.60
RX J2129+0005 0.234 1.12 540.25 4.12 550.88 4.12 548.43 4.05
MACS J1931−26 0.352 1.16 721.39 4.10 742.14 4.10 735.72 3.99
Abell 209 0.206 0.93 489.79 4.60 498.31 4.60 496.53 4.52
RXC J2248−4431 0.348 0.94 715.99 3.84 736.38 4.60 730.12 3.74
MACS J0429−02 0.399 1.25 781.30 3.52 806.39 3.52 797.97 3.43
MACS J1423+24 0.5454 0.98 932.09 4.70 970.66 4.70 955.11 4.56
CL J1226+3332 0.890 1.66 1140.34 4.12 1203.90 4.12 1172.32 4.02
MACS J1311−03 0.494 1.07 884.88 4.03 918.83 4.03 905.86 3.92

Table A2. Best-fitting M200 (1015 M� h−1) and c200 values for all the CLASH clusters in the �CDM, Galileon and Nonlocal gravity models. The errors
quoted correspond to the marginalized 1σ limits.

Cluster name M�CDM
200 c�CDM

200 MGalileon
200 cGalileon

200 MNonlocal
200 cNonlocal

200

Abell 383 1.01 ± 0.22 4.54 ± 1.17 0.98 ± 0.21 4.68 ± 1.17 0.98 ± 0.21 4.46 ± 1.13
Abell 2261 1.10 ± 0.35 2.91 ± 1.03 1.07 ± 0.32 2.98 ± 1.06 1.07 ± 0.32 2.84 ± 1.03
MACS J1206−08 0.83 ± 0.16 4.18 ± 1.06 0.80 ± 0.16 4.32 ± 1.10 0.83 ± 0.16 4.18 ± 1.06
RX J1347−1145 1.07 ± 0.21 3.19 ± 0.85 1.04 ± 0.21 3.33 ± 0.88 1.07 ± 0.21 3.19 ± 0.85
MACS J0329−02 0.72 ± 0.16 3.69 ± 0.88 0.69 ± 0.16 3.83 ± 0.92 0.69 ± 0.16 3.69 ± 0.88
MS 2137−2353 1.33 ± 0.35 2.70 ± 0.64 1.27 ± 0.34 2.84 ± 0.64 1.30 ± 0.34 2.70 ± 0.64
MACS J0744+39 0.69 ± 0.13 3.97 ± 0.78 0.69 ± 0.13 4.11 ± 0.81 0.69 ± 0.13 3.97 ± 0.78
MACS J1115+0129 0.89 ± 0.18 2.20 ± 0.39 0.86 ± 0.16 2.27 ± 0.42 0.86 ± 0.16 2.20 ± 0.39
Abell 611 0.83 ± 0.22 3.26 ± 0.64 0.80 ± 0.21 3.33 ± 0.67 0.80 ± 0.21 3.26 ± 0.64
RX J1532.8+3021 0.54 ± 0.12 2.84 ± 0.81 0.51 ± 0.12 2.98 ± 0.81 0.51 ± 0.12 2.84 ± 0.81
MACS J1720+3536 0.72 ± 0.15 4.11 ± 1.10 0.72 ± 0.15 4.25 ± 1.13 0.72 ± 0.15 4.04 ± 1.10
RX J2129+0005 0.60 ± 0.13 4.18 ± 0.85 0.57 ± 0.13 4.32 ± 0.88 0.57 ± 0.13 4.11 ± 0.85
MACS J1931−26 0.48 ± 0.16 3.19 ± 1.20 0.48 ± 0.15 3.33 ± 1.24 0.48 ± 0.16 3.19 ± 1.20
Abell 209 0.92 ± 0.21 3.12 ± 0.74 0.86 ± 0.19 3.19 ± 0.74 0.86 ± 0.19 3.05 ± 0.74
RXC J2248−4431 1.10 ± 0.31 2.98 ± 1.24 1.07 ± 0.29 3.12 ± 1.27 1.07 ± 0.31 2.98 ± 1.24
MACS J0429−02 0.77 ± 0.19 3.05 ± 1.52 0.74 ± 0.18 3.26 ± 1.59 0.74 ± 0.18 3.05 ± 1.52
MACS J1423+24 0.54 ± 0.13 4.61 ± 1.27 0.54 ± 0.13 4.82 ± 1.31 0.54 ± 0.13 4.61 ± 1.27
CL J1226+3332 1.51 ± 0.32 3.90 ± 0.71 1.56 ± 0.34 3.97 ± 0.71 1.54 ± 0.32 3.90 ± 0.71
MACS J1311−03 0.45 ± 0.07 4.32 ± 0.64 0.42 ± 0.07 4.46 ± 0.67 0.45 ± 0.07 4.25 ± 0.64
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