
Bayesian Treed Multivariate Gaussian Process with

Adaptive Design: Application to a Carbon Capture

Unit

Bledar Konomi∗, Georgios Karagiannis, Avik Sarkar, Xin Sun, and Guang Lin
Pacific Northwest National Laboratory

December 19, 2013

Abstract

Computer experiments are widely used in scientific research to study and predict the be-
havior of complex systems, which often have responses consisting of a set of non-stationary
outputs. The computational cost of simulations at high resolution often is expensive and im-
practical for parametric studies at different input values. In this paper, we develop a Bayesian
treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaus-
sian process (BTGP) to model the cross-covariance function and the non-stationarity of the
multivariate output. We facilitate the computational complexity of the Markov chain Monte
Carlo (MCMC) sampler by choosing appropriately the covariance function and prior distri-
butions. Based on the BTMGP, we develop a sequential design of experiment for the input
space and construct an emulator. We demonstrate the use of the proposed method in test
cases and compare it with alternative approaches. We also apply the sequential sampling
technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon
capture unit.

Keywords: multivariate Gaussian process, separability, Bayesian treed Gaussian process, Markov
chain Monte Carlo, computer experiments

1 Introduction

Using numerical simulations to model the behavior of large-scale complex systems is common

in many fields of science and technology. While improving the level of detail and model resolution

may increase the accuracy of these simulations compared to real systems, the increase in the

associated computation cost may be significant. Despite the availability of faster and parallelized

computational resources, it often is too expensive to run such complex models for all possible

input conditions.

One example of expensive and complex models is computational fluid dynamics (CFD)-

based simulations of a post-combustion carbon capture device (details in Section 6.1). Carbon
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capture is an alternative approach to limit greenhouse gas emissions from thermal power plants

(MacDowell et al., 2010). Carbon capture simulations should include fluid flow dynamics, reac-

tion kinetics, and heat transfer occurring in the system. Moreover, commercial devices can be

as large as tens of meters in height, requiring a large number of computational cells to obtain

reasonably accurate solutions. For such large-scale systems, each simulation may take several

days or even weeks to run. Parametric studies for varying operating conditions and material

properties, such as those performed in Sarkar et al. (2014), become infeasible when reaction

kinetics and heat transfer are included. The simulations become even more expensive compu-

tationally when these additional physical complexities are introduced. Therefore, time efficient

surrogate models derived from a finite number of simulations need to be developed.

In this paper, we are interested in emulating the flow inside the regenerator of a carbon

capture unit. The quantity of interest is the density function describing the distribution of

volume fractions of sorbent particles in the device. The sorbent, comprised of small chemically

reactive particles flowing through the device, is capable of reacting with the carbon dioxide and

removing it from the thermal power plant exhaust. The distribution of the sorbent particles

inside the regenerator, predicted by the CFD model, strongly affects carbon capture efficiency.

Therefore, in a local region inside the regenerator, the relative volume occupied by sorbent

particles, i.e., the sorbent volume fraction, is of interest. Using fewer CFD simulations, a

surrogate model for predicting the distribution function of sorbent volume fraction will be

developed, along with uncertainty estimates for the predictions.

Several methods based on the Gaussian process (GP) (Cressie, 1993) have been proposed

to build surrogate models used to predict the response surface with only a few observations.

Often, these methods make it possible to emulate the simulator output to a high degree of

precision using only a few hundred runs, or fewer, of the simulator. Typically, the GP is used

successfully as an emulator because it can investigate and incorporate dependencies involved

with multivariate output, e.g., (Mardia and Goodall, 1993; Conti and O’Hagan, 2010). These

works have concentrated on the stationary multivariate Gaussian process (MGP) but not much

attention has been given to computer experiments with non-stationary output. We refer to a

MGP as as non-stationary if its mean has abrupt changes or its behavior depends on their actual

position and not on the distance between any two realizations.

Partitioning provides a straightforward mechanism for creating a non-stationary model and

can help ease computational demands by fitting models to less data. Kim et al. (2005) used

the Voronoi tessellation to partition the space into an independent stationary GP. Denison

et al. (1998) and Chipman et al. (1998) used a Bayesian tree with different priors to partition

the input space into simple linear regressions. Gramacy and Lee (2008) generalized, with the
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Bayesian treed Gaussian process (BTGP), the Bayesian tree proposed by Chipman et al. (1998)

to partition the input space into multiple stationary GPs. Despite the success of the BTGP, it

has only been developed to analyze each component of the multivariate output separately.

Sampling methods have been developed to increase accuracy of the emulator and improve

predictability. Proposed methods, such as Latin hypercube sampling (LHS) (Iman and Conover,

1980), orthogonal arrays, and multilevel Monte Carlo (Giles, 2008), have been developed to

sample the input space without considering information about the output. Other more so-

phisticated methods use the active learning sequential design of experiment, such as Active

Learning MacKay (ALM) and Active Learning Cohn (ALC) (Seo et al., 2000; Gramacy and

Lee, 2009). These methods depend on what we already know about the output and are based

on the predictive variance of the candidate input samples.

In this paper, we develop a novel Bayesian treed multivariate Gaussian process (BTMGP)

to model the uncertainty of multivariate and non-stationary computer experiment output. The

input domain is partitioned into disjoint subregions with a binary tree similar to the classification

and regression tree (CART) (Chipman et al., 1998) and BTGP (Gramacy and Lee, 2008). Each

subregion, which corresponds to one external node of the tree, is modeled independently by

a MGP with separable covariance function as in Conti and O’Hagan (2010). The Kronecker

product of the separable model simplifies the computations in each external node. We design

local moves for the reversible jump Markov chain Monte Carlo (MCMC) involved in the Bayesian

tree operations that lead to a satisfactory mixing of the MCMC sampler. The BTMGP can

be used to explicitly predict the non-stationary response surface and represent the uncertainty

associated with it. In addition, we extend the univariate ALC technique to sequentially sample

multivariate output from the most informative input with the help of the proposed BTMGP

and expert prior knowledge. In a Bayesian formulation, a prior distribution of the computer

experiment output is updated in light of new observations and is conditional on various hyper-

parameters. By using an active learning sequential design of experiment, we can determine the

response surface of the multivariate output from a simulator using well-selected observations.

The simultaneous BTMGP fitting and sequential adaptive sampling provide a good prediction fit

even for a small number of realizations. Finally, we apply our method to computer experiments

of a regenerator device from a carbon capture plant.

The rest of the paper is organized as follows: in Section 2, we review the statistical models,

and in Section 3 we describe the Bayesian inference and prediction. In Section 4, we introduce

an adaptive sampling technique. We conduct an artificial example study in Section 5, while

we use our proposed method to analyze the multiphase flow in a full-scale regenerator of the

carbon capture problem in Section 6. Conclusions are presented in Section 7.
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2 Statistical model

Consider a computer model with input domain X ⊂ Rl, where l is the dimension of the

input space. Also, let f(xi) ∈ Rq denote the 1 × q vector observed output at input xi; Ỹ =

(f(x1), . . . , f(xn))T denote the (nq) × 1 observed output vector; Y = (fT (x1), . . . , f
T (xn))T

denote the n× q observed output matrix; and X = (x1, . . . ,xn)T represent the n× l observed

input matrix. The challenge in the multivariate process is to model its parameters in the

presence of non-stationarity. In this paper, we used Bayesian treed ideas coupled with MGP

with separable covariance function. In the following we present two of the main components of

the proposed method: the MGP with separable covariance function and the Bayesian tree.

2.1 Gaussian process with separable covariance

The basic multivariate Gaussian regression model often used in geostatistics, is of the form:

f(x) = hT (x)B +w(x) + ε(x), (1)

where h(x) is the m× 1 vector of basis functions at x, B is the linear regression coefficient of

dimension m× q, w(x) is a zero mean MGP, and ε(x) is the nugget error.

The separable model, a special case for the covariance function of w(x), frequently has been

used in previous works (Mardia and Goodall, 1993; Conti and O’Hagan, 2010). The covariance

function can be written as c(w(x),w(x′)) = ρ(x,x′;ψ)Σ, where Σ is the q×q variance matrix of

f(x) = (f1(x), . . . , fq(x))hT (x) at any location x, ρ(., .;ψ) is a known correlation function (e.g.,

the power exponential, rational quadratic, and Matérn), and ψ are the parameters associated

with the correlation function of the input. This form of the covariance function assumes the

same correlation parameters for every fi(x). For computational purposes, the nugget error ε(x)

may be assumed equal to zero.

The covariance matrix of the vector Ỹ can be written as C = R⊗Σ , where R ∈ Rn×n is the

correlation matrix generated by X and ρ( · , · ;ψ) (R(i, j) = [ρ(xi,xj ;ψ)] is the correlation of

the xi and xj input). This representation of the covariance matrix facilitates the computation

of the likelihood, which depends on the determinant and inverse of C. The determinant can

be expressed as |C| = |R|q|Σ|n and the inverse as C−1 = R−1 ⊗Σ−1. The likelihood can be

written as a function of the matrix Y :

logL(Y ; · ) = const− 1

2
log(|R|q|Σ|n|)− 1

2
tr(Σ−1(Y −HB)TR−1(Y −HB)), (2)

where Y is a n× q matrix and HB is the multivariate linear regression mean of Y .

The preceding model requires the specification of the correlation functions ρ. The com-
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putational simplification of the Kronecker product requires the nugget error to be zero. As

a result, we, in practice, we may experience computation instabilities. A remedy for the ill-

conditioned matrix is to assume that in every separate correlation matrix, a positive quantity

exists in the diagonals similar to Bilionis et al. (2013). We assume a nugget random parame-

ter for the correlation function that has to be estimated. The modified correlation function is

assumed ρ(x,x′;ψ) = ρ̃(x,x′;λ) + g2δx,x′ ,where ψ = (λ, g), λ = (λ1, . . . , λl), where λk repre-

sents the correlation strength of w( · ) in the kth direction, and g is the nugget quantity used

for the stability of the input correlation matrix. In this paper, we use the square exponential

ρ̃(ξ, ξ′;λx) = exp{−1
2

∑l
k=1(xk − x′k)

2/λ2k}, which has been proven to work well in previous

studies. Despite ρ(x,x;ψ) > 1 caused by the positive nugget term g, we call ρ( · ) correlation

function for notational convenience.

2.2 Bayesian tree

The separable model can be too simplistic to deal with computer experiments in practice.

In many applications, a stationary MGP may not be appropriate due to the non-stationary

structure of the data. The mean, variance, and spatial dependency may differ from one input

subregion to another.

A Bayesian tree (Chipman et al., 1998; Gramacy and Lee, 2008) partitions the input space

into non-overlapping regions by making binary splits recursively. Chipman et al. (1998) employ

a piecewise constant and Gramacy and Lee (2008) use a GP inside of each external node.

Each new partition is a sub-partition of a previous one. Conditional on a treed partition, the

prediction from the BTGP model is done independently within each subregion, following the

conventional GP prediction technique (Hjort and Omre, 1994). Although each realization of

the predictive surface is discontinuous, the aggregated posterior predictive mean surface tends

to produce approximately smooth transitions between subregions. To extend the described

Bayesian treed model to multivariate output, we follow the same setting.

In the Bayesian framework, a binary tree is treated as random and assigned with a prior

distribution via a tree-generating process (Chipman et al., 1998). Starting with a null tree (all

data in a single region), a leaf node η ∈ T , representing a subregion of the input space, splits

with probability Psplit(η, T ) = a(1 + dη)
−b, where dη is the depth of η ∈ T , a controls the

balance of tree’s shape, and b controls the tree’s size.

The treed model prior is:

P (T ) = Prule(ρ|η, T )
∏
ηi∈I

Psplit(ηi, T )
∏
ηj∈D

(1− Psplit(ηj , T )),

where I and D denote the internal and terminal nodes, respectively. Prule(ρ|η, T ) involves
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the splitting process, which initially chooses the splitting dimension u from a discrete uniform

distribution. Then, the split location ζ is chosen uniformly from a subset of the locations S in

the uth dimension.

3 Bayesian inference

We consider a partition {X1, . . . ,XD} of disjoint subregions of the input domain X , such

that X =
⋃D
i=1Xi, corresponds to a tree structure T with D external nodes. We model each

partition {Xi}Di=1 with a MGP with likelihood Li(Yi|φi) as defined in Section 2.1, where φi =

(Bi,λi, gi,Σi) denotes the parameters of the MGP of the ith external node. The joint likelihood

defined on the whole domain X is:

L(Y |φ, T ) =

n∏
j=1

D∑
i=1

Li(f(xj)|φi)1{Xi}(xj),

where φ = (φ1, . . . ,φD) and 1{Xi}(xj) is the indicator function, which is equal to 1 if xj ∈ Xi
and 0 otherwise.

According to the Bayesian framework, we assign a prior distribution on the parameter (T ,φ),

such as π(T ,φ) = π(T )
∏
i=1:D π(Bi)p(Σi)p(λi)p(gi). Here, we consider that the MGP param-

eters (Bi,λi, gi,Σi) are apriori independent between different partitions and independent of

each other within the partitions of the input domain. However, the proposed method is not

limited solely to this prior model.

The marginal prior distribution of the binary tree π(T ) is defined according to the tree

generating process suggested by Chipman et al. (1998) and discussed in Section 2.2. Moreover,

for φ, we choose the same prior specification of the local MGP parameters for each of the terminal

nodes. Given a tree partition Xi (that corresponds to a terminal node ηi of the binary tree), we

assign conjugate prior distributions on the (Bi,Σi) to obtain a more convenient form for the

posterior distributions. More precisely, for the mean coefficient Bi, we consider a multivariate

normal prior distribution N (0, Iσ2B) with mean zero and variance Iσ2B. The prior distribution

on Σi is an inverse Wishart, IW (r,Ω). We consider non-informative prior π(Bi,Σi) ∝ |Σi|−
q+1
2 ,

which is a limiting case for Ω→ 0 and σB →∞. This will lead to a closed form of the marginal

posterior distribution of λi (Conti and O’Hagan, 2010).

The prior of λi,j , for i = 1, . . . , D and j = 1, . . . , l, is more complicated and may depend

on the correlation function used. For example, for exponential correlation function a non-

informative distribution for λi,j is IG(2, b0) where b0 = x0/(−2 ln(0.05)) and x0 is the maximum

distance of the ith direction (Banerjee et al., 2004). In this paper, we choose the mixture

of Gamma distributions similar to those of Gramacy and Lee (2008). Finally, we assign an

6



exponential distribution prior for the nugget standard deviation gi.

Because the resulting posterior distribution is intractable, we use MCMC methods to carry

out inference. A blockwise MCMC sampler (Gelfand and Smith, 1990) is used to simulate each

component of T |φ and φ|T .

3.1 Within-tree MCMC simulation

Given a fixed tree structure T , the parameters φi of the MGP in each of the external nodes

(i = 1, . . . , D) are updated independently. The conditional distribution of (Bi,Σi) can be

factorized as p(Bi,Σi|Yi,λi, gi) = p(Bi|Yi,Σi,λi, gi)p(Σi|Yi,λi, gi), where:

Bi|Yi,Σi,λi, gi ∼Nm,q(B̂i, (H
T
i R

−1
i Hi),Σi),

Σi|Yi,λi, gi ∼IW ((r + ni), (ni −m)Σ̂i),

with B̂i = (HT
i R

−1
i Hi)

−1HT
i R

−1
i Yi and Σ̂i = (ni −m)−1(Yi −HiB̂i)

TR−1i (Yi −HiB̂i).

For i = 1, . . . , D, full conditional posterior distribution of λi, gi|Y ,Σi,Bi for an arbitrary

choice of π(λi, gi) is such that:

p(λi, gi|Yi,Σi,Bi) ∝ π(λi, gi)|Ri|−
q
2 exp(−1

2
tr(Σ−1i (Yi −HiBi)

TR−1i (Yi −HiBi))). (3)

For i = 1, . . . , D, conditional posteriors of λi and gi cannot be sampled directly. Therefore,

we use Metropolis-Hastings updates within a Gibbs sampler, (Mueller, 1993; Gelfand and Smith,

1990; Hastings, 1970). Given the prior specification for Bi and Σi in the previous section and

integrating out Bi and Σi from the posterior of λi, gi,Σi,Bi|Yi, the conditional distribution of

λi, gi|Y can be expressed similarly to Conti and O’Hagan (2010) as:

p(λi, gi|Yi) ∝ π(gi)π(λi)|Ri|−
q
2 |HT

i R
−1
i Hi|−

q
2 (Σ̂i)

ni−m

2 , (4)

where m is the total number of basis functions in the model and Σ̂i is the generalized least

square estimator of Σi given above. This representation is appealing because it simplifies the

problem into separate matrices. Yet, integrating equation (3) over Bi and Σi can improve the

mixing of the MCMC (Liu et al., 1994; Berger et al., 2001). For every external node we impose

the constrain ni > m+ q, such that the posteriors of all parameters are proper, before initiating

sampling from the posterior distribution. Moreover, given this restriction, it is possible to

integrate out both Bi and Σi, resulting in the predictive distribution of f(x) conditional only

on λi, gi (as shown in Section 3.3). This constraint must be maintained when generating the

Bayesian tree.
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3.2 Across-tree MCMC simulation

The structure of the binary tree of the MGP model is updated through a random scan MCMC

sweep that includes (as updates) the Change, Swap, Rotate, and Grow & Prune operations.

These operations are similar to the BTGP operations introduced by Gramacy and Lee (2008)

with differences in the covariance structure and, thus, the likelihood. The first three operations

are Metropolis-Hastings updates operating on fixed dimensional spaces, while the last two are

a reversible jump pair of moves (Green, 1995) that perform changes to the dimension of the

parameter space. For more details, refer to Chipman et al. (1998) and Gramacy and Lee (2008).

The Grow & Prune operations are a reversible jump pair of moves that change the struc-

ture of the binary tree by adding or removing nodes while they change the dimension of the

parametric space. Given the current state is at binary tree T , the Grow operation involves

several steps. We randomly select an external node ηj0 that corresponds to a subregion Xj0
with data {Xj0 ,Yj0} and MGP model with parameters φj0 = (Bj0 ,λj0 , gj0 ,Σj0). We propose

node ηj0 to split into two new child nodes ηj1 and ηj2 according to the splitting rule Prule used

in the priors, and we denote the proposed tree as T ′. We consider that nodes ηj1 and ηj2

correspond to disjoint subregions Xj1 and Xj2 , the union of which is Xj0 , with data {Xj1 ,Yj1}
and {Xj2 ,Yj2}, respectively. Let φj1 = (Bj1 ,λj1 , gj1 ,Σj1) and φj2 = (Bj2 ,λj2 , gj2 ,Σj2) denote

the parameter vectors of the MGP associated with the new nodes ηj1 and ηj2 . A newly formed

child, lets say ηj1 , is randomly chosen to receive values for (λj1 , gj1) from the parent such that

(λj1 , gj1) = (λj0 , gj0). Meanwhile, for the other, (λj2 , gj2), we generate values from a proposal

Q(λj2 , gj2). Q(λj2 , gj2) can be the prior distribution of (λj2 , gj2). We generate proposals for

(Bj1 ,Σj1) and (Bj2 ,Σj2) from the posterior conditional distributions p(Bj1 ,Σj1 |Yj1 ,λj1 , gj1)

and p(Bj2 ,Σj2 |Yj2 ,λj2 , gj2). Let G and P ′ denote the set of the growable nodes of T and

prunable nodes of T ′, respectively. The Grow operation is accepted with probability min{1, A},
where

A =
1− a(1 + dηj0 )−b

a(1 + dηj0 )−b(1− a(2 + dηj0 )−b)2
|G|
|P ′|

p(λj1 , gj1 |Yj1)p(λj2 , gj2 |Yj2)

p(λj0 , gj0 |Yj0)Q(λj2 , gj2)
. (5)

The Prune operation is the reverse analog of Grow, from tree T ′ to T , and designed so the

detailed balanced condition is satisfied. The operation is accepted with probability min{1, 1/A}.
Remark 1: Note that the Grow/ Prune and Change operations must be accepted upon the

condition nj > m + q. Each of these operations must satisfy the constraints of the separable

model to ensure a proper posterior.

Remark 2: For the multivariate case, Gramacy and Lee (2008) separately implement q

different univariate Bayesian trees using parallel computing. Basically, their method can be

considered as a one-by-one, separate univariate analysis for each of the outputs. The proposed
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BTMGP model uses only one tree and a covariance function that can model the dependence

between random variables. For one-dimensional output, our model is the same, in principle, as

the BTGP in Gramacy and Lee (2008), with some differences in the formulation.

Remark 3: In practice, it is unnecessary to generate proposal values or compute the pro-

posal densities for (Bj1 ,Σj1) and (Bj2 ,Σj2) (or (Bj ,Σj0)) before a Grow (or Prune) operation

is accepted or rejected. This is because these parameters are not involved in the computation of

the acceptance ratio A (or 1/A) or the generation of other proposals within Grow/ Prune opera-

tions. However, after a Grow (or Prune) operation has been accepted, (Bj1 ,Σj1) and (Bj2 ,Σj2)

(or (Bj0 ,Σj0)) can be generated from the conditional posterior distributions if inference on these

parameters is of interest.

Remark 4: The fact that we are able to use the conditional posterior distributions of the

linear coefficient and covariance matrices as reversible jump proposals is possible to lead to

more acceptable Grow/ Prune operations, as discussed by Karagiannis and Andrieu (2013) and

Godsill (2001), and creates simpler acceptance ratios at relatively low computational cost. This

is particularly important here given the multidimensional nature of the model.

3.3 Predictive distribution

In this section, we calculate the predictive distribution of y(x′) = f(x′) ∈ Rq at a new input

point, x′ ∈ Rkx . The predictive distribution can be used to predict the response surface and its

associated error.

Given the data, the tree, and the parameters of the MGP in each external leaf, the conditional

posterior distribution for the emulator f( · ) is:

p(f(x′)|B,Σ, g, λ, T ,Y ) ≡
∑
i=1:D

1{Xi}(x
′)Nq

(
m∗i (x

′;Bi), r
∗
i (x
′,Xi; gi, λi)Σi

)
, (6)

where m∗i (x
′;Bi) = BT

i hi(x
′) +r(Xi,x)TR−1i (Yi−HiBi) and r∗i (x

′,Xi; gi, λi) = (ri(x
′,x′)−

r(Xi,x)TR−1i r(Xi,x)). The preceding representation can be further simplified using the con-

ditional distribution of f( · )|Y , g, λ. Given the prior specification of π(Bi,Σi) ∝ |Σi|−
q+1
2 and

integrating out Bi and Σi, the distribution of f(x′)|T , g, λ,Y ≡ f(x′)|gi, λi,Yi, if x′ ∈ Xi, is a

multivariate t-student (Conti and O’Hagan, 2010):

p(f(x′)|T , g, λ,Y ) ≡
∑
i=1:D

1{Xi}(x
′)Tq

(
m∗i (x

′; B̂i), r
∗(x′,Xi; gi, λi)Σ̂i;ni −m

)
, (7)

with ni −m representing the degrees of freedom of the t-distribution.

The Bayesian predictive density function f( · )|Y is calculated through Bayesian model av-
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eraging (BMA) as

p(f(x)|Y ) =
∑
T

∫
λ,g

p(f(x)|λ, g,Y , T )π(λ, g, T |Y )dλdg. (8)

In practice, exhausting enumeration and summation over all possible T in equation (8) is

not feasible. Moreover, the integral in equation (8) is computationally intractable. Thus, the

following numerical methods are required for the evaluation of the predictive density function

p(f(x)|Y ):

1. Generate MCMC samples (λ(1), g(1), T (1)), . . . , (λ(M), g(M), T (M)) from p(λ, g|Y ) as we

described in Section 3.2 and 3.1.

2. Approximate p(f(x)|Y ) by p̂(f(x)|Y ) = 1/M
∑M

k=1 p(f(x)|T (k),λ(k), g(k),Y ).

This predictive process tends to smooth the prediction surface around the tree limit regions

edges (refer to Gramacy and Lee (2008)). Also, the proposed method allows the computation of

the predictive distribution of any function of f without relying on approximation transformation

methods, such as the delta method. As we observe in our application section, this is crucial.

4 Sequential design of experiments via active learning

The sequential design of experiments (SDOE) via active learning is a popular sequential

data collection method in computer experiments (Gramacy and Lee, 2009). The main goal of

SDOE is to select a subset of points on the input space that maximizes a utility function chosen

by the practitioner. Active Learning MacKay (ALM) and Active Learning Cohn (ALC) are

the two main approaches for SDOE via active learning. The ALM approach uses the concept

of maximizing the information gained by sequentially selecting a subset of the input point,

which has the greatest uncertainty in the output space. On the other hand, the ALC approach

(Cohn, 1996) sequentially selects a subset of data by maximizing the expected reduction in mean

squared error averaged over the whole input space:

∆σ̂2(x̃) =

∫
X

∆σ̂2x̃(z)p(z)dz =

∫
X

(σ̂2(z)− σ̂2x̃(z))p(z)dz, (9)

where ∆σ̂2x̃(z) is the reduction of variance of the output in location z when an observation in

location x̃ is added. Also, p(z) is the input variable density function, which can be considered

as a prior of the input space (where a generalized Beta or truncated Normal distribution is a

convenient choice in practice), σ2(z) is the variance of output in location z without observing

the output in location x̃, and σ̂2x̃(z) is the variance at location z when an observation at location
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x̃ exists. The integral in equation (9) usually is analytically intractable. Therefore, we compute

it numerically by choosing a predetermined subset of gridded input data. Seo et al. (2000) have

shown empirically that ALC performs better than ALM but is computationally more expensive.

A detailed description of these techniques for the univariate case can be found in Seo et al. (2000)

and Gramacy and Lee (2009). In this work, we extend the univariate ALC to the multivariate

case and couple it with the proposed BTMGP.

Let Xn denote the input points with n observations and Xn+1 = [Xn, x̃]. Also, let Rn ∈
Rn×n denote the correlation matrix generated byXn and ρ( · , · ;λ, g), andRn+1 ∈ R(n+1)×(n+1)

denote the correlation matrix generated by Xn+1 and ρ( · , · ;λ, g). We define a scalar quantity

associated directly with the uncertainty pertaining the input location z as:

σ̂2(z) = tr
{

(r(z, z)− r(Xn, z)T (Rn)−1r(Xn, z))⊗Σ
}
,

and

σ̂2x̃(z)) = tr
{

(r(z, z)− r(Xn+1, z)T (Rn+1)−1r(Xn+1, z))⊗Σ
}
.

This is the sum of the variances of all outputs at all different input points. This form simplifies

the multivariate active learning technique into a univariate form that can be used to sample the

input space.

Similar to Gramacy and Lee (2009), we sample points according to the multivariate ALC

conditional on the BTMGP parameters (φ, T ) at candidate locations X̃. Using the treed

Gaussian process solves both non-stationarity and computational complexity. Different helping

intermediate steps, such as choosing a few good candidates (Gramacy and Lee, 2009), based

on the maximum a posteriori (MAP) Bayesian tree obtained in the previous trial, also can be

incorporated to speed up the ALC algorithm.

Gramacy and Lee (2009) also offer details on how to invert a covariance matrix at low cost

in the ALC algorithm. We follow the same setting to invert the matrix Rn+1 in terms of Rn

by using:

∆σ̂x̃(z) =
tr(Σ)[r(Xn, z)T (Rn)−1r(Xn, x̃)− r(x̃, z)]

r(x̃, x̃)− r(Xn, x̃)T (Rn)−1r(Xn, x̃)
, (10)

where the subscript n denotes the sample size. Because of the independence assumption of the

Bayesian tree, if z and x̃ belong in two different external nodes, we take ∆σ̂x̃(z) = 0. Instead

of solving the integral in equation (9) with a direct method, we use a simple MC procedure to

obtain an approximate solution. A large subset of Z is drawn from the prior distribution of the

input, and ∆σ(x̃) is approximated by ∆σ(x̃) = |Z|−1
∑
y∈Z ∆σ̂2x̃(z).

We sequentially sample the input x̃, which has a larger ∆σ(x̃). Compared to ALM, ALC

adaptive sampling have the advantage of not only giving more reasonable values, but it also
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accounts for the distribution of the input variables. In practice, this may be very important

as we can now concentrate attention on scientifically more reasonable subregions of the input

space.

The above sampling technique assumes that the multiple responses are in the same scale.

As pointed out by a reviewer, this sampling technique is not appropriate in cases where the

outputs are expressed in different scale. To deal with this issue, we should normalize the output

responses in order to be in the same scale. When we cannot normalize the output responses,

other solutions should be explored in future work.

5 Artificial examples

In this section, we conduct a number of simulation studies to illustrate the performance

of the proposed BTMGP and the ALC sequential adaptive sampling. We design the artificial

examples so that they involve multivariate output with discontinuities and localized features.

The parameters in the prior distribution of the tree are set α = 0.6 and β = 2 as in Chipman

et al. (1998). For simplicity, we use constant mean in each external leaf (subregion) of the

BTMGP. After running a number of MCMC iterations, we run the ALC five times consecutively

by increasing the number of points by 5 each time. We call this the ALC with BTMGP adaptive

sampling technique with Step 5 samples. In our examples, we have not observed any significant

differences between ALC with BTMGP of Step 5 and Step 1.

5.1 2-input and 2-output example

In this artificial example, we consider a two-dimensional input space x ∈ [−2, 6]2 and two-

dimensional output functions problem f1(x) = x1 exp (−x21 − x22)+ε1 and f2(x) =
√
|x1| exp (−x21 − x22)

+ ε2, where ε1 ≡ ε2 ∼ N(0, σ = 0.001). These functions have two localized features inside the

box [−2, 2] × [−2, 2], while they are practically zero everywhere else. The first function f1(x)

has been used in previous work by Gramacy and Lee (2009) with only one-dimensional output.

The second function f2(x) is chosen such that there is a dependency with function f1(x), which

changes from subregion to subregion. For input subregion [−2, 0]× [−2, 2], the two output func-

tions have negative correlation, while for input subregion [0, 2]×[−2, 2], the two output functions

have positive correlation. This difference should be captured from the proposed model. More-

over, the computational simplicity of these functions allows us to thoroughly test the dependence

of our scheme on any number of adaptive sampling techniques.

We assume a uniform prior distribution for the input space. To ensure the posterior distri-

bution of the parameters in each external leaf is proper, each leaf of the tree must contain at

least ni ≥ m+ q + 1 = 1 + 2 + 1 = 4 input samples.
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(h) MSPES for n = 85

Figure 1: Left column represents the exponential data after 35 (top), 65 (second row), 75 (third
row) and 85 (bottom) adaptively chosen samples. In the right column, mean squared prediction
error surface (MSPES) is plotted for the corresponding sample size in the same row.
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Table 1: f1 and f2 Mean Square Prediction Error for different methods and sample sizes

Sample size
Method Function n = 35 n = 45 n = 55 n = 65 n = 75 n = 85

ALC with BTMGP
f1 0.0131 0.0089 0.0042 0.0026 0.0013 0.0009
f2 0.0159 0.0105 0.0069 0.0043 0.0024 0.0018

ALC with BTGP
f1 0.0141 0.0085 0.0048 0.0024 0.0012 0.0009
f2 0.0230 0.0137 0.0096 0.0074 0.0043 0.0029

LHS with BTMGP
f1 0.0146 0.0100 0.0092 0.0084 0.0051 0.0032
f2 0.0187 0.0143 0.0129 0.0098 0.0074 0.0051

ALC with MGP
f1 0.0448 0.0221 0.0204 0.0098 0.0235 0.0154
f2 0.1870 0.1387 0.1170 0.1364 0.1309 0.1304

We start with an initial set of 30 LHSs (blue circles), and new candidates are chosen from

a sequential ALC with BTMGP adaptive sampling as previously described (red stars). The

first column of Figure 1 illustrates the sequential adaptive sampling for different sample sizes.

Figure 1 shows four different snapshots taken after 5, 35, 45, and 55 ALC with BTMGP adaptive

samples. The ALC with BTMGP prefers samples from the first quadrant, where variations of f1

and f2 are high, and results in higher frequency of adaptive sampling in the region, e.g., the left

bottom row plot of the figure has more than 58% of the total samples located in this quadrant.

The second row of the figure shows the mean square prediction error surface (MSPES), which

corresponds to the sample in the first column. The MSPES is computed as the mean square

error of the true value in comparison with the mean of the Bayesian predictive density function

as it is described in Section 3.3, for both outputs at particular locations. As we increase the

sample size, the MSPES reduces. To better visualize the response surface, we also plot the

mean of the Bayesian predictive density function for sample size 85 in Figure 2. Both response

surfaces demonstrate very good approximation of the predicted values with the true functions.
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Figure 2: Average prediction values of the Bayesian treed multivariate Gaussian process.

To demonstrate the performance of the proposed model and sampling method, we compare
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it to some potential alternatives. For comparison, we use the mean square prediction error

(MSPE) integrated over the whole input space. We compare the proposed ALC with BTMGP

and the ALC with multiple and independent BTGP described in Gramacy and Lee (2009).

This comparison illustrates the importance of modeling the dependence of the output in our

multivariate analysis. We also compare the proposed method with the multivariate GP described

in Conti and O’Hagan (2010) and sequentially sample the input space using the ALC as described

in this paper. This comparison shows the importance of the proposed BTMGP juxtaposed with

the MGP model. Moreover, to depict the usefulness of ALC with BTMGP adaptive sampling,

we also compare its prediction performance to that of BTMGP when samples are chosen by

LHS.

Table 1 shows the MSPE of the four different methods and two output variables (f1, f2) for

different sample sizes. Overall, the MSPE of ALC with BTMGP is smaller than ALC with MGP

and LHS with BTMGP. The MSPE of ALC with multiple and independent BTGPs is similar to

the MSPE of ALC with BTMGP for the first function (f1). However, in the second function (f2),

the MSPE of ALC with multiple and independent BTGPs is larger than the proposed ALC with

BTMGP. For example, when the sample size is 85, ALC with BTMGP produces predictions

with MSPE = 0.0009 for f1 and MSPE = 0.0017 for f2. For the same sample size, the mean

square error using ALC with BTGP is MSPE = 0.0009 for f1 and MSPE = 0.0029 for f2.

From these differences, it is evident why the proposed method should be preferred over BTGP

(Gramacy and Lee, 2008, 2009) when the outputs are correlated. For the same sample size, the

mean square error using LHS with BTMGP is MSPE = 0.0032 for f1 and MSPE = 0.0051 for

f2. A prediction using only a single global multivariate GP for the whole input region affords

an even poorer result. Specifically, MSPE = 0.0154 for f1, and MSPE = 0.1304 for f2. The

stationary assumption is violated. As such, the MGP fails to fit the data. This also is evident

by the fact that even when we increase the sample size, there is not much improvement in the

MSPE. More sophisticated covariance functions, such as the linear model of coregionalization

(LMC) (Banerjee et al., 2004), can be used to improve predictability. However, this is beyond

the scope of the present work.

One more interesting observation, shown in Table 1, is decreasing rate of MSPE as we

increase the sample size. Using ALC with BTMGP has the fastest MSPE decrease rate as the

sample size increases. The ALC with MGP results appear problematic as its MSPE seems to

increase the sample size. Even in cases using ALC sampling, a good model should be used for

the data to ensure viable results. The combination of the BTMGP model and ALC sampling

achieves the best results in terms of prediction performance.

In the case of multivariate computer experiments, the proposed ALC with BTMGP model
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offers an automatic and reliable way for predicting and sampling the input space within the

most informative input variables. Moreover, as shown in the online supplementary material, it

allows us to focus the sampling into input areas that are more interesting to domain scientists.

6 Application: regenerator of a carbon capture unit

6.1 Carbon capture regenerator unit

A typical carbon capture unit consists of two devices: the adsorber and the regenerator

(Figure 3(a)). Solid sorbent particles capable of reversibly reacting with carbon dioxide (CO2)

is looped through the two devices. In the adsorber, fresh sorbent particles react and trap the

CO2 from the exhaust flue gas. The depleted sorbent is then transferred to the regenerator,

where the reverse chemical reaction releases the carbon dioxide back into the gaseous phase for

further liquefaction and sequestration (i.e., long-term storage in deep underground reservoirs).

The regenerated sorbent particles are recycled back to the adsorber.

In this study, we focus on the regenerator of the capture unit. The bulk of the energy penalty

is associated with the regenerator (MacDowell et al., 2010; Gáspár and Cormoş, 2011) and

therefore efforts to increase capture plant efficiency should begin with optimizing the regenerator

performance. Details regarding the design and flow in the regenerator are presented in Sarkar

et al. (2014). Sorbent flow inside the device is chaotic, and different regions can have varying

distribution of sorbent densities (representative snapshots shown in Figure 3(b)). Variations in

the local distribution of sorbents, in turn, affects carbon capture rates and device efficiency. Flow

of sorbent particles in the regenerator, characterized using the density distribution of sorbent

volume fraction, is sensitive to operating conditions such as the velocity of exhaust gases entering

the device and the size of sorbent particles, and can sometimes change abruptly with these

operating parameters (Sarkar et al., 2014). Therefore, we expect the sorbent volume fraction

distribution to be non-stationary with respect to the operating conditions for the regenerator. In

this work, though our BTMGP model, we will show that the output (solid fraction distribution)

is indeed non-stationary with respect to the input parameters (operating conditions).

Figure 4 presents the (heterogeneous) distribution functions of the sorbent volume fraction

for the two operating conditions shown in Figure 3(b). In this study, we investigate the depen-

dence of sorbent distribution function for two input operating conditions: the particle diameter

dp (expressed in micro metres, µm), and the scaled velocity vg/umf of gas injected at the bot-

tom inlet (dimensionless, scaled by a characteristic velocity scale umf ; see Gidaspow (1994)).

At this point, with little information regarding reaction kinetics, we expect that intermediate

solid volume fractions (0.2-0.4) are likely to result in better regenerator performance.

In order to determine the distribution of sorbents for a given set of operating conditions,
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(a) Carbon Capture Unit (b) Sorbent Volume Fraction Distribution

Figure 3: (a) Schematic of a carbon capture unit with adsorber and regenerator. (b) Snapshots
of the sorbent volume fraction distribution in the regenerator for two operating conditions: for
different sorbent particle diameters (dp) and scaled gas inlet velocities (vg/umf ). Blue signifies
empty regions with no particles, while and red represents regions with densely packed sorbents.

computationally expensive CFD simulations may be performed. Approximately 4 − 7 days

of wall-time was required to complete each simulation, running in parallel on 20 processors.

The high cost of these CFD models motivates us to develop a BTMGP-based surrogate model

capable of predicting the solid fraction distribution in the regenerator which can be used in a

sequential sampling design.

6.2 BTMGP on the regenerator of a carbon capture unit

In this section, we focus on the analysis of the sorbent distribution function in a carbon

capture unit regenerator (as described in Section 6.1). We begin our analysis with the 36 avail-

able simulations of the regenerator reported in Sarkar et al. (2014). Simulations are performed

for varying particle diameter dp and scaled gas velocity vg/umf . For our purposes, six bins

are considered sufficient to characterize the distribution function of the solid volume fraction.

The full solid fraction range of 0.0 to 0.6 is subdivided into six bins of fixed length, given

by [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], and (0.5, 0.6]. As explained in Section 6.1, the

frequency distribution function is a key multivariate response that affects the reaction kinetics.
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Figure 4: Solid fraction distribution function for the two operating cases shown in Figure 3(b).

For each of the 36 simulations, we compute the frequency distribution of the solid fraction

as depicted in Figure 4. The height of the ith bin represents the relative frequency πi(x) of the

corresponding solid fraction range, where i = 1, . . . , 6 and x = (dp, vg/umf ). In order to use

the BTMGP model developed in Section 3, we transform the values of the relative frequency

πi(x) from [0, 1] to (−∞,+∞). The logit (logarithm of the odds) transformation, a well-known

and popular transformation with the desired properties, is used to transform πi(x), given by

fi(x) = ln (πi(x)/(1− πi(x))), where i (= 1, . . . , 6) represents the ith bin, πi(x) is the probability

value of the ith bin, and x represents the input variables. We can now build a BTMGP surrogate

model for the vector of the logits f(x) = (f1(x), . . . , f6(x))T . Conditionally on a tree leaf, we

assume that f( · ) follows a multivariate normal distributed (as in Section 2.1) equation 1 with

constant mean.

Based on the knowledge gained from a preliminary analysis on the 36 initial simulations

(Sarkar et al., 2014), we focus our attention on the region with particle size dp ∈ [150µm, 270µm]

and scaled superficial gas velocity vg/umf ∈ (1.5, 9.0). Hence, we generate an artificial two-

dimensional Beta distribution that assigns greater importance to this region of interest. Specif-

ically, we assume two independent truncated (modified) Beta distributions in the rectangular

region, given by [150, 550] × [1.0, 10.0], and exclude the upper-right corner as the operating

conditions lying in that region are not of interest. Figure 5(a) depicts our assumed prior input

distribution.

We begin our analysis by running a number of MCMC iterations using the 36 simulations

from Sarkar et al. (2014) as the first sample. The hierarchical Bayesian model for the multivariate

treed GP in the examples is defined as it is in Section 3. The parameters in the prior distribution

of the tree are set α = 0.6 and β = 2 as in Chipman et al. (1998). The mean in each external

leaf (subregion) of the BTMGP is modeled as constant. After a number of MCMC iterations,

we run the ALC five times while including results from 5 new simulations each time similar to

Gramacy and Lee (2009) and the artificial example setting. The inputs dp and vg/umf for these
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Figure 5: (a) Prior input probability and (b) 23 ALC with BTMGP samples and the maximum
a posteriori (MAP) estimation of the Bayesian tree. The existing input samples are denoted
with blue circles and the sequential ALC within BTMGP samples with red stars.

5 additional simulations are chosen based on the BTMGP uncertainty coupled with the input

prior distribution. Hence, in addition to the initial set of 36 simulations, 25 more simulations

are performed during the five ALC runs of Step 5.

Along with the prior input distribution, Figure 5 shows the initial observations (blue circles),

the sequential adaptive samples (red stars), and the MAP estimation of the Bayesian tree.

However, 2 of the 25 additional simulations performed using Multiphase Flow with Interphase

eXchanges (MFIX) failed to converge satisfactorily. Instead of 25 sequential adaptive samples,

only 23 samples are included in Figure 5(b). To better understand the BTMGP in this problem,

we also present the MAP estimation of the Bayesian tree calculated with 59 observations and

30000 MCMC iterations in Figure 5(b), reviling are three distinct subregions as the maximum

a posteriorly (MAP) of the Bayesian tree. Scaled gas velocity between 1.5 and 4.0 appears to

have 10 ALC with BTMGP samples, and it is an area where non-stationarity is observed. In

contrast, for scaled gas velocity between 7.0 and 10.0, the model appears to be quite smooth,

and only 4 ALC with BTMGP samples are selected.

Figure 6 shows the prediction surface of the six different probabilities πi using BMA in a

dense grid (70 × 70). As mentioned previously, operating conditions lying in the upper-right

corner are not of interest. Therefore, no simulations are performed for those values. If good

regeneration is expected for an intermediate solid fraction range of, say, 0.3 to 0.4, the areas of

interest would be regions where π4 is large. From Figure 6(d), the region where π4 is large is

given by dp ∈ (150µm, 250µm) and scaled gas velocity vg/umf ∈ (4.0, 8.0). As mentioned, we

pay particularly close attention to this region. Other probabilities may also be of interest. For

example, we may want to avoid the regions where π1 and π6 are large, regions with very low or

19



particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
1

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

0.4

(a)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
2

 

 

200 300 400 500

2

4

6

8

10

0.05

0.1

0.15

0.2

(b)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
3

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

(c)

particle diameter in µm
sc

al
ed

 g
as

 v
el

oc
ity

prediction of π
4

 

 

200 300 400 500

2

4

6

8

10

0.1

0.2

0.3

0.4

(d)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
5

 

 

200 300 400 500

2

4

6

8

10

0.2

0.4

0.6

(e)

particle diameter in µm

sc
al

ed
 g

as
 v

el
oc

ity

prediction of π
6

 

 

200 300 400 500

2

4

6

8

10

0.2

0.4

0.6

0.8

(f)

Figure 6: BMA prediction surface of the six different probabilities, as defined above, for different
particle diameters in µm and scaled gas velocities.

very high solid fractions.

To better evaluate the different models’ prediction abilities, a cross-validation analysis is

conducted. We sample the computer code four more times for different combinations of particle

diameter dp and scaled gas velocity vg/umf . Figure 7 shows the six bin empirical solid fraction

distribution for these four different combinations. We compute and compare the predicted solid

fraction distribution of four input values using the multivariate GP with separable function, the

BTGP (Gramacy and Lee, 2008), and the proposed BTMGP. Figure 8 illustrate the empirical

and prediction probabilities with a 95% prediction interval using the MGP with separable func-

tion (first column), the BTGP proposed by Gramacy and Lee (2008) (second column), and the

proposed BTMGP (third column).
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Figure 7: Real computer code results for four different combinations of particle diameter dp and
scaled gas velocity vg/umf .

Compared with MGP, BTMGP performs better. The mean of the predictions also is closer

to the real computer experiment simulation. Specifically, the MSPE using BTMGP is 0.0097,

and the MSPE using MGP is 0.0216. However, predictions based on the BTMGP have larger

variability due to independent assumption in the subregions associated with the Bayesian tree.

Confidence intervals based on the proposed BTMGP are larger than those based on MGP. This

variation can be reduced by employing Bayesian tree techniques used in Konomi et al. (2013),

which defines dependent covariance functions for each subregion. However, this is beyond the

scope of this paper.

In comparison with the BTGP, BTMGP performs also better. The MSPE using multiple

BTGP is 0.0119, which is significantly higher than the MSPE using BTMGP. One interesting

observation for the predicted solid fraction distribution with BTGP is that for the same input

it has different prediction interval (PI) lengths for the six predicted bars. This is due to the

fact that BTGP uses independently six simple Bayesian trees which may be different to each

other. For some of the predicted bars the 95% PI lengths are similar to the BTMGP intervals.

Meanwhile, for others, they are different. For example, the PI of the fifth predicted bar (π5) of

the solid fraction distribution using BTGP for input locations (326, 2.3032) and (334, 3.2912)

have similar PI lengths to the corresponding PI lengths using BTMGP, while the sixth prediction

bar (π6) have smaller PI lengths. However, the accuracy is not necessary better. On the contrary,
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Figure 8: Prediction probabilities and their 95% prediction intervals using different models
for four combinations of particle diameter dp and scaled gas velocity vg/umf . The first column
shows the prediction probabilities and their 95% prediction intervals using multivariate GP with
separable covariance function. The second column gives the prediction probabilities and their
95% prediction intervals using BTGP, and the third column provides the prediction probabilities
and their 95% prediction intervals using the proposed BTMGP.

in most of the cases the mean of BTGP is misspecified, with the most remarcable difference

noticed in the input (326, 2.3032). The probabilities in this applicatrion are correlated, as such

the BTMGP is a better model than BTGP, which assumes independent multivaraite output.

In general, we observe that prediction probabilities for input values close to available obser-

vations are more accurate than prediction for input values further away from the observations.

In particular, prediction probabilities for dp = 151 µm and vg/umf = 3 are more accurate
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than prediction probabilities for dp = 334 µm and vg/umf = 3.2912. We also observe that the

probability predictions πi (histogram bar heights) with values close to 0.5 tend to have larger

uncertainty in comparison to πi values close to 0 and 1. This is expected because the variance

of the proportion is higher when the estimated proportion is close to 0.5.

7 Concluding remarks and extensions

Herein, we developed a Bayesian treed multivariate Gaussian process (BTMGP) that com-

bines the Bayesian tree (Chipman et al., 1998; Gramacy and Lee, 2008) and the MGP with

a separable covariance function (Mardia and Goodall, 1993; Conti and O’Hagan, 2010). The

proposed BTMGP provides a multi-output emulator that can handle problems with discontinu-

ities and localized features. The form of the separable covariance function simplifies the form

of the inverse and determinant of the covariance matrix involved and, therefore, facilitates the

computations within MCMC updates. Moreover, the prior specification of the MGP parameters

leads to efficient local proposals in the Grow and Prune operations of the Bayesian tree. Only

the parameters of the correlation function need to be updated at each MCMC iteration for

prediction purposes. Moreover, we introduce numerical stability in the covariance function by

adding a nugget term without increasing the computational complexity of the model.

We also propose a sequential experimental design technique based on the BTMGP predictive

uncertainty. We extend the univariate ALC to properly deal with multivariate output and

incorporate knowledge gained from prior studies. The proposed ALC with BTMGP adaptive

sampling offers an automatic and reliable way to sample the input space and perform prediction

at a low computational cost. As shown in this paper, the proposed method performs better

than the multiple BTGP when the output variables are dependent.

The separable covariance function used in the proposed BTMGP can be extended into

more general models such as the Linear model of Coregionalization (LMC) (Banerjee et al.,

2004). Moreover, the proposed model can be extended to multiple Bayesian trees such that

each output has its own Bayesian tree structure. The proposed model performs acceptably well

when the output variables are dependent but one could expect a potential problematic behavior

in the independent scenario. The LMC covariance function is more general than the separable

covariance function and may result in better fitting. Moreover, multiple Bayesian tree may be

more appropriate for some applications when some of the outputs are independent. Despite

the nice features of these extensions, they involve more parameters and they are expected be

computationally more expensive. A more comprehensive study of the selection of multivariate

covariance functions and the use of multiple Bayesian trees is left for future research.

We applied the proposed method to the multiphase flow simulations of the full-scale regen-
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erator of carbon capture system. We define the problem and transform the data to a form such

that we can apply the proposed model. In our numerical example, we begin with 36 samples

collected from a previous study and sequentially generate 23 more samples using ALC with

BTMGP. Then, we produce predictions of the solid fraction distribution in the regenerator for

different combinations of bottom inlet gas flow rate (gas velocity) and sorbent size (particle

diameter). We envision that the model and computationally efficient method developed in this

paper have the potential to analyze similar computer experiments. Moreover, the BTMGP can

be used as a computationally efficient model to deal with high-dimension non-stationary spatial

data sets with multivariate output.
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