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1 Introduction

The discovery of the Higgs boson [1–4] at the Large Hadron Collider (LHC) [5, 6] has led to

an extensive experimental and theoretical effort to measure and constrain its properties in

order to understand in detail the mechanism of electroweak symmetry breaking (EWSB) [7,

8]. A crucial diagnostic in this process is the measurement of the Higgs self-couplings, which

directly probe the higher order structure of the Higgs potential and BSM effects [9–13].

While measurement of the quartic Higgs coupling seems unlikely to be possible at any

realistic future hadron collider [14], constraints can be set on the Higgs trilinear coupling

λ by studying dihiggs production [15–17]. In the Standard Model (SM) the coupling λ can

be expressed in terms of the fundamental SM Lagrangian parameters

V (H†H) = µ2H†H + η(H†H)2 −→ 1

2
m2

hh
2 +

√

η

2
mhh

3 +
η

4
h4 (1.1)

where we have expanded the potential around the Higgs vacuum expectation value (vev),

such that λSM = mh

√

η/2.

Research into dihiggs phenomenology has undergone a renaissance since the Higgs dis-

covery at the LHC. Well studied final states in the gluon fusion production mode now

include bb̄ττ [18–20], bb̄WW [18, 21] and bb̄bb̄ [18, 20, 22]. There has also been significant

work on the vector boson fusion (VBF) [23] and tt̄hh [24, 25] production mechanisms. How-

ever, due to it being the dominant production mechanism we focus exclusively on gluon

fusion in this article.

Early work on measuring Higgs trilinears at the LHC includes [26–29], which suggested

the bb̄γγ final state as a promising possibility. While recent studies by theoreticians gen-

erally agree with the results of that article [30, 31], evaluations from the ATLAS [32] and

CMS collaborations [33] find that dihiggs production can be measured with considerably

lower significance than previously quoted (1.3 and 2 σ respectively after 3000/fb), corre-

sponding in the ATLAS analysis to an allowed range of 8.7 ≥ λ/λSM ≥ −1.3 for the Higgs
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trilinear coupling. This discrepancy between theorists and experimentalists simulations is

due to the treatment of backgrounds which are due to fakes: either light jets faking pho-

tons or light jets faking b-jets. A reliable estimate of the fake rate for various reconstructed

physics objects is thus a crucial component of any analysis in this channel.

Results from other channels suggest a measurement of the Higgs trilinear at the level

of 30-50% may be possible at the LHC [34] using a combination of the above channels

and ratios of cross-sections. The proposed International Linear Collider could improve on

such a measurement if operated with a centre of mass energy of 1TeV, in which case an

estimated ultimate precision of 13% could be achieved [35–39]. However, identifying the

possible deviations in Higgs self-couplings due to BSM physics may require a measurement

at greater than even this accuracy [39, 40].

The discovery of new physics and a complete understanding of electroweak symmetry

breaking may therefore require a new high energy hadron collider [41–49]. A study of the

ability of such a collider to constrain the Higgs trilinear couplings was undertaken as part

of the Snowmass process [31, 39]. While this study focussed on the bb̄γγ channel, it did

not include any of the dominant backgrounds due to fakes.

In this article we therefore comprehensively analyse the process

pp → hh+X →
(

b+ b̄
)

+ (γ + γ) +X (1.2)

at
√
s = 100TeV in order to provide a reliable estimate of the sensitivity which a very

high energy hadron collider would have to variations in the trilinear Higgs coupling. We

also consider the related same process accompanied by a high transverse momentum jet,

which, as argued in [18], accesses new regions of phase space as well as offering a powerful

means to further suppress background processes at the LHC.

We find that previous studies have substantially overestimated the performance of a

100TeV proton-proton collider to measure the Higgs trilinear coupling. For a 3/ab data

sample, we find a sensitivity to the trilinear coupling of order 30%, which is comparable to

a measurement at the ILC. For a data set of 30/ab we find an O(10%) sensitivity subject

to the details of background systematics.

This work is organised as follows: in section 2 we review the kinematic Higgs distri-

butions at 100TeV, before presenting details of our analysis and simulations in section 3.

In particular, we discuss hh → bb̄γγ production in section 3.1, and investigate hh+ jet in

section 3.2. We present a combination of the results of these channels in section 3.2, before

we conclude with a brief discussion and comments on future studies in section 4.

2 Kinematics

We generate signal events at leading order in the Les Houches Event File format [50]

using a combination of the Vbfnlo [51] and FeynArts/FormCalc/LoopTools [52,

53] frameworks. We normalise to the NLO cross section by multiplying a phase-space

independent K-factor of 1.65 [54–56].

Our leading order results for λ = (0, 1, 2)λSM are σsig = (1676.9, 860.6, 415.5) fb

respectively. These are to be compared with an inclusive cross-section of 33.8 fb at NLO
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Figure 1. Leading-order parton level distributions (including flat NLO normalisation K factors)

of the dihiggs invariant mass mhh and transverse momentum pT,h for pp → hh at
√
s = 100TeV

for λ = 0, λSM and 2λSM, shown with the λ/λSM = 1 case for
√
s = 14TeV for comparison.
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Figure 2. Leading-order parton level distributions of the dihiggs invariant massmhh and maximum

transverse momentum max pT,h for pp → hhj at
√
s = 100TeV for pT,j ≥ 80 GeV and |ηj | ≤ 4.5,

for λ = 0, λSM and 2λSM. We also include the λ/λSM = 1 case for
√
s = 14TeV for comparison.

at 14TeV for λ = λSM [55, 56], an increase by a factor of ∼ 40. To obtain the cross

section after decays to photons and bottom quarks, we multiply with the branching ratio

Br(hh → b̄bγγ) ≃ 0.267%.

In figure 1 we show the dihiggs invariant mass mhh and Higgs pT distributions at

100TeV for λ = 0, λSM and 2λSM, with the 14TeV case for λ = λSM shown for comparison.

While the 100TeV distributions have considerably longer tails at high momentum and in-

variant mass, they are broadly similar to the 14TeV ones. In particular, the peak in themhh

spectrum at around 400GeV and the peak in the partonic Higgs transverse momentum just

near mt due to the diHiggs system being produced near threshold. Due to the interference

between the triangle and box diagrams the region around s ∼ 4m2
t is most sensitive to λ.

This relatively small invariant mass window which provides the most sensitive probe

of λ asks for a selection as inclusive as possible. Such a selection is not possible in the bb̄ττ

and bb̄W+W− modes, as they crucially rely on the boosted kinematics regime. However, as

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
0
1
6

demonstrated in [18], lower invariant dihiggs masses can be obtained by recoiling the dihiggs

system against a hard jet. Such a process becomes increasingly likely when we increase

the centre of mass energy as energetic jet radiation becomes unsuppressed. Indeed, as

displayed in figure 2, the region of sensitivity to λ is reduced for recoils at pT,j ≥ 80 GeV.

However, the price to be paid is in smaller total cross sections which we compute at leading

order to be (494.5, 262.9, 149.3) fb for λ = (0, 1, 2)λSM for jets with |ηj | < 4.5.

The Higgs bosons in very high energy dihiggs events are typically produced in the

central pseudorapidity region. For the inclusive hh case it is important to stress that a

considerable fraction of the cross section stems from relatively small scattering angles at

large pseudorapidity. Hence it is desirable to have as much forward detector coverage as

possible to access these events at a 100TeV collider.

3 Analysis

Event generation and detector simulation. We generate the QCD and electroweak

background events using MadGraph 5 [57], which are showered and hadronised with

Pythia 8 [58]. Of particular importance in this channel are the so-called reducible back-

grounds where jets can fake a hard photon. For all the backgrounds we use the leading

order cross sections as obtained from MadEvent. In our analysis for hh → b̄bγγ we con-

sider all reducible and irreducible backgrounds with at least four reconstructed objects in

the final state without merging.

Because the irreducible and reducible backgrounds for this final state are large com-

pared to the signal, we devote particular care to simulating fake rates. However, we stress

that our parametrisation of fake rates and the detector response is based on the present

performance of ATLAS and CMS and will likely deviate from that of an envisioned detector

designed for
√
s = 100TeV.

When reconstructing the final state objects we consider all visible particles with |η| <
5.0. We smear the momenta of all reconstructed final state objects with Gaussians, using

the parametrisations of [59] for jets and muons, as well as a 95% jet reconstruction efficiency,

and we take the electron smearing parametrisation from [60]. The photons were smeared

using a Gaussian with standard deviation of 0.1% of the photon pT . We simulate b-

tagging by matching a jet with a hadron containing a bottom or charm before decay and

multiply a flat b-tagging efficiency of 70%, a mis-tag rate of 10% for c-jets and 1% for

light-flavor jets. We assume the jet-faking-lepton and jet-faking-photon probabilities to

be momentum-dependent and parametrise them to be Pj→l = 0.0048× e−0.035pT,j/GeV and

Pj→γ = 0.0093×e−0.036pT,j/GeV, respectively. We further take into account jet, photon and

muon detection efficiencies parametrised according to [59], while the electron efficiency is

taken from [60]. We do not distinguish between the tagging rates in the barrel and endcaps.

The detector parametrisation used is very conservative, particularly on the photon

identification efficiency, which is parametrised as Eγ = 0.76 − 1.98e−pT,γ/16.1 GeV. This

efficiency performance has a turn on curve that only reaches a > 70% efficiency at ∼
60GeV, while for a 20GeV photon, its detection efficiency is only 18%. This is a significant

limitation on the analysis, as the photons from the Higgs decay are expected to have often

– 4 –
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Figure 3. The left panel (a) shows the transverse momentum of the leading photon in hh → bb̄γγ

events for λ = 0, λDM and 2λSM along with various background contributions, while the right panel

(b) shows the subleading photon transverse momentum.
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Figure 4. The left panel (a) displays the differential mbb̄ distribution for λ = 0, λDM and 2λSM

and background contributions. The right panel (b) shows the invariant mass of the 2-photon and

2-b-jet system mbb̄γγ .

a lower pT , as can be seen in figure 3. The results can be improved if one is allowed to

reduce the photon b-jet transverse momentum thresholds in 100TeV machine, with turn on

curve reaching a stable efficiency at a lower transverse momentum. This would increase the

signal acceptance in the analysis, and it would open space for more elaborate techniques

for background rejection.
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Sample Pre-selected Njets ≥ 3 Extra jet pT pT,γγ mbb mγγ Njets ≤ 6 ∆φ(b2, γγ) pT,h1/pT,j

hh(bb̄γγ) + j, λ = 0 5.85×10−2 4.98×10−2 3.57×10−2 3.10×10−2 2.23×10−2 2.22×10−2 2.16×10−2 1.76×10−2 1.61×10−2

hh(bb̄γγ) + j, λ/λSM = 1 3.56×10−2 3.08×10−2 2.18×10−2 1.91×10−2 1.36×10−2 1.35×10−2 1.32×10−2 1.13×10−2 1.06×10−2

hh(bb̄γγ) + j, λ/λSM = 2 2.09×10−2 1.85×10−2 1.33×10−2 1.21×10−2 8.50×10−3 8.49×10−3 8.30×10−3 7.20×10−3 6.91×10−3

bb̄γγj (QED=2) 7.62 6.74 5.21 2.83 4.39×10−1 2.48×10−3 2.48×10−3 2.04×10−3 1.75×10−3

bb̄γγj (QED=4) 1.39×10−1 1.25×10−1 9.80×10−2 6.05×10−2 2.56×10−2 9.32×10−5 9.32×10−5 7.96×10−5 7.96×10−5

tt̄h(→ γγ) 7.34×10−1 6.91×10−1 5.32×10−1 4.02×10−1 4.44×10−2 4.39×10−2 3.76×10−2 2.55×10−2 2.03×10−2

jjγγj 1.66×101 1.55×101 1.26×101 7.87 1.46 7.10×10−3 6.95×10−3 4.58×10−3 4.41×10−3

bb̄jγj 4.84×101 4.48×101 3.55×101 1.88×101 3.25 8.51×10−2 8.49×10−2 1.46×10−3 1.17×10−3

jbγγj 5.20 4.76 3.75 2.15 2.02×10−1 1.52×10−3 1.52×10−3 8.67×10−4 6.88×10−4

jbjγj 1.65×101 1.57×101 1.29×101 6.55 4.58×10−1 1.25×10−3 1.24×10−3 8.75×10−4 5.97×10−4

bb̄jjj 3.10×101 2.93×101 2.23×101 4.52 7.54×10−1 1.30×10−3 1.06×10−3 7.29×10−4 2.44×10−4

Background 1.26×102 1.18×102 9.28×101 4.32×101 6.64 1.43×10−1 1.36×10−1 3.61×10−2 2.93×10−2

S/B (λ/λSM = 0) 0.00046 0.00042 0.00038 0.00072 0.0034 0.16 0.16 0.49 0.55

S/
√
B (λ/λSM = 0) 0.29 0.25 0.20 0.26 0.47 3.22 3.21 5.08 5.17

S/B (λ/λSM = 1) 0.00028 0.00026 0.00023 0.00044 0.002 0.095 0.097 0.31 0.36

S/
√
B (λ/λSM = 1) 0.17 0.16 0.12 0.16 0.29 1.96 1.96 3.26 3.39

S/B (λ/λSM = 2) 0.00017 0.00016 0.00014 0.00028 0.0013 0.059 0.061 0.2 0.24

S/
√
B (λ/λSM = 2) 0.10 0.09 0.08 0.10 0.18 1.23 1.23 2.08 2.21

Table 1. This table shows the cutflow for the hh+ j analysis. The cross sections are given in femtobarn, and S/
√
B is shown for a luminosity of

3000/fb. After the pre-selection described in the text, a jet multiplicity requirement is implemented to guarantee there is one extra jet besides the

two Higgs b-jets and the cross section after this requirement is shown in the third column. The transverse momentum of the extra jet is required to

be greater than 100GeV in the following column. The transverse momentum of the two hardest photons is required to be greater than 160GeV in

the fifth column, and is followed by the Higgs mass requirements of |mbb − 120 GeV| < 30GeV and |mγγ − 125 GeV| < 1GeV. The tt̄h background

is reduced by the jet multiplicity requirement that there are ≤ 6 jets in the eighth column. The ∆φ selection between the subleading b-jet and the

hardest two photons system is required to be greater than 1.6 in the next column. Finally the transverse momentum ratio between the leading

reconstructed Higgs and the extra jet is required to be greater than 1. Further details on the cuts can be found in the text.

–
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3.1 hh → bb̄γγ

To reconstruct the bb̄γγ final state we require two reconstructed anti-kT jets with R = 0.4

and pT > 40GeV within |η| < 3.0. The jets are recombined using FastJet [61]. For the

photons we require pT > 40GeV and |η| < 3.0. To ensure the photons are isolated we sum

the energy of the visible particles in a cone of R = 0.3 around the photon and we only accept

them if pT,vis/pT,γ ≤ 0.05. Likewise, we reject a jet if ∆Rjet,γ < 0.3 for any jet-γ combi-

nation and for ∆Rγ,γ < 0.4 we reject the softer photon. For both the jets and photons we

smear the four-momenta of the reconstructed objects as mentioned in the previous section.

To identify isolated leptons with pT > 40GeV we apply the same isolation requirement

as for the photons. To accept an event we require two b-jets and two photons. Events with

one or more isolated leptons are vetoed. At this stage of the analysis we find a small

signal-over-background ratio of S/B ≃ 3× 10−4 and S/
√
B ≃ 0.28 after 3000/fb.

To enhance S/B we apply cuts on the maximum angular separation and the vectorial

sum of the transverse momentum of the two hardest photons and b-jets respectively (see

table 2 for a detailed cut flow). In particular we require ∆Rb1,b2 < 1.7, ∆Rγ1,γ2 < 1.7,

pT,bb̄ > 150GeV and pT,γγ > 150GeV. As a next step, a selection requirement on the φ dif-

ference between the sub-leading b-jet and the two hardest photons is required to be greater

than 1.6. After applying these kinematic cuts we find S/B ≃ 3× 10−3 and S/
√
B ≃ 0.9.

Finally the b-jets and photons are recombined to the Higgs mass with |mbb̄ − 120| <
30GeV and |mγγ − 125| < 1GeV. The narrow window for the invariant mass of the di-

photon system allows the rejection of a large fraction of the backgrounds and improves the

statistical significance of the analysis to S/B ≃ 0.4 and S/
√
B ≃ 8.45 for λ = λSM.

Compared to the ATLAS analysis in [62], the transverse momentum requirement for

the photons and b-jets is required to be stricter in an attempt to control the effect of

the pile up contribution, while otherwise the pre-selection is made in a very similar way,

including the veto on isolated leptons. While no pile up jets were added or simulated, the

parametrisation used for the objects’ reconstruction and identification include the effect of

the pile up in the detector performance.

The parametrisation used in this study for the detector is similar to the one used in

the [62]. Two exceptions are the b-tagging performance, which was taken as a constant

and not depending on the transverse momentum, and the Gaussian smearing functions

for the photons have a 0.1%× pT standard deviation in our study. The ∆R requirements

on the hardest b-jets and photons were also taken to be stricter (1.6 as opposed to 2.0 in

the ATLAS note), although the overlap removal selection is implemented similarly. The

mass selection used in this article is also stricter for the two photon system, using a 2GeV

window, while the ATLAS note uses a 5GeV window instead. The mass selection on the

two b-jet system is, however, stricter in the ATLAS note than in this document, as a 60GeV

window is used here, while the ATLAS note uses a 50GeV window. Finally, the transverse

momentum of the two b-jets and of the two hardest photons have a stricter selection in this

article (150GeV), compared to the ATLAS one (110GeV). We also use a ∆φ selection to

reduce the impact of the backgrounds.

– 7 –
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Sample ∆R(b1, b2) ∆R(γ1, γ2) pT,γγ pT,bb ∆φ(b2, γγ) mbb mγγ

(h→bb̄)(h→γγ)λ=λSM 1.18×10−1 1.05×10−1 9.76×10−2 8.40×10−2 6.85×10−2 5.96×10−2 5.96×10−2

(h → bb̄)(h → γγ)λ = 0 1.93×10−1 1.68×10−1 1.54×10−1 1.29×10−1 1.03×10−1 8.88×10−2 8.87×10−2

(h→bb̄)(h→γγ)λ=2λSM 6.74×10−2 6.24×10−2 5.95×10−2 5.30×10−2 4.55×10−2 3.91×10−2 3.91×10−2

jjγγ 2.76×101 8.94 5.99 4.46 3.88 1.48 7.20×10−2

bbjγ 5.97×101 2.01×101 1.08×101 8.75 8.18 3.04 1.43×10−2

bb̄jj 1.99×102 4.79×101 1.47×101 7.82 7.67 2.81×10−1 5.06×10−3

tt̄γγ 1.01 4.31×10−1 3.62×10−1 2.78×10−1 2.22×10−1 9.06×10−2 3.38×10−2

bb̄γγ 2.70 8.26×10−1 5.80×10−1 4.58×10−1 4.48×10−1 1.69×10−1 1.21×10−2

jbjγ 3.61×101 8.37 5.70 4.34 3.88 7.24×10−1 3.04×10−3

jbγγ 5.18 1.57 9.86×10−1 7.91×10−1 6.99×10−1 2.41×10−1 8.57×10−3

Background 3.31×102 8.81×101 3.91×101 2.69×101 2.50×101 6.03 1.49×10−1

S/B (λ/λSM = 0) 0.00058 0.0019 0.0039 0.0048 0.0041 0.015 0.59

S/
√
B (λ/λSM = 0) 0.58 0.98 1.35 1.36 1.13 1.98 12.58

S/B (λ/λSM = 1) 0.00036 0.0012 0.0025 0.0031 0.0027 0.0099 0.4

S/
√
B (λ/λSM = 1) 0.36 0.62 0.85 0.89 0.75 1.33 8.45

S/B (λ/λSM = 2) 0.0002 0.00071 0.0015 0.002 0.0018 0.0065 0.26

S/
√
B (λ/λSM = 2) 0.20 0.36 0.52 0.56 0.50 0.87 5.54

Table 2. This table shows the cutflow and cross-sections for the bb̄γγ analysis. The cross sections are given in femtobarns, and S/
√
B is shown

for a luminosity of 3000/fb. After the pre-selection described on the text, the ∆R between the two leading b-jets and the two leading photons

is required to be < 1.7, and the cross section after this selection is shown in the second and third columns. The transverse momentum of the

2-photons and 2-b-jets systems are required to be > 150GeV, as shown in the fourth and fifth columns. The ∆φ between the sub-leading b-jet and

the diphoton system is required to be ∆φ > 1.6. Finally the cuts on the invariant mass of the two hardest b-jets and photons are implemented as

|mbb − 120GeV| < 30GeV and |mγγ − 125GeV| < 1GeV. Further details on the cuts can be found in the text.
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Figure 5. The left panel (a) shows the ratio of the transverse momentum of leading reconstructed

Higgs to the transverse momentum of the extra jet for λ = 0, λSM and 2λSM as well as the back-

grounds. The right panel (b) shows the ∆φ between the subleading b-let and the γγ system for the

same data.

3.2 hh + jet → b̄bγγ + jet

The majority of sensitivity to variations of the Higgs trilinear coupling arises when the

triangle diagram is resonantly enhanced. Unfortunately, experimental selection cuts often

select regions of phase space far away from this regime (this is particularly true of boosted

analyses). However, this fact can be mitigated by producing the dihiggs system at resonance

in opposition to a high pT recoiling ISR jet [18]. In this section we therefore consider the

sensitivity such an analysis would have at a 100TeV hadron collider.

The pre-selection in this study uses a higher jet transverse momentum and photon

selection (50GeV) and more restricted range of rapidities (|η| < 2.4) than the pre-selection

cuts than the previous section. The remaining pre-selection cuts are unchanged. However,

the event selection has been optimised for this particular topology by demanding at least

three jets and that the extra jet produced with the hh system has pT ≥ 100GeV. The two

leading b-jets are used as the jets from the Higgs decay. The extra jet is chosen such that it

is not one of the b-jets used for the Higgs reconstruction and that it is the highest transverse

momentum jet choice. A further selection is applied on the transverse momentum of the

γγ system, which is required to be greater than 160GeV.

Similar to the analysis in the previous section, the Higgs mass requirements are applied

such thatmbb ∈ [90, 150]GeV andmγγ ∈ [124, 126]GeV. In this final state the impact of the

tt̄h background is significant, as the signal already has extra high transverse momentum

jets. To veto the impact of this background, an upper bound is implemented on the

jet multiplicity, Njets ≤ 6. The signal-over-background ratio is also slightly increased

by a requirement on the ∆φ between the subleading b-jet and the γγ system, such that

∆φ(b2, γγ) > 1.6, which can be seen to improve the discrimination, as seen in figure 5 (b).

The final selection criterion applied is on the ratio of the transverse momentum of

the leading reconstructed Higgs and the transverse momentum of the extra jet, which is

– 9 –
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Figure 6. Panel (a) shows the invariant mass distribution of the two hardest isolated photons and

the extra jetmγγj for the hh+jet analysis. Panel (b) displaysmbb̄j and panel (c) shows the invariant

mass of the 2-photon, 2-b-jet and extra jet system mbb̄γγj . We show the signal distributions for

λ = 0, λSM and 2λSM and the backgrounds in all cases.

required to be greater than one, reducing some backgrounds as can be seen in figure 5 (a).

The invariant masses of the γγ and the extra jets, the 2 b-jets and the extra jet and the

bb̄γγj system are shown in figure 6 panels (a), (b) and (c).

One important limitation is the high value of the minimum jet pT , aimed at avoiding

pile up contamination and rejecting QCD backgrounds. Signal events are rejected not

only for failing the minimum jet multiplicity requirement, but because one of the Higgs

b-jets may fail this selection criterion. This jet selection removes 59% of the signal after

demanding at least 2 jets only, while it also has the side effect of rejecting an extra 50%

of the events which fail the b-tagging selection when one of the b-jets is rejected. The

sensitivity of the analysis could be improved with lower transverse momentum selection if

a better photon identification performance at low energies becomes possible in the future.

Results. We now combine both analyses in the bb̄γγ channel to formulate a constraint

on the Higgs trilinear coupling in light of the expected signal and background yields in
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pp → hh + X and pp → hh + jet + X production. For simplicity we assume that both

measurements are statistically uncorrelated and combine them in a binned log-likelihood

hypothesis test [63–66]. We compute a 95% confidence level using the CLS method [67, 68]

around the SM parameter choice λ = λSM and find

λ

λSM

∈















[0.672, 1.406] no background syst.

[0.646, 1.440] 25% hh, 25% hh+ jet

[0.642, 1.448] 25% hh, 50% hh+ jet

(3.1)

for an integrated luminosity of 3000/fb. Due to the shape of the cross section as a function

of λ, there is a parameter choice at λ ≃ 4λSM with SM-like cross sections. This region can

be excluded using the high luminosity phase of the 14TeV LHC [24].

In the calculation of the confidence level intervals the quoted systematic uncertainties

refer to a flat rescaling of the contributing backgrounds. From eq. (3.1) we can expect that

a measurement of the trilinear coupling at the 40% level should be possible. A 5σ discovery

of the dihiggs signal will be possible with an integrated luminosity of 700/fb.

A number of authors have noted that a total integrated luminosity of 3/ab may not be

sufficient to saturate the physics potential of a 100TeV collider [69, 70], since the necessary

luminosity typically scales quadratically with the centre of mass energy. We therefore also

compute limits under the assumption that 30/ab of data is taken. The limits shown in

eq. (3.1) then improve to

λ

λSM

∈















[0.891, 1.115] no background syst.

[0.882, 1.126] 25% hh, 25% hh+ jet

[0.881, 1.128] 25% hh, 50% hh+ jet

(3.2)

in this case. We note that these limits are nearly identical to what can be achieved with

the 1TeV luminosity upgraded ILC.

We note that that the theoretical uncertainty on the hh signal was not taken into

account in the limit setting. Although the signal theoretical uncertainty is estimated to be

large currently, mainly due to the fact that full high order calculations are unavailable, the

100TeV machine is relatively far in the future. It is expected this theoretical uncertainty

will be reduced in the future.

Most of the statistical pull in the bb̄γγ channel results from pp → hh+X production.

This is expected from our discussion in the previous section and is likely to change in other

final states such as bb̄ττ [18, 19].

4 Discussion and conclusions

The precision measurement of the Higgs trilinear coupling at a future high energy hadron

collider is an important motivation for the construction of such a machine. In this paper

we have performed an analysis of dihiggs final states in the bb̄γγ channel at a 100TeV

hadron collider. In particular, we have explored to what extent additional hard jet emission

– 11 –
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contributes extra statistical discriminative power. In doing so we have implemented realistic

estimates for the final state reconstruction and arrive at the conclusion that a measurement

at 40% level can be expected at 3/ab, which improves to the 10% with a factor 10 larger

data set of 30/ab.

Comparing to earlier analyses performed as part of the Snowmass process [31], we

find a significantly smaller sensitivity, which results from the more realistic treatment of

backgrounds, expected detector resolution effects, pile up and, most importantly, fake rates.

The limiting factor of the bb̄γγ channels is the size of reducible backgrounds for an

acceptably large signal yield. While in this initial study we focus on the bb̄γγ final state, it

would hence be interesting to extend this study to other final states, and look at the use of

taggers in the bb̄ττ or bb̄WW final states, which, due to bigger signal cross sections, opens

more opportunities to exploit the high invariant mass distributions and the hh + jet final

state [18].

We would like to point out that another study on the hh → bb̄γγ is under preparation

in [71].
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[58] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1,

Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[59] ATLAS collaboration, Performance assumptions based on full simulation for an upgraded

ATLAS detector at a High-Luminosity LHC, ATL-PHYS-PUB-2013-009, CERN, Geneva

Switzerland (2013).

[60] ATLAS collaboration, Performance assumptions for an upgraded ATLAS detector at a

High-Luminosity LHC, ATL-PHYS-PUB-2013-004, CERN, Geneva Switzerland (2013).

[61] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896

[arXiv:1111.6097] [INSPIRE].

[62] ATLAS collaboration, Prospects for measuring Higgs pair production in the channel

H(→ γγ)H(→ bb) using the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2014-019,

CERN, Geneva Switzerland (2014).

[63] A.W.F. Edwards, Likelihoods, Cambridge University Press, Cambridge U.K. (1972).

– 15 –

http://dx.doi.org/10.1007/JHEP09(2014)175
http://arxiv.org/abs/1407.2607
http://inspirehep.net/search?p=find+J+JHEP,1409,175
http://dx.doi.org/10.1140/epjc/s10052-014-3174-y
http://arxiv.org/abs/1407.5066
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C74,3174
http://arxiv.org/abs/1410.1532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1532
http://dx.doi.org/10.1007/JHEP12(2014)108
http://arxiv.org/abs/1410.6287
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6287
http://arxiv.org/abs/1412.4789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4789
http://arxiv.org/abs/hep-ph/0109068
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109068
http://dx.doi.org/10.1016/j.cpc.2009.03.006
http://arxiv.org/abs/0811.4559
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,180,1661
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,140,418
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,118,153
http://dx.doi.org/10.1103/PhysRevD.58.115012
http://arxiv.org/abs/hep-ph/9805244
http://inspirehep.net/search?p=find+J+Phys.Rev.,D58,115012
http://dx.doi.org/10.1007/JHEP04(2013)151
http://arxiv.org/abs/1212.5581
http://inspirehep.net/search?p=find+J+JHEP,1304,151
http://dx.doi.org/10.1007/JHEP11(2014)079
http://arxiv.org/abs/1408.6542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6542
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
http://inspirehep.net/search?p=find+J+JHEP,1106,128
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,178,852
http://cds.cern.ch/record/1604420
http://cds.cern.ch/record/1527529
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C72,1896
http://cds.cern.ch/record/1956733


J
H
E
P
0
2
(
2
0
1
5
)
0
1
6

[64] T. Junk, Confidence level computation for combining searches with small statistics,

Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

[65] T. Junk, Sensitivity, exclusion and discovery with small signals, large backgrounds, and large

systematic uncertainties, CDF-NOTE-8128, Fermilab, Batavia U.S.A. (2007).

[66] T. Junk, Building a more general χ2, CDF-NOTE-7904, Fermilab, Batavia U.S.A. (2006).

[67] A.L. Read, Modified frequentist analysis of search results (the CLs method),

CERN-OPEN-2000-205, CERN, Geneva Switzerland (2000).

[68] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693

[INSPIRE].

[69] T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou and J.G. Wacker, Boosting stop searches with

a 100TeV proton collider, JHEP 11 (2014) 021 [arXiv:1406.4512] [INSPIRE].

[70] B. Richter, High energy colliding beams; what is their future?, arXiv:1409.1196 [INSPIRE].

[71] A. Azatov, R. Contino, G. Panico and M. Son, in preparation.

– 16 –

http://dx.doi.org/10.1016/S0168-9002(99)00498-2
http://arxiv.org/abs/hep-ex/9902006
http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A434,435
http://cds.cern.ch/record/451614
http://dx.doi.org/10.1088/0954-3899/28/10/313
http://inspirehep.net/search?p=find+J+J.Phys.,G28,2693
http://dx.doi.org/10.1007/JHEP11(2014)021
http://arxiv.org/abs/1406.4512
http://inspirehep.net/search?p=find+J+JHEP,1411,021
http://arxiv.org/abs/1409.1196
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1196

