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ABSTRACT

Pore-pressure estimation is an important part of oil-well drill-
ing because drilling into unexpected highly pressured fluids
can be costly and dangerous. However, standard estimation meth-
ods rarely account for the many sources of uncertainty, or for the
multivariate nature of the system. We have developed the pore-
pressure sequential dynamic Bayesian network (PP SDBN) as an
appropriate solution to both these issues. The PP SDBN models
the relationships between quantities in the pore-pressure system,
such as pressures, porosity, lithology, and wireline-log data, using
conditional probability distributions based on geophysical rela-
tionships to capture our uncertainty about these variables and
the relationships between them. When wireline log data are given
to the PP SDBN, the probability distributions are updated, pro-
viding an estimate of pore pressure along with a probabilistic

measure of uncertainty that reflects the data acquired and our
understanding of the system. This is the advantage of a Bayesian
approach. Our model provides a coherent statistical framework
for modeling the pore-pressure system. The specific geophysical
relationships used can be changed to better suit a particular set-
ting, or reflect geoscientists’ knowledge. We determine the PP
SDBN on an offshore well from West Africa. We also perform
a sensitivity analysis, demonstrating how this can be used to bet-
ter understand the working of the model and which parameters
are the most influential. The dynamic nature of the model makes
it suitable for real-time estimation during logging while drilling.
The PP SDBN models the shale pore pressure in shale-rich for-
mations with mechanical compaction as the overriding source of
overpressure. The PP SDBN improves on existing methods be-
cause it produces a probabilistic estimate that reflects the many
sources of uncertainty present.

INTRODUCTION

Understanding the pore-pressure profile is crucial when drilling,
so that the mud-weight profile can be designed appropriately. This
mud weight forms a key part of any well plan. An example is shown
in Figure 1. In general, the mud weight is designed to be slightly
higher than the pore pressure. If the mud weight is too low because
the pore pressure has been poorly estimated and a porous and per-
meable unit (e.g., a sandstone) is suddenly encountered, formation
fluids may enter the wellbore (termed an influx) resulting in a kick,
causing drilling problems and a well control incident. Conversely, if

the mud weight is too high, drilling mud can be lost to the porous
unit, again causing well control problems.
Predicting the pressure in sandstone before drilling (“predrill

stage”) may be achieved by looking at data from sand layers in
any neighboring wells. However, because the tools used to measure
and record sandstone pressures rely on high permeability, under-
standing pressure in shale, in which the permeability is low, requires
another approach.
The standard shale pore-pressure prediction workflow can be

crudely summarized by the following steps:
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1) Use the bulk density log (RHOB) to estimate the total vertical
stress (TVS) or overburden (Sv) — in practice, resistivity,
sonic, and seismic velocity data can be used additionally.

2) Use the gamma ray (GR) and/or a combination of neutron
porosity and RHOB to understand the lithology and so restrict
the intervals for analysis to shales.

3) Generate a shale normal compaction trend (NCT) in terms of
one of the logs, usually sonic transit time (ΔT) or resistivity.
This involves specifying matrix and sea-floor values for the log.

4) Use a published pore-pressure prediction formula, such as
Eaton (1975), Bowers (1995), or the equivalent depth method
(Foster and Whalen, 1966) to estimate vertical effective stress
(VES) (the difference between the pore pressure and the over-
burden). This uses only one log at a time and relies on the NCT
(or a slightly different curve for Bowers).

5) If pore-pressure measurements are available that are believed
to be in equilibrium with the shale, use these to calibrate the
prediction, and repeat steps 3–5.

Existing work on uncertainty in pore pressure

The procedure outlined above is deterministic, and as such it does
not include a measure of uncertainty. Wessling et al. (2013) develop
an algorithm to automate the pore-pressure estimation process in
such a way that uncertainties are accounted for. They focus on
two parts of the process in which human interaction is most at work:

shale discrimination and the estimation of the NCT. For the NCT,
they vary the depth interval considered normally compacted, and
therefore over which the data are used, and fit an NCT to the data
from every possible interval. Each NCT is then used for pore-pressure
prediction, creating a suite of pressure predictions that can be used
to understand the uncertainty. Although Wessling et al. (2013) do
account for uncertainty in the data, and in decisions over the depth
at which overpressure begins, modern Bayesian statistical methods
argue against automating out such human interaction. Geoscientists
will often have knowledge and experience that may not be reflected
in the data. Furthermore, there will not always be sufficient log data
at normally pressured depths, and in this situation, the method of
Wessling et al. (2013) will be unusable.
Malinverno et al. (2004) and Moos et al. (2004) use Monte Carlo

(MC) error-propagation methods to assess parameter uncertainty
for this workflow. For each input parameter (the seafloor and matrix
log values for the NCT, the Eaton exponent, and so on), one must
specify a probability distribution to reflect the uncertainty in that
parameter. This may be derived from data, or a geoscientist may
draw on knowledge and experience to specify values. For example,
for the matrix sonic transit time, the user may choose a normal
distribution with mean 110 μs∕ft and standard deviation (SD)
10 μs∕ft. Using these distributions, a large number of random val-
ues is then generated for each input, producing many random “set-
tings” for the workflow. The workflow is then implemented at each
of these settings, using some data, to generate a set of pore-pressure

predictions. The variation in these pore-pressure
predictions reflects the parameter uncertainty
represented in the probability distributions.
It is crucial to understand that the method we

propose here goes far beyond MC error propaga-
tion. Our focus is on inference because predic-
tion is our primary aim. In our formulation, an
understanding of error propagation is a quite triv-
ial side benefit, as shown in the sensitivity analy-
sis we conduct.
MC error propagation goes someway to under-

stand parameter uncertainty, but it ignores the un-
certainty resulting from the workflow itself, which
is arguably much more important. The equations
used are simple, usually involving only a small
number of variables and ignoring many sources of
variation. MC error propagation assumes that the
scientific model is perfect and that the only source
of uncertainty is in the parameters used. MC
methods are limited by the fact that they work
with the existing method, which has some weak-
nesses that we will briefly explore.
The pore-pressure system is such that each log

may be affected by several properties of the sys-
tem, and each property (e.g., lithology, pore fluid,
and pore pressure) is likely to influence several
logs. It seems reasonable to collect all relevant logs
and process them together to learn about these
properties, rather than to treat them separately.
Throughout the prediction process, geologists

are able to draw on their extensive knowledge
gained from experience with similar geologic
settings or with nearby fields. This is highly valu-

Figure 1. Schematic depth/ppg plot illustrating the key components of a well plan, i.e.,
pore pressure, fracture pressure and overburden, or TVS. Once these are defined, a mud-
weight and casing design can be prepared (black lines). The fewer casing strings re-
quired, the more quickly/cheaply the well can be drilled. Uncertainty is highlighted on
this figure by the double-headed arrows. In red is shown the overburden as generated by
using a typically applied 1.0 psi∕ft gradient. This may be modified by using high-qual-
ity, local density data, as shown by the bespoke overburden. This figure is from the Ikon
GeoPressure training manual.
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able information, yet there is no structure to include it. Either the
geologist adjusts the predictions to better fit their expectations, or
their input is ignored as the equations are used without changes.
Neither of these approaches will produce the optimum outcome.
Furthermore, the standard workflow as described is not a faithful

representation of geologists’ understanding of the system. For exam-
ple, it is commonly understood that the link between porosity and
effective stress is key in understanding compaction and that a wireline
log is used as a proxy for the porosity. However, formulas such as
Eaton’s (1975) relation relate the effective stress (and therefore pore
pressure) directly to the wireline log only, so that the effect of other
data or parts of the system is either ignored or accounted for in an ad
hoc fashion. This makes for a model of the system that is less flexible,
more difficult to interrogate, and more like a “black box.”
To address these issues, we present a Bayesian network for

pore-pressure prediction. A Bayesian network allows us to model
the system using our choice of scientific relationships, and to include
uncertainty from various sources, including those relationships and
their parameters. This method improves on an MC analysis, in which
the only uncertainty considered is observation error (or uncertainty
about parameter values). UnlikeMC, which is a method for analyzing
an existing model, a Bayesian network is a complete model in itself,
built to best represent scientific understanding of the process; it is far
from a black box.
Before proceeding, we should note that we are not suggesting

that the underlying physics and chemistry of the processes involved
are perfectly captured in the equations we have used. This is a mat-
ter for geoscientists to debate, not statisticians. However, the incor-
poration of uncertainty into those equations does provide for some
slack in whether the equations represent an agreed underlying real-
ity. The equations used within the statistical model may be updated
as further geophysical research provides more insight into the under-
lying reality, but the basic statistical approach advised here would be
unchanged. Indeed, the PP SDBN as presented in this paper is a pre-
liminary model, including only fairly basic scientific relationships.
However, the Bayesian principles underpinning it would remain the
same as more complexity is added.

BAYESIAN NETWORKS

The theory of Bayesian networks (Pearl, 1988; Cowell et al.,
1999; Jensen, 2007) has led to many new applications of uncer-
tainty modeling, in particular to complex problems, in which a large
number of factors contribute to overall uncertainty. A clear and
detailed explanation of Bayesian networks, with application to a
geologic example, is given by Martinelli et al. (2011). For further
examples of Bayesian networks in a geoscience context, see Van
Wees et al. (2008) and Martinelli et al. (2014).
Bayesian networks derive from Bayesian statistical methodology,

which is characterized by providing a formal framework for the
combination of data with the judgements of experts, such as reser-
voir engineers. A Bayesian network is a formal way of factorizing
a multidimensional probability distribution over many variables
into a product of simpler conditional distributions, which represent
dependencies more directly. This results in a mathematically equiv-
alent, but more tractable, representation of the geophysical variables
and their interrelationships.
Unlike many Bayesian methods, Bayesian networks are not ex-

pressed in terms of prior distributions and likelihood functions; they
are used to model systems in which it is impossible or impractical to

specify a prior or likelihood over all the parameters. We instead
think in terms of smaller collections of parameters. Human exper-
tise is expressed through (1) defining the qualitative structure, i.e.,
the dependencies between variables; (2) defining how dependent
variables behave given the values of other variables influencing
them; and (3) describing how nondependent variables behave in the
problem at hand. See Zellner (1995) for a fuller comparison of
Bayesian and traditional approaches, and Goldstein (2006) on the
central importance of role (3) for uncertainty analysis in complex
stochastic systems.
In a dynamic Bayesian network (DBN), the same network struc-

ture is repeated to represent a system evolving. Usually, this repre-
sents the passage of time, with the network repeated for each time
step, but for us, it will represent a change in depth down a borehole.
We conceal here some technical difficulties in working with DBNs
because they apply to all problems rather than just to pore-pressure
estimation. These tend to be mathematical (not all probability distri-
butions are easy to work with) and computational (the factorization
for large stochastic systems is difficult). As DBNs become larger,
computing with them becomes prohibitively expensive if standard
methods are used. Therefore, various authors have proposed schemes
for working efficiently with large DBNs (e.g., Berzuini et al., 1997;
Wilkinson and Yeung, 2002). Our needs are different, and so we de-
velop a new approach, the sequential DBN (SDBN).
In an SDBN, the DBN is treated as a series of separate Bayesian

networks, one for each step. When data are entered, the network is
updated at the first step to produce posterior distributions. These are
used to inform the nodes at the second step, through the links con-
necting the two steps, and the model is updated at the second step to
produce posterior distributions. These are fed to the third step, and
so on. This means that the posterior distributions at each step reflect
all data up to that point. This sequential updating makes the SDBN
particularly appealing in situations in which data are acquired se-
quentially, for example, in real-time drilling.

A BAYESIAN NETWORK FOR PORE-PRESSURE
ESTIMATION

The pore-pressure system involves quantities of several different
types. Some we may measure, such as wireline logs or drilling
data. Others we cannot observe directly, such as shale pore pressure,
effective stress, or porosity. Some have a definite, measureable (at
least in principle) physical meaning, whereas others are more con-
ceptual. Although we do not know all their values, we have some
understanding of the relationships between them, which we can re-
present in the structure of the Bayesian network.
The pore pressure SDBN (PP SDBN) works by modeling the

system at each depth, with connections between depths to capture
the relationships that act vertically. By “the system,” we mean the
collection of quantities connected to pore pressure and their inter-
actions. Two consecutive depth levels of the PP SDBN are shown in
Figure 2. Only the model’s more physical nodes are shown in Fig-
ure 2, for clarity. The formulas used in the probability distributions
are formed from published information on geophysical relation-
ships (Rider, 1996; Hearst et al., 2000; Hantschel and Kauerauf,
2009) and conversations with various individuals. If an expert were
to find them inappropriate, they could change the shapes of distri-
butions or the values of model parameters. This might be the case
especially if applying the model to a new location, which is known
to be different from the “average” settings given here. In this sense,

Bayesian pore-pressure estimation D29

D
ow

nl
oa

de
d 

01
/0

2/
18

 to
 1

29
.2

34
.0

.6
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



the model is flexible. As with any model, flexibility is open to
abuse, with parameters being “fudged” to give the best fit to data,
but the emphasis here is on making judgements about properties of
the system. Sensitivity analysis, which we will demonstrate in a
later section, enables us to discover to which of the input parameters
the PP SDBN output is most sensitive, and therefore which values
we should put effort into learning about to reduce uncertainty.
Because the pore pressure is included as a node at each depth, it

has a probability distribution that will be updated as data are entered.
This gives us an estimate of pore pressure with uncertainty that
accounts for each part of the model and all the data we have used.
The same is true of any node, and so we also produce estimates (with
uncertainty) of lithology, porosity, TVS, matrix
density, and every other node included in the
PP SDBN.

The model

When describing edges connecting one depth
to the next, we use superscripts to denote a var-
iable at a specific depth. For example, SðziÞv is the
TVS at depth zi.
For an offshore well, the PP SDBN requires an

additional input Psea the pressure contributed by
the seawater above the borehole that sits outside
the repeating part of the network shown in
Figure 2. We model this using the known surface
elevation depth and seawater density, which we
model as normally distributed. The PP SDBN
currently assumes an offshore context. If it were

to be applied onshore, the model would need to be adapted to deal
with the land mass above sea level and also any “near-surface” is-
sues. Given the vertical depth, we can form a probability distribu-
tion for the hydrostatic pressure Phyd using the prior distribution that
we have specified for the hydrostatic gradient. This will reflect our
understanding of variations in fluid density due to salinity, temper-
ature, and any other factors. Where there is little knowledge of the
area, it is possible to use global values to create a less informative
prior, whereas an expert in the geology of the region should have
more accurate knowledge and would therefore choose a more
restrictive prior distribution. In either case, the distribution for the

Figure 2. A simplified version of the PP SDBN, showing how the system is modeled at each depth level. The connections between two levels
are shown by dashed lines. Deterministic relationships are shown by dotted lines.

Figure 3. A close-up on the part of the PP SDBN modeling compaction.
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hydrostatic gradient is likely to be narrow because water density is
well-understood.
At the first depth, the TVS is formed using Psea and a normally

distributed bulk density for the rock between the seafloor and the
first depth covered by the data. For subsequent depths, we use the
depth increment and the TVS and bulk density from the previous
depth zi−1. The bulk density data and posterior distribution for TVS
at zi are stored. They are then used to calculate the mean vertical
stress at the next depth giving the normal distribution described by

SðziÞv ∼ NðSðzi−1Þv þ ðzi − zi−1Þgρðzi−1Þb ; σ2lithÞ; (1)

where g is the acceleration due to gravity. The variance σ2lith repre-
sents uncertainty in the calculation of Sv even with accurate bulk
density data. Using the bulk density log to estimate Sv gives a more
accurate estimate than having a prior distribution on the lithostatic
gradient, as we are doing with the hydrostatic pressure. If bulk den-
sity data are unavailable, then this part of the model still holds, but
the bulk density node will pass on a probability distribution rather
than a single value. If other wireline-log data are available, then the
distribution on the bulk density will be updated to reflect them.
The excess pore-pressure parameter λ� is a continuous value be-

tween zero and one, defined by

λ� ¼ Pp − Phyd

Sv − Phyd

; (2)

as in Shi andWang (1988), with Pp, Phyd, and Sv, as in Figure 2. We
model λ� using a beta distribution. This is a standard way of han-
dling a variable taking values in the interval ½0; 1�, allowing a variety
of shapes. If λ� ¼ 0, then there is no overpressure. If, hypothetically,
λ� ¼ 1, then the pore pressure is the same as the TVS. In the PP
SDBN, there is an edge from λ� at one depth to λ� at the next, in-
dicating that the prior distribution for one layer comes from the pos-
terior distribution for the previous layer. We also inflate slightly the
prior variance for λ� for the next layer to avoid λ� converging to a
single point, or expressing overconfidence. Because of this dynamic
link, the excess pore-pressure parameter is expected to remain the
same from one depth to the next, this equates to a slight increase
in pore pressure. Although small changes in λ� are favored in the

conditional distributions we choose, we ensure that more dramatic
jumps are still possible.
The nodes Sv, Phyd, λ�, and pore pressure Pp are linked deter-

ministically, through the equation

Pp ¼ Phyd þ λ�ðSv − PhydÞ: (3)

When data are entered into the model, these nodes’ distributions
will be constrained by information coming from the depth, which
mostly constrains Sv and Phyd, and by VES, which will have been
constrained by porosity through information from the wireline logs.
The posterior distribution of λ� from the previous depth will influ-
ence the current λ�, and this too will influence the pore-pressure
posterior distribution.
The link between porosity ϕ and VES is the most important

part of the model. Figure 2 shows lithology and VES as parents
of porosity; however, this is a simplification. This part of the model
is shown in more detail in Figure 3. The conditional distribution for
porosity is

Figure 4. The compaction curves in the model. The mean (in a solid
line) and central 50% and 95% intervals (shown by shading) are
given to show the spread of the probability distribution of porosity
for each value of VES and lithology.

Figure 5. Examples of possible prior distributions for matrix den-
sity ðρmaÞ. (a) Current probability distribution for matrix density
ðρmaÞ for sandstone and shale. (b) Possible alternative distributions
for matrix density for shale. For example, there are lower values for
a smectite-rich formation and higher values for an illite-rich shale.
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ϕjσv;ϕmin;ϕml; kϕ; σ2ϕ ∼ Nðϕmin þ ðϕml − ϕminÞ
× exp½−10−6kϕσv�; σ2ϕÞ; (4)

based on equations found in Hantschel and Kauerauf (2009). The
parameters ϕmin, ϕml, kϕ, and σ2ϕ each depend on the lithology.
Again, the actual form of the relationship between porosity, VES,
and lithology can be changed as required.
By using this model, the PP SDBN reflects the fact that different

lithologies compact differently. For any lithology and VES value,
there is a probability distribution for porosity as shown in Figure 4.
A key feature of the distribution shown in Figure 4 is that poros-

ity is more uncertain in sandstones than in shales because shale
compaction is generally better understood. This greater uncertainty
feeds through the model, and so where the posterior distribution for
lithology favors shale, the posterior distribution for pore pressure
will be narrower than in what the model estimates to be sandstones.
The logic of the model is similar to that of the equivalent depth

method for estimating pore pressure; it is assumed that under the
same lithologic conditions, a particular value of VES will lead to
a particular value of porosity. Because we know the depth, and
therefore have an estimate for Sv, we can use this to estimate pore
pressure. The PP SDBN presented here is therefore based on
mechanical compaction.
The lithology posterior distribution will take the form of probabil-

ities of sandstone and shale. For example, in the posterior distribution
samples for depth zi−1, 10% might be sandstone with the remaining
90% being shale. Therefore, in the posterior distribution at depth zi−1,
the probability of the lithology being shale is pðzi−1Þ

sh ¼ 0.9. The
sequential model includes a lithology transition matrix

�
psstjsst psstjsh
pshjsst pshjsh

�
; (5)

which gives the probability of each lithology at depth zi given the
lithology at depth zi−1, and this, together with the posterior samples
from zi−1, is used to generate pðziÞ

sh and pðziÞ
sst .

The GR count is strongly influenced by lithology, so in the PP
SDBN, the GR variable is represented as a child of lithology. We
must therefore define a conditional probability distribution for GR
for each kind of lithology considered, as we expect the GR log to
behave differently for different lithologies. In the PP SDBN, we use
the GR index (IGR), so that this variable is standardized to between
zero and one. In practice, GR is observed via wireline-log data.
Hence, using the Bayes theorem, we can make inferences about un-
observed lithology and any other nodes connected to lithology such
as porosity, from the observed GR wireline log.
Bulk density ρb is another node in Figure 2 that can often be

constrained by observed data. The key equation in understanding
its surrounding links is

ρb ¼ ϕρfl þ ð1 − ϕÞρma; (6)

where ρfl and ρma are the fluid and matrix density, respectively, and
ϕ is the porosity. The matrix density depends on the lithology (spe-
cifically on the dominant mineral composition), and the fluid den-
sity on the pore fluid type. Figure 5a shows the default probability
distribution for matrix density for sandstone and shale. One could
argue that there is too much overlap between the two; however, this
ensures that the model does not “get stuck” in a particular lithology.

Figure 5b shows some examples of alternative distributions for shale-
matrix density. At present, the pore-fluid type node has no parents,
and it is assumed that the rock is predominantly water filled.
We base the conditional distributions for sonic transit time (ΔT)

on the equation

ΔT ¼ ΔTmat

ð1 − ϕÞx ; (7)

where ΔTmat is the matrix sonic transit time and x is an acoustic for-
mation factor. This relationship is presented by Raymer et al. (1980)
for sandstones and by Issler (1992) for shales. The distributions for
ΔTmat and x depend on lithology, andΔT is then normally distributed
with equation 7 used as the mean. Equation 7 was developed from
deep-borehole data that do not include shallow depths, typically less
than 500 m below sea bed, and our model has not been applied to
shallow depths on account of the absence of data in the example
wells. One could instead use Wyllie et al.’s. (1956) time-average
equation, in which case, a fluid sonic transit time node would be in-
troduced and the acoustic formation factor x removed. However,
Raymer et al. (1980) and Issler (1992) propose the form in equation 7
as an improvement, stating that it better captures the curvilinear re-
lationship between porosity and ΔT, and it is less prone to producing
unrealistic porosity values, or requiring extensive tuning.
The PP SDBN was implemented in R Development Core Team

(2011), with links to just another Gibbs sampler’ (JAGS). JAGS is
Gibbs sampling software, which we use to evaluate the posterior
distributions of the nodes in the Bayesian network. Rather than find
the posterior distributions analytically, the Gibbs sampler generates
samples of values from each posterior distribution, which can then
be used to understand the distribution. This is a standard way of
approaching Bayesian networks (Bernado and Smith, 1994). A sim-
plified example of how the Gibbs sampler works is provided in
the Supplementary Materials (supplementary information can be
accessed through the following link: s1.pdf).

Advantages of this method

Unlike traditional methods, the PP SDBNmodels the interactions
between different quantities in the system. For example, we learn
about the lithology using the GR and sonic and bulk density logs
simultaneously, and the posterior probability distribution for poros-
ity reflects the bulk density and sonic. Therefore, the uncertainty
reflects the extent to which different sources of information agree
with one another. Because the PP SDBN will learn from whatever
set of information it is given, it is not dependent on any particular
set of log data being available. If part of a log is missing for some
depth range, that node’s conditional distribution will be used to
learn about its behavior in light of all available data. Therefore, this
method is flexible and robust, not requiring a particular log or com-
bination of data to be available at all depths, unlike MC error propa-
gation, which is not robust to missing data.
Because the PP SDBN is a full probabilistic model of the system,

we learn about not just pore pressure, but all the unobserved nodes
through their posterior distributions. This allows us to more fully
assess our model and also to learn more about the system. This is
partially the case when using MC with standard pore-pressure es-
timation; for example, we will generate a sample of lithologies hav-
ing perturbed the shale cut-off value, or we may have a sample
of TVS values by perturbing parameters relating to the estimation.
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In contrast though, these samples will reflect only the small set of
data types involved in that part of the process, whereas when using a
Bayesian network, the posterior distribution reflects all the data that
have been used for the model. This reveals the fundamental differ-
ence between MC error propagation and the PP SDBN. The former
can only assess uncertainty in an existing model, whereas the latter
incorporates a fully joint model of the entire system.
There is an equivalence in the results produced by the SDBN

approach and MC error propagation, in the sense that if we applied
an idealized error-propagation approach to our model, the results of
the error propagation would be exactly the same as the prediction
uncertainties produced by our model. If we regard the PP SDBN
as a gold-standard approach combining the best available synthesis
of data and human expertise, we could in principle examine any
discrepancies between it and uncertainties produced by MC error
propagation applied to other modeling approaches. However, this
would need substantial effort to match input choices and would
in any case only allow us to conclude that different models can pro-
duce different answers.
In the SDBN, expert knowledge and data are combined in a

rigorous way using the Bayes theorem. As with any other method
developed for pore-pressure prediction, the quality of the results de-
pends on the quality of judgments about model relationships and
so forth, but with the advantage for the SDBN approach that we for-
mally quantify the experts’ uncertainty in the model via probability
distributions. The experts’ uncertainty is therefore reflected in the

final pore-pressure estimate. As pointed out earlier, the structure of
the model is also subjective, and so it should be designed with care
(Plummer, 2014; Su and Yajima, 2014). Note however that the tradi-
tional workflow and the corresponding “standard” methods chosen
are themselves highly subjective, but they are not handled within
the rigorous formal statistical framework of a Bayesian network.

EXAMPLES

West Africa 1

Figure 6 shows data from a well in West Africa, with predictions
made by the PP SDBN. This interval was chosen because it ap-
peared to be predominantly shale, but it contains several sandstone
intervals in which the pore pressure was measured. Of the six sand-
stone pressure measurements, the shallowest and the deepest three
are judged by experts to be in isolated sandstones, and therefore
our shale pore-pressure estimate should match them. Because they
are taken from sandstones, we can use their depths to assess the
performance of the lithology estimation, and indeed they are all
matched by regions of sandstone in the lithology plot. The two pres-
sure measurements at approximately 3350 m are thought to be in
a thicker and more laterally extensive sandstone that is slightly
drained, and the lithology posterior distribution indeed suggests a
thicker layer of sandstone here. The estimated pore-pressure trajec-
tory above this is in agreement with our experts’ expectations. The

Figure 6. West Africa 1: (a) GR index data; (b) bulk density data; (c) sonic transit time data; (d) lithology estimated by SDBN (blue is shale and
orange is sandstone); and (e) pore pressure estimated by SDBN, with mean and central 50% and 95% intervals shown by shading. Mean and
central 95% are shown for TVS and hydrostatic pressure, although there is little uncertainty in these compared with the pore pressure, and so
they appear as lines. Sandstone pore-pressure data are shown by the red dots in the pressure plot. Note that these pressure observations are not
used as input data to the PP SDBN.
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sharp spikes approximately 3800 m coincide with a casing point,
which has been identified as a sandstone by the SDBN because this
knowledge is outside its scope. However, it has not influenced the
nearby results, showing that the SDBN is robust to unexpected
results.
Figure 7 shows the samples from the posterior distributions of pore

pressure and porosity at three particular depths. Such plots can be
made for any unobserved node, at any depth, and so they can be use-
ful for developing a greater understanding of uncertainty.
Figure 8 compares the posterior pore-pressure distribution for

West Africa 1 for different combinations of input data. This dem-
onstrates the reduction in uncertainty that can come with including
additional data. Without the control from the gamma log, the lith-
ology is poorly constrained, leading to a significantly worse pres-
sure estimation.

SENSITIVITY ANALYSIS

The PP SDBN is a statistical model constructed from expressed
geophysical relationships and tuning parameters. The default values
we supply can be used for the tuning parameters, or a reservoir en-
gineer may supply more carefully considered inputs, depending on
their expertise and local knowledge. The PP SDBN lends itself well
to sensitivity analysis techniques. The aim of sensitivity analysis is
to discover how variation in the output can be explained by variation
in the collection of inputs. Variation in inputs can be attributed to
several sources. A physical quantity may be subject to measurement
error, or there may be a high level of uncertainty about a particular
parameter owing to a lack of information or understanding of the

system. Sensitivity analysis reveals how this uncertainty propagates
to the output, and it therefore indicates the degree of confidence we
can have in the model’s results. For example, if a model’s output is
highly sensitive to a physical parameter about which little is known,
there is consequential uncertainty surrounding the model output.
Sensitivity analysis allows us to more deeply examine how the

model is working, and whether it resembles the real system in the
way that we expect. For example, system experts are likely to expect
some parameters to be among the most influential. If the sensitivity
analysis shows them to be insignificant in the model, this suggests
that the model is not representing the system as intended. Learning
which are the most crucial parameters for tuning the model can help
to improve predictions. If current estimates for the values of these
parameters are not sufficiently precise to give confidence in the
output values, further research should be conducted into these
parameters. Equally, the model can also be simplified by eliminat-
ing variables to which the model is not at all sensitive. Saltelli et al.
(2000) give a thorough account of the theory and techniques of sen-
sitivity analysis.

Preliminary examples

Here, we demonstrate some simple preliminary techniques, before
going on to demonstrate a more comprehensive method. To gain
some insight into how influential a parameter is, one can hold all
others fixed at their default value, then vary the parameter in question.
In the following examples, we do this for West Africa 1, and with
each parameter being varied between three values: low, default, and
high. The specific values for each parameter were formed by survey-
ing geologist colleagues. This was not a thorough elicitation, but a

Figure 7. (a) Pore-pressure posterior distributions and (b) porosity posterior distributions.

D34 Oughton et al.

D
ow

nl
oa

de
d 

01
/0

2/
18

 to
 1

29
.2

34
.0

.6
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



casual experiment. Nevertheless, the ranges provided should give rea-
sonable results.
Figure 9 compares posterior probability distributions for pore

pressure when three different input parameters are varied. This
could be done for any other unobserved node, for example, porosity
or TVS. The leftmost plot, in which an input (the first scale param-
eter of a beta distribution) relating to sea-floor porosity in shales has
been varied, shows that this parameter has little effect on pore pres-
sure at this depth for this well. The three posterior distributions are
very similar. The middle plot, in which the mean matrix sonic transit
time of shale (in sm−1) is varied, shows a stronger influence.
The three posterior distributions are clearly separated, and the

means differ by approximately 8 MPa. Therefore, for better under-
standing, the matrix sonic transit time in shale would increase our
confidence in pore pressure. The third plot, in which the SD of the
matrix sonic transit time is varied, shows different behaviors still. It
appears that for some value of matrix sonic SD between the low and
default values, there is a discrete change in model behavior. Study-
ing the posterior distributions shows that this relates to lithology;
the posterior samples for the default and high values contain much
more sandstone than those from the low value, and this difference
has manifested itself in the pore-pressure posterior distributions.

Figure 10 summarizes the results of performing this analysis on
several input parameters, by plotting the means of the posterior dis-
tributions for each parameter that has been varied, in order of range.

Morris screening design

To gain insight into which are the more influential parameters, we
will use a one-at-a-time screening design proposed by Morris
(1991). Once complete, we have several elementary effects values
for each input parameter. Each one can be thought of as an estimate
of the effect of changing that input from its minimum to its maxi-
mum, with every other input held the same, somewhat like a partial
derivative of the output with respect to that input parameter. There-
fore, a large (negative or positive) elementary effect suggests an in-
fluential parameter. One close to zero suggests a more negligible
parameter. In summary, the following observations can be made:

• If the elementary effects for input i have a mean close to zero
and a low variance, input i appears to have little effect.

• If the elementary effects for input i have a high (in magni-
tude) mean and a low variance, input i appears to have a
strong linear effect.

Figure 8. Panels (a) IGR, RHOB, and DT, (b) IGR and RHOB only, and (c) RHOB only.
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• If the elementary effects for input i have a high variance,
input i appears to be involved in interactions with other in-
puts or to have a nonlinear effect.

Example: West Africa 1

In the PP SDBN, there are 38 input parameters, each of which
we chose initially to vary. We choose five values for each input
parameter, and run the model 1000 times in total. We stipulated that
we must produce at least 20 elementary effects for each input
parameter.
Figure 11 shows the elementary effects for two depths in West

Africa 1. The first depth (2670 m) is near the top of the interval in
which the experiment was run. Above this point, the borehole is
almost entirely shale, and this is true in almost all of the input space.
By 2770 m (the depth of the second plot), there has been some sand-
stone, with the PP SDBN estimating more sand-
stone at some input value settings than at others.
This could account for the higher variability
elementary effects at the deeper point.
The most influential parameters remain the

same in each plot, with “dtma_mean_sh” (mean
matrix sonic transit time in shale) having a
negative effect on the mean pore pressure and
“porsd_sh_fac” (σfacϕ ) having positive effects. The
distributions of these elementary effects are
similar in each plot. “b_porml_sh” and “b_por-
min_sh” (these are shape parameters for the mud-
line porosity and minimum porosity, respectively,
in shales) have a slight positive effect in each
case. Otherwise, the elementary effects are cen-
tered around zero, some with little spread. There-
fore, our primary focus would be on the four
parameters already mentioned, and it may well
be possible to eliminate some of the consistently
negligible input parameters without degrading the
result of the pore-pressure prediction.

DISCUSSION

The problem we have addressed in this paper is that of quantify-
ing uncertainty in pore-pressure predictions in a meaningful way.
We have approached this problem from an entirely fresh perspec-
tive, based on a rigorous formal statistical method and present a
proof-of-concept model that is highly adaptable. The appropriate
mathematical machinery is the Bayesian network, which allows us
to express causal dependencies between the geophysical elements
that make up our understanding of the relationships between pres-
sures, lithology, porosity, wireline logs, and so forth. This kind of
approach is open and transparent, with all the ingredients (structure,
experiential judgements, and data) having a clear role and implica-
tion. The Bayesian network allows us to collect together expert
knowledge, uncertainty, and data into a rigorous and coherent model,
so that the resulting pore-pressure probability distribution makes
sense of these.

Figure 9. Posterior probability distributions for pore pressure at 2600 m. In each plot, all but one of the input parameters have been held at their
default values, and one has been varied, as shown in the legend beneath each plot. The mean for each posterior distribution is also shown by a
vertical line in the corresponding color. (a) Sea-floor porosity parameter 1 for shale. This is the first shape parameter of a beta distribution.
(b) Mean matrix sonic for shale in s∕m. (c) SD of matrix sonic in s∕m.

Figure 10. Tornado plots Howard (1988) for some SDBN input parameters, at two
depths in West Africa 1. The left pointing arrows mark the mean posterior pore pressure
for the lower of the three input values, the right pointing arrows for the upper value, and
the vertical bar for the default. Outward-pointing arrows (e.g., as with matrix density
SD) imply a positive correlation between that input and the mean pore pressure. Inward-
pointing arrows (as with matrix sonic SD) imply a negative effect.
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Through sensitivity analysis, we can understand which of the in-
put parameters are the most influential. This can lead to an increased
focus in these areas and therefore to a reduction in uncertainty in
pore pressure because they are better understood. The PP SDBN is a
flexible-core framework that can be extended in many ways to re-
present the pore-pressure system and to be useful practically in the
process of planning and drilling a well.
From a geologic perspective, log and seismic data are inherently

less reliable for pressure understanding than direct pressure mea-
surements; thus, any technique that can be developed that helps
the geologist to visualize, understand, and therefore reduce the un-
certainty in these data types is highly valuable and will result in
more accurate pressure prediction. Moreover, if the same approach
can also define and quantify prior understanding of how a system
behaves and express uncertainty about this understanding, then the
final pressure profile will be much more robust.
Geologic basins are complex environments, where multiple fac-

tors affect a simple variable such as porosity. Porosity (or often a
proxy variable such as sonic transit time or bulk density) is used
directly to relate to pore pressure and yet many co-dependent factors
influence its value. The PP SDBN allows us to jointly model these
factors, their codependence, and our uncertainty. This provides a
more holistic way to approach, in this example, porosity. The effects
of data gaps or missing logs can be quickly assessed in terms of our
ability to define an accurate porosity and subsequently, pressure.
Expert knowledge and data are combined in this approach so that

it is geologically based. Uncertainty in the expert judgments is
captured in the conditional probability distributions, and this is re-
flected in the posterior probability distributions attached to the pres-
sure estimates.
The PP SDBN as presented in this paper is a preliminary proof-

of-concept model, involving a limited selection of data types and
assuming disequilibrium compaction as the pressure-generating
mechanism. However, the Bayesian network structure lends itself
to augmentation. To develop the PP SDBN, more data types would
need to be incorporated. This includes additional log measurements,
such as resistivity and neutron density. The caliper log could also be
introduced to inform the uncertainty based on borehole quality. By
learning from the equivalent circulating and static densities, along
with any connection gas or kicks, we could put logical constraints
on the pore pressure.
An extension to the PP SDBN proposed here for predrill pressure

prediction would be the incorporation of velocity information from
surface seismic reflection data. As part of the seismic processing
workflow, several velocity models can be derived ranging from sim-
ple NMO to tomographic inversion and more recently to full-wave
inversion. The choice of which to use depends on the complexity of
the problem (Cibin et al., 2004). Velocity models and their relation-
ship to pore pressure can be further refined by calibration to offset
wells, if available (Den Boer et al., 2006; Sayers et al., 2006). To
ensure consistency with the SDBN’s modeling of uncertainty, the
chosen velocity model should also include an estimate of its own

Figure 11. Elementary effects for mean pore pressure at two depths in West Africa 1, ordered by median elementary effect. Points falling
outside the interquartile range (IQR) by more than 1.5 × IQR will be plotted as outliers.
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uncertainty, ideally computed in a compatible Bayesian manner, as
for example by Caiado et al. (2012). The uncertainty in the velocity
model would then be reflected in the predrill pore-pressure distri-
bution. Incorporating this surface-derived velocity information into
the PP SDBN would be effected by addition of a node as an alter-
native for or to complement the wireline-log nodes.
A desirable development would be to extend the SDBN to three

dimensions to create a full-3D probabilistic pore-pressure estimate,
as for example in Doyen et al. (2003). There are two key challenges
here. First, the SDBN is a computationally intensive method
and extending to 3D would multiply this problem. Second, extend-
ing to 3D would require us to carefully think about horizontal cor-
relation and how to capture features such as lateral transfer and
drainage, extensional and compressional stress, and anisotropy. It
is worth noting that Doyen et al. (2003) avoid this issue by deriving
their probability distributions empirically from well data: Their ex-
ample uses data from 21 nearby wells. The first issue may be over-
come by the use of a large multicore computer, or by the use of a
velocity model such as that from Caiado et al. (2012), which could
be used to reduce the size of the data set. The second requires more
thought. It is difficult to validate the approach of Doyen et al. (2003)
inasmuch as linking the empirically derived parameters to physical
realities. Our preferred approach would be to model these param-
eters; in which case, the physical model, the data and judgements
used to populate it, and the inferences and predictions drawn from
it, are transparent and open to scrutiny.

CONCLUSION

In this paper, we have presented the PP SDBN, a novel, sta-
tistically rigorous framework for quantifying uncertainty in pore-
pressure estimation. The Bayesian network we have developed
allows the geologist to capture their scientific understanding of
the pore-pressure system, in order for this to be updated in light
of any available data. The PP SDBN as we have presented it is cur-
rently applicable to those basins in which mechanical compaction is
the generator of pore pressure. The flexible nature of the network
means that adapting it to account for more data types in the future
(e.g., predrill seismic velocity models or real-time data) or a more
complicated scientific model (e.g., including chemical compaction
or nonvertical stresses) is feasible.
The PP SDBN is an improvement on methods such as MC; the

pore-pressure uncertainty will not necessarily be smaller, but it has a
clear meaning, having arisen from a careful specification of the ex-
pert’s understanding of the system. The uncertainty reflects the data
and expert knowledge in a way that is not possible with MC because
the PP SDBN is a fully probabilistic model of the system. The ac-
curacy of the PP SDBN’s pore-pressure prediction (the mean of the
posterior distribution) will depend on the geophysical relationships
used, but because posterior distributions (and hence predictions) are
produced for all nodes, the model can be interrogated and under-
stood in terms of how it models each part of the system, rather than
the pore pressure alone.
Previous approaches to quantifying uncertainty tend to be ad

hoc; industry-standard relationships such as Eaton or the equivalent
depth method do not easily allow all sources of uncertainty to be
easily represented. Pressure is calculated on an increasing depth ba-
sis, ignoring the codependency of many of the variables in these
algorithms. Our method differs in that it offers a coherent structure
for containing the data, geologic knowledge, and physical under-

standing available, with assessments of uncertainty on each of these
elements. The conditional probability distributions are specified to
best represent our understanding of how the quantities in the system
interact. Because of this, the method is transparent in that uncer-
tainty in the posterior pore-pressure distribution can be understood
in terms of uncertainty in the input parameters and scientific rela-
tionships used in the PP SDBN. It is therefore a more effective tool
for capturing and displaying uncertainty and for indicating deficien-
cies in understanding, as we have shown through sensitivity analy-
sis. As with any decision-support tool, the quality of the prediction
depends on the quality of the model, but also overtly here on the
quality of the human expertise supplied to it.
Pore-pressure prediction is inherently uncertain, especially in

shale lithologies where the low permeability precludes the use of
direct pressure tests. Many assumptions have to be made, and it is
typically problematic to test which of these assumptions are the most
reliable, and which particular parameter holds the most weight. The
PP SDBN allows careful and rigorous analysis of these factors, re-
sulting in a clearer understanding of the geologic system in terms of
its influence on the pressure regime. This leads to more accurate pres-
sure prediction and ultimately to the more cost-effective and safe
drilling of future wells.
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