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SUMMARY 

1. Understanding resource selection and quantifying habitat connectivity are 

fundamental to conservation planning for both land-use and species management 

plans. However, datasets available to management authorities for resource selection 

and connectivity analyses are often highly limited and fragmentary. As a result, 

measuring connectivity is challenging, and often poorly integrated within 

conservation planning and wildlife management. To exacerbate the challenge, scale-

dependent resource use makes inference across scales problematic, resource use is 

often modelled in areas where the species is not present, and connectivity is 

typically measured using a source-to-sink approach, erroneously assuming animals 

possess predefined destinations. 

2. Here, we used a large carnivore, the leopard Panthera pardus, to characterise 

resource use and landscape connectivity across a vast, biodiverse region of southern 

Africa. Using a range of datasets to counter data deficiencies inherent in carnivore 

management, we overcame methodological limitations by employing occupancy 

modelling and resource selection functions across three orders of selection, and 

estimated landscape-scale habitat connectivity – independent of a priori source and 

sink locations – using circuit theory. We evaluated whether occupancy modelling on 

its own was capable of accurately informing habitat connectivity, and identified 

conservation priorities necessary for applied management.  

3. We detected markedly different scale-dependent relationships across all selection 

orders. Our multi-data, multi-scale approach accurately predicted resource use 

across multiple scales and demonstrates how management authorities can more 

suitably utilise fragmentary datasets. We further developed an unbiased landscape-

scale depiction of habitat connectivity, and identified key linkages in need of 

targeted management. We did not find support for the use of occupancy modelling 

as a proxy for landscape-scale habitat connectivity and further caution its use within 

a management context.  

4. Synthesis and applications. Maintaining habitat connectivity remains a fundamental 

component of wildlife management and conservation, yet data to inform these 

biological and ecological processes are often scarce. We present a robust approach 

that incorporates multi-scale fragmentary datasets (e.g. mortality data, permit data, 
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sightings data), routinely collected by management authorities, to inform wildlife 

management and land-use planning. We recommend that management authorities 

employ a multi-data, multi-scale connectivity approach—as we present here—to 

identify management units at risk of low connectivity. 

 

Key-words: circuit theory, conductance, fragmentation, landscape resistance, land-use 

planning, leopard, occupancy modelling, Panthera pardus, permeability, resource selection 

functions 

 

INTRODUCTION 

Habitat loss, fragmentation, and degradation are primary causes of global biodiversity loss 

(Fahrig 2003). Habitat connectivity confers ecosystems with greater resilience towards 

disturbance (Olds et al. 2012), and ultimately facilitates species persistence (Doerr, Barrett 

& Doerr 2010). Conservation of connectivity has thus become a well-established concept 

(Zeller, McGarigal & Whiteley 2012), which seeks to maintain or restore genetic exchange 

between populations (Stockwell, Hendry & Kinnison 2003), thus reducing levels of 

inbreeding and genetic drift (Soulè & Mills 1998), and provides opportunities for mitigating 

the negative effects of environmental and demographic stochasticity in a changing world 

(Hodgson et al. 2009). Although globally recognised, connectivity is often poorly considered, 

or simply does not feature, within wildlife management. As a fundamental component of 

connectivity conservation, practitioners must identify resources within habitats that 

facilitate species movement and persistence. Several methods are available to model 

resource selection and connectivity (Zeller, McGarigal & Whiteley 2012); however, none are 

without limitations. First, resource selection is scale dependent, such that inference at one 

scale may not adequately explain resource use at another (Boyce 2006). Second, resource 

selection within a used-available design is constrained by an ‘asymmetry of errors’ (Boyce 

2006), where presence data are observed and known with certainty, but absence data are 

less certain and often randomly assumed (MacKenzie et al. 2006). Third, connectivity is 

often modelled using a source-to-sink approach (McRae et al. 2008), which assumes that 

animals have a predefined destination (Koen et al. 2014). To overcome the constraints of 

scale dependency, resource selection can be integrated across multiple scales (DeCesare et 

al. 2012; Martin et al. 2012); whilst occupancy modelling may be used to account for 
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imperfect detection and more accurately capture resource use at appropriate scales (Gu & 

Swihart 2004). Similarly, to overcome source-to-sink limitations, connectivity can be 

mapped across the landscape—irrespective of predefined destination locations—using 

unbiased spatial techniques (Koen et al. 2014).  

 

Here, we use a wide-ranging large carnivore, the leopard Panthera pardus, as a model 

species to estimate resource use and landscape connectivity across leopard range in 

Limpopo Province, South Africa (hereafter ‘Limpopo’). Leopards are long distance dispersers 

(Fattebert et al. 2015). Their high vagility, and ecological and economic significance 

(Dalerum et al. 2008, Lindsey et al. 2012, Maciejewski & Kerley 2014) make leopards an 

ideal candidate species to identify landscape-scale conservation priorities.  Using a range of 

techniques that overcome the limitations mentioned above, we estimated leopard resource 

selection across three orders of scale (Meyer & Thuiller 2006): S1, first-order population-

level selection across the study area; S2, second-order landscape-level selection across key 

leopard areas; and S3, third-order individual-level selection across individual home ranges. 

Specifically, by using occupancy modelling to infer probable locations that are available to 

leopards across the broader landscape (S1), and resource selection functions (RSFs) to link 

finer-scaled habitat relationships (S2 and S3), we produce a scale-integrated description of 

leopard resource use. We use this to develop an unbiased landscape-scale representation of 

leopard habitat connectivity using circuit theory to identify critical movement pathways 

across the region (McRae et al. 2008). Since broad-scale occupancy data can be 

conveniently and cheaply collected using questionnaire surveys (Zeller et al. 2011), we 

evaluate whether occupancy modelling on its own is capable of accurately informing habitat 

connectivity (as derived from circuit theory); with the intention of providing a simple 

method of incorporating both occupancy and connectivity analyses under a single 

framework. Finally, we show how our multi-scale approach can be used to identify 

conservation priorities. Our results provide an unbiased landscape-scale depiction of 

leopard resource use and connectivity optimized for both finer- and coarser-scaled 

management objectives applicable for large carnivore conservation and land-use planning 

more generally. 
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MATERIALS AND METHODS 

Study area 

Limpopo (ca. 125,977 km2; Fig. 1) is rich in biodiversity and comprises the largest proportion 

of suitable leopard habitat in South Africa (Swanepoel et al. 2013). A number of formally 

protected areas occur throughout Limpopo, the most significant being the Kruger National 

Park (KNP). KNP represents an important source population for leopards within the study 

area, and is largely unaffected by human-mediated disturbance (Bailey 2005). Outside of 

KNP, leopards in Limpopo—and South Africa more generally—are managed within 

geographical catchments representing leopard management units (LMUs). The primary 

carnivore management practices in Limpopo (i.e., trophy hunting and problem animal 

control) are strictly designated within LMUs (Pitman et al. 2015). 

 

First-order (S1) scale of selection 

In order to delineate leopard distribution at the broadest scale, we developed a multi-

season occupancy model using questionnaire surveys (Zeller et al. 2011). The study area 

(Limpopo and buffer zone; Fig. 1) was divided into 596 sampling cells (20 x 20 km). A 

random stratified sampling approach was used to select a subset of sampling cells to 

conduct interviews with local inhabitants across Limpopo (Supporting Information S2). 

Respondents acted as surveyors within their ‘area of knowledge’ defined by a single or 

group of sampling cells, where each interview from the same sampling cell was considered a 

separate replicate (Zeller et al. 2011). To avoid including residents that spent very little time 

on their properties, interviews specifically targeted individuals who were resident within 

their ‘area of knowledge’ at least twice per month for a minimum of one year. Detections 

comprised a direct sighting of a leopard or direct observation of sign (e.g., tracks, scat, 

vocalisations or cached kill). To assess the credibility of each respondent, we asked them to 

identify photographs of four local species and the tracks of five local species (Supporting 

Information S2). If a respondent was considered non-credible by failing to correctly identify 

leopard during the vetting process, their data were excluded from all analyses. Surveys were 

conducted within 98 sampling cells during November 2013 (n = 1 024 respondents). In 

November 2014 (n = 736) and November 2015 (n = 560), the same respondents were 

contacted via telephone to conduct the questionnaire verbally. Respondent attrition across 

years was due to death, change of contact details or residency. A further ground survey was 
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conducted during November 2015 to increase respondent sample size (n = 599 additional 

respondents) across a randomly stratified subset of sampling cells (n = 55). The distribution 

of S1 data can be visualised in Supporting Information S3. 

 

For multi-season occupancy analyses, we used the package unmarked (Fiske & 

Chandler 2011) within the R statistical environment (R Core Team 2015). Interview 

responses resulted in detection/non-detection matrices, with a maximum of 40 replicates 

per sampling cell. Due to potential fluxes in leopard occupancy over the sampling intervals, 

the assumption of population closure was violated (MacKenzie et al. 2006), which changed 

the occupancy parameter ( ) from ‘proportion of area occupied’ to ‘proportion of area 

used’. This new interpretation was sufficient to meet our goals, since we were interested in 

the use of sampling cells, rather than occupation of them (Zeller et al. 2011). We used a 

suite of standardised (mean = 0; standard deviation = 1) resource variables expected to 

influence leopard distribution (Supporting Information S1), and extracted mean values for 

each resource variable across each sampling cell. Multi-season occupancy modelling seeks 

to estimate probabilities of occupancy, detection ( ), colonization ( ) and extinction ( ). We 

modelled each component (i.e.,        ) as functions of resource variables using logit link 

functions (MacKenzie et al. 2006) by employing a sampling design whereby surveyors (i.e., 

respondents) visit a sample of   sampling cells and record the binary response     of 

species detection (   ) or non-detection (   ) during    , …,    visits to the ith site 

during a season (MacKenzie et al. 2002). We fitted models with increasing complexity and 

used Akaike’s Information Criterion (AIC) for model selection (Burnham & Anderson 2002). 

Within each model component we introduced resource variables in a fixed sequence. On 

identifying a preferred model, and using a backwards stepwise approach, we tried all 

possible single-term deletions and retained the most parsimonious models (Kéry, Guillera-

Arroita & Lahoz-Monfort 2013). We retained non-significant variables within candidate 

models if they increased parsimony and were ecologically justified. Model-averaging was 

applied to the most supported models (AIC ≤ 2). The final averaged model was used to 

predict   for each sampling cell across the study area, and was used to delineate available 

habitat in our S2 RSF.  
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Second- (S2) and third-order (S3) scale of selection 

In order to assess leopard resource use at an intermediate scale, S2 datasets were collected 

from 2000–2015 and comprised published (n = 580 locations) (Swanepoel, Somers & 

Dalerum 2015) and unpublished camera-trapping studies (n = 1 745 locations; R 

Pitman/Panthera, unpublished data), expert sightings data (n = 1 384 locations) (Pitman et 

al. 2013), and leopard mortality data (n = 1 176 locations) (Pitman et al. 2015). We randomly 

distributed an equal number of available locations across the study area, but excluded any 

areas where   was within the lower 25th percentile, as described by our occupancy model. 

Excluding regions within the lower 25th percentile effectively refined our approach at the 

landscape-level (S2), and allowed for the exclusion of areas mostly unoccupied by leopards. 

Although a 25th percentile threshold could be considered arbitrary, this cut-off adequately 

depicted leopard exclusion areas suggested by previous research (Swanepoel et al. 2013). 

 

 Leopard resource use at the finest scale (i.e., home ranges) was assessed by collating 

a range of S3 datasets comprising global positioning system (GPS) collar data and expert 

long-term sightings data of known individuals from 2004–2015. GPS collar data from 

eighteen adult leopards were obtained from provincial research surveys (n = 2 leopards; 

North West Parks and Tourism Board), published studies (n = 8 leopards) (Swanepoel, 

Dalerum & van Hoven 2010; Pitman, Swanepoel & Ramsay 2012; Pitman et al. 2013; 

Swanepoel et al. 2014), and unpublished research (n = 8 leopards; Primate and Predator 

Project). GPS location accuracy metrics (e.g., dilution of precision) were not recorded. All 

collars acquired a GPS location fix ≥ 4 times per day over the duration of each collar’s 

lifespan (n = 24 027 locations). The GPS collar dataset was filtered by removing any 

erroneous locations that were beyond the possible range of the study animals (D'Eon et al. 

2002). Long-term sightings data of known adult individuals were compiled from the Sabi 

Sands Game Reserve (SSGR; n = 17 942 locations; 62 individuals). Whilst traversing all 

habitat types within SSGR, field guides are required to record daily leopard sightings, 

resulting in comprehensive datasets for each known individual (Balme et al. 2012). We 

generated 95% fixed-kernel home ranges for both GPS collared and resighted individuals 

(using the reference bandwidth) (Worton 1989). Within each home range we generated an 

equal number of randomly distributed locations representing available locations.  
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Using the same resource variables as S1 (Supporting Information S1), we extracted 

mean values for each resource variable using varying buffer radii (m) for each leopard 

location. This approach was taken as large carnivore resource use is scale dependent and 

suggests that an optimum predictive radius exists at each order of selection (DeCesare et al. 

2012; Martin et al. 2012). Buffer radii for S2 models comprised 250–1000 m (at 250 m 

increments), 1000–3000 m (at 500 m increments), and 3000–7000 (at 1000 m increments). 

Buffer radii for S3 models comprised 50–200 m (at 50 m increments) and 300 m. Buffer radii 

for S2 and S3 models were determined after accounting for computational efficiency and 

preliminary assessments. We used fixed-effects logistic regression to compare resource 

values of used and available locations for S2 scale of selection (i.e., modelling across 

populations), and mixed-effects logistic regression for S3 scale of selection (fitting leopard 

individual identities as a random intercept for S3, and thus accounting for correlation and 

unequal sample sizes) (Gillies et al. 2006; Fieberg et al. 2010). Correlated resource variables 

(|r| > 0.7) were removed, whilst retaining resource variables that produced the lowest AIC 

values. S2 and S3 datasets were randomly subset into 80% training and 20% testing datasets 

to enable internal and external model validation (Boyce et al. 2002). Using the training 

dataset, we ran a suite of models for each order of selection, using resource variables at 

varying radii. We employed an exhaustive screening approach and ranked candidate models 

according to AIC. We selected the most parsimonious models, using a single optimum radius 

for each order of selection, and if necessary, applied model-averaging to the most 

supported models (AIC ≤ 2) using R package glmulti (Calcagno & de Mazancourt 2010). The 

distribution of S2 and S3 datasets can be visualised in Supporting Information S3. 

 

Scale-integrated habitat mapping 

The used-available designs of S2 and S3 models generated RSFs that are proportional to the 

probability of use (Manly et al. 2002; DeCesare et al. 2012). Using a 30 x 30 m resolution, 

per pixel predicted values (   ) were spatially mapped across the study area. We estimated 

S2 and S3 RSF predicted values (Manly et al. 2002), as 

 

                              

 

(1) 
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We applied a linear stretch to rescale S2 and S3 RSF predicted values between 0 and 1 

(Johnson, Seip & Boyce 2004), as  

       
           

         
   

 

To develop a scale-integrated RSF (SRSF) across the study area representing relative 

probability of use for a given pixel (     ), we multiplied each scale’s probabilities (P) 

(Johnson, Seip & Boyce 2004; DeCesare et al. 2012), as 

 

                    

 

Finally, we applied a linear stretch to rescale the resulting SRSF between 0 and 1 using Eq. 2. 

 

Multi-scale model validation 

We used model validation procedures to examine the predictive capacity of single scale 

RSFs (S2 and S3) and scale-integrated (SRSF) models. We reclassified models into 10 equal 

area bins using percentile breaks at 10% intervals (Boyce et al. 2002). Withheld testing 

datasets were used as validation points for each scale separately (i.e., independent and 

partially-dependent validation). We then projected validation points across the landscape, 

and assigned each a bin value according to the underlying reclassified landscape. We used 

Spearman’s rank correlation to compare the frequencies of validation points in each bin to 

each RSF’s bin rank (Boyce et al. 2002). A strongly predictive model will have a high positive 

correlation, indicating a greater number of locations in probability bins that approach 1 

(Johnson, Seip & Boyce 2004). 

 

Connectivity mapping 

We combined our SRSF with circuit theory to explore habitat connectivity using Circuitscape 

v.4.0.5 (McRae et al. 2008). We chose circuit theory over other commonly used connectivity 

methods (e.g., least-cost path) since circuit theory models movement ecology via random 

walk pathways across all available movement possibilities (McRae et al. 2008). The SRSF was 

used as an index of conductance, where all cells are defined by networks of electrical nodes 

connected by resistors (see McRae et al. 2008 for a review). Random-walk conductance 

(2) 

(3) 
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modelling is analogous to habitat permeability (i.e., movement potential of an organism 

across the landscape), and is directly related to the likelihood of a ‘walker’ choosing to move 

through a cell, relative to other cells available to it (McRae et al. 2008). By predicting net 

movement probabilities through electrical nodes, current flow (i.e., permeability) can be 

used to identify core use areas, habitat connectivity and key movement pathways (McRae et 

al. 2008). Connectivity modelling is typically conducted between habitat patches, or 

between a priori source and sink locations. However, this is a key limitation, as animals 

often lack a predefined destination (Koen et al. 2014). To overcome this constraint, we 

developed a landscape-scale permeability map that is independent of a priori source or 

destination locations by randomly placing regularly distanced nodes (hereafter ‘random 

nodes’) around the 50 km buffer perimeter (Koen et al. 2014). Connectivity was then 

measured across the landscape, from one random node to another, in a pairwise fashion. To 

identify the optimum number of  random nodes required to generate an unbiased 

landscape-scale permeability map, we conducted a sensitivity analysis using 10 to 300 

random nodes at intervals of 10. Current flow was modelled across all random nodes to 

generate 30 permeability maps. If our estimates of permeability were independent of node 

placement and quantity, we should expect little variation in the spatial distribution of 

current flow as the number of random nodes increases (Koen et al. 2014). To test this 

prediction, we removed the buffer region and distributed 100,000 random locations across 

Limpopo. The buffer region was removed prior to testing because its inclusion would result 

in a biased estimate resulting from overestimated landscape conductivity at the periphery 

(Koen et al. 2010). We compared estimates extracted from each permeability map (i.e., 10–

290 node maps) against estimates from the full permeability map (developed with 300 

random nodes) by evaluating Pearson correlation coefficients. An optimum number of 

random nodes is only deemed suitable once an asymptote in correlation coefficients is 

reached (Koen et al. 2014). We applied a linear stretch to rescale the final permeability map 

between 0 and 1 using Eq. 2. 
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Management implications 

To assess habitat permeability within LMUs (leopard management units; n = 207), we 

compared LMU current density estimates (i.e., flow of current km-2; 
                      

              

) 

across Limpopo (excluding KNP; n = 180) against current density estimates from LMUs 

across KNP (n = 27) using a two-sampled t-test. Using the mean current density of LMUs 

within KNP as an optimum baseline          , we categorized the permeability potential 

for LMUs across Limpopo as either below-optimum            or above-optimum 

          . Given the size, low degree of human disturbance, and optimal habitat 

(Swanepoel et al. 2013), KNP represents an ideal baseline on which to gauge the 

permeability potential of LMUs across Limpopo. Capacity for species and environmental 

monitoring is often a limiting factor; therefore, to test whether broad-scale occupancy 

modelling (S1) could be used as a proxy for landscape permeability, we ranked   estimates 

and compared them against mean current density estimates within each S1 sampling cell 

using Spearman’s rank correlation. 

 

RESULTS 

Modelling resource use at S1  

We recorded 312, 150 and 138 leopard detections during 2013, 2014 and 2015, 

respectively. Four top models qualified for model averaging (Table 1), whilst four resource 

variables were removed due to collinearity (EVI, NDVI, NPP, and terrain ruggedness). 

Leopards selected, and were more likely detected, in drier regions further from major road 

networks. Although the parameters were likely non-informative (95% CI overlapped with 

zero), leopards appeared to avoid areas with denser vegetation, but selected areas with 

more people. We assumed these two variables were more likely associated with detection 

probability—particularly selection for areas closer to people, since this might represent a 

bias in our survey approach. However, we found this not to be the case as these models 

were outperformed by more parsimonious models (Table 1). Both   and   were held 

constant, as candidate models did not improve when resource variables were included. The 

resulting predictive map ( , Fig. 2a) agreed with previously published research (Swanepoel 

et al. 2013). 
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Modelling resource use at S2 and S3 

Two vegetative resource variables (NPP and NDVI) were removed due to collinearity at both 

orders. Leopard selection response to features were strongest when resource variables 

were measured at radii of 7000 m (Fig. 3a) and 100 m (Fig. 3b) for S2 and S3 scales of 

selection, respectively. S2 scale of selection, model-averaging comprised two top models. 

Leopards favoured areas close to riverine and protected areas that were less rugged and at 

higher elevations, but further from major road networks. Tree canopy cover and EVI were 

all positively selected for, whereas human population density was negatively selected for 

(Table 2). S3 scale of selection comprised two top models. Leopards favoured riverine areas 

of high vegetative productivity (EVI and tree canopy cover) and ruggedness, but in regions 

of lower precipitation (Table 2). Model validation at S2 (partially-dependent testing dataset: 

   = 0.99, P < 0.001; independent testing dataset:     = 0.92, P < 0.001) and S3 (partially-

dependent testing dataset:     = 1, P < 0.001; independent testing dataset:     = 0.92, P < 

0.001) scales of selection performed well, and similarly for the final SRSF (partially-

dependent testing dataset:     = 1, P < 0.001), suggesting the predictive capacity of all 

models was very high (Fig. 2 b–d).  

 

Modelling landscape-scale habitat permeability 

Using the final SRSF as an index of conductance (Fig. 2d), we developed an unbiased 

landscape-scale permeability map using ≥200 random nodes (Pearson mean     –          = 

0.89)—note an asymptote is reached by 200 random nodes (Fig. 4). As there is no penalty to 

including too many random nodes (Koen et al. 2014), we chose to use the full map for 

further connectivity assessments (Fig. 5a). Leopard habitat permeability was moderate 

across Limpopo (mean current flow = 0.5 ± 0.001 SE; range: 0–1). Three distinct regions 

exhibited markedly low habitat permeability (Fig. 5a). Current density of LMUs within KNP 

were significantly higher (mean = 1.7 ± 0.1 km-2 SE;        ) than LMUs outside of KNP (1.3 

± 0.06 km-2 SE; two-sample t-test:                  ). Using         as an optimum 

baseline, a total of 51 LMUs (25%; 18,198 km2) were characterized with above-optimal 

permeability (Fig. 5b), whilst the remaining 156 LMUs (75%; 108,983 km2) were 

characterized with below-optimal permeability (Fig. 5b). We detected a weak relationship 

between ranked   estimates and mean current density estimates across S1 sampling cells (   
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= 0.31, P < 0.001), suggesting occupancy modelling was a poor predictor of landscape 

permeability.  

 

DISCUSSION 

We integrated across multiple scales of resource selection and generated an unbiased 

landscape-scale permeability map that was independent of a priori source or sink locations. 

We demonstrated a scale-integration method capable of overcoming scale dependent 

limitations to accurately predict resource use for an elusive, large carnivore. We compiled a 

range of datasets to counter the dearth of information often attributed to large carnivore 

research, which enabled the delineation of broad-scale (S1) leopard distribution, and finer-

scaled resource selection (S2 and S3), and identified key variables influencing different 

scales. Given the wide-ranging dispersal capabilities of leopards, and to facilitate a more 

informed used-available design, we used occupancy modelling (S1) to delineate areas 

available to leopards at the intermediate (S2) scale. Occupancy modelling is being 

increasingly adopted at broad-scales to address species distributions and habitat linkages 

(Zeller et al. 2011; Koen et al. 2014); however, although we produced a   map that was 

consistent with previous research from the same region (Swanepoel et al. 2013), we did not 

find support for the use of broad-scale occupancy modelling as a proxy for landscape 

permeability. This finding suggests that management authorities should exercise caution 

when attempting to use broad-scale occupancy modelling to infer landscape-scale linkages 

(Zeller et al. 2011). More specifically, we found that leopard habitat permeability across 

Limpopo is moderate, and identify three key regions that exhibit markedly low permeability. 

Importantly, the permeability of LMUs across Limpopo are largely below-optimal when 

compared to prime leopard habitat, which warrants further conservation attention and 

management intervention. 

 

 Obtaining data for the management of elusive animals is challenging and often 

results in fragmentary datasets (Martin et al. 2012). By incorporating multiple datasets 

across multiple scales, resource selection models can be developed that infer fine-scale 

spatial relationships represented by the larger population, but which are less prone to 

spatial bias in resource use typically caused by limited datasets (Martin et al. 2012; Elliot et 

al. 2014). Elliot et al. (2014) demonstrated the importance of using a range of datasets (i.e., 
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demographic categories) when parameterizing resistance surfaces for connectivity 

modelling, so as not to produce erroneous conclusions. We too advocate the use of a range 

of datasets in situations where broad-scale ecological and management questions are being 

posed for elusive species that cover vast areas (i.e., leopards); particularly since the 

management of these species are largely characterised by data deficiencies. Our study 

produced robust estimates of leopard distribution ( ) at the broadest scale, which informed 

finer-scale RSF analyses (i.e., by excluding areas mostly unoccupied by leopards). Fine-scale 

resource use is governed by fine-scale resource availability, which is itself governed by 

broad-scale resource selection (DeCesare et al. 2012). This hierarchically-nested relationship 

has previously been exploited for other large mammals, such as woodland caribou Rangifer 

tarandus caribou (DeCesare et al. 2012) and brown bear Ursus arctos (DeCesare et al. 2012; 

Martin et al. 2012). However, earlier studies relied on limited datasets to delineate 

population distribution at the broadest scale. This potentially limits the robustness of a 

used-available study design, as available locations at finer scales might be randomly placed 

within areas unoccupied by the study species. The elusive nature and low detection rates of 

large carnivores calls for a more robust framework (Ripple et al. 2014), which occupancy 

modelling may provide.  

 

Patterns of resource use involve balancing the trade-off between the costs of 

resource acquisition against the benefits of resource use (Brown, Laundré & Gurung 1999). 

For large carnivores such as the leopard, selection trade-offs exist between prey abundance 

and catchability (Balme, Hunter & Slotow 2007), and avoidance of intraspecific and 

interspecific threats (Vanak et al. 2013). Depending on the scale, selection trade-offs can act 

at differing intensities, which can render wildlife-habitat relationships non-informative, 

resulting in skewed connectivity metrics (Boyce 2006). Here, we demonstrated markedly 

different scale dependencies for a highly adaptive large carnivore (Hayward et al. 2006). 

Leopard distribution patterns at the broadest scale of selection (S1) were primarily driven by 

a lack of major road networks. At finer scales (S2 and S3), leopard resource use was governed 

by three factors; avoidance of anthropogenic disturbance (road networks and people), 

selection of prey-rich areas (riverine features, proximity to protected areas, high EVI and 

high precipitation), and selection of rugged areas with sufficient vegetative cover likely to 

maximise hunting success and minimise kleptoparasitism (Balme, Hunter & Slotow 2007). By 
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integrating across multiple scales of resource selection, we accommodated complex 

leopard-habitat relationships within a single framework capable of generating accurate 

predictions of resource use necessary for applied large carnivore management. 

 Free-ranging wildlife is under significant anthropogenic pressure (Ripple et al. 2014; 

2015). Land-use practices, in particular, have led to increased fragmentation and human-

wildlife conflict (Pitman et al. 2016a). Habitat connectivity is not only essential to maintain 

genetic variability (Broquet et al. 2010), trophic diversity and ecosystem functions (Olds et 

al. 2012), but also ensures the persistence of free-ranging charismatic species that play an 

important economic role (Lindsey, Roulet & Romanach 2007). Wildlife management is 

increasingly focused at the landscape-scale, where connectivity conservation across vast 

regions are superseding those at smaller scales (Koen et al. 2014). Although connectivity is 

typically modelled using a source-to-sink approach (Zeller, McGarigal & Whiteley 2012), we 

stress the importance of methodologies that do not rely on a priori destination locations. 

The distribution of wildlife in human dominated landscapes is poorly understood (Koen et 

al. 2014), particularly at finer scales (Boyce 2006). Moreover, knowledge of definitive source 

and sink locations is severely lacking, even for a large, charismatic species such as the 

leopard (Pitman et al. 2015). Using random nodes placed around the perimeter of the 

buffered study area, we modelled connectivity across the entire landscape independent of a 

priori source or sink locations. This broader applicability results in landscape permeability 

maps relevant not only to leopard ecology and management, but also to species at 

comparable or lower trophic levels reliant on similar habitat types.  

 

Large carnivores have undergone significant range contractions (Ray, Hunter & 

Zigouris 2005), leading to increased calls for improved management and conservation 

(Ripple et al. 2014). As with wildlife management more generally, large carnivore 

management is often implemented across discrete geographical units (e.g., wildlife 

management units, hunting concessions, administrative zones) (Messmer et al. 1998). For 

instance, lions Panthera leo are typically managed within hunting concessions (Lindsey, 

Roulet & Romanach 2007), whilst cougar Puma concolor hunting in Utah, USA is managed 

within geographical watersheds (Stoner et al. 2013). Although connectivity is a fundamental 

component of successful conservation (Zeller, McGarigal & Whiteley 2012), connectivity 

metrics are infrequently considered within the regulatory processes of many range states. 
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This exclusionary approach is largely down to the difficulty, and high cost, of collecting data 

of sufficient quality and quantity for connectivity analyses; and often prevents management 

authorities from incorporating connectivity metrics within wildlife management. 

Management authorities, however, frequently collect fragmentary, opportunistic datasets 

such as mortality records, permit records and sightings data (Pitman et al. 2015; 2016). As 

our approach clearly demonstrates, data from these multiple sources (and scales) can be 

efficiently incorporated into connectivity analyses and applied within a management 

context. Moreover, since carnivore management is often focused within geographical units 

(e.g., LMUs), management authorities could efficiently address regions of low connectivity 

by selectively modifying management practices (e.g., reducing trophy hunting quotas and 

problem animal control within management units) to mitigate human-mediated pressures. 

In our case study, we show that three regions in Limpopo exhibit markedly low habitat 

permeability and warrant urgent conservation attention. For instance, the establishment of 

conservancies can greatly increase wildlife persistence by linking suitable habitat (Lindsey, 

Romanach & Davies-Mostert 2009); therefore, as an alternative to modifying management 

practices within management units, management authorities could incentivise conservancy 

establishment across units requiring targeted management. Similarly, community 

engagement can play an important role in improving perceptions and tolerance of 

carnivores (Dickman 2010). Community outreach projects could thus be more effectively 

implemented if management authorities employ a multi-data, multi-scale connectivity 

approach—as we present here—to identify management units at risk of low permeability. 

Lastly, environmental impact assessments, which are routinely conducted in the region, 

could draw on the findings presented in this study; particularly with regard to game 

ranching practices, which are leading to increased landscape fragmentation through the 

adoption of heavily fortified predator-proof fencing (Pitman et al. 2016a). Although our 

findings focus on a large carnivore across a biodiverse region of southern Africa, they 

remain easily transferable for the management of other ecologically important species 

exhibiting wide-ranging dispersal capabilities and diverse habitat requirements.  
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Panthera pardus resource selection at first- (S1), second- (S2) and third-order (S3) scales of 

selection. 
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Supporting Information S3. (a) Distribution of datasets across three orders of selection. S1 

scale of selection depicted by 400km2 red sampling cells, (b) S2 scale of selection depicted by 

red point locations, and (c) S3 scale of selection depicted by red point locations used to 

develop individual leopard home ranges. 
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TABLES 

 

Table 1. Top multi-season occupancy models for predicting leopard Panthera pardus habitat use ( ; ‘proportion of area used’) from 2013–

2015 

Models* AIC† AIC‡ AICw CW¶ K§ 

Coefficients of resource variables 

             ¶¶ 

Intercept D.Road 
Precip 

§§ 

Canopy

§§ 

Human 

§§ 
Intercept Intercept Intercept D.Road Precip 

 (D.Road + Precip)   (.)  
 (.)   (D.Road + Precip) 

0.0 2198 0.34 0.34 8 
-3.4 (1.7) 

***  
0.005 

(0.001) 
-0.002 
(0.002) 

– – 
-0.598 
(0.340) 

-0.437 
(0.209) 

-0.015 
(0.280) 

8.0E-04 
(9.9E-05) 

-0.004 
(4.6E-04) 

 (D.Road)   (.)   (.)  
 (D.Road + Precip) 

0.3 2199 0.63 0.63 7 -5.0 (1.4) 
0.005 

(0.001) 
– – – 

-0.067 
(0.354) 

-0.514 
(0.213) 

-0.039 
(0.275) 

8.0E-04 
(9.8E-05) 

-0.004 
(4.6E-04) 

 (D.Road + Canopy)   (.)  
 (.)   (D.Road + Precip) 

0.7 2199 0.87 0.87 8 -4.3 (1.3) 
0.005 

(0.001) 
– 

-0.065 
(0.061) 

– 
-0.650 
(0.346) 

-0.472 
(0.211) 

-0.116 
(0.275) 

8.0E-04 
(9.8E-05) 

-0.003 
(4.5E-04) 

 (D.Road + Precip 
+Human)   (.)   (.)  
 (D.Road + Precip) 

2.0 2200 1.00 1.00 9 -3.4 (1.7) 
0.005 

(0.001) 
-0.002 
(0.002) 

– 
0.015 

(9.179) 
-0.598 
(0.340) 

-0.437 
(0.209) 

-0.015 
(0.281) 

8.0E-04 
(9.9E-05) 

-0.004 
(4.6E-04) 

* Top models were averaged using R package unmarked (Fiske & Chandler 2011) 

† Delta AIC 

‡ Akaike’s Information Criterion (Burnham & Anderson 2002) 

¶ Cumulative AIC weights 

§ Number of parameters in each model 
** Probability of occupancy, interpreted in this study as ‘probability of habitat use’ 

†† Probability of colonisation 

‡‡ Probability of extinction 

¶¶ Probability of detection 

§§ Non-informative parameters (95% CI overlapping with zero) 
*** Standard error given in parentheses 
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Table 2. Fixed- (S2) and mixed-effects (S3) logistic regression coefficients from averaged 

models (AIC ≤ 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Resource variable prefixes: d.water – distance to water; d.roads – distance to roads; human – human population density; 
evi – environmental vegetation index; elevation – altitude; t.rugged – terrain ruggedness; t.canopy – tree canopy cover; 
d.PA – distance to protected area; precip – precipitation 

† AIC weights of relative variable importance  

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient*   SE   P RI† 

S2      

Intercept -1.68 0.09 19.78 <0.001 1.00 

d.water.7000 -0.63 0.08 7.61 <0.001 1.00 

d.roads.7000 0.59 0.12 5.11 <0.001 1.00 

human.7000 -6.50 0.28 23.03 <0.001 1.00 

evi.7000 1.27 0.08 15.65 <0.001 1.00 

elevation.7000 0.22 0.05 5.01 <0.001 1.00 

t.rugged.7000 -0.52 0.06 8.38 <0.001 1.00 

t.canopy.7000 0.19 0.08 2.38 0.02 1.00 

d.PA.7000 -1.82 0.13 13.73 <0.001 1.00 

precip.7000 0.01 0.04 0.21 0.84 0.28 

S3      

Intercept -0.57 0.08 6.81 <0.001 1.00 

d.water.100 -0.62 0.04 16.61 <0.001 1.00 

precip.100 -0.22 0.02 9.05 <0.001 1.00 

evi.100 0.17 0.02 9.95 <0.001 1.00 

t.rugged.100 0.12 0.01 14.72 <0.001 1.00 

t.canopy.100 0.15 0.02 10.11 <0.001 1.00 

dpa.100 0.12 0.14 0.84 0.40 0.57 
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FIGURES 

 

Figure 1. Location of the study area situated between northern South Africa, Botswana, 

Zimbabwe, and Mozambique. The grey region around Limpopo Province, South Africa 

(‘Limpopo’; black polygon) represents the 50 km buffer used to develop an unbiased 

landscape permeability map. Limpopo represents a highly biodiverse region of southern 

Africa, comprising three UNESCO Biosphere Reserves: Waterberg Biosphere Reserve (WBR), 

Vhembe Biosphere Reserve (VBR), and Kruger to Canyons Biosphere Reserve (KCBR). Kruger 

National Park (KNP) lies adjacent to Limpopo’s eastern boundary. Inset represents the 

location of the study area within Africa.  
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Figure 2. (a) Predictive map ( ) depicting leopard Panthera pardus habitat use across the 

study area. Sampling cells outlined in red represent those that were omitted from the S2 

analysis (i.e., <25th percentile). (b) RSF map at S2 scale of selection. (c) RSF map at S3 scale of 

selection. (d) Scale-integrated resource selection function (SRSF). White overlay represents 

the administrative boundary of Limpopo Province, South Africa. Units represent values from 

low (0) to high (1).  
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Figure 3. Relative AIC (AIC/AICmax) of (a) fixed- and (b) mixed-effect logistic regression 

models for S2 and S3 scales of selection, respectively. Black points represent optimum 

resource variable sampling radii. 
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Figure 4. Pearson correlation coefficients of extracted values (n = 100,000) from a full 

permeability map developed using 300 random nodes compared to extracted values from 

permeability maps developed using fewer random nodes (i.e., 10–290). 
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Figure 5. (a) Full permeability map developed using 300 regularly distanced random nodes 

around the buffer periphery. Three key regions (A, B and C) are characterized by markedly 

low habitat permeability. Clear habitat linkages are visible between regions A–B and B–C, 

which likely require focussed conservation effort. (b) Full permeability map overlaid with 

above- (opaque polygons) and below-optimal (transparent polygons) leopard management 

units (LMUs). The SRSF, used to develop the permeability maps, was resampled to 500m x 

500m for computational efficiency. Units represent values from low (0) to high (1). Kruger 

National Park is depicted by the dotted polygon. 

 

 




