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ABSTRACT 

Recent developments in integrated biomechanical-flow models have enabled the prediction of the 

influence of vegetation on the flow field and associated feedback processes. However, to date, such 

models have only been validated on the hydraulic predictions and/or mean plant position. Here we 

introduce an approach where dynamic surrogate plant motion, measured directly in flume experiments, 

is used to allow a validation approach capable of assessing the accuracy of time-dependent flow-

vegetation interaction within a numerical model. We use this method to demonstrate the accuracy of an 

existing Euler-Bernoulli beam model in predicting both mean and dynamic plant position through time 

and space. 

Keywords: Biomechanics; flow visualization and imaging; Large Eddy Simulations; Particle 

Image Velocimetry; vegetated flows 

1 Introduction 

Integrated biomechanical and Computational Fluid Dynamics (CFD) flow modelling provides 

a methodology for studying complex flows through vegetation canopies, due to its ability to 

predict the whole-field relating to both flow and plant motion. However, the application of 

such models requires an assessment of their ability to reliably predict both flow variables and 

plant motion. Such validation is challenging due to difficulties in obtaining high quality, high-

resolution flow and plant position data simultaneously within the flume or field environment. 

To date, validation has focused on an accurate prediction of the flow field (Marjoribanks, 

Hardy, Lane, & Parsons, 2014b) and mean plant height or plant position (Abdelrhman, 2007; 

Dijkstra & Uittenbogaard, 2010; Li & Xie, 2011; Mattis, Dawson, Kees, & Farthing, 2015). 

Validating dynamic plant motion or applying a simultaneous validation of flow and 

plant motion is more problematic. To date, the only laboratory study to capture both flow and 

plant data is that of Okamoto and Nezu (2009). They developed a joint Particle Image 

Velocimetry (PIV)-Particle Tracking Velocimetry (PTV) methodology, to track the motion of 

individual stem tips as well as the flow. Their method was based upon an occupied-area 

discriminator (Nezu & Azuma, 2004) which relied upon a distinguishable size difference 

between the flow seeding and vegetation. Here we present a methodology for extracting entire 

plant position data from PIV data and use it to validate the Euler-Bernoulli beam model of 

Marjoribanks et al., (2014b). Similar to the method of Okamoto and Nezu (2009) the method 



 

 

relies only upon one set of PIV images. However, instead of using an occupied-area 

discriminator, we apply a range of pixel-scale image analysis methods in conjunction with 

proximity tests to map the vegetation position through time and space. Such an approach 

enables simultaneous validation of flow and whole plant position, increasing the confidence 

in the predictive ability of biomechanical-flow models of vegetated flows. 

2 Biomechanical model validation methodology 

2.1 Flume setup 

In order to validate the biomechanical model, we conducted laboratory experiments with a 

flume that contained a single surrogate vegetation stalk of the type used by Marjoribanks et 

al. (2014b). A single stem was used to ensure the easy identification of the stem within the 

flow. The stalk, which was 0.10 m long and had a radius (𝑟𝑃) of 0.0025 m, was placed on the 

centreline of a smooth bed flume (10 m x 1 m x 1 m) with a flow depth of 0.4 m. Experiments 

were conducted at two different stem Reynolds numbers, (Rd = 1400 and 2700) in order to 

calibrate and then validate the biomechanical model. Flow and plant motion data were 

captured using a charge-coupled device camera, which was positioned perpendicular to the 

flow. Images were captured for 60 s at 50 Hz over a field of view of 0.52 m by 0.33 m with a 

pixel resolution of 0.6 mm. PIV flow data were obtained using the processes outlined by 

Hardy et al. (2005), to produce a 2D velocity map across the field of view, at a resolution of 

0.0038 m, with an uncertainty in the order of 0.003 ms
-1

. 

2.2 Plant motion capture 

In order to extract the plant position and shape, the raw PIV camera images (Fig. 1a) are 

subject to a suite of image analysis. Initially, the PIV image is converted to a binary mask 

(Fig. 1b) by applying a global thresholding process based upon the image luminance (Hardy, 

Best, Parsons, & Keevil, 2011). Selection of the threshold value is dependent on the surrogate 

and seeding material and must be chosen for the particular flume setup by manually 

calculating the minimum luminance value along the stem in a sample PIV image. As flume 

lighting conditions do not change significantly between images, this threshold remains 

constant throughout each experiment. The plant motion capture process is insensitive to small 

variations in this threshold. 

Using the binary mask the images are further processed to refine the plant structure 

data and remove unwanted fluid seeding data. These binary techniques work on a pixel scale 

and alter the value of each pixel based upon the values of the proximal 8 cells. In particular, 

three specific algorithms are used: i) the first removes all isolated pixels; ii) the second 



 

 

removes spurs within the data; and iii) finally the pixel value based on the mode of the 

proximal cells is calculated (Gonzalez, Woods, & Eddins, 2004). Each technique is repeated 

multiple times to improve the image. As with the luminance thresholding process, the exact 

selection of averaging methods and number of repetitions can be fine-tuned between datasets 

to account for differences in plant complexity, flume lighting and PIV seeding characteristics. 

However, this calibration is only necessary once per experimental dataset (~3000 images). 

Here we applied algorithms (i) and (ii) four times each followed three iterations of algorithm 

(iii). 

Once the images have been analysed, an array of stem-centre points are identified 

(Fig. 1c), based upon horizontal and vertical averaging. Incorrectly identified plant data 

points, due to the interference of seeding material, were eliminated by subjecting the points to 

two final proximity tests. The first excluded points that were not within a fixed distance (5 

pixels, 3 mm) of any other plant position points. This distance was chosen to eliminate points 

with separation greater than the stem radius (𝑟𝑃). The second excluded points for which the 

sum of the distances between the closest twenty neighbours was greater than two median 

absolute deviations from the median of the equivalent sum over all plant position points. This 

was effective in removing small clusters of points associated with seeding within the flow. 

The final stem-centre points can be plotted to show the overall shape of the plant, or 

interpolated to achieve an equation for the stem shape. In this case, we use the entire plant 

shape to calibrate the numerical flow model parameters. For the validation of the 

biomechanical model, we extract the tip of the stem for analysis, as this produces an easily 

comparable time series. This process was fully automated and the final canopy height time-

series was despiked to remove unphysical instantaneous spikes caused by errors within the 

automated process. 

2.3 Numerical model setup 

The experimental conditions were replicated in the integrated biomechanical-CFD model of 

Marjoribanks et al. (2014). A model domain 0.2 m long, 0.05 m wide and 0.2 m high was 

created, with a single vegetation stem placed along the centre line. The grid resolution in each 

direction was 0.001 m. Flow was simulated using Large Eddy Simulation with a Smagorinsky 

sub-grid model (CS=0.17). A no-slip boundary condition was used at the bed while the walls 

were represented by frictionless boundaries. The free-surface was modelled using the rigid-lid 

approximation. The inlet conditions were taken directly from the PIV data, at the 

corresponding distance upstream from the stalk and interpolated onto the finer numerical grid. 

Further details regarding the numerical model can be found in Marjoribanks et al. (2014). The 

vegetation was simulated using the Euler-Bernoulli beam model, modified to account for an 



 

 

initial radius of curvature (𝑟𝑐 = 0.2 m) within the stem. As the initial curvature was small 

(𝑟𝑐 ≈ 80𝑟𝑝), the beam was solved from the initial curved position, under the assumption of a 

linear stress distribution across each beam cross-section (Kaplan, 1954; Timoshenko, 1955). 

The drag force acting on the stem was calculated directly from the pressure (Marjoribanks, 

Hardy, Lane, & Parsons, 2014a). 

2.4 Analysis methods 

In order to calibrate and validate the plant position data, we apply two techniques in addition 

to the bulk measures of the mean and standard deviation of plant height. First, we apply 

spectral analysis to assess the representation of different frequencies of motion both in the 

plant motion and within the flow. For this method, we use Welch’s (1967) periodogram 

method with five non-overlapping intervals and a rectangular window to remove the effects of 

noise. Secondly, we apply wavelet analysis, as detailed in Marjoribanks et al. (2014b), which 

permits investigation of the time-varying periodicities in plant motion, across a range of 

frequencies.  

2.5 Calibration of flexural rigidity 

Flexural rigidity was initially calculated using bending tests as EI=0.0003 Nm
2
. However, this 

value did not account for initial stem curvature. Therefore, the value of EI had to be calibrated 

using data from the experiments at Rd=1400. For this calibration, the mean velocity profile 

was used to ensure the stem reached an equilibrium position, and therefore the converged 

steady-state plant position within the simulation was compared to the distribution of 

experimental plant positions. This distribution of experimental positions was obtained by 

plotting the stem-centre position using a binary mask at each time step cumulatively to build 

up a map of plant occupancy (Fig. 2). This pixel-scale cumulative occupancy map shows a 

relatively steady plant position at this Reynolds number, with small scale plant motion 

evident from the increasing width of the area commonly occupied towards the top half of the 

stem (Fig. 2, inset). 

An iterative calibration process resulted in a value of EI=0.000216 Nm
2
 with the 

resulting numerical plant position shown by the red crosses in Fig. 2. Sparsity of experimental 

data due to the bottom fixing of the stem to the flume bed (See Fig. 1) and partial illumination 

of the left-hand edge of the stem within the bottom 0.03 m explains the greater discrepancy 

between the observed and simulated stem-centre within this region. Nevertheless, agreement 

is still good in this region with an error of less than 0.0015 m between the observed stem 

position and that obtained from the model. 



 

 

3 Results 

Validation of predicted plant position through time was conducted for the Rd=2700 case. In 

order to compare the data, full time series of stem height were extracted from both the flume 

and CFD data. The simulated mean and standard deviation of plant height for this case (Table 

1) show less than 1.5% error in the mean and 10% error in the standard deviation from the 

measured value demonstrating the ability of the model to predict both the mean plant position 

and dynamic plant motion accurately.  

The power spectra of plant height from the experiments and simulations (Fig. 3) are 

similar, particularly for the lower frequency end of the spectra. The time series data (Fig. 4a) 

demonstrate visually this similarity, most notably at the lower frequencies, between the flume 

and CFD data. The PIV data contain noticeably more large magnitude spikes within the time 

series. The despiking process only removed non-physical spikes that could be definitely 

categorised as those caused by erroneous identification of seeding (less than 5% of the data 

points). It is likely, given their sharp gradients, that some of the remaining spikes do 

correspond to the influence of seeding within the PIV images. There are clear time periods for 

which the numerical and experimental data show excellent agreement (e.g. ~41-46 s), as well 

as periods where large discrepancies appear (e.g. 12-14 s, 34-36 s). We suggest that as they 

contain a smooth underlying signal, these more persistent discrepancies relate to discrepancy 

in model prediction rather than error in the plant motion capture methodology. 

The wavelet spectra (Fig. 4b-c) highlight periodicities within the flow for both the 

experimental and numerical data. The numerical data (Fig. 4b) show a particularly regular 

periodicity just below the 10 second scale, though this appears to split into two separate scales 

after approximately 25 s. The numerical data also highlight another distinct periodicity at an 

approximate 2 s scale, though this is less well defined and its scale appears to vary more 

through the time series. Both these identified scale ranges are also present within the 

experimental data (Fig. 4c), where there is periodicity at approximately 10 s scale, though this 

is less well defined than within the numerical data. Similar to the numerical data, this 

periodicity appears to split into two distinct scales with time. The smaller (~2 s) time-scale 

periodicity contains more power within the experimental data than the numerical data as 

evidenced by regions of high power and a more consistent periodicity throughout the time 

series. 

The wavelet cross-spectrum (Fig. 4c) illustrates the regions of common power 

between the two datasets and confirms the trend seen in Fig. 3 and visually identified in Fig. 

4a, whereby there is agreement between the two datasets across the scale range but there is 

greater similarity between the data at the lower frequencies. This is evident by the higher 

cross-wavelet power within the 5-10 s scale range. Across other scales, there is still 



 

 

agreement, with the 2 s scale periodicity clearly identifiable within Fig. 4d. In summary, 

despite some variation, these results suggest that the biomechanical model is reproducing 

plant motion across a range of different scales. 

4 Discussion 

The results demonstrate the usefulness in applying an automated plant motion capture process 

in order to validate biomechanical models within a CFD framework. The low computational 

cost process presented here was able to produce whole-plant position data with mm-scale 

accuracy using only the original PIV images.  

However, we acknowledge there are several limitations to the current method. Firstly, 

the technique requires an unobstructed view of the plant from the PIV camera and therefore 

would not be applicable to plants within a canopy. Secondly, the current method is only 

applicable to a single-stemmed plant. We are currently developing the method to help extract 

more complex plant forms, such as real aquatic macrophytes where tracking the plant tips is 

not sufficient to fully capture plant structure and variation. Such a development requires an 

adjustment of the threshold values as well as an advanced method of averaging the calculated 

stem points (Fig. 1b) to determine stem centres (Fig. 1c).  

Thirdly, although the thresholding and proximity testing process was optimised to 

minimise the error, we still observed instances where seeding particles within the immediate 

proximity of the stem were included within the stem position. The automation process could 

be refined further to increase the accuracy and diminish erroneous points by setting a limit on 

identified stem widths to remove seeding close to the stem. This may remove some of the 

spikes within the data in Fig. 4. However, the advantage of this current method is that it 

provides a very fast, efficient method of collecting model validation data with low 

computational cost. This is ideal for extracting data from large time series of PIV images and 

in comparison to the method of Okamoto and Nezu (2009) is able to extract whole-plant 

positions rather than stem tips.  

Using the plant motion capture process, validation of the plant motion for the Euler-

Bernoulli beam model (Marjoribanks, et al., 2014b) shows that the model performs well at 

predicting both mean plant height and dynamic variation to plant posture. The model’s 

predictive capability at lower frequencies is particularly important as canopy shear layer 

turbulence frequencies, not observed within this study, are typically of the order of 5-20 s 

scale (e.g. Ackerman & Okubo, 1993; Ghisalberti & Nepf, 2002; Okamoto & Nezu, 2009)  

and therefore will be represented accurately within this model. However, the results also 

indicate that the model performs well in reproducing the higher frequency (short time scale) 

oscillations that might correspond to plant-induced natural frequency vibrations (0.2-2 s). 

There are some instances where the match-up between the numerical and experimental data is 



 

 

poor and further work is required to ascertain whether these errors relate to the plant motion 

capture methodology or unrepresented complexities within the flow-vegetation coupling. 

5 Conclusions 

This paper presents a simple image-analysis based procedure for extracting plant motion data 

from PIV images. This method has been shown to work well for single stems and needs to be 

developed for application to more complex canopy flows. However, the results demonstrate 

its applicability in validating integrated LES-biomechanical models such as those presented 

by Marjoribanks et al. (2014b). Validation of the Euler-Bernoulli model using this 

methodology reveals the accuracy of model in predicting both mean and dynamic plant 

position. 
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Notation 

𝐶𝑆 = Smagorinsky constant (-) 

EI = flexural rigidity (Nm
2
) 

Rd = Stem Reynolds number (-) 

hv = vegetation height (m) 

rc = stem radius of curvature (m) 

rp = plant radius (m) 

x = downstream coordinate (m) 

z = vertical coordinate (m) 

Σ = Cumulative pixel occupancy (-) 
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Table 1 Stalk height statistics for the PIV and CFD data at Rd=2700 

_________________________________________________ 

Dataset  Mean (m) Standard Deviation (m)  
_________________________________________________ 

PIV  0.0655  0.0032    

CFD  0.0654  0.0029    
_________________________________________________ 

 

 

 

Figure 1 Plant motion capture methodology. Here, raw PIV images (a) are filtered and 

analysed to isolate the stalk from the flow (b). The stem centre points are then calculated (c). 

Flow is from left to right. 



 

 

 

Figure 2 Comparison between experimental plant position and simulated mean plant position 

for the Rd=1400 case. Experimental plant position occupancy is shown in greyscale, with 

darker regions showing greater occupancy by the vegetation within those pixels. The 

simulated plant position is denoted by red crosses. The inset figure shows a close up of one 

plant section. 

 

 

Figure 3 Power spectra for the PIV (black) and CFD (grey) time series of plant height. For the 

PIV data, only discrete data points are plotted for clarity. 

 



 

 

 

Figure 4 Time series (a) and wavelet spectra for the CFD (b) and PIV (c) plant height data. 

The cross-wavelet spectra between the CFD and PIV data is shown in (d).Regions of white in 

figures (c-d) represent areas of no statistically significant wavelet power. 

 

 

 


