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Abstract

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine,

machine learning and credit scoring. The receiver operating characteristic (ROC) surface is a useful tool

to assess the ability of a diagnostic test to discriminate among three ordered classes or groups. In this

paper, nonparametric predictive inference (NPI) for three-group ROC analysis for ordinal outcomes is

presented. NPI is a frequentist statistical method that is explicitly aimed at using few modelling as-

sumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. This paper

also includes results on the volumes under the ROC surfaces and consideration of the choice of decision

thresholds for the diagnosis. Two examples are provided to illustrate our method.

AMS Subject Classification: 60A99; 62G99; 62P10

Keywords: Accuracy of diagnostic tests; lower and upper probability; nonparametric predictive infer-

ence; ordinal data; ROC surface.

1 Introduction

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine

learning and credit scoring. The receiver operating characteristic (ROC) surface is a useful tool to assess

the ability of a diagnostic test to discriminate among three ordered classes or groups. The construction of

the ROC surface based on the probabilities of correct classification for three classes has been introduced by

Mossman (1999), Nakas and Yiannoutsos (2004) and Nakas and Alonzo (2007). They also considered the

volume under the ROC surface (VUS), and its relation to the probability of correctly ordered observations
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from the three groups. The three-group ROC surface generalizes the popular two-group ROC curve, which in

recent years has attracted much theoretical attention and has been widely applied for analysis of accuracy of

diagnostic tests. For an overview of the current state of the art of ROC surface analysis and its applications,

the reader is referred to Nakas (2014).

In this paper, we introduce nonparametric predictive inference (NPI) for three-group ROC analysis for

ordinal outcomes. NPI is a frequentist statistical framework based only on few modelling assumptions,

enabled by the use of lower and upper probabilities to quantify uncertainty (Augustin and Coolen, 2004;

Coolen, 2006). In NPI, attention is restricted to one or more future observable random quantities, and Hill’s

assumption A(n) (Hill, 1968) is used to link these random quantities to data, in a way that is closely related to

exchangeability (De Finetti, 1974). NPI has been introduced for assessing the accuracy of a classifier’s ability

to discriminate between two outcomes (or two groups) for binary data (Coolen-Maturi et al., 2012a) and

for diagnostic tests with ordinal observations (Elkhafifi and Coolen, 2012) and with real-valued observations

(Coolen-Maturi et al., 2012b). Recently, Coolen-Maturi et al. (2014) generalized the results in (Coolen-

Maturi et al., 2012b) by introducing NPI for three-group ROC surface, with real-valued observations, to

assess the ability of a diagnostic test to discriminate among three ordered classes or groups.

In this paper we generalize the results in (Elkhafifi and Coolen, 2012) by presenting NPI for three-group

ROC surface with ordinal outcomes. In order to use NPI with ordinal data, we use an assumed underlying

latent variable representation, with the categories represented by intervals on the real-line, reflecting the

known ordering of the categories and enabling application of the assumption A(n) (Coolen et al., 2013;

Elkhafifi and Coolen, 2012). The paper is organized as follows. Section 2 provides a brief introduction to

NPI for ordinal data. Empirical three-group ROC analysis for ordinal outcomes is presented in Section 3.

The main contribution of this paper, namely NPI for three-group ROC analysis for ordinal outcomes is

introduced in Section 4. To illustrate our method, two examples are presented in Section 5. The paper ends

with some concluding remarks in Section 6 and an appendix presenting the proofs of the main results.

2 Nonparametric predictive inference for ordinal data

2.1 Nonparametric predictive inference (NPI)

Nonparametric predictive inference (NPI) (Augustin and Coolen, 2004; Coolen, 2006) is based on the assump-

tion A(n) proposed by Hill (1968). Let X1, . . . , Xn, Xn+1 be real-valued absolutely continuous and exchange-

able random quantities. Let the ordered observed values of X1, X2, . . . , Xn be denoted by x1 < x2 < . . . < xn

and let x0 = −∞ and xn+1 =∞ for ease of notation. For Xn+1, representing a future observation, A(n) (Hill,
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1968) partially specifies a probability distribution by P (Xn+1 ∈ Ij = (xj−1, xj)) = 1
n+1 for j = 1, . . . , n + 1.

A(n) does not assume anything else, and can be considered to be a post-data assumption related to exchange-

ability (De Finetti, 1974). Inferences based on A(n) are predictive and nonparametric, and can be considered

suitable if there is hardly any knowledge about the random quantity of interest, other than the n observa-

tions, or if one does not want to use such information. A(n) is not sufficient to derive precise probabilities

for many events of interest, but it provides bounds for probabilities via the ‘fundamental theorem of prob-

ability’ (De Finetti, 1974), which are lower and upper probabilities in interval probability theory (Walley,

1991; Weichselberger, 2000). In NPI, uncertainty about the future observation Xn+1 is quantified by lower

and upper probabilities for events of interest. Lower and upper probabilities generalize classical (‘precise’)

probabilities, and a lower (upper) probability for event A, denoted by P (A) (P (A)), can be interpreted as

the sharpest bounds on a probability for an event of interest when only A(n) is assumed. Informally, P (A)

(P (A)) can be considered to reflect the evidence in favour of (against) event A.

Augustin and Coolen (2004) proved that NPI has strong consistency properties in the theory of inter-

val probability (Augustin et al., 2014; Walley, 1991; Weichselberger, 2000). Direct application of A(n) for

inferential problems is only possible for real-valued random quantities. However, by using assumed latent

variable representations and variations to A(n), NPI has been developed for different situations, including

Bernoulli quantities (Coolen, 1998), non-ordered categorical data using so-called the ’circular-A(n)’ assump-

tion (Coolen, 2006; Coolen and Augustin, 2009), and for ordered categorical data (Coolen et al., 2013). As

this paper deals with ordered categorical data, a brief overview of NPI for ordinal data is given below (Coolen

et al., 2013).

2.2 NPI for ordinal data

In situations with ordinal data, there are K ≥ 3 categories to which observations belong, and these categories

have a natural fixed ordering, hence they can be denoted by C1 < C2 < . . . < CK . It is attractive to base

NPI for such data on the naturally related latent variable representation with the real-line partitioned into

K categories, with the same ordering, and observations per category represented by corresponding values on

the real-line and in the specific category. Assuming that multiple observations in a category are represented

by different values in this latent variable representation, the assumption A(n) can be applied for the latent

variables.

We assume that n observations are available, with only the number of observations in each category

given. Let nr ≥ 0 be the number of observations in category Cr, for r = 1, . . . ,K, so
∑K

r=1 nr = n. Let

Yn+1 denote the random quantity representing the category a future observation will belong to. We wish to
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derive the NPI lower and upper probabilities for events Yn+1 ∈
⋃

r∈R Cr with R ⊂ {1, . . . ,K}.

Using the latent variable representation, we assume that category Cr is represented by interval ICr, with

the intervals IC1, . . . , ICK forming a partition of the real-line and logically ordered, that is interval ICr has

neighbouring intervals ICr−1 to its left and ICr+1 to its right on the real-line (or only one of these neighbours

if r = 1 or r = K, of course). We further assume that the n observations are represented by x1 < . . . < xn,

of which nr are in interval ICr, these are also denoted by xr,i for i = 1, . . . , nr. A further latent variable

Xn+1 on the real-line corresponds to the future observation Yn+1, so the event Yn+1 ∈ Cr corresponds to

the event Xn+1 ∈ ICr. This allows A(n) to be directly applied to Xn+1, and then transformed to inference

on the categorical random quantity Yn+1. The ordinal data structure for the latent variables is presented in

Figure 1.
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Figure 1: Ordinal data structure

Coolen et al. (2013) explain how the NPI lower and upper probabilities for general events of the form

Yn+1 ∈
⋃

r∈R Cr and R ⊂ {1, . . . ,K}, are calculated. In this paper we only need to consider the special case

with the event Yn+1 ∈ CR where CR consists of adjoining categories, so the corresponding union of intervals

ICR forms a single interval on the real line in the latent variable representation. For this case, simple closed

forms for the NPI lower and upper probabilities are available (Coolen et al., 2013). Let R = {s, . . . , t}, with

s, t ∈ {1, . . . ,K}, s ≤ t, excluding the case with s = 1 and t = K for which both the NPI lower and upper

probabilities are equal to 1. Let Cs,t =
⋃t

r=s Cr, ICs,t =
⋃t

r=s ICr and let ns,t =
∑t

r=s nr. Thus the NPI

lower and upper probabilities for the event Yn+1 ∈ Cs,t are (Coolen et al., 2013)

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =


(ns,t − 1)+

n + 1
if 1 < s ≤ t < K

ns,t

n + 1
if s = 1 or t = K

(1)

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =
ns,t + 1

n + 1
for 1 ≤ s ≤ t ≤ K (2)

where (x)+ = max(x, 0), and the case s = t gives the event that the next observation belongs to one specific
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Diagnostic test result
Condition status C1 . . . Ck1

. . . Ck2
. . . CK Total

Y 0 n0
1 . . . n0

k1
. . . n0

k2
. . . n0

K n0

Y 1 n1
1 . . . n1

k1
. . . n1

k2
. . . n1

K n1

Y 2 n2
1 . . . n2

k1
. . . n2

k2
. . . n2

K n2

Total n1 . . . nk1
. . . nk2

. . . nK n

Table 1: Ordinal test data

category.

3 Empirical three-group ROC analysis for ordinal outcomes

We consider a diagnostic test with ordinal test results, where the test outcome for each individual indicates

one of K ≥ 3 ordered categories, denoted by C1 to CK and representing an increasing level of severity with

regard to their indication of the presence of the condition of interest. We assume that the data available are

on individuals in three ordered groups according to known condition status, e.g. mild, moderate and severe

status, indicated by Y 0, Y 1 and Y 2 respectively1. The notation for the numbers of individuals for each

combination of condition status and test result is given in Table 1. Throughout this paper we follow the

definitions and notations introduced in Elkhafifi and Coolen (2012), Coolen-Maturi et al. (2012b), Coolen

et al. (2013) and Coolen-Maturi et al. (2014).

We assume throughout this paper that there are two cut-off points (or thresholds) k1 < k2 in {1, ...,K}

such that a test result in categories {C1, . . . , Ck1
} is interpreted as indication of the least severity of the

condition “mild” condition, a test result in categories {Ck1+1, . . . , Ck2} as indication of the “moderate”

condition, and a test result in categories {Ck2+1, . . . , CK} as indication of the “severe” condition. For a pair

of thresholds (k1, k2), the probability of correct classification of a subject from group Y 0 is p0(k1) = P (Y 0 ∈

{C1, . . . , Ck1}), the probability of correct classification of a subject from group Y 1 is p1(k1, k2) = P (Y 1 ∈

{Ck1+1, . . . , Ck2
}), and the probability of correct classification of a subject from group Y 2 is p2(k2) =

P (Y 2 ∈ {Ck2+1, . . . , CK}). The ROC surface, denoted by ROCs, can be constructed by plotting these

probabilities of correct classification (p0(k1), p1(k1, k2), p2(k2)) for all k1 < k2 in {1, . . . ,K}. The probabilities

of correct classification take values in [0, 1] with corner coordinates {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The empirical

estimators of these probabilities p0(k1), p1(k1, k2) and p2(k2) (and hence the empirical estimator of ROCs,

denoted by R̂OCs) are p̂0(k1) = 1
n0

∑k1

j=1 n
0
j , p̂1(k1, k2) = 1

n1

∑k2

j=k1+1 n
1
j , and p̂2(k2) = 1

n2

∑K
j=k2+1 n

2
j ,

respectively.

1Throughout this paper, the superscript notation 2 indicates group 3, there are no squared values used in this paper.
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The volumes under the ROC surface (VUS) can be used as a global measure of the three-group discrim-

inatory ability of the test under consideration. The empirical estimator of the volume under ROC surface

(VUS) for ordinal data (as presented in Table 1) is given as

V̂ US =
1

n0n1n2

 K∑
i=1

K∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l +

1

2

K∑
i=1

K∑
j=i+1

n0
i (n1

i + n1
j )n2

j +
1

6

K∑
i=1

n0
in

1
in

2
i

 (3)

The volume under ROC surface V̂ US can take values from 0 to 1. The V̂ US value of about 1/6 would

occur if the observations from the three groups would fully overlap, in such a way that the diagnostic

method would perform no better than a random allocation of subjects to the three groups. If there is a

perfect separation of the test results for the three groups, then V̂ US = 1.

The selection of the optimal cut-off points k1 and k2, is an important aspect of defining the diagnostic

test and analysing its quality. One approach is Youden’s index (Youden, 1950), which for three-group

(continuous) diagnostic tests was introduced by Nakas et al. (2010). Similarly we can define Youden’s index

for ordinal three-group diagnostic tests as J(k1, k2) = p0(k1) + p1(k1, k2) + p2(k2). Using this index, the

optimal cut-off points are the values of k1 and k2 which maximise J(k1, k2). This index J(k1, k2) is equal

to 1 if the three groups fully overlap, while J(k1, k2) = 3 if the three groups are perfectly separated. The

empirical estimator for J(k1, k2) is obtained by replacing these probabilities by their corresponding empirical

estimators,

Ĵ(k1, k2) =
1

n0

k1∑
j=1

n0
j +

1

n1

k2∑
j=k1+1

n1
j +

1

n2

K∑
j=k2+1

n2
j (4)

4 NPI for three-group ROC analysis with ordinal outcomes

In this section the main results of this paper are presented. First, the NPI approach for three-group ROC

analysis with ordinal outcomes is introduced and corresponding results for the volumes under the ROC

surfaces and the Youden’s index are derived. The notation required in this section was introduced in

Sections 2 and 3, and we follow Coolen-Maturi et al. (2014) in the introduction of the NPI-based structures

for the next observation from each of the three groups. Recall that for the latent variable representation,

we assume that category Cr is represented by interval ICr, with the intervals IC1, . . . , ICK forming a

partition of the real-line and logically ordered. We further assume that the nd observations are represented

by xd
1 < . . . < xd

nd , of which nd
r are in the interval ICr, r = 1, . . . ,K, these are also denoted by xd

r,i for

d = 0, 1, 2 and i = 1, . . . , nd
r . A further latent variable Xd

nd+1, for d = 0, 1, 2, on the real-line corresponds to

the future observation Y d
nd+1, so the event Y d

nd+1 ∈ Cr corresponds to the event Xd
nd+1 ∈ ICr. This allows

A(nd) to be directly applied to Xd
nd+1, and then transformed to inference on the categorical random quantity
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Y d
nd+1.

By using equations (1) and (2), we derive the NPI lower and upper bounds for the probabilities of correct

classification as

p0(k1) = P (Y 0
n0+1 ∈ {C1, . . . , Ck1}) =

1

n0 + 1

k1∑
j=1

n0
j (5)

p0(k1) = P (Y 0
n0+1 ∈ {C1, . . . , Ck1

}) =
1

n0 + 1

1 +

k1∑
j=1

n0
j

 (6)

p1(k1, k2) = P (Y 1
n1+1 ∈ {Ck1+1, . . . , Ck2

}) =
1

n1 + 1

−1 +

k2∑
j=k1+1

n1
j

+

(7)

p1(k1, k2) = P (Y 1
n1+1 ∈ {Ck1+1, . . . , Ck2

}) =
1

n1 + 1

1 +

k2∑
j=k1+1

n1
j

 (8)

p2(k2) = P (Y 2
n2+1 ∈ {Ck2+1, . . . , CK}) =

1

n2 + 1

K∑
j=k2+1

n2
j (9)

p2(k2) = P (Y 2
n2+1 ∈ {Ck2+1, . . . , CK}) =

1

n2 + 1

1 +

K∑
j=k2+1

n2
j

 (10)

4.1 Lower and upper envelopes of the set of NPI-based ROC surfaces

The sets of all probability distributions that correspond to the partial specifications, for X0
n0+1, X1

n1+1 and

X2
n2+1, are the NPI-based structures and are denoted by P0, P1 and P2, respectively. For each combination

of probability distributions for X0
n0+1, X1

n1+1 and X2
n2+1 in their respective NPI-based structures, P0, P1

and P2, the corresponding ROC surface as presented in Section 3 can be created. This will lead to a set of

such NPI-based ROC surfaces, which we denote by Sroc. The lower and upper envelopes of this set are of

interest, they consist of the pointwise infima and suprema for this set, see Coolen-Maturi et al. (2014) for

more details. These envelopes are presented below.

It is easy to show that the NPI lower ROC surface, ROCsL, goes through the points
{(

p0(k1), p
1
(k1, k2), p2(k2)

)
:

p0(k1) ∈ [p0(k1)− p0(k1 − 1)] , p2(k2) ∈
[
p2(k2)− p2(k2 + 1)

]
, k1 < k2 ∈ {1, . . . ,K}

}
, where p

1
(k1, k2) is

obtained from (7). On the other hand, the NPI upper ROC surface, ROCs
U

, goes through the points{(
p0(k1), p1(k1 − 1, k2), p2(k2)

)
: p0(k1) ∈

[
p0(k1)− p0(k1 − 1)

]
, p2(k2) ∈ [p2(k2 − 1)− p2(k2)] , k1 < k2 ∈

{1, . . . ,K}
}

, where p1(k1 − 1, k2) is obtained from (8).

It is interesting to consider the volumes under these lower and upper envelopes, which we denote by

V USL and V US
U

, respectively. These are given in Theorem 1, the proof is presented in the appendix.

7



Theorem 1 The volumes under the lower and upper envelopes of all NPI-based ROC surfaces in Sroc are

V USL = A


K−2∑
i=1

K−1∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l −

K−2∑
i=1

K∑
l=i+2

n0
in

2
l

 (11)

V US
U

= A


K∑
i=1

K∑
j=i

K∑
l=j

n0
in

1
jn

2
l +

K∑
i=1

K∑
j=i

n0
in

1
j +

K∑
j=1

K∑
l=j

n1
jn

2
l +

K∑
i=1

K∑
l=i

n0
in

2
l + n0 + n1 + n2 + 1

 (12)

where A = 1
(n0+1)(n1+1)(n2+1) .

4.2 NPI lower and upper ROC surfaces

As the lower and upper envelopes of all ROC surfaces in Sroc, result from pointwise optimisations they are

too wide with regard to the set Sroc when the VUS values are considered. It should be emphasized that

these envelopes are of interest as they characterize the set Sroc and can e.g. be used to graphically represent

this set, as will be done in the example in Section 5. But it is also interesting to identify surfaces that provide

thight bounds to all ROC surfaces in the set Sroc when the VUS values are considered, as these values play

an important role for summarizing the quality of the diagnostic tests and for interpreting the ROC surfaces.

So, we wish to define ROC surfaces with VUS values equal to the infimum and supremum of the VUS values

for all ROC surfaces in Sroc. The equality of the VUS and the probability of correctly ordered observations

enables us to define lower and upper ROC surfaces in line with the optimization procedures described in the

appendix to obtain n1
j and n1

j . These lower and upper ROC surfaces are defined below.

It is easy to show that the NPI lower ROC surface, ROCsE , goes through the points
{(

p0(k1), p∗1(k1, k2), p2(k2)
)

:

p0(k1) ∈ [p0(k1)− p0(k1 − 1)] , p2(k2) ∈
[
p2(k2)− p2(k2 + 1)

]
, k1 < k2 ∈ {1, . . . ,K}

}
, where p∗1(k1, k2) =

(n1 + 1)−1
∑k2

j=k1+1 n
1
j . On the other hand, the NPI upper ROC surface, ROCs

E
, goes through the points{(

p0(k1), p∗∗1 (k1, k2), p2(k2)
)

: p0(k1) ∈
[
p0(k1)− p0(k1 − 1)

]
, p2(k2) ∈ [p2(k2 − 1)− p2(k2)] , k1 < k2 ∈

{1, . . . ,K}
}

, where p∗∗1 (k1, k2) = (n1 + 1)−1
∑k2

j=k1
n1
j .

The volumes under these NPI lower and upper surfaces, which we denote by V USE and V US
E

, respec-

tively, are given in Theorem 2. The proof is presented in the appendix.

Theorem 2 The volumes under the NPI lower and upper ROC surfaces, which are equal to the NPI lower
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and upper probabilities for the event (Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1), respectively, are

V USE = A

K−2∑
i=1

K−1∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l (13)

V US
E

= A


K∑
i=1

K∑
j=i

K∑
l=j

n0
in

1
jn

2
l +

K∑
i=1

K∑
j=i

n0
in

1
j +

K∑
j=1

K∑
l=j

n1
jn

2
l +

K∑
j=1

n1
j

 (14)

where A = 1
(n0+1)(n1+1)(n2+1) . Notice that

∑K
j=1 n

1
j =

∑K
j=1 n

1
j = n1 + 1.

4.3 Upper (lower) bound for the NPI lower (upper) ROC surface

One may want to avoid the numerical optimisations (especially for a large data set with a large number of

categories) required to derive the NPI lower and upper ROC surfaces, in Section 4.2, by using the envelopes

as approximations, benefiting from the fact that they are available in simple analytical expressions as given

in Theorem 1. As the lower envelope provides a lower bound for the NPI lower ROC surface, it will be

useful to be able to derive, also without numerical optimisations, an upper bound for this NPI lower ROC

surface; together these two bounds will give some further information about the quality of the approximation.

Similarly, it is of interest to derive a lower bound for the NPI upper ROC surface.

It is easy to show that the NPI lower ROC surface, ROCsU , goes through the points
{(

p0(k1), p̃1(k1 +

1, k2), p2(k2)
)

: p0(k1) ∈ [p0(k1)− p0(k1 − 1)] , p2(k2) ∈
[
p2(k2)− p2(k2 + 1)

]
, k1 < k2 ∈ {1, . . . ,K}

}
, where

p̃1(k1 + 1, k2) = (n1 + 1)−1
∑k2

j=k1+1 n
1
j . On the other hand, the NPI upper ROC surface, ROCs

L
, goes

through the points
{(

p0(k1), p̃1(k1, k2), p2(k2)
)

: p0(k1) ∈
[
p0(k1)− p0(k1 − 1)

]
, p2(k2) ∈ [p2(k2 − 1)− p2(k2)] , k1 <

k2 ∈ {1, . . . ,K}
}

, where p̃1(k1, k2) = (n1 + 1)−1
∑k2

j=k1
n1
j .

The volumes under these NPI lower and upper ROC surfaces are given by Theorem 3, the proof is

presented in the appendix.

Theorem 3 The volumes under the NPI lower and upper ROC surfaces, ROCsU and ROCs
L
, are

V USU = A

K−2∑
i=1

K−1∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l (15)

V US
L

= A


K∑
i=1

K∑
j=i

K∑
l=j

n0
in

1
jn

2
l +

K∑
i=1

K∑
j=i

n0
in

1
j +

K∑
j=1

K∑
l=j

n1
jn

2
l +

K∑
j=1

n1
j

 (16)

where A = 1
(n0+1)(n1+1)(n2+1) .

9



4.4 The NPI-based optimal decision thresholds

The choice of the decision thresholds k1 and k2 is an important aspect of designing the diagnostic method

for the three groups case. One method is by maximisation of Youden’s index as given in (4). The NPI lower

and upper probabilities of correct classifications can be used to obtain the NPI lower and upper bounds for

Youden’s index. These are the sharpest possible bounds for all Youden’s indices corresponding to probability

distributions for X0
n0+1, X1

n1+1 and X2
n2+1 in their respective NPI-based structures P0, P1 and P2. The

NPI lower and upper bounds for Youden’s index are

J(k1, k2) = p0(k1) + p1(k1, k2) + p2(k2)

=
1

n0 + 1

k1∑
j=1

n0
j +

1

n1 + 1

−1 +

k2∑
j=k1+1

n1
j

+

+
1

n2 + 1

K∑
j=k2+1

n2
j

J(k1, k2) = p0(k1) + p1(k1, k2) + p2(k2)

=
1

n0 + 1

1 +

k1∑
j=1

n0
j

+
1

n1 + 1

1 +

k2∑
j=k1+1

n1
j

+
1

n2 + 1

1 +

K∑
j=k2+1

n2
j


It is straightforward to show that, when

∑k2

j=k1+1 n
1
j = 0,

J(k1, k2) = J(k1, k2) +
1

n0 + 1
+

1

n1 + 1
+

1

n2 + 1

and when
∑k2

j=k1+1 n
1
j > 0,

J(k1, k2) = J(k1, k2) +
1

n0 + 1
+

2

n1 + 1
+

1

n2 + 1

this constant difference between the NPI upper and lower Youden’s indices implies that both will be max-

imised at the same values of k1 and k2. It is further easy to show that, for all k1 and k2, J(k1, k2) ≤

Ĵ(k1, k2) ≤ J(k1, k2), where Ĵ(k1, k2) is the empirical estimate of Youden’s index in (4). These inequalities

do not imply that the empirical estimate of Youden’s index is maximal for the same values of k1 and k2

as the NPI lower and upper Youden’s indices, but we expect that in many situations the maxima will be

attained as the same values, in particular for small K.
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Scenario 1 (K = 5, n = 100)

Y 0 54 28 15 2 1
Y 1 3 26 44 25 2
Y 2 1 2 11 26 60
Scenario 1 (K = 10, n = 1000)

Y 0 451 207 110 80 60 36 24 26 5 1
Y 1 1 20 70 150 244 242 169 83 20 1
Y 2 2 6 18 26 41 70 100 139 186 412
Scenario 2 (K = 5, n = 100)

Y 0 22 36 34 7 1
Y 1 4 30 39 25 2
Y 2 1 7 30 47 15
Scenario 2 (K = 10, n = 1000)

Y 0 53 175 228 217 155 101 48 21 1 1
Y 1 1 18 63 180 229 226 182 81 20 0
Y 2 0 2 22 61 89 170 203 230 166 57

Table 2: Simulated data (Example 1)

5 Example

In this section, we illustrate our method using two examples, the first example based on simulated data from

Beta distributions while the second example uses a real medical data set2.

Example 1 This example is based on simulated data from Beta distributions. We consider two scenarios

here, in the first scenario we assume weak overlap between the three ordered groups, while in the second

scenario we assume that the three ordered groups considerably overlap. So, we expect that the volume under

the ROC surface for the first scenario is close to 1, while for the second scenario it is close to 1/6. For each

scenario we will consider two cases, (K = 5, n = 100) and (K = 10, n = 1000), where n = n0 = n1 = n2.

We use the cut-points 0.2(0.2)0.8 to categorize the simulated values from Beta distributions into K = 5

categories, and the cut-points 0.1(0.1)0.9 to categorize the simulated values into K = 10 categories.

K n V USL V USE V USU V̂ USe V US
L

V US
E

V US
U

Scenario 1 5 100 0.5663 0.5677 0.5746 0.7256 0.8588 0.8682 0.8686
10 1000 0.7054 0.7055 0.7063 0.7625 0.8175 0.8184 0.8185

Scenario 2 5 100 0.2239 0.2250 0.2285 0.4330 0.6642 0.6726 0.6735
10 1000 0.4334 0.4337 0.4342 0.5416 0.6554 0.6561 0.6563

Table 3: Simulated data results (Example 1)

K n k1 k2 J(k1, k2) Ĵ(k1, k2) J(k1, k2)

Scenario 1 5 100 2 3 2.089 2.120 2.129
10 1000 3 7 2.307 2.310 2.311

Scenario 2 5 100 2 3 1.564 1.590 1.604
10 1000 4 6 1.781 1.784 1.785

Table 4: Youden index results (Example 1)

2The R codes for implementing the proposed method will become available soon from http://npi-statistics.com
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Reverse Surgical Apgar Score (RevSAS)
C1 C2 C3 C4 C5 Total

No morbidity 9 (90%) 149 (62%) 135 (56%) 20 (39%) 1 (17%) 314
Minor morbidity 1 (10%) 61 (25%) 71 (29%) 19 (37%) 1 (17%) 153
Major morbidity 0 (0%) 35 (14%) 35 (15%) 12 (24%) 4 (67%) 86

Total 10 245 241 51 6 553

Table 5: Thirty-day morbidity and mortality by revSAS (Example 2)

For the first scenario (weak overlap), we simulate from the Beta distributions B(0.6, 2.5), B(5, 5) and

B(2.5, 0.6) for groups Y 0, Y 1, and Y 2, respectively. For the second scenario (considerably overlap), we

simulate from Beta distributions B(5, 5), B(2.5, 5) and B(5, 2.5), for groups Y 0, Y 1, and Y 2, respectively.

The simulated data sets are presented in Table 2. The empirical VUS and the NPI lower and upper bounds

of VUS are provided in Table 3. We can see that V USL < V USE < V USU < V̂ USe < V US
L
< V US

E
<

V US
U

. And obviously these values are large especially for K = 10 and n = 1000. As expected the

imprecision is lower when more data are available. Finally, the values of the cut-off points that maximize

the Youden indices are given in Table 4, where J(k1, k2) < Ĵ(k1, k2) < J(k1, k2). These cut-off points are

the same whether we use the empirical Youden index or the NPI lower and upper bounds for the Youden

index, which is often the case given that we have few categories, as discussed earlier in Section 4.4.

Example 2 In this example, a data set from Assifi et al. (2012) is used to illustrate the method presented

in this paper. The data set consist of 553 patients undergoing a medical procedure over 10 years. Assifi et al.

(2012) investigated whether the 10-point Surgical Apgar Score (SAS) accurately predicts the postoperative

complications, such as major complications or death within 30 days. To match the presentation in this

paper, we reverse the original SAS scores, denoted now by ‘revSAS’ scores, and we combine the last two

classes in the original data set into one class as ‘Major morbidity’. The revSAS scores are now grouped into

five ordered categories as C1 : 9 − 10, C2 : 7 − 8, C3 : 5 − 6, C4 : 3 − 4 and C5 : 0 − 2. This data set is

presented in Table 5, from which we can see that as revSAS increases, the percentage of patients without

morbidity decreases substantially. Likewise, as revSAS increases, the number of patients who had major

morbidity increases.

The empirical estimators of the probabilities of correct classification, for k1 < k2 in {1, 2, 3, 4, 5}, and

the NPI lower and upper bounds are given in Table 6. This table illustrates that p0(k1) ≤ p̂0(k1) ≤ p0(k1),

p1(k1, k2) ≤ p̂1(k1, k2) ≤ p1(k1, k2) and p2(k2) ≤ p̂2(k2) ≤ p2(k2). The empirical estimate of the volume

under the ROC surface is V̂ USe = 0.2152, and the NPI lower and upper bounds are V USL = 0.0536,

V USE = 0.0538, V USU = 0.0544, V US
L

= 0.4817, V US
E

= 0.4854, V US
U

= 0.4868, so V USL <

V USE < V USU < V̂ USe < V US
L
< V US

E
< V US

U
. The NPI lower (upper) bound for the lower (upper)

ROC surface is plotted in Figure 2 (Figure 3). The values of the cut-off points that maximize the Youden

12



(k1, k2) p0(k1) p̂0(k1) p0(k1) p1(k1, k2) p̂1(k1, k2) p1(k1, k2) p2(k2) p̂2(k2) p2(k2)

(1, 2) 0.02857 0.02866 0.03175 0.38961 0.39869 0.40260 0.58621 0.59302 0.59770
(1, 3) 0.02857 0.02866 0.03175 0.85065 0.86275 0.86364 0.18391 0.18605 0.19540
(1, 4) 0.02857 0.02866 0.03175 0.97403 0.98693 0.98701 0.04598 0.04651 0.05747
(1, 5) 0.02857 0.02866 0.03175 0.98052 0.99346 0.99351 0.00000 0.00000 0.01149
(2, 3) 0.50159 0.50318 0.50476 0.45455 0.46405 0.46753 0.18391 0.18605 0.19540
(2, 4) 0.50159 0.50318 0.50476 0.57792 0.58824 0.59091 0.04598 0.04651 0.05747
(2, 5) 0.50159 0.50318 0.50476 0.58442 0.59477 0.59740 0.00000 0.00000 0.01149
(3, 4) 0.93016 0.93312 0.93333 0.11688 0.12418 0.12987 0.04598 0.04651 0.05747
(3, 5) 0.93016 0.93312 0.93333 0.12338 0.13072 0.13636 0.00000 0.00000 0.01149
(4, 5) 0.99365 0.99682 0.99683 0.00000 0.00654 0.01299 0.00000 0.00000 0.01149

Table 6: Probabilities of correct classification (Example 2)

p0

p2

p1

Figure 2: The lower bound for the lower ROC surface (Example 2)

indices are k1 = 2 and k2 = 3, where J(k1, k2) = 1.1400, Ĵ(k1, k2) = 1.1533, J(k1, k2) = 1.1677. In this

example the cut-off points are the same whether we use the empirical Youden index or the NPI lower and

upper bounds for the Youden index, but this is not always the case as mentioned earlier in Section 4.4.

6 Concluding Remarks

In this paper we introduced the NPI approach for three-group ROC surfaces with ordinal outcomes. This

can be used to asses the accuracy of a diagnostic test, with the NPI setting ensuring, due to its predictive

nature, specific focus on the next patient. The NPI lower probability reflects the evidence in favour of the

event of interest, while the NPI upper probability reflects the evidence against the event of interest. The

difference between corresponding upper and lower probabilities reflects the amount of information available.

NPI typically leads to lower and upper probabilities for events of interest, which are based on Hill’s

13



p0 p2

p1

Figure 3: The upper bound for the upper ROC surface (Example 2)

assumption A(n) and have strong properties from frequentist statistics perspective. As events of interest are

explicitly about a future observation, or a function of such an observation, NPI is indeed explicitly about

prediction. The NPI lower and upper probabilities have a frequentist interpretation that could be regarded

as ‘confidence statements’ related to repeated application of the same procedure. From this perspective,

corresponding lower and upper probabilities can be interpreted as bounds for the confidence level for the

predictive event of interest. However, the method does not provide prediction intervals in the classical sense,

as e.g. appear in frequentist regression methods. Those tend to relate to confidence intervals for model

parameter estimates combined with variability included in the model, in NPI no variability is explicitly

included in a model and there are clearly no parameters to be estimated.

The concepts and ideas presented in this paper can be generalized to classification into more than three

groups, but the computation of NPI lower and upper ROC hypersurfaces, in line with Section 4, will require

numerical optimisations that will quickly become complicated for larger data sets with substantial overlap

between the observations from different groups. Development of NPI-based methods for diagnostic accuracy

with explicit focus on m ≥ 2 future observations is an interesting topic for future research, where particularly

the strength of the inferences as function of m should be studied carefully, see Coolen and Coolen-Schrijner

(2007) for a similar study with focus on the role of m for comparison of groups of Bernoulli data.
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Appendix

Proof [Proof of Theorem 1]

The proof consists of two parts, the first part is to prove that the NPI lower and upper probabilities for the

event Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1, are given by equations (11) and (12), respectively. The second part is to

prove that the volumes under the NPI lower and upper ROC surfaces (envelopes) are actually given by (11)

and (12), respectively.

First, in order to prove the NPI lower and upper probabilities for the event Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1, we

need to work with the latent variable representation, i.e. to find the lower and upper probabilities for the event

X0
n0+1 < X1

n1+1 < X2
n2+1. Recall that, for the latent variable representation, we assume that category Cr is

represented by interval ICr, with the intervals IC1, . . . , ICK forming a partition of the real-line and logically

ordered (Section 2.2). We further assume that the nd observations are represented by xd
1 < . . . < xd

nd , of

which nd
r are in the interval ICr, r = 1, . . . ,K, these are also denoted by xd

r,i for d = 0, 1, 2 and i = 1, . . . , nd
r .

A further latent variable Xd
nd+1, for d = 0, 1, 2, on the real-line corresponds to the future observation Y d

nd+1,

so the event Y d
nd+1 ∈ Cr corresponds to the event Xd

nd+1 ∈ ICr. This allows A(nd) to be directly applied to

Xd
nd+1, and then transformed to inference on the categorical random quantity Y d

nd+1.

To derive the NPI lower (upper) probability for this event, the probability mass 1/(n0 + 1) for X0
n0+1, as

assigned to each interval in the partition of the real-line created by the observations x0
1 < . . . < x0

n0 , is put

at the right-end (left-end) point of each interval. Simultaneously, the probability mass 1/(n2 + 1) for X2
n2+1,

as assigned to each interval in the partition of the real-line created by the observations from x2
1 < . . . < x2

n2 ,

is put at the left-end (right-end) point of each interval. This leads to, for the lower

P ≥ 1

(n0 + 1)(n2 + 1)

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

P (x0
i < X1

n1+1 < x2
l−1|X1

n1+1 ∈ (x1
j−1, x

1
j ))P (X1

n1+1 ∈ (x1
j−1, x

1
j )) (17)

and for the upper

P ≤ 1

(n0 + 1)(n2 + 1)

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

P (x0
i−1 < X1

n1+1 < x2
l |X1

n1+1 ∈ (x1
j−1, x

1
j ))P (X1

n1+1 ∈ (x1
j−1, x

1
j )) (18)
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The data structure for the lower and upper probabilities, after this process, are visualized in Figures 4 and

5, respectively. The notation ar and br in these figures will be introduced later in the proof of theorem 2.

Cr Cr+1Cr−1

x2
r+1,1. . . x

2
r+1,n2

r+1

r r
x2
r,1. . . x

2
r,n2

r

r rx1
r−1,1. . . x

1
r−1,n1

r−1

r r
x1
r,1. . . x

1
r,n1

r

r r
x1
r+1,1. . . x

1
r+1,n1

r+1

r rx0
r−1,1. . . x

0
r−1,n0

r−1

r r
x0
r,1. . . x

0
r,n0

r

r r

ar−1 br−1 ar br

Figure 4: Ordinal data structure (Lower probability)

Cr Cr+1Cr−1

x0
r+1,1. . . x

0
r+1,n0

r+1

r r
x0
r,1. . . x

0
r,n0

r

r r
x1
r−1,1. . . x

1
r−1,n1

r−1

r r
x1
r,1. . . x

1
r,n1

r

r r
x1
r+1,1. . . x

1
r+1,n1

r+1

r r
x2
r−1,1. . . x

2
r−1,n2

r−1

r r
x2
r,1. . . x

2
r,n2

r

r r
ar−1 br−1 ar br

Figure 5: Ordinal data structure (Upper probability)

The question now is how to assign the probability mass 1/(n1 + 1) for X1
n1+1 within each interval

(x1
j−1, x

1
j ), j = 1, . . . , n1 + 1, for the NPI lower and upper probabilities. We use the notation x1

0 = −∞ and

x1
n1+1 =∞ for convenience.

For k1 < k2, the NPI lower probability in (11) is obtained by taking the NPI lower probability for

the event that X1
n1+1 will be in the interval (x0

k1,n0
k1

, x2
k2+1,1). This is can be achieved by counting the

number of intervals (x1
j−1, x

1
j ) that are totally included in (x0

k1,n0
k1

, x2
k2+1,1). The NPI upper probability

in (12) is obtained by taking the NPI upper probability for the event that X1
n1+1 will be in the interval

(x0
k1,n0

k1

, x2
k2+1,1). This is can be achieved by counting the number of intervals (x1

j−1, x
1
j ) that have non-

empty intersection with (x0
k1,n0

k1

, x2
k2+1,1).

In the second part, we need to prove that the volumes under the NPI lower and upper ROC surfaces are

actually given by (11) and (12), respectively. The volume under the NPI lower ROC surface consists of the

volumes of (K − 2)(K − 1)/2 rectangular prisms, where the volume of the rectangular prism V(k1,k2) (for
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k1 = 1, . . . ,K − 2, and k2 = k1 + 1, . . . ,K − 1) is

[p0(k1)− p0(k1 − 1)] p1(k1, k2)
[
p2(k2)− p2(k2 + 1)

]
=

n0
k1

n0 + 1

 1

n1 + 1

−1 +

k2∑
j=k1+1

n1
j

+  n2
k2+1

n2 + 1

Summing the volumes of these rectangular prisms gives the volume under the NPI lower ROC surface as in

equation (11), as follows.

V USL =

K−2∑
k1=1

K−1∑
k2=k1+1

[p0(k1)− p0(k1 − 1)] p1(k1, k2)
[
p2(k2)− p2(k2 + 1)

]

= A

K−2∑
k1=1

K−1∑
k2=k1+1

n0
k1

−1 +

k2∑
j=k1+1

n1
j

+ n2
k2+1

= A

K−2∑
k1=1

n0
k1

K−1∑
j=k1+1

K−1∑
k2=j

n1
jn

2
k2+1 −

K−2∑
k1=1

n0
k1

K−1∑
k2=k1+1

n2
k2+1


= A

K−2∑
i=1

n0
i

K−1∑
j=i+1

K∑
l=j+1

n1
jn

2
l −

K−2∑
i=1

n0
k1

K∑
l=i+2

n2
l


The volume under the NPI upper ROC surface consists of the volumes of K(K + 1)/2 rectangular prisms,

where the volume of the rectangular prism V(k1,k2) (for k1 = 1, . . . ,K, and k2 = k1, . . . ,K) is

[
p0(k1)− p0(k1 − 1)

]
p1(k1 − 1, k2) [p2(k2 − 1)− p2(k2)]

Summing the volumes of these rectangular prisms gives the volume under the NPI upper ROC surface as in

equation (12), as follows.

V US
U

=

K∑
k1=1

K∑
k2=k1

[
p0(k1)− p0(k1 − 1)

]
p1(k1 − 1, k2) [p2(k2 − 1)− p2(k2)]

This double summation can be obtained in 4 steps, as follows.

(1) The volume of the rectangular prism V(k1,k2) (for k1 = 2, . . . ,K, and k2 = k1, . . . ,K − 1) is

[
p0(k1)− p0(k1 − 1)

]
p1(k1 − 1, k2) [p2(k2 − 1)− p2(k2)] =

n0
k1

n0 + 1

 1

n1 + 1

1 +

k2∑
j=k1

n1
j

 n2
k2

n2 + 1
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Summing the volumes of these rectangular prisms gives,

A

 K∑
k1=2

K−1∑
k2=k1

k2∑
j=k1

n0
k1
n1
jn

2
k2

+

K∑
k1=2

K−1∑
k2=k1

n0
k1
n2
k2

 = A

 K∑
i=2

K−1∑
j=i

K−1∑
l=j

n0
in

1
jn

2
l +

K∑
i=2

K−1∑
l=i

n0
in

2
l

 (19)

(2) The volume of the (k − 1) rectangular prism V(k1,k2) (for k1 = 1, and k2 = k1, . . . ,K − 1) is

n0
1 + 1

n0 + 1
× p1(k1 − 1, k2) [p2(k2 − 1)− p2(k2)] =

n0
1 + 1

n0 + 1

 1

n1 + 1

1 +

k2∑
j=k1

n1
j

 n2
k2

n2 + 1

Summing the volumes of these rectangular prisms gives,

A(n0
1 + 1)

K−1∑
k2=1

k2∑
j=1

n1
jn

2
k2

+

K−1∑
k2=1

n2
k2

 = A(n0
1 + 1)

K−1∑
j=1

K−1∑
l=j

n1
jn

2
l +

K−1∑
l=1

n2
l

 (20)

(3) The volume of the (k − 1) rectangular prism V(k1,k2) (for k1 = 2, . . . ,K, and k2 = K) is

[
p0(k1)− p0(k1 − 1)

]
p1(k1 − 1, k2)× n2

K + 1

n2 + 1
=

n0
k1

n0 + 1

 1

n1 + 1

1 +

k2∑
j=k1

n1
j

 n2
K + 1

n2 + 1

Summing the volumes of these rectangular prisms gives,

A(n2
K + 1)

 K∑
k1=2

K∑
j=k1

n0
k1
n1
j +

K∑
k1=2

n0
k1

 = A(n2
K + 1)

 K∑
i=2

K∑
j=i

n0
in

1
j +

K∑
i=2

n0
i

 (21)

(4) The volume of the rectangular prism V(k1,k2) (for k1 = 1, and k2 = K) is

n0
1 + 1

n0 + 1
× p1(k1 − 1, k2)× n2

K + 1

n2 + 1
=

n0
1 + 1

n0 + 1

 1

n1 + 1

1 +

k2∑
j=1

n1
j

 n2
K + 1

n2 + 1

= A

(n0
1 + 1)(n2

K + 1)

K∑
j=1

n1
j + (n0

1 + 1)(n2
K + 1)

 (22)

Summing the volumes of these rectangular prisms in (19), (20), (21) and (22) gives the volume under the

NPI upper ROC surface in equation (12). �

Proof [Proof of Theorem 2]

For the first part of the proof, we use the same setting as in the proof of Theorem 1, with regard to how the

corresponding probability masses are assigned to the intervals for both X0
n0+1 and X2

n2+1. The question again

is how to assign the probability mass 1/(n1 + 1) for X1
n1+1 within each interval (x1

j−1, x
1
j ), j = 1, . . . , n1 + 1,
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for the NPI lower and upper probabilities. We use the notation x1
0 = −∞ and x1

n1+1 =∞ for convenience.

For the NPI lower probability, as we are dealing with ordinal data, it is easy to see that this opti-

mization problem can be solved in three main steps: (1) by putting the probability mass 1/(n1 + 1) in

a single point within (x1
r,j , x

1
r,j+1), for r = 1, 2, . . . ,K and j = 1, 2, . . . , (n1

r − 1); (2) for the first and

the last interval, (−∞, x1
1,1) and (x1

K,n1
K
,∞), the corresponding probability mass 1/(n1 + 1) is assigned

to a single point in the interval (x2
1,n2

1
, x1

1,1) and (x1
K,n1

K
, x0

K,1), respectively; (3) for the intervals between

every two adjoining categories, that is for the intervals (x1
r,n1

r
, x1

r+1,1), r = 1, 2, . . . ,K − 1, the probabil-

ity mass 1/(n1 + 1) should be assigned to a single point in (x1
r,n1

r
, x0

r,1) (represented as ar in Figure 4) if∑r−1
i=1

∑K
l=r+1 n

0
in

2
l <

∑r
i=1

∑K
l=r+2 n

0
in

2
l , otherwise the probability mass 1/(n1 + 1) should be assigned to a

single point in (x2
r+1,n2

r+1
, x1

r+1,1) (represented as br in Figure 4).

Once these optimization steps have been performed, we denote the points to which the probability masses

for X1
n1+1 in the intervals (x1

j−1, x
1
j ) are assigned by tjmin, j = 1, . . . , n1 + 1, then equation (17) becomes

P (X0
n0+1 < X1

n1+1 < X2
n2+1) = A

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

1{x0
i < tjmin < x2

l−1} (23)

To transform back to the inference on the categorical random quantities, Y 0
n0+1, Y

1
n1+1 and Y 2

n2+1, let n1
r be

the number of tjmin (j = 1, . . . , n1 + 1) in category Cr, that is
∑K

r=1 n
1
r = n1 + 1. Then it is easy to show

that the lower probability in equation (23) is equivalent to

V USE = P (Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1) = A

K−2∑
i=1

K−1∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l (24)

Now for the NPI upper probability, the optimization problem can be solved by the following three steps:

(1) by putting the probability mass 1/(n1 + 1) within (x1
r,j , x

1
r,j+1) in a single point, r = 1, 2, . . . ,K and j =

1, 2, . . . , (n1
r−1); (2) for the first and last intervals, (−∞, x1

1,1) and (x1
K,n1

K
,∞), the corresponding probability

mass 1/(n1+1) is assigned to a single point in the interval (x0
1,n0

1
, x1

1,1) and (x1
K,n1

K
, x2

K,1), respectively; (3) for

the intervals between every two adjoining categories, that is for the intervals (x1
r,n1

r
, x1

r+1,1), r = 1, 2, . . . ,K−1,

the probability mass 1/(n1 + 1) should be assigned to a single point in (x1
r,n1

r
, x2

r,1) (represented as ar in

Figure 5) if
∑r−1

i=1

∑K
l=r+1 n

0
in

2
l >

∑r
i=1

∑K
l=r+2 n

0
in

2
l , otherwise the probability mass 1/(n1 + 1) should be

assigned to a single point in (x0
r+1,n0

r+1
, x1

r+1,1) (represented as br in Figure 5).

Once these optimization steps have been performed, we denote the points to which the probability masses
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for X1
n1+1 in the intervals (x1

j−1, x
1
j ) are assigned by tjmax, j = 1, . . . , n1 + 1. Then equation (18) becomes

P (X0
n0+1 < X1

n1+1 < X2
n2+1) = A

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

1{x0
i−1 < tjmax < x2

l } (25)

To transform back to the inference on the categorical random quantities, Y 0
n0+1, Y

1
n1+1 and Y 2

n2+1, let n1
r be

the number of tjmax (j = 1, . . . , n1 + 1) in category Cr, that is
∑K

r=1 n
1
r = n1 + 1. Then it is easy to show

that the upper probability in equation (25) is equal to

V US
E

= P (Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1) = A


K∑
i=1

K∑
j=i

K∑
l=j

n0
in

1
jn

2
l +

K∑
i=1

K∑
j=i

n0
in

1
j +

K∑
j=1

K∑
l=j

n1
jn

2
l +

K∑
j=1

n1
j


(26)

For the second part, we need to prove that the volumes under the NPI lower and upper ROC surfaces are

actually given by (13) and (14), respectively. The proof is very similar to the proof of Theorem 1, by replacing

p1(k1, k2) and p1(k1 − 1, k2) everywhere, in the proof of Theorem 1, by p∗1(k1, k2) = 1
n1+1

∑k2

j=k1+1 n
1
j and

p∗∗1 (k1, k2) = 1
n1+1

∑k2

j=k1
n1
j , respectively.

�

Proof [Proof of Theorem 3]

For the first part of the proof, we use the same setting as in the proof of Theorem 1, with regard to how

the corresponding probability masses are assigned to the intervals for both X0
n0+1 and X2

n2+1. Regarding

X1
n1+1, for the NPI lower and upper probabilities, the probability mass 1/(n1 + 1) for X1

n1+1 within each

interval (x1
j−1, x

1
j ), j = 1, . . . , n1 + 1, is put at the left-end (or at the right-end) point of each interval. In

this proof we will put the probability mass 1/(n1 + 1) for X1
n1+1 at the left-end point (the same formulas

will be obtained if the probability masses are put at the right-end points instead). Thus equation (17) can

be written as

P (X0
n0+1 < X1

n1+1 < X2
n2+1) = A

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

1{x0
i < x1

j−1 < x2
l−1} (27)

Then it is easy to show that the lower probability in equation (27) is equal to

V USU = P (Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1) = A

K−2∑
i=1

K−1∑
j=i+1

K∑
l=j+1

n0
in

1
jn

2
l (28)

Similarity, equation (18) can be written as

P (X0
n0+1 < X1

n1+1 < X2
n2+1) = A

n0+1∑
i=1

n1+1∑
j=1

n2+1∑
l=1

1{x0
i−1 < x1

j−1 < x2
l } (29)
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and it is easily shown that the upper probability in equation (29) is equal to

V US
L

= P (Y 0
n0+1 < Y 1

n1+1 < Y 2
n2+1) = A


K∑
i=1

K∑
j=i

K∑
l=j

n0
in

1
jn

2
l +

K∑
i=1

K∑
j=i

n0
in

1
j +

K∑
j=1

K∑
l=j

n1
jn

2
l +

K∑
j=1

n1
j


(30)

For the second part, we need to prove that the volumes under the NPI lower and upper ROC surfaces are

actually given by (15) and (16), respectively. The proof is very similar to the proof of Theorem 1, by replacing

p1(k1, k2) and p1(k1−1, k2) everywhere, in the proof of Theorem 1, by p̃1(k1+1, k2) = (n1+1)−1
∑k2

j=k1+1 n
1
j

and p̃1(k1, k2) = (n1 + 1)−1
∑k2

j=k1
n1
j , respectively.

�
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