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Modified gravity theories are a popular alternative to dark energy as a possible explanation for the
observed accelerating cosmic expansion, and their cosmological tests are currently an active research field.
Studies in recent years have been increasingly focused on testing these theories in the nonlinear regime,
which is computationally demanding. Here we show that, under certain circumstances, a whole class of
theories can be ruled out by using background cosmology alone. This is possible because certain classes of
models (i) are fundamentally incapable of producing specific background expansion histories, and (ii) said
histories are incompatible with local gravity tests. As an example, we demonstrate that a popular class of
models, fðRÞ gravity, would not be viable if observations suggest even a slight deviation of the background
expansion history from that of the ΛCDM paradigm.
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I. INTRODUCTION

In the past decade or so, alternative theories of gravity as
a possible explanation for the accelerating expansion of the
Universe have received a great deal of attention [1,2]. Such
theories affect the dynamics of the expansion on cosmo-
logical scales, where general relativity (GR) is usually
assumed to break down, without invoking a mysterious
new matter species commonly known as dark energy.
Thanks to the development of linear and nonlinear com-
putational tools in recent years, this area has advanced
quickly, with the formation of large-scale structures in
many of the new models being fairly well understood by
now, and the study of baryonic and galaxy evolution in
them already initiated by some groups (e.g., [3–5]).
There are, however, a few challenges hindering further

development of the field. Many of the alternative theories,
such as fðRÞ gravity [6,7], indeed have GR as a limit,
which means that there is some point (typically charac-
terized by one or more model parameters) after which the
theory is no longer distinguishable from GR in practice. In
fðRÞ gravity, for example, Ref. [8] shows that a model
parameter, jfR0j (to be explained below), has to be smaller
than ∼10−7 for it to satisfy astrophysical constraints, thus
making the cosmology of the model very similar to the
general-relativistic prediction. We therefore face the sit-
uation that a cosmological model might never be ruled out
by cosmological observations. Adding to this is the fact that
studies of nonlinear structure formation in the remaining
allowed parameter space are increasingly more challenging
with ever higher resolution requirements, and systematics
and uncertainties start to dominate over model differences
from GR. Hence, it is beneficial to find other, hopefully
cleaner, ways of testing the models using cosmology.
One place we can look into, as we shall show below, is

background cosmology. This may sound counterintuitive:

after all, given the purpose of modified gravity theories,
fitting background cosmology seems to be the first test they
need to pass. However, many of these alternative theories
are known to have great flexibility—for example, the
fourth-order nature of the fðRÞ gravity equations means
that there is an infinite family of models which can exactly
reproduce the background expansion history of the ΛCDM
scenario [9], thus giving us the freedom to simply adopt this
standard background and focus on other effects (e.g., the
fifth force) on cosmic structure formation.
In this paper, we revisit the role of background cosmol-

ogy in constraining modified gravity theories. With fðRÞ
gravity as a working example, we will demonstrate that
the model is incapable of reproducing certain expansion
histories. Furthermore, we exemplify the restrictions on the
expansion history itself brought about by the findings
of Ref. [10], namely that for this model to be viable its
background cosmology has to be very close to the ΛCDM
prediction. This result is generic and model independent,
as it is not a direct constraint on fðRÞ model parameters.
Therefore, if future observations support a dark energy
equation-of-state parameter w that is different from −1 or
evolves in time, the whole fðRÞ class of theories as an
explanation to the cosmic acceleration could be ruled out.
This highlights the importance and potential benefits of
employing future background cosmological observations in
tests of gravity.
This paper is organized as follows. In Sec. II, we give a

brief overview of the theory behind fðRÞ gravity and the
relevant field equations. In Sec. III, we explain how there
are certain expansion histories that cannot be reproduced
whatever the functional form of fðRÞ, in spite of the
fourth-order nature of the theory. In Sec. IV, we show how
deviations from the ΛCDM expansion history would
require fðRÞ to take on a form that makes it difficult to
satisfy local gravity tests. We then give an example of the
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constraints that can be placed using these arguments in
Sec. V and present our conclusions in Sec. VI.

II. f ðRÞ GRAVITY

fðRÞ gravity is defined by the modified action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
ðRþ fðRÞÞ þ Lm

�
; ð1Þ

where G is Newton’s constant, g the determinant of
the metric tensor, R the Ricci scalar and Lm the matter
Lagrangian density. With the addition of the nonlinear
function fðRÞ, Einstein’s equation becomes

Gμν þ fRRμν þ
�
□fR −

f
2

�
gμν −∇μ∇νfR ¼ 8πGTμν; ð2Þ

in which gμν, Rμν, Gμν and Tμν are, respectively, the metric,
Ricci, Einstein and energy-momentum tensors,□≡∇α∇α,
and fR ≡ df=dR is a new dynamical degree of freedom
(a scalar field) of this theory. Greek indices μ; ν;… run
over 0,1,2,3.
Following [9], we define the dimensionless variables

E≡H2=H2
0 and y≡ f=H2

0, where H ≡ _a=a is the
Hubble expansion rate, a the cosmic scale factor, the dot
the derivative with respect to cosmic time, and the
subscript 0 denotes the present-day value of a quantity.
Using E and 0 ≡ d=dlna, the curvature scalar becomes
R ¼ 3H2

0ðE0 þ 4EÞ. For simplicity, we only consider the
matter-dominated era and the acceleration phase, so that
radiation can be neglected. The modified Friedmann
equation can then be cast into the form

y00 −
�
1þ E0

2E
þ E000 þ 4E00

E00 þ 4E0

�
y0 þ E00 þ 4E0

2E
y

¼ −
E00 þ 4E0

E
8πGρDE

H2
0

: ð3Þ

In writing the above, we have introduced a dark energy
fluid with density ρDEðaÞ, subject to a flat general-
relativistic reference model. In this way, the relationship
between HðaÞ and ρDEðaÞ is determined as in GR. We
define the dark energy equation-of-state parameter wðaÞ as
usual, so that ρDEðaÞ satisfies the standard conservation
equation

_ρDEðaÞ þ 3½1þ wðaÞ�HðaÞρDEðaÞ ¼ 0; ð4Þ

and the ΛCDM paradigm features wðaÞ ¼ −1 identically.
It is usually claimed that the fourth-order nature of the

derivatives appearing in the modified Einstein equation (2)
endows the theory with the freedom to produce arbitrary
background expansion histories associated with dark

energy—all this while remaining consistent with observa-
tional bounds and approaching ΛCDM as a limiting case at
both high and low redshifts. Conversely, as done in [9] and
the present work, one can solve Eq. (3) to obtain a suitable
family of functions capable of reproducing a given expan-
sion history and choose appropriate initial conditions to
pick out a particular functional form of fðRÞ.

III. BACKGROUND EXPANSION HISTORY

In this section, we first check the flexibility of fðRÞ
gravity to produce general expansion histories. For illus-
tration purposes we adopt a specific parameterization of the
dark energy equation-of-state parameter (or equivalently
the expansion history) [11],

wðaÞ ¼ w0 þ w1ð1 − aÞ; ð5Þ

in which w0, w1 are constants and ΛCDM is recovered with
w0 ¼ −1 and w1 ¼ 0. Although this formula does not cover
all possible expansion histories, wewill argue that the result
derived using it is generic.
The usual impression that fðRÞ gravity can reproduce

any expansion history hinges on the ability to tune the
functional form of fðRÞ, but the claim that this can always
be done is not necessarily true. For example, if R has an
extremum1 Rmin at some time, e.g., when the scale factor
a ¼ a�, then fðRÞ is fully determined by the expansion
history at a < a�: as soon as a crosses a�, R will start
retracing the values it took on before a�, and so will fðRÞ
and its derivatives. There is no guarantee that the prefixed
fðRÞ can still lead to the desired expansion history at
a > a�, and there is no freedom left to achieve this through
further tuning. In fact, such an extremum will cause Eq. (3)
to become singular, since R0 ¼ 0means E00 þ 4E0 ¼ 0, and
this will in turn produce inconsistencies in the evolution
of observable quantities2 across a ¼ a�. Therefore, if wðaÞ
causes R0 to cross zero at least once prior to a ¼ 1, then the
expansion history it describes cannot possibly be repro-
duced by fðRÞ gravity.
To clarify why this would cause problems in general,

we next (i) derive the functional form of fðRÞ that gives
the same expansion history as wðaÞ before a� and (ii) use
this form to calculate the evolution after a� and check its
consistency.
In order to do (i), we first fix ρDEðaÞ, E and its derivatives

with respect to N ¼ lnðaÞ. Solving Eq. (4) and defining

DðaÞ≡ exp½−3w1ð1 − aÞ�a−3ð1þw0þw1Þ ð6Þ

1We use the convention that R > 0 today.
2One can actually argue that this theoretical difficulty creates a

problem for fðRÞ gravity even if R0 ¼ 0 only in the finite future.
But in this paper we shall simply require that R0 ¼ 0 does not
happen at a < 1.
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allows us to rewrite the standard Friedmann equation as

EðaÞ ¼ Ωma−3 þ ð1 −ΩmÞDðaÞ: ð7Þ

Since RðNÞ is monotonic for N ≤ N� ¼ lnða�Þ, we can
then solve Eq. (3) numerically to obtain yðRÞ, or equiv-
alently fðRÞ. Integration is performed from zini ¼ 150—
which is deep in the matter era when radiation and dark
energy can be neglected for the purpose of this study—up
to a time slightly earlier than N�, where the singularity
occurs. To set the initial conditions yðNiniÞ and y0ðNiniÞ, we
note that in this era Eq. (3) can be simplified to

y00 þ 7

2
y0 −

3

2
y ¼ 9ð1 − ΩmÞDðaÞ: ð8Þ

The associated homogeneous equation has the solution
yh ¼ Aþyþ þ A−y−, where A� are constant coefficients
and y� ¼ expðr�NÞ, with r� ¼ ð−7� ffiffiffiffiffi

73
p Þ=4. The

decaying mode associated with r− < 0 is dropped here
so as to prevent fðRÞ from being unbounded at early
times. Meanwhile, the particular solution yp can be written
in the form yp ¼ uþyþ þ u−y−, with the derivatives of u�
solving the system

u0þyþ þ u0−y− ¼ 0;

u0þy0þ þ u0−y0− ¼ 9ð1 −ΩmÞDðaÞ ð9Þ

and leading to

u�ðaÞ ¼ � 9ð1 −ΩmÞ
rþ − r−

Z
a Dð ~aÞ
y�ð ~aÞ

d ~a
~a
: ð10Þ

The initial conditions at aini ¼ 1=ð1þ ziniÞ are derived as

yðNiniÞ ¼ AyþðNiniÞ þ u−ðNiniÞy−ðNiniÞ;
y0ðNiniÞ ¼ Ay0þðNiniÞ þ u−ðNiniÞy0−ðNiniÞ; ð11Þ

where we have defined A≡ Aþ þ uþðNiniÞ, and it should
be noted that the decaying mode y− has reemerged through
the form of the particular solution.
As a concrete example, consider the case with

w0 ¼ −1.2 and w1 ¼ 0, and let the present matter fractional
density be Ωm ¼ 0.308 [12]. It can be checked that R0 ∝
E00 þ 4E0 vanishes at a time N� ≈ −0.202 < 0. As shown in
the main panel of Fig. 1, integrating Eq. (3) yields a
diverging fRR due to the singularity at N�, even though
R; f; fR are all continuous at Rmin ¼ RðN�Þ.
Now, in order to do (ii), we cast Eq. (3) into a more

physical form:

fRðH2 þHH0Þ − 1

6
fðRÞ −H2fRRR0 ¼ 8πG

3
ρDEðaÞ: ð12Þ

As a grows beyond a�, R consecutively revisits the values it
took on at a < a�, allowing us to substitute the already-
fixed forms of f; fR; fRR into Eq. (12) and reconstruct3

ρDEðaÞ for a > a�. The resulting ΩDE ≡ 8πGρDE=3H2 as a
function of time is depicted in the inset of Fig. 1, wherein
we clearly spot an unphysical discontinuity arising from
the fact that the behavior of ΩDEðaÞ at a < a�, which was
obtained from the solution to Eq. (3) with equation of
state (5), is incompatible with the reconstruction at a > a�
built from the previously fixed form of fðRÞ.
This conclusion holds for general forms of wðaÞ: if the

desired expansion history has R0 crossing zero before
a ¼ 1, it cannot be produced by fðRÞ gravity. Later, we
will constrain ðw0; w1Þ by requiring that R0 ¼ 0 never
happens at a ≤ 1.

FIG. 1. Main panel: Dimensionless quantities fðRÞ=R, fR,
RfRR as functions of R=3H2

0, derived by requiring the expansion
history to match that of dark energy with wðaÞ ¼ −1.2 for
a < a� ≈ 0.817. The solid, dotted and dashed curves correspond
to A ¼ 0;þ1 and −1, respectively (cf. main text for definition of
A). The result depends on A, but the essential feature that fRR
diverges at Rmin ¼ Rða�Þ is generic. Inset: ΩDEðaÞ for dark
energy with wðaÞ ¼ −1.2 (top solid line) and from the recon-
structed fðRÞ (bottom right; solid, dotted and dashed lines
for A ¼ 0;þ1 and −1, respectively). Note that fðRÞ is fully
determined by the expansion history for a < a�, when both
approaches give the same result. However, the prefixed fðRÞ
gives rise to a reconstructed ΩDEðaÞ after a� that is incompatible
with the curve deduced from wðaÞ, even though one can make it
continuous at a� by tuning A (broken line at top right, which
corresponds to A ≈ −7.858).

3As a consistency check, H;H0; R0 assume the forms deter-
mined by wðaÞ.
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IV. CHAMELEON SCREENING

Chameleon screening [13] has been an active research
topic recently, and it is what enables fðRÞ gravity to
potentially evade stringent Solar System tests [14]. This
can be seen from the modified Einstein equation (2),
which shows that the theory goes back to GR in the limit
that fRðRÞ → 0 for a wide range of R values. This means
that f0 ¼ fRR0 will be small, and similarly will f00, so that
from Eq. (3) one has f ∝ ρDEðaÞ ∼ const approximately.
Therefore, for the theory to employ the chameleon mecha-
nism to evade local constraints, f should depend weakly on
R (jfRj ≪ 1), and so the expansion history must be close to
that of ΛCDM.4 The idea has previously been described in
[10], where the authors also demonstrate it using several
explicit forms of fðRÞ [see [15] for an example where,
using full numerical simulations, the screening is shown
not to work in fðRÞ gravity when wðaÞ deviates substan-
tially from −1]. Here we illustrate this from a different
angle—by finding stringent restrictions on the w0 − w1

parameterization based on the screening requirement.
To see why the Solar System constraints imply a small

jfRj, let us note that the efficiency of chameleon screening

can be neatly characterized by the so-called thin-shell
condition [13],

Δr
r

∼
jfR;in − fR;outj

ΦN
; ð13Þ

for a spherical body with a top-hat density profile. Here,
r is the radius of the body, ΦN the Newtonian potential it
creates at its surface, and fR;in, fR;out, respectively, the
values of the scalar field fR that minimize the effective
potential inside and outside the body. Δr ≤ r is the thick-
ness of a shell, the matter within which produces a fifth
force that has 1=3 of the strength of Newtonian gravity. To
be compatible with Solar System gravity tests, the fifth
force must be weak (decay rapidly with distance), which
requires Δr ≪ r. Generally, jfR;inj ≪ jfR;outj because jfRj
decreases with growing R, and so the above condition
translates into jfR;outj ≪ jΦN j with jΦN j≲ 10−4 for cos-
mological and astrophysical bodies. The strongest con-
straint to date comes from astrophysical considerations
and sets jfR0j≲ 10−7 [8], while more modest limits of
10−6 − 10−4 are deduced mainly from cosmology by
various groups (e.g., [16,17]).
Figure 2 shows fRðRÞ for a background expansion

history that matches that of a dark energy model with w0 ¼
−1 and jw1j ¼ 2 × 10−5, which is very close to ΛCDM; the
left panel corresponds to w1 > 0, and the right panel to
w1 < 0. The result depends qualitatively on A in both

FIG. 2. Examples of the reconstructed fR as a function of R for a background expansion history matching that of dark energy with
w0 ¼ −1 and jw1j ¼ 2 × 10−5. The evolution with a positive value of w1 is shown in the left panel, while that with negative w1 appears
on the right. The different curves correspond to different values of A (or equivalently fR0) andΩm ¼ 0.308 in all cases. Depending on A,
fR may display an extremum, vary by more than 2 × 10−6 in magnitude over the whole curvature range, or both.

4One can also see this directly from Eq. (2), in which the term
fgμν is what drives the accelerated expansion. Between z ¼ 0
and 1, R changes by ∼10 for a typical expansion history. For
jfRj < Oð10−5Þ required to pass Solar System gravity tests, f
changes by Δf=f∼fRΔR=f∼10−4 (where we assume jfj ∼ jR0j)
and so acts practically as a cosmological constant.
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situations, but there are two noticeable features they have in
common.
Firstly, fRðRÞ has an extremum for certain values of A,

namely a minimum if w1 > 0 or a maximum if w1 < 0.
This means that it is not possible to invert it to find RðfRÞ in
either case. Since fR plays the role of a scalar field whose
potential satisfies [10,18,19]

∂VðfRÞ
∂fR ¼ 1

3
½ð1 − fRÞRðfRÞ þ 2fðfRÞ − 8πGρm�; ð14Þ

it follows that the potential cannot be uniquely defined.
Whilst this does not necessarily mean that the theory itself
is ill defined (a question we do not attempt to tackle here),
it does make it difficult to envisage how the chameleon
mechanism could work to suppress deviations from GR
inside the Solar System.
Secondly, and more importantly, we see that even for

values of A such that fRðRÞ is monotonic—increasing
if w1 is positive but decreasing if it is negative—the field
magnitude jfRj generally changes by more than 2 × 10−6

from high curvature (R ≫ 3H2
0) to low curvature (R ∼ 3H2

0)
in this specific case. This strong variation of fR with R
prevents the chameleon mechanism from being efficient
enough to pass Solar System tests if we take the constraint
jfR0j ¼ jfRðR0Þj ≲ 10−6 at face value. Indeed, from Eq. (2)
we see that non-GR terms such as ∇2fR can be of the
same order as, or even larger than, the standard Newtonian
term ∇2Φ for jΦj ≲ 10−6. An additional concern is that a
decreasing fR, either monotonically or in certain ranges of
R (and time), would make fRR < 0 and lead to unstable
growth of fR perturbations [9,18].
As mentioned above, although our discussion is based on

a specific non-ΛCDM expansion history governed by the
equation of state (5), we can claim in general that in order
for the chameleon screening to be efficient in other
expansion histories, fR cannot change significantly from
high- to low-curvature regions, thus requiring fðRÞ to
remain nearly constant at low redshift. One can easily put
certain classes of fðRÞ models into this context; the most
popular example is that of [19], for which fR is monotonic
in R. It is known that in this model (n ¼ 1) one needs
jfR0j≲ 10−6 to pass Solar System tests, which in turn
hinges on the expansion history being extremely close to
that of ΛCDM (cf. Fig. 3 there). We note that other studies
have also pointed out that viable fðRÞ models must behave
very similarly to ΛCDM. In particular, Ref. [20] finds that
the model would otherwise admit no observationally viable
weak field limit.

V. RESULTS

We shall now constrain the parameter space ðw0; w1Þ by
requiring that R0 not cross zero at a ≤ 1 (cf. Sec. III), that
fR increase monotonically with R, and that jfRj not vary by

over 10−6 in the whole R range (cf. Sec. IV). This is not a
full calculation (which would involve numerical simula-
tions, e.g., [21–24], to properly model the environmental
effects on the screening), but rather a rough estimation to
show how close to ΛCDM the expansion history needs
to be.
The main panel of Fig. 3 shows the region of the w0 − w1

parameter space where RðaÞ has no extrema at a ≤ 1 and it
is possible to use fðRÞ gravity to reproduce the whole
expansion history (up to a ¼ 1). As expected, ΛCDM,
with ðw0; w1Þ ¼ ð−1; 0Þ, can be exactly mimicked by this
framework [25]. However, part of the parameter space
allowed by cosmic microwave background data and other
probes [12, Fig. 28] does not correspond to viable fðRÞ
models.
A much stronger constraint comes from the requirement

of passing Solar System tests [10], as shown in the inset
panel of Fig. 3. We find that neither w0 nor w1 can deviate
by more thanOð10−5Þ in magnitude from its ΛCDM value,
if the perturbation evolution of fR is to be stable and the
chameleon screening is to remain efficient.

VI. DISCUSSION AND CONCLUSIONS

The results indicate a special property of fðRÞ gravity,
namely that, for it to be viable, the expansion history cannot
be arbitrary but has to be very close to ΛCDM. More
precisely, parameter values ðw0; w1Þ in the dark energy
equation of state wðaÞ shown in Eq. (5) cannot differ from

FIG. 3. Main panel: Region of the w0 − w1 plane where RðaÞ
has no extrema at a ≤ 1, allowing the specified expansion
history to be consistently reproduced by fðRÞ gravity. Inset:
Region where the reconstructed fðRÞ model can pass Solar
System tests (see the main text for more details). Red crosses
correspond to ΛCDM.
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ð−1; 0Þ by more than Oð10−5Þ, if fðRÞ gravity is the
underlying gravity model. Likewise, any observational
evidence for a significant time evolution of wðaÞ would
rule out ΛCDM and the entire fðRÞ class of models
simultaneously.
For this reason, it is crucial to further improve the

observational constraints on wðaÞ. Most current limits do
not rule out wðaÞ ¼ −1, though in some cases it is not the
best fit [26]. Future galaxy surveys, such as Euclid [27] and
the Dark Energy Spectroscopic Instrument [28], have the
potential of reducing the uncertainty on w0 and w1 to
Δw0 ∼ 0.01 and Δw1 ∼ 0.05. This means that small devia-
tions—if they exist—from w ¼ −1 can be measured and in
turn be used to rule out fðRÞ gravity. One caveat, however,
is that these estimates often stem from the synergy of
different probes or even different surveys (e.g., including
Planck): if the probes rely on the growth rate of matter
perturbations, the derived constraints on w0, w1 depend on
the gravity model (which in most forecasts is taken to be
GR) and cannot be used universally. Geometric measures,
such as the baryon acoustic oscillation peak positions,
could be used in a more model-independent way, but on
their own the constraints would be weaker.
Although most research efforts so far have focused on

the goodness of fit of wðaÞ parameterizations, the dark
energy equation of state can indeed also be reconstructed
nonparametrically with the fewest possible assumptions.
Reference [26] contains such an example of reconstruction,
where it is found that a time-varying wðaÞ is slightly
preferred over the ΛCDM case. Such work can prove
invaluable in constraining theories like fðRÞ gravity.
From a more general point of view, fðRÞ gravity is a

subclass of the chameleon theory [13], so its screening
mechanism relies similarly on the scalar field staying
small from very high to low curvatures or equivalently
from very early times to today [29]. This means that the

scalar field will barely evolve and its potential energy,
which drives the cosmic acceleration, will stay nearly
constant in time: once more, we have a background
expansion history that has to be close to ΛCDM, as
generically described by [10].
To summarize, alternative theories of gravity have been

extensively studied in the past few years due to their
potential to explain the accelerated cosmic expansion.
Although such theories have rich phenomenology in terms
of structure formation and can therefore be constrained
using observations associated with the latter, we argue that
in certain cases the expansion history itself may be used as
a smoking gun to rule out classes of theories. This is based
on two observations: first, a theory could be intrinsically
incapable of producing certain background expansion
histories, by analogy with the observation that quintessence
models cannot produce a phantom (w < −1) background
evolution; second, a theory capable of producing a certain
expansion history might yield unexpected and unwanted
phenomena at small scales. We show that both possibilities
indeed happen in one of the most popular theories—fðRÞ
gravity or the chameleon theory—leading to the strong
constraint that the expansion history must be very close to
that of ΛCDM. Consequently, precise measurements of the
dark energy equation of state wðaÞ can be useful in ruling
out such theories in the future. In contrast, studies of
structure formation, which have been the main focus in
recent times, are more likely to result in reduced parameter
spaces rather than the exclusion of whole classes of models.
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