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Planes of satellite galaxies: when exceptions are the rule
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ABSTRACT
The detection of planar structures within the satellite systems of both the Milky Way (MW)
and Andromeda (M31) has been reported as being in stark contradiction to the predictions
of the standard cosmological model (� cold dark matter – �CDM). Given the ambiguity in
defining a planar configuration, it is unclear how to interpret the low incidence of the MW and
M31 planes in �CDM. We investigate the prevalence of satellite planes around galactic mass
haloes identified in high-resolution cosmological simulations. We find that planar structures
are very common, and that ∼10 per cent of �CDM haloes have even more prominent planes
than those present in the Local Group. While ubiquitous, the planes of satellite galaxies show
a large diversity in their properties. This precludes using one or two systems as small-scale
probes of cosmology, since a large sample of satellite systems is needed to obtain a good
measure of the object-to-object variation. This very diversity has been misinterpreted as a
discrepancy between the satellite planes observed in the Local Group and �CDM predictions.
In fact, ∼10 per cent of �CDM galactic haloes have planes of satellites that are as infrequent
as the MW and M31 planes. The look-elsewhere effect plays an important role in assessing
the detection significance of satellite planes and accounting for it leads to overestimating the
significance level by a factor of 30 and 100 for the MW and M31 systems, respectively.
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1 IN T RO D U C T I O N

While the Universe at large may be homogeneous and isotropic, on
galactic scale the distribution of galaxies is highly anisotropic. This
is most readily seen in the spatial and kinematical distribution of the
Local Group (LG) satellites. In the Milky Way (MW), the 11 ‘clas-
sical’ satellites define a thin plane (Lynden-Bell 1976) and some of
the fainter satellites, tidal streams and young globular clusters have
an anisotropic distribution reminiscent of this plane (Metz, Kroupa
& Jerjen 2009; Pawlowski, Pflamm-Altenburg & Kroupa 2012).
Many members of this ‘disc of satellites’ have a common rotation
direction and it has been claimed that the plane is a rotationally sta-
bilized structure (Metz, Kroupa & Libeskind 2008; Pawlowski &
Kroupa 2013). Similarly, the spatial distribution of satellites around
M31 is anisotropic (Koch & Grebel 2006; McConnachie & Irwin
2006), with 15 out of 27 satellites observed by the Pan-Andromeda
Archaeological Survey (PAndAS; McConnachie et al. 2009) located
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in a thin plane. Out of the 15 members of the plane, 13 of them share
the same sense of rotation (Ibata et al. 2013, hereafter Ibata13).

Anisotropies in the distribution of satellites are a clear prediction
of the � cold dark matter (�CDM) paradigm (Libeskind et al.
2005, 2009, 2011; Zentner et al. 2005; Deason et al. 2011; Wang,
Frenk & Cooper 2013; Sawala et al. 2014). Such flattened satellite
distributions, dubbed ‘great pancakes’, can arise from the infall of
satellites along the spine of filaments (Libeskind et al. 2005; Buck,
Macci’o & Dutton 2015), which in turn determine the preferential
points at which satellites enter the virial radius of the host halo
(Libeskind et al. 2011, 2014). The imprint of anisotropic accretion
is retained in the dynamics of satellites, with a significant population
corotating with the spin of the host halo (Libeskind et al. 2009;
Lovell et al. 2011; Cautun et al. 2015).

Although flattened satellite distributions are common in �CDM,
configurations similar to those of the MW and M31 are infrequent.
Wang et al. (2013) found that 5–10 per cent of satellite systems are
as flat as the MW’s 11 classical satellites. When it is required that
the velocities of at least 8 of the 11 satellites should point within the
narrow angle claimed by Pawlowski & Kroupa (2013) for the MW
satellites, this fraction decreases to ∼0.1 per cent (Pawlowski et al.
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2014). In the case of the M31 thin satellite plane, Bahl & Baumgardt
(2014) found that, while similar spatial distributions of satellites are
quite common in �CDM, there is only a 2 per cent chance that 13
out of the 15 members in the plane would share the same sense of
rotation. In similar studies, Ibata et al. (2014b) and Pawlowski et al.
(2014) found an even lower occurrence for the M31 plane, with only
∼0.1 per cent of �CDM systems having a similar configuration.

Extending the above analysis to galaxies outside the LG is con-
strained by observational limitations, but some additional tests can
be performed. Cautun et al. (2015) studied the flattening of the
satellite distribution around isolated central galaxies in the SDSS,
as viewed on the plane of the sky, finding good agreement between
data and cosmological simulations. Using a similar approach, Ibata
et al. (2015) claimed a higher degree of flattening in their data,
but their conclusions may be affected by systematics (see Cautun
et al. 2015, for a discussion of this study). The expected signature
of planar rotation has been investigated by considering the velocity
correlation of satellite pairs observed on opposite sides of the host
galaxy. Initially, using a sample of 23 systems, Ibata et al. (2014a)
reported a significant excess, when compared to �CDM predic-
tions. Cautun et al. (2015, see also Phillips et al. 2015) found that
this excess decreases rapidly as the sample size is increased and also
that the expected mirror image signal is absent for satellite pairs on
the same side of the host galaxy, suggesting that the claimed excess
is not robust.

In this study, we examine planar configurations of satellites iden-
tified in MW- and M31-like mock �CDM catalogues and compare
them to the planar structures observed in the LG. Among others,
we revisit the claims by Ibata et al. (2014b) and Pawlowski et al.
(2014) that the two planes of satellites found in the LG are incon-
sistent with �CDM predictions. Along with similar studies, those
works are based on two important axioms: that the majority of
planar configurations are the same, and that the planes detected
around the MW and M31 are representative of planar structures in
general. We will examine these two conjectures within the context
of �CDM predictions. Starting from high-resolution cosmological
simulations, we create mock catalogues that are used to identify
planar satellite configurations similar to those found in the LG. We
proceed to study the properties of the most prominent planes of
satellites and to compare those �CDM predictions with the two
planes of satellites observed in MW and M31.

This paper is organized as follows. In Section 2, we introduce the
cosmological simulations as well as the selection criteria used to
identify MW and M31 analogue systems; in Section 3, we present
an objective method to identify spatially and kinematically rare
planes; in Section 4, we identify planes of satellites for PAndAS-
like mocks; in Section 5, we analyse MW-like systems; we conclude
with a short discussion and summary in Section 6.

2 DATA AND SAMPLE SELECTION

This work makes use of two high-resolution �CDM DM-only cos-
mological simulations: the Millennium-II (MS-II; Boylan-Kolchin
et al. 2009) and the Copernicus Complexio (COCO; Hellwing et al.
2015) simulations. Instead of using the original MS-II, which was
run assuming a Wilkinson Microwave Anisotropy Probe (WMAP)-
1 cosmogony, we employ a modified version of the simulation
that has been rescaled to the WMAP-7 cosmology (�m = 0.272,
�� = 0.728, σ 8 = 0.81 and ns = 0.968) using the scaling algorithm
of Angulo & White (2010, see also Guo et al. 2013). The rescaled
MS-II corresponds to a simulation in a periodic box of side-length

104.3 h−1 Mpc containing 21603 DM particles, each particle having
a mass, mp = 8.50 × 106 h−1 M�.

COCO simulates a smaller, roughly spherical, cosmological vol-
ume, V = 2.25 × 104 (h−1 Mpc)3, equivalent to a cubic box of side-
length 28.2 h−1 Mpc, but at much higher resolution than MS-II, hav-
ing 23743 particles each with mass, mp = 1.14 × 105 h−1 M�, and
a gravitational softening length, ε = 0.23 h−1 kpc. This volume is
embedded within a larger periodic box, of side-length 70.4 h−1 Mpc,
that is resolved at a significantly lower resolution (see Hellwing et al.
2015, for more details). COCO uses the same WMAP-7 cosmolog-
ical parameters as the rescaled MS-II.

To construct mock catalogues, we use the semi-analytic galaxy
formation model of Guo et al. (2011) that has been implemented for
the rescaled version of MS-II in Guo et al. (2013) and for COCO in
Guo et al. (2015). The semi-analytic model has been calibrated to
reproduce the stellar mass, luminosity and autocorrelation functions
of low-redshift galaxies as inferred from SDSS. The abundance and
radial distribution of satellite galaxies predicted by the model are in
good agreement with SDSS data (Wang & White 2012; Wang et al.
2014), which makes the Guo et al. (2011) model a good test bed for
studying planar structures of satellites.

Due to the relatively low resolution of MS-II, many of the satellite
galaxies of interest for this work are found in haloes close to the
resolution limit of ∼109 h−1 M�, which raises questions about the
accuracy of the properties and orbits of these objects, especially after
infall into the main halo. To test for any potential systematic effects
arising from the limited resolution of MS-II, we compare with the
results of COCO. Any such effects are significantly reduced or even
absent in COCO, since it has 75 times higher mass resolution and
four times better spatial resolution.

We select counterparts to the two massive members of the
LG by identifying DM haloes with similar masses in the range
(1−3) × 1012 M�, which is consistent with the mass of the MW and
M31 halo (e.g. Fardal et al. 2013; Cautun et al. 2014a,b; González,
Kravtsov & Gnedin 2014; Piffl et al. 2014; Veljanoski et al. 2014,
for a compilation of other measurements and discussions of sys-
tematic effects see Courteau et al. 2014; Wang et al. 2015). This
results in 2849 MS-II haloes and in 63 COCO haloes in the re-
quired mass range. Compared to the previous studies that analysed
the incidence of the M31 plane of satellites (e.g. Bahl & Baumgardt
2014; Pawlowski et al. 2014), we adopted a broader mass range
to account for the large uncertainty in the mass measurements and
also for possible systematic effects. We checked that the exact mass
range used does not affect our final results.

3 ID E N T I F Y I N G P L A NA R C O N F I G U R AT I O N S
OF SATELLI TES

In this section, we introduce an objective method to identify, for
each halo, the rarest plane of satellites, both spatially and kinemat-
ically. The method works by identifying the subsample of satellites
that is the least likely to be obtained by chance. This is motivated by
recent observations that have shown that only a subset of the satellite
galaxies are potentially distributed along a plane. For example, out
of the 27 M31 satellites in the PAndAS footprint, a significant plane
is found for 15 of them (Ibata13), while the entire population is no
more planar than would be expected for an isotropic distribution of
equal size (Conn et al. 2013). Tully et al. (2015) found that the Cen-
taurus A Group shows evidence for two planes of galaxies, which,
between them, contain 27 out of the 29 members with known dis-
tances. Even for the MW, while the 11 classical satellites are found
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Figure 1. Illustration of the procedure to identify planes of satellites. The panels show the same system, with the small open symbols corresponding to
satellites identified around a central galaxy (large symbol in the centre). We take every subsample of any given number of satellites and compute the plane
corresponding to that configuration. The panels shows three candidate configurations with Nsat = 7, 11 and 15 members (red filled symbols) out of a maximum
of Nmax = 20 satellites. The dashed line corresponds to the best-fitting plane and the two dotted lines show the thickness of the plane, r⊥ (see equation 1).
To determine which configuration stands out the most, we compute the plane prominence, P . It specifies that the plane has a probability of one in P to be a
statistical fluctuation, e.g. plane 2 corresponds to one chance in 660 to be caused by a fluctuation. Out of the three, the rarest or most prominent plane is number
2 since it has the largest prominence.

on a plane, only 8 have orbital poles in a narrow angle indicating a
possibly long lived planar structure (Pawlowski & Kroupa 2013).

Previous methods of identifying planar configurations have been
based on first examining the data and only in a second step defining
an approach for selecting planes, resulting in a selection method that
is both subjective and a posteriori. For example, the 15 members
of the M31 plane have been found by noticing that, when increas-
ing the number of satellites associated with a plane, the best-fitting
plane hardly changes and that the thickness of the plane increases
only slowly. If one considers more than 15 satellites, this then leads
to a larger change in the thickness of the best-fitting plane and in its
direction (Ibata13). Applying such a method to a large sample of
systems is undesirable, since it implies choosing at least two thresh-
old parameters: the maximum allowed changes in the thickness of
a plane and in its direction when adding an extra valid plane mem-
ber. There are no a priori well-motivated values for those threshold
parameters. In addition, the two thresholds should likely depend on
the radial distribution of satellites, since more radially concentrated
distributions will likely have thinner planes. While other methods
of identifying planar distributions have been proposed (e.g. Conn
et al. 2013; Gillet et al. 2015), they all involve one or more subjec-
tive parameters. In contrast, the method we present here does not
involve any such parameters and, in addition, it naturally takes into
account the radial distribution of satellites in each system.

3.1 Spatial planes

We start by introducing a method for identifying the most prominent
spatial plane. When comparing planes that contain the same number
of satellites, the one that stands out the most is the thinnest plane.
Difficulties arise when we have to compare planes with two different
numbers of members, since it is not trivial to decide which one
stands out more. In a nutshell, we identify all possible subsamples
of satellites, out of a total sample of Nmax satellites, and, of those,
we select the one configuration that is the least likely to be caused
by statistical fluctuations. This is illustrated in Fig. 1.

In a first step, we identify the satellite subsets that are of interest
for our study. We do so using the approach detailed in Appendix A1.
For each such subsample, we find the best-fitting plane, which is the

plane that minimizes the root mean square distance of the satellites
from it. For this, we define the plane thickness, r⊥, as

r⊥ =
√∑Nsat

i=1

(
nplane · xi

)2

Nsat
, (1)

where Nsat is the number of satellites in the subsample and nplane

denotes the normal to the plane. With xi , we denote the position
of each satellite in a coordinate system whose origin is the central
host galaxy. The plane thickness, r⊥, is in fact the dispersion in
the distance of the satellites from a plane that goes through the
central galaxy. The best-fitting plane is the one that minimizes
r⊥. The normal to this plane, nplane, is given by the eigenvector
corresponding to the lowest eigenvalue of the inertia tensor of its
members.

Each resulting plane is characterized in terms of its prominence,
P , such that, the larger the prominence, the least likely it is that the
plane is due to a chance alignment. For example, for plane i that
has Nsat; i members and a thickness, r⊥; i, the spatial prominence is
defined as

Pplane i
spatial = 1

p
(≤ r⊥; i | Nsat; i

) , (2)

where the denominator gives the probability of obtaining by chance
a configuration of Nsat; i satellites that is thinner than r⊥; i. This
probability is computed using 105 isotropic distributions of satellites
as outlined in Appendix A3. Since the radial distribution of satellites
has a strong effect on the thickness of the resulting planes, we
generate each isotropic realization to have the exact same radial
distribution as the system under study.

Now it is only natural to characterize the most prominent, or
rarest, plane as the one that is the least likely to be obtained by
chance. Using our notations, this can be written formally as

P rarest
spatial = max

all planes i

[
Pplane i

spatial

]
, (3)

which says that the rarest spatial plane is the one that has the largest
prominence. It is important to note that, within this approach, every
halo contains a rarest plane. Determining if this rarest plane is
statistically significant is a separate question that we will address in
Section 4.
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3.2 Spatial and 2D-kinematic planes

The observational data for the MW and M31 satellites contains both
positions and velocity information for these objects. It is natural
to try to incorporate this additional velocity information into the
detection of planar configurations of satellites. The M31 satellites
have only radial velocity measurements, so the full 3D velocities
are unknown. But since the M31 plane of satellites is almost parallel
to the line of sight, the radial velocities can be used to estimate the
sense of rotation of each satellite with respect to the best-fitting
plane. In the following, we describe how to select spatial + 2D-
kinematic planes, which are at the same time spatially thin and have
a large number of members that share the same sense of rotation.

Before continuing, it is important to discuss some potentially
misleading nomenclature used in previous studies. Satellites shar-
ing the same sense of rotation have been referred to as corotating
satellites (e.g. Ibata13; Bahl & Baumgardt 2014). This nomencla-
ture is confusing since corotation is normally used to denote a
rotation around a common axis. Thus, two satellites corotate if their
orbital poles are very close together. In the absence of 3D velocities,
we only know that, when projected on the best-fitting plane, 13 out
of the 15 satellites rotate in the same sense, either clockwise or
counter-clockwise.

In addition to the steps described in Section 3.1, for each satel-
lite subset we also determine the number of members that share the
same sense of rotation relative to the best-fitting plane. To determine
the direction of rotation of each member, we take the scalar product
between the plane normal and the orbital momentum of the satellite.
A positive scalar product corresponds to clockwise rotation, while a
negative one corresponds to counter-clockwise rotation. The num-
ber of satellites sharing the same sense of rotation, Ns.s.r., is the
maximum of the number of objects rotating clockwise and those
rotating counter-clockwise. Following this step, we assign to each
plane a 2D-kinematic prominence, P2D−kin, which is defined as

Pplane i
2D−kin = 1

p
(≥ Ns.s.r.; i | Nsat; i

) , (4)

where the denominator gives the probability of obtaining by chance
a configuration of Nsat; i satellites in which at least Ns.s.r.; i of them
share the same sense of rotation. The procedure for computing this
probability is detailed in Appendix A3.

We define the rarest spatial + 2D-kinematic planes as the one
whose spatial and 2D kinematical distribution are the least consis-
tent with a statistical fluctuation. Thus,

P rarest
spatial + 2D−kin = max

allplanes i

[
Pplane i

spatial × Pplane i
2D−kin

]
, (5)

that is the plane that maximizes the product of the spatial and the
2D-kinematic prominences.

3.3 Spatial and 3D-kinematic planes

In the case of the MW, the 3D velocities of the 11 classical satel-
lites are known. This suggests that for the MW system one can
identify planes that are both spatially thin and show a large degree
of coherent 3D kinematics. For this, one needs to construct a cost
function that rewards systems in which most satellites have orbital
poles close together and penalizes systems in which the orbital
poles are isotropically distributed. For example, to study long-lived
planar configurations, the cost function would preferentially reward
systems in which the orbital momentum of its members is close
to parallel or antiparallel to the normal to the best-fitting plane.
For this work, we employ a variant of the cost function suggested

by Pawlowski & Kroupa (2013), since this one has been used in
other studies that claim a tension between the MW satellite plane
and �CDM predictions (e.g. Pawlowski et al. 2014). That func-
tion has been proposed after examining the orbital data of the MW
satellites, and as such it is an a posteriori definition of the rotation
characteristics of the Galactic satellite distribution. It may be that
other satellite planes in the Universe have different orbital struc-
tures, in which case that cost function may not be optimally suited
for characterizing their kinematical structure.

To compute the amount of kinematical information, we proceed
as follows. For each of the satellite subsets used in Section 3.1, we
determine the dispersion in the orbital poles, i.e. directions of the
orbital momenta, of its members as

�std =
√∑Nsat

i=1 arccos2
(
norbit · norbit; i

)
Nsat

, (6)

where norbit; i denotes the orbital momentum direction of each mem-
ber of the plane and norbit the mean orbital pole of all the Nsat mem-
bers found in the plane. Compared to our approach, Pawlowski et al.
(2014) applied equation (6) to only 8 out of the 11 satellites found
in the MW satellite plane. This was motivated by the observation
that only 8 out of the 11 members show close orbital poles.1 In
principle, we could follow a similar approach and take a subset of
the plane members that shows the most concentrated orbital poles.
This would amount to taking a subset of a subset, since our planes
are already subsets of satellites from a larger sample. We prefer not
to do so since it would add an additional layer of complexity to this
method and also a significantly higher computational cost.

After applying equation (6) to each plane, we define the
3D-kinematic prominence, P3D−kin, of plane i as

Pplane i
3D−kin = 1

p
(≤ �std; i | Nsat; i

) , (7)

where �std; i denotes the orbital dispersion of the plane. The denom-
inator gives the probability of obtaining by chance a configuration
of Nsat; i that have an orbital pole dispersion less than �std; i. The
procedure for computing this probability is given in Appendix A3.

Now we can define the prominence of the rarest spatial + 3D-
kinematic plane as

P rarest
spatial + 3D−kin = max

all planes i

[
Pplane i

spatial × Pplane i
3D−kin

]
, (8)

which is the plane of satellites whose spatial and 3D kinematic
distribution is the least likely to be a statistical fluctuation.

4 M3 1 - L I K E P L A N E S O F SAT E L L I T E S

Here, we investigate the characteristics of the rarest planes of satel-
lite galaxies as found in mock PAndAS-like catalogues. The goal is
to obtain a better understanding of the M31 plane of satellites and
to compare it to the �CDM predictions.

To create PAndAS-like mocks, we use the host halo sample de-
scribed in Section 2. For each of those hosts, we start by finding all
the satellites with stellar masses larger than 2.8 × 104 M� (as pro-
posed by Bahl & Baumgardt 2014) that are within a radial distance
of up to 500 kpc. To reproduce the observational geometry, we place

1 Incorporating such a posteriori considerations incurs the danger of design-
ing tests that are specifically matched to one particular system and that may
not be characteristic of the larger population.

MNRAS 452, 3838–3852 (2015)



3842 M. Cautun et al.

the observer at a distance of 780 kpc from the centre of the host halo,
which is equivalent to the MW-M31 distance (Conn et al. 2012).
For each satellite identified earlier, we compute its sky coordinates,
as seen by the observer. Out of all the satellites within the PAndAS
mask that are also more than 2.◦5 from the host (Ibata13), we keep
only the 27 objects that have the largest stellar masses. If there are
fewer than 27 satellites within the required geometry, we discard
that host halo. For each host, we place the line of sight along three
mutually perpendicular directions consisting of the simulation’s x-,
y- and z-axes. Due to the highly asymmetrical PAndAS volume,
this will result in somewhat different satellite distributions, hence
increasing the overall statistics. After applying this procedure, we
end up with 7350 mock satellite systems in MS-II and 180 in COCO.

4.1 The M31 system

In a first step, we apply our method to the actual PAndAS ob-
servations of M31. We do not use the same plane identification
method as Ibata13, so it is important to check what it is that our
approach identifies as the most prominent plane of the M31 system.
To account for observational errors, we generate 1000 Monte Carlo
realizations that sample the radial distance probability distribution
functions (PDFs; Conn et al. 2012, Table 1) and radial velocities
(Collins et al. 2013, Table 5) of the M31 satellites.

In the case of the M31 system, the observational data allow for
the identification of spatial and spatial + 2D-kinematic planes. For
each Monte Carlo realization of the M31 system, we identify the
rarest plane. Due to the large radial distance errors, the rarest plane
can vary between realizations. For example, the rarest spatial plane
contains 14 members in 72 per cent of the cases and 13 members
in 22 per cent of realizations. In the remaining 6 per cent of realiza-
tions, it contains even fewer satellites. For simplicity, we take the
rarest plane as the one that is identified as such in the largest number
of realizations. The rarest planar configurations of the M31 system
and its characteristics are shown in Table 1.

We find that the rarest spatial plane consists of 14 satellites
that are the same as the 15 members of the plane reported by
Ibata13, except And III. This is in agreement with the results of
Ibata13, who point out that choosing 13 or 14 satellites results in a
higher spatial significance, i.e. lower probability of being obtained
from an isotropic distribution, than for the full sample of 15. The
spatial + 2D-kinematic plane found by our approach is the same
as the one reported by Ibata13, even though our plane identification
method is different. Ibata13 reported the significance of the M31
plane as compared to an isotropic distribution, so it is possible
that they inadvertently choose the parameters of their method (see
Section 3) such that it maximizes the plane significance. If that was
the case, then both plane finding methods are basically the same.

4.2 The rarest M31-like planes

To better understand the M31 plane of satellites, we start by assess-
ing the chance of obtaining more prominent planar configurations
within �CDM. This is shown in Fig. 2, where we plot the cumu-
lative distribution function (CDF) of the prominence, P rarest

spatial, of the
rarest spatial planes. There is a very good match between the MS-II
and COCO haloes, which suggests that satellite planes found in
MS-II are not significantly affected by the limited resolution of the
simulation. We find that most haloes have prominent planar config-
urations, for example 37, 12 and 4 per cent of haloes have planes
with P rarest

spatial ≥ 102, 103 and 104, respectively.
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Figure 2. The CDF of the prominence, P rarest
spatial, of the rarest spatial plane

of satellites for mock PAndAS observations. The solid line gives the MS-II
results, while the dashed line shows results for COCO, which has much
higher resolution. The dotted curve gives the expectation for isotropic satel-
lite distributions. The vertical dashed line and shaded region show the promi-
nence and the 1σ error for M31’s spatial plane of satellites. We find that
12+6

−4 per cent of �CDM haloes have a more prominent planar configura-
tion than M31. The top x-axis shows the detection significance of each
plane computed using the isotropic CDF (dotted curve) and accounts for the
look-elsewhere effect.

The prominence is not simply the inverse of the probability for
isotropic satellite distributions for reasons that will be discussed
in Section 4.3. As such, the figure also shows the rarest planes
found in an isotropic distribution of satellites. To obtain these, for
each of the �CDM haloes, we generate an isotropic distribution
by choosing random polar and azimuthal angles, while keeping
the radial position of each satellite fixed. We then apply the same
plane identification procedure to each isotropic satellite distribution.
Unsurprisingly, we find a clear difference between the isotropic and
�CDM results, with the isotropic CDF shifted towards the left of the
�CDM CDF. This suggest that, compared to a uniform distribution,
there is more structure in the distribution of �CDM satellites, in
agreement with previous studies (e.g. Libeskind et al. 2005; Wang
et al. 2013; Pawlowski et al. 2014).

The corresponding M31 plane, entry (1) from Table 1, is shown
as the dashed vertical line. It has a prominence, P rarest

spatial = 1.0+1.1
−0.5 ×

103, which means that for an isotropic distribution there is only a 1
in 1000 chance of obtaining a thinner plane with 14 members. This
result was found by computing the prominence of the rarest plane
for each Monte Carlo realization of the M31 system. Following this,
we quote the median value and the 1σ interval, corresponding to
the 16th to 84th percentiles. We find that the spatial plane of the
M31 system is consistent with �CDM expectations, since there is
a 12+6

−4 per cent chance of finding an even more prominent plane
in �CDM. In fact, the M31 spatial plane is consistent, at 2.5σ ,
even with an isotropic distribution, since there are 1.2+1.0

−0.6 per cent
more extreme systems in this case (these results are summarized in
Table 1).

Fig. 3 shows the prominence of the rarest spatial + 2D-kinematic
planes. The general conclusions are the same as for the previous fig-
ure: we find a very good match between the MS-II and the COCO
results; and �CDM satellite distributions have more prominent
planes than isotropic distributions. The bumpy aspect of the CDF
curves for the MS-II and the isotropic case reflects the discrete na-
ture of the 2D-kinematical test, since the number of plane members

Figure 3. As Fig. 2, but for the prominence, P rarest
spatial + 2D−kin, of the rarest

spatial + 2D-kinematic plane of satellites. This case corresponds to the M31
plane identified by Ibata13. For this test, 8.8+2.8

−1.8 per cent of �CDM hosts
have a more prominent plane than M31.

sharing the same sense of rotation always takes integer values. For
this test, the corresponding M31 plane, entry (2) from Table 1, which
is the one identified by Ibata13, is characterized by a prominence,
P rarest

spatial + 2D−kin = 3.4+2.8
−1.6 × 104. There are 8.8+2.8

−1.8 per cent �CDM
haloes with more prominent planes suggesting that the M31 plane
of satellites is in agreement with �CDM predictions.

4.3 The detection significance of a plane

We now discuss the detection significance of a plane of satellites,
i.e. the probability that a plane is due to a statistical fluctuation.
For this, we need to take into account the ‘look-elsewhere’ effect.
This is a phenomenon in statistics where an apparently statistically
significant observation may have actually arisen by chance because
of the large size of the parameter space to be searched. It represents
an important effect for cases where one does not have an a priori
model or prediction to where the signal should appear, and, hence,
when one needs to search for a signal in a large range. In such
cases, the significance calculation must take into account that a
high statistical fluctuation anywhere in that range could also be
considered as a signal (e.g. see Gross & Vitells 2010, for a more
rigorous discussion). The effect is particularly relevant in particle
physics, and, in general, in any field in which one searches for
uncommon events.

The look-elsewhere effect is important since we do not know a
priori what is the number of satellites that we expect to find in a
plane. In the case of PAndAS-like observations, there are 27 satel-
lites in each system, which means that the most prominent plane
can have anywhere between 3 and 27 members. To estimate the
significance of a plane, we need to compute the probability that a
statistical fluctuation generating such a prominent plane appeared
for any combination of 3, 4, . . . , 27 satellites – this is the marginal-
ized probability. This is different from the conditional probability
that has the number of satellites chosen as a prior and whose inverse
gives the prominence of a plane (e.g. equation 2). The marginalized
probability is the isotropic CDF shown in Figs 2 and 3. In other
words, the probability that a plane is a statistical fluctuation is given
by the fraction of isotropic realizations that have a more prominent
plane. Using this, we compute the significance of each plane, which
is shown as the top x-axis of Figs 2 and 3, with the tick marks
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Figure 4. The trial factor for the look-elsewhere effect as a function of
the prominence of the rarest plane. The ratio, trial factor/P rarest, gives the
marginalized probability of obtaining by chance (i.e. in an isotropic distri-
bution) a plane with prominence, P rarest. The regions of interest are roughly
P rarest

spatial ≥ 10 and P rarest
spatial + 2D−kin ≥ 100 corresponding to the intervals in

Figs 2 and 3 where the CDF is different from unity.

spaced at 0.2σ intervals. The significance is expressed in multiples
of the standard deviation, σ , of a normal distribution. Note that the
one-to-one map between the prominence (bottom x-axis) and the
significance level (top x-axis) differs between the two figures.

Some previous studies have incorrectly referred to the conditional
probability as the detection significance of planes of satellites (e.g.
Kroupa, Theis & Boily 2005, Ibata13). To better emphasize the
difference between the two, we introduce the concept of trial fac-
tor (e.g. see Gross & Vitells 2010). This is the ratio between the
marginalized and the conditional probability to obtain a statistical
fluctuation with prominence, P . The former corresponds to the ac-
tual detection significance and is given by the CDF of an isotropic
distribution. The latter corresponds toP−1 since this is the definition
of a plane’s prominence (e.g. equation 2). Thus,

trial factor = CDFisotropic(≥ P rarest)

(P rarest)−1

= P rarest CDFisotropic(≥ P rarest) . (9)

For example, the M31 spatial + 2D-kinematic plane has a trial
factor of 115 (see entry (2) in Table 1 for numerical values). Thus,
the chance of it being a statistical fluctuation is 115 times higher
than naively expected if one considers only random planes with
15 members. Inevitably, this means that Ibata13 have overestimated
the detection significance of the M31 plane by more than two orders
of magnitude. For an isotropic distribution, there is a 0.34 per cent
probability of obtaining a more prominent plane, and, hence, the
M31 plane corresponds to a 2.9σ detection.

In Fig. 4, we show the trial factors for spatial and spatial + 2D-
kinematic planes. The regions of interest are roughly P rarest

spatial ≥ 10
and P rarest

spatial + 2D−kin ≥ 100 corresponding to the intervals in Figs 2
and 3 where the isotropic CDF is different from unity. In those in-
tervals, the trial factors increase only slowly with the plane promi-
nence, so, to a first approximation, the two plane types have a trial
factor of ∼10 and ∼100, respectively. The spatial + 2D-kinematic
planes have a higher trial factor due to the larger range used to
search for the most prominent plane, since, on top of the spatial
distribution, also the 2D kinematics are considered.

Figure 5. The characteristics of the rarest spatial + 2D-kinematic planes
of satellites that are at least as prominent as the M31 plane, i.e.
P rarest

spatial + 2D−kin ≥ 1.8 × 104. There are 852 such systems in MS-II. The
grid cells are coloured according to the number of systems with those prop-
erties. The three panels show the number of satellites sharing the same sense
of rotation, Ns.s.r. (top), the thickness, r⊥ (centre), and the radial extent, r‖
(bottom), of the best-fitting plane, as a function of the number of satellites
in the plane, Nsat. The large triangle shows the properties of the M31 plane.

4.4 The characteristics of rare planes

In Fig. 5, we show the characteristics of the rarest spatial + 2D-
kinematic planes that are at least as prominent as the M31 plane.
We describe the planes in terms of the number of members sharing
the same sense of rotation, the plane thickness and the radial extent
of the plane, r‖. This latter property characterizes the dispersion of
the satellites within the plane and it is calculated as the mean sum
of the squares of the distance projected on to the best-fitting plane.

MNRAS 452, 3838–3852 (2015)



Planes of satellite galaxies 3845

We choose these plane characteristics to be consistent with previous
studies that investigated the incidence of the MW and M31 plane of
satellites in term of these properties (e.g. Bahl & Baumgardt 2014;
Ibata et al. 2014b).

Fig. 5 shows that there is considerable variation among the prop-
erties of the most prominent planes, suggesting that each plane is
different. For example, the number of members sharing the same
sense of rotation, Ns.s.r., can take values between Nsat/2 to Nsat. The
top panel of the figure shows that the planes have Ns.s.r. values span-
ning the full allowed range, although there is a higher preference for
Ns.s.r. 
 Nsat, since that will result in a higher prominence. The be-
haviour in the middle panel is governed by two requirements. First,
to be prominent, planes with a small number of members need to
be very thin since such structures cannot have a high 2D-kinematic
prominence, which explains the distribution seen in the left-half of
the panel. Secondly, once the number of members is high enough,
∼16 in this case, the 2D-kinematic prominence can be by itself very
large, so that such planes do not necessarily need to be very thin.
This explains the large scatter in the r⊥ values seen in the right-half
of the middle panel. And lastly, the prominence of a plane does not
depend on r‖, which explains the large scatter in r‖ values seen in
the bottom panel of the figure.

Fig. 5 also shows the properties of the M31 plane of satellites
whose position is marked with a large triangle. The M31 plane is
within the scatter expected for �CDM planes, although it does stand
out as having an unusually large radial extent, r‖.

4.5 The incidence of rare planes

For each halo, we study the incidence of the rarest spatial + 2D-
kinematic plane among the distribution of satellites of all other
�CDM haloes. This is motivated by the studies of Ibata et al.
(2014b) and Pawlowski et al. (2014) that interpreted the low inci-
dence of the M31 plane as evidence for an inconsistency between
observed planes of satellites and �CDM predictions.

We define the incidence or frequency of a plane using the ap-
proach of Ibata et al. (2014b). Each plane of satellites is char-
acterized by: its number of members, Nsat; how many of them
share the same sense of rotation, Ns.s.r.; the thickness, r⊥; and
radial extent, r‖, of the plane. Then, the frequency or incidence,
f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.), of this plane is given by the frac-
tion of �CDM systems that have a similar plane. To describe the
procedure, we exemplify it for the case of two systems A and B.
We are interested in the frequency of the rarest plane of satellites of
halo A and we wish to find out if halo B has a similar plane. We take
all possible satellite configurations of system B that have NA

sat mem-
bers, which we find using the procedure described in Appendix A1.
If any of those configurations is similar to plane of A, i.e. rB

⊥ ≤ rA
⊥

and rB
‖ ≥ rA

‖ and NB
s.s.r. ≥ NA

s.s.r., then halo B has at least one planar
configuration similar to that of system A. We compute the frequency
for each MS-II and COCO halo, by taking the characteristics of the
rarest plane identified around each halo. Each such rarest plane is
compared to the satellites distribution of all the other PAndAS-like
mocks. This equates to comparing the rarest plane found in one halo
with all possible planes, not only the rarest ones, around all other
systems.

The frequency of the rarest spatial + 2D-kinematic planes of
satellites is shown in Fig. 6, where we plot the CDF of the frequency
for MS-II and COCO planes. We find that over half of �CDM haloes
have a plane with a frequency of 0.02 or lower, and one-tenth have
a frequency as low as 0.001. It is important to note that the low
frequency is not a consequence of our plane identification method.

Figure 6. The CDF of the incidence, f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.), of
similar planes to the rarest one in �CDM. For each �CDM halo, we take
the most prominent plane and find its frequency among all other �CDM
haloes (see the text for more details). Most planes have a low incidence (half
of systems have a frequency of 0.02 or lower) indicating that each �CDM
halo has a different planar configuration. The vertical dashed line and the
grey area show the incidence and the 1σ error for the M31 plane. We find
that 5.1+4.5

−0.9 per cent of �CDM systems have a lower frequency than the
M31 plane. Thus, the low incidence of the M31 plane is not in tension with
�CDM, as claimed by Pawlowski et al. (2014), but instead is consistent
with �CDM expectations.

For each halo, our method selects the plane that is the least likely to
be a statistical fluctuations, which is fully independent of the planes
found around other �CDM haloes. Thus, there is a large diversity of
planes of satellites. In other words, if we find a planar configuration
around one system, it does not tell us anything about the properties
of planes around other haloes.

We performed the same calculation for the M31 system. For
each Monte Carlo realization, we compute the incidence of the
rarest spatial + 2D-kinematic plane of that realization by comparing
with the PAndAS-like mocks. We found that the M31 plane has a
frequency of 6.8+7.2

−2.7 × 10−4 (1σ confidence interval; see Table 2),
which is in good agreement with the results of previous studies
(Ibata et al. 2014b; Pawlowski et al. 2014). This low incidence
of the M31 plane has been claimed by Ibata et al. (2014b) and
Pawlowski et al. (2014) to be a source of discrepancy with �CDM.
From Fig. 6, which shows the M31 frequency as a vertical dashed
line, we find that, within �CDM, 5.1+4.5

−0.9 per cent of systems have
planes with even lower frequencies. Thus, the low incidence of the
M31 plane does not pose a challenge to the current paradigm, in
fact, it is consistent with �CDM predictions.

Fig. 7 investigates which planes are the ones with the lowest in-
cidence. For this, we plot the incidence of each plane as a function
of its prominence, and find a strong anticorrelation between the
two, albeit with a large scatter. The vertical concentrations of points
correspond to planes that have a very high 2D-kinematic promi-
nence but only a very low spatial one, with the discrete nature of
the 2D-kinematic test leading to many planes having very similar
P rarest

spatial + 2D−kin values. So, on average, the more prominent a plane
is, the lower is its incidence among �CDM systems. This explains
why the M31 plane, which has a high prominence, also has a low
incidence. The M31 plane, shown in Fig. 7 as a square symbol
with error bars, is consistent with the object-to-object scatter in the
prominence-incidence relation. Compared to the median trend, the
M31 plane has an ∼5 times lower incidence for its prominence,
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Table 2. The incidence of the M31 and the MW plane of satellite galaxies.

ID Host f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.) f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≤ �std) Fraction of �CDM systems with lower frequencies (per cent)

(2) M31 6.8+7.2
−2.7 × 10−4 – 5.1+4.5

−0.9

(4) MW 4.6+2.8
−2.5 × 10−3 – 18+6

−8

(5) MW – 1.5+1.9
−1.2 × 10−3 11+6

−7

Notes. The table columns give: the plane ID from Table 1, the central galaxy (M31 or MW), the incidence, f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.) and
f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≤ �std), of similar planes among the MS-II haloes, and the fraction of �CDM haloes that have planes of satellites with even
lower frequencies.

Figure 7. The correlation between a plane’s prominence, P rarest
spatial + 2D−kin,

and its incidence, f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.), among other �CDM
haloes. The small dots correspond to the rarest plane found for each MS-II
halo. The solid line shows the median trend. The large symbol with error
bars shows the position of the M31 plane. The small down-pointing arrows
found at the bottom of the graph show upper limits corresponding to planes
that do not have another counterpart in MS-II.

which could be due to its unusually large radial extent (see bottom
panel of Fig. 5).

5 MW-LIKE PLANES O F SATELLITES

In this section, we investigate the MW system of satellites and how
it compares with other �CDM planar configurations. Compared to
the M31 analysis, there are three main differences: we use systems
with 11 instead of 27 satellites, the survey geometry is different
and, most importantly, we can perform additional tests since we
have proper motion data for the MW satellites. In this analysis, we
consider only the brightest 11 classical Galactic satellites since only
these objects have measured proper motions. A twelfth satellite,
Canes Venitici, has a similar absolute magnitude as the faintest of
the classical satellites (McConnachie 2012), but it does not have a
measured proper motion, so we do not include it in this study.

To create MW-like mocks, we consider the 11 satellites with the
largest stellar masses that are within a distance of 260 kpc from
the central galaxy (corresponding to Leo I which is the furthest
at 254 kpc) and that, at the same time, are outside an obscuration
region consisting of 33 per cent of the sky. The obscuration region
accounts for the Galactic zone of avoidance, where, due to large ex-
tinction and confusion by foreground stars, it is possible to have yet
undiscovered bright satellites. For this, we use the estimate of Will-
man et al. (2004) according to which the census of Galactic dwarf
galaxies may be 33 per cent incomplete. Yniguez et al. (2014) esti-
mates an even higher incompleteness, with most of those undetected

systems further than 100 kpc from the Galactic Centre. A satellite
is lying inside the obscuration region, and hence undetected, if its
latitude, θ , is in the range −θ crit ≤ θ ≤ θ crit, with θ crit = 19.◦5 (due
to an error, Wang et al. 2013 misquoted the critical angle as having
a value of 9.◦5, which would correspond to an obscuration region of
17 per cent). To generate mock observations, we take three viewing
angles for each simulated halo such that the mock north Galactic
pole corresponds to the x-, y- and z-axes of the simulation. This
procedure yields 8547 mock satellite systems for MS-II and 189 for
COCO.

5.1 The MW system

In a first step, we analyse the planar configurations found around
the MW. For each of the 11 Galactic satellites, we take their
radial distance and velocity, as well as the errors associated
with these quantities, from McConnachie (2012). To compute
the mean proper motion, we follow the approach of Pawlowski
& Kroupa (2013) and weigh the different measurements accord-
ing to their errors. We obtain the same mean proper motions
as they do, except for Draco, where the latest measurement,
(μα, μδ) = (0.177 ± 0.063, −0.221 ± 0.063) mas yr−1 (Pryor, Pi-
atek & Olszewski 2015), is significantly different from the
value given by Pawlowski & Kroupa (2013). Using this up-
dated measurement results in a weighted mean value (μα, μδ) =
(0.187 ± 0.063, −0.201 ± 0.063) mas yr−1. We also included an
additional proper motion measurement for Sagittarius of (μα, μδ) =
(−2.95 ± 0.21, −1.19 ± 0.16) mas yr−1 (Massari et al. 2013) that
resulted in a mean value of (μα, μδ) = (−2.711 ± 0.066, −1.043 ±
0.065) mas yr−1, nearly the same as the mean value used by
Pawlowski & Kroupa (2013).

We transform the satellite positions and velocities to a Carte-
sian coordinate system with the origin at the Galactic Centre. The
x-axis points from the Sun towards the Galactic Centre, the y-axis
points in the direction of Galactic rotation at the Sun’s position
and the z-axis points towards the North Galactic Pole. For this
transformation we adopt: the distance of the Sun from the Galac-
tic Centre d� = 8.29 ± 0.16 kpc, the circular velocity at the Sun’s
position, Vcirc = 239 ± 5 km s−1 (McMillan 2011), and the Sun’s
motion with respect to the local standard of rest, (U, V ,W ) =
(11.1 ± 0.8, 12.2 ± 0.5, 7.3 ± 0.4) km s−1 (Schönrich, Binney &
Dehnen 2010). To account for observational errors, we generate
1000 Monte Carlo realizations of the MW system of satellites. We
sample the satellite positions and proper motions from Gaussian
distributions centred on the most likely values of each quantity and
with dispersion equal to the uncertainties. Similarly, we also account
for the errors in d�, Vcirc and the local standard of rest. Following
this, we transform from heliocentric coordinates to Galactic ones,
with the result used as input for our plane detection method. We
summarize in Table 3 the mean positions, velocities and 1σ errors
associated with each Galactic satellite.
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Table 3. The positions and velocities of the 11 classical MW satellites with respect to the Galactic Center.

Name x(kpc) y(kpc) z(kpc) Vx (km s−1) Vy (km s−1) Vz(km s−1)

Sagittarius 17.1 ± 1.9 2.5 ± 0.2 − 6.5 ± 0.5 234 ± 7 19 ± 21 224 ± 21
LMC − 0.5 ± 0.3 − 41.8 ± 1.6 − 27.5 ± 1.1 − 42 ± 12 − 226 ± 13 234 ± 16
SMC 16.5 ± 1.6 − 38.5 ± 2.4 − 44.7 ± 2.8 2 ± 18 − 161 ± 26 149 ± 21
Draco − 4.4 ± 0.3 62.3 ± 4.9 43.2 ± 3.4 74 ± 24 43 ± 14 − 210 ± 19
Ursa Minor − 22.2 ± 0.6 52.0 ± 2.1 53.5 ± 2.1 7 ± 28 89 ± 20 − 186 ± 20
Sculptor − 5.2 ± 0.3 − 9.7 ± 0.7 − 85.3 ± 5.9 − 33 ± 44 188 ± 45 − 99 ± 6
Sextans − 36.6 ± 1.3 − 56.8 ± 2.6 57.8 ± 2.7 − 168 ± 160 114 ± 133 117 ± 127
Carina − 25.0 ± 1.0 − 95.8 ± 5.5 − 39.7 ± 2.3 − 74 ± 44 8 ± 19 40 ± 41
Fornax − 41.1 ± 2.7 − 50.8 ± 4.1 − 134 ± 11 − 38 ± 27 − 156 ± 42 113 ± 18
Leo II − 77.3 ± 4.1 − 58.3 ± 3.5 214 ± 13 102 ± 127 237 ± 156 117 ± 50
Leo I − 124 ± 7 − 119 ± 7 192 ± 12 − 167 ± 31 − 35 ± 33 96 ± 24

Notes. The x-axis points from the Sun towards the Galactic Centre, the y-axis points in the direction of Galactic rotation
at Sun’s position and the z-axis points towards the North Galactic Pole. Since this is a rotated coordinate system, the
uncertainties are correlated and are very anisotropic in the plane of the sky.

Figure 8. The CDF of the prominence, P rarest
spatial, of the rarest spatial plane

of satellites for mock MW observations. The vertical dashed line and shaded
region show the prominence and 1σ error for the MW plane of satellites,
with (12 ± 1) per cent of �CDM haloes having a more prominent plane.

As for the M31 case, for each Monte Carlo realization of the
MW system we compute the rarest spatial, spatial + 2D-kinematic
and spatial + 3D-kinematic planes. The results are summarized in
Table 1. Independently of the plane type, we find that the rarest
plane is the one that contains all the 11 Galactic satellites. This is
in agreement with previous studies that found that all the classical
satellites are members of the MW satellite plane (e.g. Kroupa et al.
2005).

5.2 The rarest MW-like planes

To put the MW plane of satellites into context, we proceed by iden-
tifying the rarest planes around mock MW-like observations. The
outcome is shown in Figs 8–10 that give the CDF of the prominence
of the rarest spatial, spatial + 2D-kinematic and spatial + 3D-
kinematic planes, respectively. The main conclusions are the same
as for the PAndAS mocks analysed in Section 4.2.

The look-elsewhere effect again plays an important role for the
MW-like mocks, with spatial planes having a trial factor ∼8, while
spatial + 2D-kinematic and spatial + 3D-kinematic planes have
a trial factor ∼30. The trial factors are roughly constant in the
region where the isotropic CDF is below unity, reminiscent of the
results in Fig. 4. For brevity, we do not show these results. The

Figure 9. As Fig. 8, but for the prominence, P rarest
spatial + 2D−kin, of the rarest

spatial + 2D-kinematic plane of satellites. In this case, (10 ± 5) per cent of
�CDM hosts have a more prominent plane than the MW.

Figure 10. As Fig. 8, but for the prominence, P rarest
spatial + 3D−kin, of the rarest

spatial + 3D-kinematic plane of satellites. For this test, 5.0+4.1
−2.7 per cent of

�CDM haloes have a more prominent plane than the MW.
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trial factors are lower in the case of the MW mocks than in the
case of M31, reflecting the narrower range used to search for planar
configurations in the MW (11 satellites compared to 27 for the
M31).

Figs 8–10 also indicate the prominence of the MW plane of
satellites as a dotted vertical line. The MW plane stands out the most
in terms of its spatial + 3D-kinematic prominence since in this case
it corresponds to a 2.8σ statistical fluctuation. Not accounting for
the look-elsewhere effect, would lead one to estimate the MW plane
as a 3.8σ detection. While the MW spatial + 3D-kinematic plane is
quite conspicuous, it is consistent with �CDM since 5.0+4.1

−2.7 per cent
of galactic-mass haloes have even more prominent planes.

As we emphasized in Section 3.3, one needs to be careful when
interpreting the results of the 3D-kinematic analysis since this test
has been designed a posteriori. In fact, one could easily come up with
other 3D kinematic tests that are physically better motivated, as we
discussed in Section 3.3. Given that observationally we have only
one satellite system with 3D velocities, it is impossible at present to
assess if the 3D-kinematic test that we have applied is generic and
thus appropriate to the whole population of satellite systems or if it
is matched to the particular details of the MW satellites. If the latter
is true, then the fraction of �CDM haloes with more prominent
planes does not convey any physically meaningful information.
Thus, there is currently not enough data to decide if one should
be concerned that only ∼5 per cent of �CDM haloes have a more
prominent spatial + 3D-kinematic plane than the MW one.

In Fig. 11, we plot the properties of the rarest spatial + 3D-
kinematic planes that are at least as prominent as the MW satellite
plane. In analogy to Section 4.5, we find that the planes are charac-
terized by a large diversity in orbital pole dispersion, thickness and
radial extent. A plane can be very prominent by being very thin, by
having a small orbital pole dispersion or by a combination of the
two, which explains the large scatter seen in the �std and r⊥ prop-
erties. Interestingly, we find that most of such planes (43 per cent)
have Nsat = 11, the same as the number of members in the MW plane
of satellites whose characteristics are shown as a large triangle.

5.3 The incidence of MW-like planes

We follow the same approach as in Section 4.5 and compute the in-
cidence of the rarest plane around each �CDM halo. The outcome
is presented in Fig. 12 which shows that most systems have planar
configurations that are very infrequent, with over half of the haloes
having a plane with an incidence of 0.03 or lower. The slight dis-
agreement between the MS-II and the COCO results is consistent
with the scatter expected for the much smaller sample of COCO
systems. This appears as a systematic shift due to the correlations
between points in the CDF. For this test, the MW plane of satellites
has a frequency of 4.6+2.8

−2.5 × 10−3 (vertical dashed line in Fig. 12)
that is consistent with �CDM expectations, since 18+6

−8 per cent of
haloes have an even lower incidence.

Since for the Galactic satellites we have full kinematical data,
we can define a new incidence, f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≤ �std),
that includes the 3D kinematics. This is similar to the incidence
introduced in Section 4.5, except that now we compare �std between
different planes instead of Ns.s.r.. The CDF of this new frequency is
shown in Fig. 13. Compared to Fig. 12, the outcome is very similar
except for a slight shift in the CDF towards the left, i.e. towards
lower frequencies.

The new statistics indicates that the MW plane of satellites has
an incidence of 1.5+1.9

−1.2 × 10−3, as shown by the vertical dashed line
in Fig. 13. This value agrees with the result of Pawlowski et al.

Figure 11. The characteristics of the rarest planes of satellites that are
at least as prominent as the MW plane of satellites, i.e. P rarest

spatial + 3D−kin ≥
2.3 × 104. There are 778 such systems. The grid cells are coloured according
to the number of systems with those properties. The three panels show the
orbital pole dispersion, �std (top), the thickness, r⊥ (centre), and the radial
extent of the plane, r‖ (bottom), as a function of the number of satellites in
the plane, Nsat. The large triangle shows the corresponding characteristics
of the MW plane of satellites.

(2014, entry 12 of their Table 5), whose test is very similar to ours,
except that those authors considered the orbital pole dispersion of
only 8 out of 11 satellites. Pawlowski et al. (2014) claimed that
this low incidence of the MW plane of satellites is indicative of
a shortcoming of the �CDM paradigm. Instead, we find that the
low incidence indicates that planes of satellites are very diverse.
The distribution of satellites around the MW agrees with �CDM
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Figure 12. The CDF of the incidence, f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≥ Ns.s.r.),
of finding similar planes in �CDM. As in the M31 case, this illustrates the
diversity of planar configurations found in MW-like mocks. The MS-II and
COCO results are consistent with the scatter expected due the low number of
COCO haloes. The vertical dashed line and the grey area show the incidence
and the 1σ error for the MW plane of satellites. We find that 18+6

−8 per cent
of �CDM systems have an even lower frequency than the MW plane.

Figure 13. As Fig. 12, but for the incidence,
f�CDM(Nsat, ≤ r⊥, ≥ r‖, ≤ �std). In this case, we compare the or-
bital pole dispersion, �std, between different planes and not the number of
satellites sharing the same sense of rotation, Ns.s.r., as in Fig. 12. We find
that 11+6

−7 per cent of �CDM systems have an even lower incidence than
the MW plane. Thus, the low incidence of the MW plane is not a symptom
of discrepancy with �CDM, as claimed by Pawlowski et al. (2014).

predictions since 11+6
−7 per cent of similar mass haloes have an even

lower frequency.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have investigated the prevalence and properties of
planar configurations of satellites around galactic mass haloes. Us-
ing two very high-resolution cosmological simulations, MS-II and
COCO, we have built mock galaxy catalogues corresponding to the
satellite distributions around the MW and M31. MW-like mocks
consist of the most massive 11 satellites found outside an assumed
zone of avoidance, mimicking the observations of the 11 classi-
cal Galactic satellites. M31-like mocks are modelled according to
the PAndAS footprint and consist of the most massive 27 satel-

lites found within that region, corresponding to the M31 satellites
observed by PAndAS.

We identify the most prominent planar configuration as the sub-
sample of satellites whose spatial and kinematical distribution is
the least likely to be a statistical fluctuation. Applying our ap-
proach to the MW and M31 observations results in the same planar
distributions as determined by Kroupa et al. (2005) and Ibata13,
respectively, even though those studies used different identification
methods. The good agreement is possibly due to a posteriori selec-
tion bias, since those authors may have inadvertently tuned their
methods to maximize the significance of the detection. This would
result in all the methods converging to the same planes.

We have found that planar configurations of satellites are very
common around �CDM haloes, and, moreover, approximately 5
and 9 per cent of haloes have even more prominent planes than
those found in the MW and M31, respectively (see Table 1, and
Figs 3 and 10). The look-elsewhere effect is crucial in assessing the
detection significance of a planar distribution, i.e. in estimating the
probability of obtaining such a structure in an isotropic distribution
(Section 4.3). By neglecting this effect, one can easily overestimate
the significance level by factors of ∼30 and ∼100 for the MW
and M31 planes, respectively. For example, while the M31 plane
was originally reported to have a 99.998 per cent significance (4.3σ

detection; Ibata13), accounting for the look-elsewhere effect results
in a more modest 99.7 per cent significance (2.9σ detection).

While ubiquitous, the planes of satellites show a large diversity in
characteristics, e.g. in the number of members, the plane thickness
and radial extent, as well as the kinematical structure (see Figs 5
and 11). Most planar configurations are distinct, which has two
major implications. First, the notion of a representative plane of
satellites does not exist since one cannot find a majority of �CDM
haloes that have the same planar configuration. Secondly, the large
diversity of planes precludes using one or two observed systems
for testing the cosmological paradigm on small scales. For such a
test, a large sample of satellite systems would be needed to obtain
a statistical measure of the system-to-system variation.

The diversity of the planes of satellites is also the root cause
behind previous claims that planes found in observations are in-
consistent with �CDM (Ibata et al. 2014b; Pawlowski et al. 2014).
These authors computed the incidence of the MW and M31 plane
of satellites to find out that roughly only 1 out of 1000 �CDM
systems have such planes. To understand this result, we have com-
puted the incidence of the rarest plane of satellites identified around
each �CDM halo. We have found that the majority of planar con-
figurations have a very low incidence and that 11 and 5 per cent of
�CDM planes have even lower incidence than that of the planes of
satellite in the MW and M31, respectively (see Table 2, and Figs 6
and 13). The low incidence is a manifestation of the diversity of
satellite planes and, thus, contrary to the claim by Pawlowski et al.
(2014), it does not rule out the �CDM paradigm.

While the planes of satellites around the MW and M31 are con-
sistent with �CDM, both systems fall in the 10 per cent tail of
the distribution. If both planes were independent of each other, one
might argue that there is only a ∼1 per cent chance that both systems
are randomly drawn from a �CDM distribution. This interpretation
is problematic for at least two reasons. First, both the MW and
the M31 are located in the same large-scale environment, which
in turn determines the preferential directions of satellite accretion
(Libeskind et al. 2014, 2015). Thus, if the environment is espe-
cially conducive to the formation of prominent satellite planes, then
it may not be surprising that both systems host prominent planes.
Secondly, the tests used to assess the prominence of these planes
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were designed a posteriori, after investigating the observational
data. This is especially true for the definition of the orbital pole dis-
persion that has been motivated by examining the MW data. Such
an a posteriori approach incurs the danger of designing tests that
are specifically matched to the peculiarities of a particular system
and are not characteristic of the population as a whole.

Our analysis has shown that the planes of satellites identified in
the MW and M31 are consistent with �CDM predictions based
on high-resolution cosmological simulations. This agrees with the
results of Cautun et al. (2015), which compared the spatial and
kinematical distributions of satellites around a large sample of iso-
lated galaxies in SDSS to find agreement between observations and
theoretical predictions. Previous claims of an inconsistency with
�CDM are based on misinterpreting the low incidence of satel-
lite planes (e.g. Ibata et al. 2014b; Pawlowski et al. 2014) and on
non-robust detections (Ibata et al. 2014a, see Section 1 and Cautun
et al. 2015 for details). Thus, there is no convincing evidence for a
discrepancy between observed planes of satellites and the �CDM
predictions.
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S., Hoffman Y., 2015, ApJ, 800, 34
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A P P E N D I X A : PL A N E I D E N T I F I C AT I O N

Here, we present the practical implementation of the plane identifi-
cation procedure.

A1 Selecting subsets of satellites

We first describe how we identify the interesting subsets of satellites,
which, in the next step, are used to find the rarest planar configu-
rations. The simplest approach would be to take into account every
possible combination of Nsat satellites out of a maximum of Nmax

objects, with 3 ≤ Nsat ≤ Nmax. Planes with two or fewer objects
are not physically interesting since any two satellites will deter-
mine a plane of thickness r⊥ = 0. This naive approach, however,
would result in a very large number of combinations that need to be
considered, since for fixed Nsat the number of unique combinations
is

Nmax!

Nsat!(Nmax − Nsat)!
. (A1)

In the case of the M31 system, we have Nmax = 27 satellites, so
choosing Nsat = 14 would result in 2 × 107 subsets that need to be
considered. This analysis would have to be done for many thousands
of systems, and for each we would need to generate 105 isotropic
distributions. Such an approach is not feasible in practice.

To overcome the immense computational challenge described
above, we consider only configurations in which the plane members
are the closest satellites to the plane. Thus, no other galaxy can be
found closer to the plane than the furthest plane member. This is in
line with the plane definitions used in earlier studies (e.g. Bahl &
Baumgardt 2014; Gillet et al. 2015). We start by selecting a sample
of N planes centred on the host galaxy and characterized by the
normal vector, nplane. To obtain these planes, we generate normal
vectors that are uniformly distributed on half a sphere, since the
opposite hemisphere corresponds to identical planes flipped upside
down. For each such plane, we order the Nmax satellites according
to their distance to the plane. The interesting subsets of satellites are
those made of the closest 3, 4, . . . , Nmax objects from each plane.

To make sure that we identify all possible satellite subsets, we
would like to have a very large number of random planes, N. In turn,
increasing N incurs a significantly larger computational cost and
ends up adding mostly duplicate subsets of satellites, which were
already identified for small values of N. We found the best compro-
mise to be N = 103, which is large enough to contain a significant
fraction of all possible subsets. Using N = 103, we find 93 per cent
(70 per cent) of the subsets we would identify using N = 104 for
Nmax = 11 (27), which corresponds to the total number of satellites
in the MW (M31) system. This means that for some systems we
are missing the satellite subset corresponding to the rarest plane.
In those cases, we end up identifying the second or the third rarest
planes as the most prominent planar configurations. Using a small
sample of around 200 �CDM haloes, we have checked that using
N = 104 instead of N = 103 brings only minor changes to the CDF
of the prominence, P rarest, of the rarest plane (e.g. Fig. 2) and to the
CDF of the frequency, f�CDM, of those planes (e.g. Fig. 6). Thus, any
missing subsets of satellites will not change our overall conclusion.

The subsets of satellites used to compute the frequency of the
rarest planes (Sections 4.5 and 5.3) were identified employing the
same procedure except that we used N = 105. That is, we used
105 random planes uniformly distributed on a hemisphere, which
is the same as the approach used by Bahl & Baumgardt (2014) and
subsequent studies.

A2 Generating isotropic distributions

Each isotropic realization is generated by picking random polar and
azimuthal angles2 for each satellite, while keeping constant the ra-
dial distance from the host galaxy.3 Thus, each isotropic realization
has the same radial distribution of satellites as the original system.
This point is crucial, since the radial distribution of satellites has a
strong effect on the thickness of the resulting planes. Radially con-
centrated satellite distributions result in thinner planes than more
radially extended ones. Thus, we need to generate new isotropic
realizations for each system of satellites.

When constructing the isotropic distributions, we also generate
random 3D velocities, which are used for computing the distribution
of orbital pole dispersions, �std. Since we are only interested in the
direction of the orbital momentum, the magnitude of the velocity is
not important. Thus, the velocities are generated by picking random
polar and azimuthal angles for each satellite, with the two angles
fully independent from the random polar and azimuthal angles used
to obtain the position of each satellite.

A3 The probability distribution of statistical fluctuations

We now describe how to estimate the probability that the spatial or
kinematical distribution of a set of Nsat satellites is the result of a
statistical fluctuation. This probability is computed using isotropic
distributions, which characterize the degree of planarity expected
from chance alignments and from the discreteness of the satellite
distribution.

The probability of obtaining by chance a plane of Nsat that is
thinner than r⊥ is given by

p (≤ r⊥ | Nsat) =
∫ r⊥

0
PDFisotropic

spatial; Nsat
(r ′

⊥) dr ′
⊥ , (A2)

where the integrand is the PDF of obtaining in an isotropic dis-
tribution planes with Nsat members and thickness, r ′

⊥. To compute
the PDF, for each halo we generate 105 isotropic realizations using
the procedure described in Appendix A2. For each such realization,
we find the thinnest plane with Nsat members. The corresponding
histogram over all realizations gives the PDF of r ′

⊥ values. The
resulting PDF, for the case of the M31 system (Nmax = 27 satel-
lites), is shown in Fig. A1. For clarity, we only give the planes
with Nsat = 8, 15 and 27 members. The figure also illustrates, in
an intuitive fashion, the meaning of equation (A2). We exemplify
this using a fictitious plane A that contains Nsat = 15 members and
whose thickness is shown with a vertical solid arrow. equation (A2)
corresponds to the shaded area to the left of the solid arrow.

The probability of obtaining by chance a configuration of Nsat

satellites in which at least Ns.s.r. members share the same sense
of rotation is given by the binomial distribution with a success
probability of 0.5. Thus,

p (≥ Ns.s.r. | Nsat) = 2
Nsat!

Ns.s.r.!(Nsat − Ns.s.r.)!
2Nsat , (A3)

where the first factor of 2 comes from the fact that we do not fix a
preferential sense of rotation, allowing both clockwise and counter-
clockwise rotations.

2 The cosine of the polar angle and the azimuthal angle are selected from a
uniform distribution spanning the interval [ − 1, 1] and [0, 2π], respectively.
3 Each random realization lies within the survey mask, which is PAndAS for
the M31 and a 19.◦5 obscuration angle for the MW. If a random point falls
outside the mask, we generate new random angles till the point is located
within the survey mask.
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Figure A1. The PDF of the plane thickness, r⊥, for isotropic satellite
distributions inside the PAndAS survey footprint. We show results for planar
configurations that contain Nsat = 8, 15 and 27 satellites out of a maximum
of Nmax = 27 satellites. The vertical arrow and shaded region illustrate the
probability that a fictitious plane A, which has Nsat = 15 and r⊥ = 17.5 kpc,
is due to a statistical fluctuation (see the text for details).

The probability of obtaining by chance a plane with Nsat members
that has an orbital pole dispersion less than �std is calculated as

p (≤ r⊥ | Nsat) =
∫ �std

0
PDFisotropic

3D−kin; Nsat
(�′

std) d�′
std . (A4)

The integrand gives the PDF of the orbital pole dispersion, �′
std, for

an isotropic distribution, which is estimated using 105 random re-
alizations, as for equation (A2). For each such isotropic realization,
we find the subsample of Nsat satellites that has the lowest orbital

Figure A2. The PDF of the angular dispersion of orbital poles, �std, for an
isotropic satellite distribution. We show planar configurations that contain
Nsat = 5, 8 and 11 satellites out of a maximum of Nmax = 11 satellites.
To obtain these results, we used the same survey footprint and number
of satellites as employed for the analysis of the MW satellite system in
Section 5.

pole dispersion. The histogram of the lowest �′
std values over all

realizations gives the PDF used in equation (A4). In Fig. A2, we
illustrate the outcome of such a calculation for the case of Nsat = 5,
8 and 11 out of a maximum satellite count, Nmax = 11.
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