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ABSTRACT 

This work investigates the practice of credit scoring and introduces the use of 

the Clustered Support Vector Machine (CSVM) for credit scorecard 

development.  This recently designed algorithm addresses some of the 

limitations noted in the literature that is associated with traditional nonlinear 

Support Vector Machine (SVM) based methods for classification.  

Specifically, it is well known that as historical credit scoring datasets get 

large, these nonlinear approaches while highly accurate become 

computationally expensive.  Accordingly, this study compares the CSVM with 

other nonlinear SVM based techniques and shows that the CSVM can achieve 

comparable levels of classification performance while remaining relatively 

cheap computationally.  
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1 INTRODUCTION 

 In recent years, credit risk assessment has attracted significant attention from 

managers at financial institutions around the world.  This increased interest has been in no 

small part caused by the weaknesses of existing risk management techniques that have been 

revealed by the recent financial crisis (Harris, 2013; Wang, Yan, & Zhang, 2011).  

Addressing these concerns, over past decades credit scoring has become increasingly 

important as financial institutions move away from the traditional manual approaches to this 

more advanced method, which entails the building of complex statistical models (Huang, 

Chen, & Wang, 2007; Zhou, Lai, & Yu, 2010).  

  Many of the statistical methods used to build credit scorecards are based on 

traditional classification techniques such as logistic regression or discriminant analysis.  

However, in recent times non-linear approaches
1
, such as the kernel support vector machine, 

have been applied to credit scoring.  These methods have helped to increase the accuracy and 

reliability of many credit scorecards (Bellotti & Crook, 2009; Yu, 2008).  Nevertheless, 

despite these advances credit analyst at financial institutions are pressed to continually pursue 

improvements in classifier performance in an attempt to mitigate the credit risk faced by their 

institutions.  However, many of the improvements in classifier performances remain 

unreported due to the proprietary nature of industry led credit scoring research which 

attempts to find more efficient and effective algorithms.  

 In the wider research community, the recent vintages of non-linear classifiers (e.g the 

kernel support vector machine) have received a lot of attention and have been critiqued for, 

inter alia, their large time complexities.  In fact the best-known time complexity for training 

a kernel based support vector machine is still quadratic (Bordes, Ertekin, Weston, & Bottou, 

                                                 
1
This has been applied because credit-scoring data is often not linearly separable.  



2005).  As a result, when applied to credit scoring substantial computational resources are 

consumed when training on reasonably sized real world datasets.  Accordingly, efforts to 

develop and apply new classifiers to credit scoring, which are capable of separating nonlinear 

data while remaining relatively inexpensive computationally, are well placed. 

 This paper investigates the suitability for credit scoring of a recently developed 

support vector machine based algorithm that has been proposed by Gu and Han (2013).  

Their clustered support vector machine has been shown to offer comparable performance to 

kernel based approaches while remaining cheap in terms of computational time.  

Furthermore, this study makes some novel adjustments to their implementation and explores 

the use of radius basis function (RBF) kernels in addition to the linear kernel posited by Gu 

and Han.   

 The remainder of this paper is presented as follows.  Section 2 outlines a brief review 

of the literature concerning the field of credit scoring and sets the stage for the proposed 

CVSM model for credit scoring that is presented in Section 3.  The details of the historic 

clients’ loan dataset and modeling method are highlighted in Section 4.  Section 5 presents 

the study results, and Section 6 discusses the findings, presents conclusions, and outlines 

possible directions for future research. 

2 BACKGROUND 
2.1 Overview 

 Credit scoring has been critical in permitting the exceptional growth in consumer 

credit over the last decades.  Indeed without accurate, automated credit risk assessment tools, 

lenders could not have expanded their balance sheets effectively over this time.  This section 

presents a brief review of the relevant literature that has emerged in this space. 



2.2 What is Credit Scoring? 

 Credit scoring can be viewed as a method of measuring the risk attached to a potential 

customer, by analyzing their data to determine the likelihood that the prospective borrower 

will default on a loan (Abdou & Pointon, 2011).  According to Hand and Jacka (1998), 

Eisenbeis (1978) and Hand et al. (2005) credit scoring can also be described as the statistical 

technique employed to convert data into rules that can be used to guide credit granting 

decisions.  As a result, it represents a critical process in a firm's credit management toolkit.  

Durand (1941) posited that the procedure includes collecting, analyzing and classifying 

different credit elements and variables in order to make credit granting decisions.  He noted 

that to classify a firm’s customers, the objective of the credit evaluation process, is to reduce 

current and expected risk of a customer being “bad” for credit.  Thus credit scoring is an 

important technology for banks and other financial institutions as they seek to minimize risk.  

2.3 Problems Associated with Credit Scoring 

 Crook (1996) and Bailey (2004) posited that credit scorecards can be criticized due to 

the fact that they fail to include all variables that are informative of a potential client’s 

likelihood to default and this can lead to the problem of misclassification.  Also speaking to 

this issue, Baesens et al. (2003) noted that credit scoring is a notoriously difficult task as the 

data collected on and from past customers is often not easily separable.  This is in-part due to 

the nature of the credit assessment exercise, as there is an asynchrony of information between 

the applicant and the firm, as loan applicants often have more knowledge of their own 

creditworthiness than credit providers.  The financial institution is therefore challenged to 

gather this information about the applicant.  Here, despite the best efforts of the firm it is 

almost impossible to record every aspect of a client’s life that may result in their default.  

Hence, credit scorecards often produce higher misclassification rates than other classification 

problems.   



 Another criticism of credit scoring is that some variables can be used as proxies for, 

as they are highly correlated with, legally forbidden model variables.  In this way, care must 

be taken to ensure that these variables are treated appropriately, as in some countries the use 

of variables that are coextensive with legally prohibited attributes (e.g. race) are also 

outlawed, thereby adding a layer of complexity to the process (Hand & Henley, 1997).  

Furthermore, credit scoring has been noted to disadvantage immigrants due to their limited 

credit history in their country of residence and a lack of information transference from their 

country of origin.  

 Credit scoring models can also be expensive to buy and maintain.  Compounding this 

issue is the fact that credit scorecards routinely go out-of-date.  This is because, in the case of 

a parametric model, the learnt weights are assumed to be constant over time.  However, this 

is not the case in reality as the class distribution of creditworthy individuals shifts 

periodically.  Accordingly, this results in a diminution of the accuracy of the credit-scoring 

model over time (Hand, 2006).  

2.4 Size and Time Complexity Constraints  

 Henley (1994) and Mays (1995) noted that in building practical scoring models, a 

wide range of statistical and more recently non-linear methods have been used.  Here, the use 

of more complex non-linear techniques, such as neural networks, and support vector 

machines, to build credit scoring applications has seen significant increases in the reported 

accuracy and performance on benchmark datasets (Baesens et al., 2003).  Irwin et al. (1995) 

and Paliwal and Kumar (2009) agreed that such advanced statistical techniques provide a 

superior alternative to traditional statistical methods, such as discriminant analysis, probit 

analysis and logistic regression, when building practical models.  This point of view was also 

espoused by Masters (1995) who believed that the use of sophisticated techniques, such as 

neural networks, was essential because of the capability to model credit scoring data that 



exhibit interactions and curvature.  This can be contrasted with traditional linear techniques, 

such as, linear/logistic regression and linear discriminant analysis.   

 However the computational costs (time) associated with most of these nonlinear 

techniques can outweigh the benefits associated with increased classification performance, as 

the size of the historical clients dataset gets large.  This is because many of these algorithms 

grow exponentially with increasing problem size.  Furthermore, increasing computational 

power offers little in addressing this problem.  To illustrate this, consider the fact that if the 

best known algorithm for solving a given credit scoring problem has a time complexity on the 

order of 2
n 

(stated mathematically O(2
n
)), where the variable n represents the size of the 

training set and allowing one unit of time to equal one millisecond, then this algorithm can 

process in one second a maximum input of size of approximately 9.96 as shown in equation 

(1); 
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(1) 

 Now, suppose that the firm wishes to increase the size of its training dataset and 

decides to purchase a newly designed micro-processor that is able to achieve a tenfold 

speedup in processing time.  This new micro-processor chip would only increase the 

maximum solvable problem size in one second by 3.32 (as is shown in Equation 2).  
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(2) 

This is not very significant!  Furthermore it can be contrasted with the increased performance 

to be derived should a better classification algorithm be applied to the problem.  If a new 

algorithm is capable of transforming the time complexity from O(2
n
) to O(n) then the 



maximum size of the problem solvable in one second would be 1,000 (n = 1,000) on the old 

micro-processor and 10,000 using the new micro-processor chip.  Clearly, this is significantly 

greater than the performance possible using the older algorithm on the faster micro-processor.  

 As a result, the development and application of more computationally efficient 

algorithms in the credit scoring space is becoming increasingly more important  as the sizes 

of historical datasets grow.  The recently posited Clustered Support Vector Machine reduces 

the Rademacher complexity of the state-of-the-art SVM based classifier to an upper bound 

equivalent to the term            where k represents the number of clusters.  The 

interested reader is invited to consult Gu and Han(2013) for further details.  In the next 

section the authors make a contribution to literature by describing the development of the 

CSVM for credit risk assessment.  

3 CLUSTERED SUPPORT VECTOR MACHINE FOR CREDIT SCORING 

 To build a CSVM classifier from a historical client dataset S = {(          ); i = 1,…, 

m}, where m represents the number of instances, ignoring the labels (the      's) partition S 

into k clusters using K-means such that {    ; j = 1,…, k}.  To do this the K-means algorithm 

assigns every training example       to its closest centroid.
2
  Following this, the CSVM 

classifier for a cluster j can be represented as the linear combination of the attributes of the 

applicants in the cluster represented by, x’s, multiplied by some cluster specific weights, w’s, 

plus a noise term b
 
as is shown in (3). 

        
   

  
   

   
   

  
   

      
   

  
   

     3 (3) 

                                                 
2
The initial centroids are randomly selected. 

3
 Here the subscript is used to demote the individual variables as opposed to a specific training example. In this 

paper the use of parenthesis in the subscript will indicate training examples while their absence will denote a 

specific variable. E.g. x(i) denotes training example i while xi indicates independent variable i.  



 where the n denotes the number of client feature variables.  Since the w
(j)

’s and x
(j)

’s can be 

represented as column vectors (3) can be written as; 

                       (4) 

 For each cluster the CSVM learns the parameters w
(j)

 and b
(j)

 and tries to find a 

hyperplane that maximizes the margin between the creditworthy and un-creditworthy 

individuals in the cluster.  Hence, when given an individual training example      
   

     
   

 , 

such that     
   

   {-1,1}, the cluster specific functional margin       can be defined for the i'th 

training example as follows; 

           
   

                   (5) 

 Furthermore, to confidently predict each training example in the cluster the functional 

margin needs to be large.  And this therefore means that,                 must be a large 

positive number when     
   

= 1, and a large negative number when      
   

= -1.  Thus, the 

functional margin with respect to the cluster     ; is necessarily the smallest of the functional 

margins in the cluster, as in (6).  

           
       

     
   

 (6) 

 Considering a positive case, where     
   

 corresponds to the label     
   

 = 1, the 

geometric distance between this point and the decision boundary,     
   

, is a vector orthogonal 

to the separating hyperplane.  Thus, to find the value of      
   

, the corresponding point on the 

decision boundary is located by recognizing that     /||    || is a unit vector pointing in the 

same direction as     .  As a result, the relevant point on the separating hyperplane can be 

computed by evaluating the equation     
   

-     
   

     /||    ||.  In addition, since this point is on 

the decision boundary, it will satisfy                 = 0, as  



           
   

      
       

      
        .  And this can be reduced to,           
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2
/||    || = ||    ||,     

   
  can be 

solved for as     
   

    
    

      
       

   
  

    

      
 .  Hence, the general representation, taking into 

account cases of negative training examples, gives the equation     
   

     
   

    
    

      
       

   
 

 
    

      
 .  Finally, recognizing that when ||    || = 1, the geometric margin is equal to the 

functional margin, the minimization problem, as in (7), can be re-expressed with respect to 

the geometric margin. 

          
       

    
   

 (7) 

As a result, in order to find the decision boundary that maximizes the geometric margin for a 

cluster      the optimization problem shown below must be solved, 

                         , 
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        . 

 

(8) 

 Since the constraint ||    || = 1 is non-convex, the equation (8) is transformed thereby 

making it more suitable for convex-optimization.  To achieve this recognize that if,       =1, 

then      /||    || = 1/||    ||, and maximizing this is equivalent to minimizing ||    ||
2

. 

Furthermore, to avoid over-fitting the cluster data, a regularization term     , is added coupled 

with the constant C used to signify a turning parameter that weights the significance of 

misclassification.  In addition, at this point the global reference vector    is added to the 

optimization problem to leverage information between clusters.  Accordingly, the primal 

form of the general optimization problem is represented as follows; 
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(9) 



4 METHODOLOGY 

4.1 Data 

 A German credit scoring dataset was taken from the UCI Machine Learning 

Repository.  This dataset consists of 700 examples of creditworthy applicants and 300 

examples of customers who should not have been granted credit.  In addition, it presents 

twenty (20) features for each credit applicant comprising the following categories: the status 

of the client’s existing checking account, the duration of the credit period in months, the 

client’s credit history, the purpose for the credit, the credit amount requested, the client’s 

savings account/bonds balance, the client’s present employment status, the client’s personal 

(marital) status and sex, whether the client is a debtor or guarantor of credit granted by 

another institution, the number of years spent at present residence, the type of property 

possessed by client, the client’s age in years, whether the client has other installment plans, 

the client’s housing arrangements (whether they own their home, rent, or live for free), the 

number of existing credits the client has at the bank, the client’s job, the number of people for 

whom the client is liable to provide maintenance for, whether the client has a telephone, and 

whether the client is a foreign worker.  

4.2 Experimental Approach 

 The data were pre-processed so as to transform all categorical data into numerical 

data for analysis.  In addition, the data were normalized so as to improve the performance of 

the CSVM and the other seven (7) classifiers developed as comparators.  All told, the 

classifiers developed in this paper include the following; logistic regression (LR), K means 

plus logistic regression (K means + LR), clustered support vector machine with a RBF kernel 

(CSVM-RBF), K means plus support vector machine with a RBF kernel (K means + SVM-

RBF), support vector machine with a RBF kernel (SVM-RBF), linear clustered support 



vector machine (CSVM-linear), K means plus support vector machine with a linear kernel (K 

means + SVM-linear), and a linear support vector machine (SVM-linear). 

 To begin model building, the data-file was randomly split into two data-file—test 

(20%), and training and cross validation (80%).  The withheld test dataset was exclusively 

used to test the performance of the classification models developed.  This approach gives 

some intuition as to the performance of the models in real world settings.  The training and 

cross-validation dataset was used to develop the models for each classifier type.  

 In total 35 credit scoring models were built for each classifier type.  The classifiers 

mean performance and standard deviation are reported and discussed in the results section.   

4.3 Measures 

 It has been previously noted that when building and reporting on credit scoring 

models, it is prudent to make a distinction between metrics used during (i) training phase and 

(ii) the reporting phase (Harris, 2013).  The reason for this being that one needs to be clear as 

to which metric(s) was (were) used to select model parameters.   Consistent with Harris 

(2013) the term evaluation-metric will be used when referring to the metric used during the 

training phase, and the term performance-metric used to refer to the measure used to report 

models performance at the reporting phase.  

 The Area under the Receiver Operating Characteristic (ROC) curve (AUC)  is 

designated as the primary model evaluation metric and performance metric in this study.  The 

AUC makes use of the ROC curve, which is a two dimensional measure of classification 

performance where the sensitivity (10) (i.e. the proportion of actual positives predicted as 

positive) and the specificity (11) (i.e. the proportion of actual negatives that are predicted as 

negative), are plotted on the Y and X axis, respectively.  The AUC measure is highlighted as 

in (12) below where, S1, represents the sum of the ranks of the creditworthy clients.  Here, a 



score of 100% indicates that the classifier is able to perfectly discriminate between the 

classes, and a score of 50% indicates a classifier of insignificant discriminatory quality.  
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 A number of other performance metrics are also used to report the performances of 

the classifiers developed in this paper.  For example, Test accuracy, as in (13) is also reported 

as it measures how accurately the credit applicants on a withheld test dataset are classified.  

                
             

                            
 

             

                            
 

(13) 

 

 An arguably more meaning full measure of classifier performance is the balanced 

accuracy (BAC) as in (14).  This measure avoids the misleading affects on accuracy caused 

by imbalanced datasets by showing the arithmetic mean of sensitivity and specificity.  Since 

skewed datasets are a common occurrence with real world credit scoring datasets this 

measure may be more relevant. 

 

      
                       

 
 

(14) 

5 RESULTS AND ANALYSIS 

 It has been widely noted that credit-scoring is a difficult task as credit data is very 

often not easily separable.  The nature of the credit assessment exercise entails asynchrony of 

information between the applicant and the assessor.  As a result, credit analysts are 

responsible for gathering pertinent information about the loan applicant.  However, very 

often the best efforts of the analyst are insufficient to appraise every aspect of a client’s life.  

Hence, credit-scoring usually results in higher misclassification rates than would normally be 



considered acceptable (Baesens et al., 2003).  The reader is asked to bear this in mind when 

interpreting the results presented. 

5.1 Classifier performances 

 Table 1 presents the performances of the CSVM classifier in addition to seven (7) 

other comparator classification methods built using the German dataset.  In total thirty-five 

credit-scoring models for each classifier were built.  The withheld test dataset was used to 

report the mean and standard deviation values for each performance metric.  Here results 

presented in Table 1 suggest that the models built were indeed predictive of creditworthiness 

as indicated by AUC on the withheld test dataset.  

Insert Table 1 here 

 

5.2 Significances of AUC Differences 

 The ANOVA analysis for the eight model types is highlighted in Table 2.  There the 

results indicate a significant difference between one or more of the classifiers (i.e. the groups) 

when comparing mean AUC scores (F = 3.284, p < 0.05).   

Insert Table 2 here 

 

 Accordingly, a Bonferroni test was computed to determine which classifiers were 

performing significantly different from each other (Levene’s statistic = 1.444; p = 0.187).  

Table 3 illustrates the results of this testing and shows that the only significant difference was 

between the mean AUC scores of the logistic regression models and the SVM models with a 

linear kernel function.  In terms of performance the CSVM models (both linear and RBF) 

showed comparable AUCs to the other classifiers as there was no significant difference 

between them and the other classifiers in terms of AUC.  



Insert Table 3 here 

5.3 Training time 

 Consistent with the author's expectations, the average training time for the linear 

CSVM model was considerably shorter than that of the other models (Please see Table 1),  

particularly the  K means + SVM (linear and RBF kernels), SVM-RBF, and the  K means + 

LR models.  It is interesting that the base line SVM linear out performs the CSVM-linear in 

terms of training time.  However, the results indicate that the linear CSVM consistently 

outperforms its direct comparators, which are the K means + SVM-linear, SVM-RBF, and K 

means + SVM-RBF.   

6 CONCLUSION  

 This paper introduces the use of the CSVM for credit scoring.  The CSVM represents 

a possible solution to the limitations of the current crop classifiers used in practice.  Prior 

work has noted that as datasets get large nonlinear approaches become increasingly 

computationally expensive.  As a result, the search for more computationally efficient 

algorithm has intensified in recent years as data analyst seek to discover patterns in datasets 

of increasing size and complexity without seeding classifier performance.   

 The results of the paper suggest that the CSVM compare well with nonlinear SVM 

based techniques in terms of AUC, while outperforming them in terms of training time.  It is 

the CSVM's cutting edge performance coupled with its comparatively cheap computational 

cost that makes it an interesting algorithm in the credit scoring space.   

 The future work of this author will seek to improve the classification performance of 

the CSVM algorithm in terms of AUC and mean model training time.  In addition, other 

metrics will be used as the primary model evaluation metric.  Furthermore, future studies will 

consider the impact of extending the clustered approach to other classification techniques 

such as random forest.    
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Table 1  

Showing Comparative Classifier Performances 

Classifier 
 

Training Accuracy 
 

Test Accuracy 
 

BAC 
 

AUC 
 

Training Time 
 (Seconds) 

1) K means + LR 
     Mean 77.625 74.700 69.526 68.868 0.103 

S.D 0.995 1.716 3.021 2.758 0.005 

2) LR 
     Mean 70.675 68.900 71.955 70.855 0.035 

S.D 0.337 1.798 2.699 2.875 0.004 

3) CSVM-RBF 
     Mean 84.525 77.100 69.834 69.234 0.071 

S.D 2.897 2.114 3.775 3.172 0.038 

4) K means + SVM-RBF 
     Mean 83.250 76.500 69.000 68.614 0.141 

S.D 2.494 1.604 3.871 3.119 0.184 

5) SVM-RBF 
     Mean 83.400 78.000 70.654 69.526 0.122 

S.D 2.236 1.843 3.269 2.915 0.021 

6) CSVM-linear 
     Mean 79.300 76.300 71.387 70.219 0.029 

S.D 0.565 2.477 2.551 2.830 0.004 

7) K means + SVM-linear 
     Mean 82.233 76.381 69.238 68.752 0.107 

S.D 2.514 2.105 3.790 3.089 0.046 

8) SVM-linear 
     Mean 78.950 78.700 69.779 69.133 0.017 

S.D 0.404 1.045 2.449 2.942 0.042 



Table 2 

Showing summary the ANOVA computed for the eight groups of classifiers 

ANOVA 
     

 
Sum of Squares df Mean Square F Sig. 

Between Groups 202.732 7.000 28.962 3.284 0.002 

Within Groups 2398.705 272.000 8.819 
  Total 2601.437 279.000 

   

      



 

Table 3 

Showing comparisons of the classifiers using Bonferroni’s method   

Bonferroni  
Classifier   
(I)  1 

      
2 

      

  

Classifier 
(J) 2 3 4 5 6 7 8 1 3 4 5 6 7 8 

 
Mean Difference (I-J) -1.987 -0.366 0.254 -0.658 -1.351 0.254 0.735 1.987 1.621 2.241 1.329 0.636 2.241 2.722 

 Std. Error 
 

0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 

 
Sig. 

 
0.154 1.000 1.000 1.000 1.000 1.000 1.000 0.154 0.649 0.050 1.000 1.000 0.050 0.004 

 

95% Confidence 

Interval 
Lower 

Bound -4.227 -2.606 
-

1.986 -2.898 -3.591 -1.986 
-

1.505 -0.252 -0.619 0.001 -0.911 -1.603 0.001 0.482 

  

Upper 

Bound 0.252 1.874 2.493 1.582 0.889 2.493 2.974 4.227 3.861 4.480 3.569 2.876 4.480 4.961 

  

 
 

              

  

Classifier 

(I) 3 
      

4 
      

  

Classifier 

(J) 1 2 4 5 6 7 8 1 2 3 5 6 7 8 

 
Mean Difference (I-J) 0.366 -1.621 0.620 -0.292 -0.985 0.620 1.101 -0.254 -2.241 -0.620 -0.912 -1.605 0.000 0.481 

 
Std. Error 

 
0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 

 
Sig. 

 
1.000 0.649 1.000 1.000 1.000 1.000 1.000 1.000 0.050 1.000 1.000 0.688 1.000 1.000 

 

95% Confidence 

Interval 
Lower 

Bound -1.874 -3.861 
-

1.620 -2.532 -3.225 -1.620 
-

1.139 -2.493 -4.480 -2.859 -3.151 -3.844 -2.240 -1.759 

  

Upper 

Bound 2.606 0.619 2.859 1.948 1.255 2.859 3.340 1.986 -0.001 1.620 1.328 0.635 2.240 2.721 

  

 
 

              



 

 

 

 
Classifier 

(I) 5 
      

6 
      

  

Classifier 

(J) 1 2 3 4 6 7 8 1 2 3 4 5 7 8 

 

 
Mean Difference (I-J) 0.658 -1.329 0.292 0.912 -0.693 0.912 1.393 1.351 -0.636 0.985 1.605 0.693 1.605 2.086 

 
Std. Error 

 
0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 

 
Sig. 

 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.688 1.000 0.688 0.100 

 

95% Confidence 

Interval 
Lower 

Bound -1.582 -3.569 
-

1.948 -1.328 -2.933 -1.328 
-

0.847 -0.889 -2.876 -1.255 -0.635 -1.547 -0.635 -0.154 

  

Upper 

Bound 2.898 0.911 2.532 3.151 1.547 3.151 3.632 3.591 1.603 3.225 3.844 2.933 3.844 4.325 

                 

  

Classifier 

(I) 7 
      

8 
      

  

Classifier 

(I) 1 2 3 4 5 6 8 1 2 3 4 5 6 7 

 
Mean Difference (I-J) -0.254 -2.241 

-

0.620 0.000 -0.912 -1.605 0.481 -0.735 -2.722 -1.101 -0.481 -1.393 -2.086 -0.481 

 
Std. Error 

 
0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 

 
Sig. 

 
1.000 0.050 1.000 1.000 1.000 0.688 1.000 1.000 0.004 1.000 1.000 1.000 0.100 1.000 

 

95% Confidence 

Interval 
Lower 

Bound -2.493 -4.480 
-

2.859 -2.240 -3.151 -3.844 
-

1.759 -2.974 -4.961 -3.340 -2.721 -3.632 -4.325 -2.721 

  

Upper 

Bound 1.986 -0.001 1.620 2.240 1.328 0.635 2.721 1.505 -0.482 1.139 1.759 0.847 0.154 1.759 

 

 

Table 3 Continued 


