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R&D and productivity in OECD firms and industries: 

A hierarchical meta-regression analysis  
 

 

1. Introduction 

 

Productivity effects of research and development (R&D) investment has been a subject of 

major interest for researchers and policy makers. The pioneering work is that of Minasian 

(1969) and Griliches (1973) on elasticities of R&D capital; and Terleckyj (1974) on rates 

of return to R&D. Mairesse and Sassenou (1991), Mairesse and Mohnen (1994) and Hall 

(1996) provide early reviews of the empirical literature that flourished after Griliches 

(1979) had articulated a lasting framework for the analytical/empirical issues in the 

research field. More recently, Hall et al. (2010) provide an authoritative assessment of the 

findings and how the latter relate to variations in identification, estimation and level of 

analysis. Finally, Wieser (2005) and Møen and Thorsen (2015) meta-analyse the sources 

of variation in the evidence base and the extent of publication selection bias, respectively.  

 

We have identified a number of issues that justify a novel review. First, existing reviews 

tend to rely on selected estimates rather than all available information. For example 

Wieser (2005) covers firm-level studies only and its sample consists of 22 and 16 studies 

that report 102 elasticity and 52 rate-of-return estimates respectively. Furthermore, it 

uses means and medians of the statistically-significant estimates to depict the balance of 

the evidence. Hall et al. (2010) covers both firm- and industry-level studies and is much 

more comprehensive in terms of primary studies reviewed. However, this review too 

reports only a single summary measure or a range for each study without spelling out 

how the measure is selected. Finally, Møen and Thorsen (2015) utilize 94 elasticity and 

rate-of-return estimates based on median of the estimates reported in 41 primary studies.  

 

The evidence analysed in these reviews is clearly truncated because the number of 

primary studies and estimates we have identified is much larger and distributed as 

follows: 33 primary studies reporting 773 elasticity estimates at the firm level; 21 studies 

reporting 192 rate-of-return estimates at the firm level; 9 studies reporting elasticity 

estimates at the industry level; and 12 studies reporting 153 rate-of-return estimates at 

the industry level. A truncated sample not only constitutes an inefficient use of the 

existing information but also exacerbates the risk of selection bias discussed next.   

 

The risk of selection bias arises when studies that fail to reject the null hypothesis are less 

likely to be published than those that do produce a statistically significant result. This is 

known as the file drawer problem in meta-analysis (Card and Krueger, 1995; Sterling et 

al., 1995; Stanley, 2008; Stanley and Doucouliagos, 2012). Of the existing reviews, only 
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Møen and Thorsen (2015) addresses the risk of selection bias through precision-effect 

tests (PET) and trim-and-fill methods. However, the selected nature of the estimates in 

this review and others constitutes an additional source of selection bias. In this review, 

we include all available information to avoid the reviewer-induced selection bias and we 

address the file-drawer problem systematically for both elasticity and rate-of –return 

estimates at the firm and industry levels.  

 

The third issue is that none of the reviews addresses the twin problems of data 

dependence and heterogeneity. Data dependence arises when primary studies using a 

particular dataset report multiple estimates or when different studies use overlapping segments 

of the survey data compiled by the same national statistical (Doucouliagos and Laroche, 2009; 

Stanley and Doucouliagos, 2012). In such cases, the primary-study estimates are not based on 

random realisations of the data generating process and therefore the meta-analyst needs to take 

account of both within- and between-study dependence through hierarchical model estimations. 

Furthermore, heterogeneity in the evidence base must be quantified and its implications for the 

generalizability of the summary measures or meta-analysis estimates must be discussed (Sterne 

and Harbord, 2004; Harbord and Higgins, 2008). The existing reviews acknowledge the 

heterogeneous nature of the primary-study estimates but they neither provide a quantitative 

measure of the heterogeneity that cannot be explained by sampling/study characteristics nor do 

they caution about the extent to which the summary measures they report can be generalised.  

 

Finally, and despite repeated cautions by leading contributors, the existing reviews do not 

address the question as to whether the elasticity and rate-of-return estimates measure 

what they are actually meant to measure – i.e., true productivity effects of R&D 

investment. We argue that the informational content of the primary-study estimates may 

be constrained for three reasons. First, the ‘true productivity’ effect at the firm level may 

differ from the ‘revenue productivity’ effect if the firm-specific output prices differ from 

the industry-level deflator used to deflate the firm’s output.   If the firm-specific price is 

higher (lower) than the average industry deflator, the ‘real’ value of its output will be 

biased upward (downward). To the extent that the wedge between firm and industry 

prices may reflect differences in the firms’ market power, the latter’s ‘revenue elasticity’ 

can diverge from the true ‘productivity elasticity’. The two are the same only in the case 

of infinite price elasticity of demand, i.e. when all firms operate in perfectly competitive 

markets (Griliches and Mairesse, 1995; Mairesse and Jaumandreu, 2005; Foster et al, 

2008 and Hall, 2011).   

 

The second limitation is due to the contemporaneous nature of the rate-of-return 

estimates, which measure the effect of R&D intensity in year t on output or TFP growth in 

year t. However, R&D projects may take a long time to complete and even completed 

projects may affect productivity with a lag as firms convert the R&D knowledge into new 

products and services. Therefore, evidence from Añón Higón (2007) and Doraszelski and 

Jaumandreu (2013) indicates that the contemporaneous rates of return may be biased 

downward. The downward bias may be exacerbated by the fact that the R&D intensity in 

rate-of-return models is based on gross rather than net R&D after depreciations. That is 
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why Griliches and Mairesse (1991a) caution that the rate-of-return estimate could be 

considered only as a ‘distant reflection’ of the true rate-of-return concept. 

 

The third limitation is due to the strict assumptions required to compare the social rates 

of return estimated at the industry level with private returns to R&D at the firm level. The 

industry-level estimates of social return are valid only if returns to scale are constant and 

all firms within an industry face a common factor price (Griliches, 1992). When these 

assumptions hold, the within-industry social returns are expected to be higher than 

private returns as the former capture both private returns to the firms in the industry and 

the effect of knowledge spillovers from the R&D capital stock in the industry (Griliches, 

1979; 1992).  When these assumptions do not hold, however, industry-level estimates 

may capture both spillover-effects and shifts in aggregate industry productivity caused by 

different combinations of firms with different firm-specific factor prices.   

 

Having addressed the issues above, we find that the average elasticity and rate-of-return 

estimates are positive but smaller than most summary measures reported in prior 

reviews. We argue that this is because existing summary measures suffer from what we 

describe as double selection: publication selection that arises when primary-study authors 

search for samples, estimation methods or model specifications that yield statistically-

significant estimates; and sample selection that arises when reviewers rely on 

‘representative’ or ‘preferred’ estimates rather than all available information.  

 

Secondly, we report that the elasticity and rate-of-return estimates are highly 

heterogeneous. Heterogeneity does not invalidate the synthesized findings but limits the 

extent to which they can be generalised. This is particularly the case with respect to firm-

level private returns, where moderating factors explain only part of the heterogeneity that 

cannot be explained by sampling differences.  

 

Our third finding indicates that the productivity effect of R&D at the industry level does 

not differ from that at the firm level - i.e., private returns to R&D are about the same as 

within-industry social returns. This is in contrast to theoretical predictions and may be due 

to data quality issues or absence of support for the assumptions of the theoretical model 

or both.  

 

The fourth finding we report indicates that that the gross private rate of return at the firm 

level (14%) is less than the depreciation rate for R&D capital (15%) usually assumed in 

the primary studies. This anomaly clearly suggests that the existing estimates suffer from 

a serious downward bias as suspected by Griliches and Mairesse (1991a).   

 

In the light of these findings, we argue that the informational content of the existing 

estimates is constrained by data quality problems and the limited extent to which the 

latter can be addressed satisfactorily by the econometrician. Therefore, we suggest that 

future research should utilise finely-grained industry or product-line data with long time 
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horizons to: (i) identify the lag structure of the R&D capital and estimate both short and 

long-run R&D productivity effects through autoregressive distributed lag (ARDL) 

estimations (Añón Higón, 2007) or Markov chain processes that capture the impact of R&D 

on the evolution of productivity (Doraszelski and Jaumandreu, 2013); (ii) take account of 

the interactions between R&D investments and market power with a view to distinguish 

between ‘revenue’ and ‘true’ productivity effects (Hall, 2011; Mairesse and Jaumandreu, 

2005); (iii) disentangle private from social returns to R&D by taking account of cross-

sectional dependence (Eberhardt et al., 2013) and separate technology spillovers from 

product-market rivalry (Bloom et al., 2013) or from creative destruction (Aghion et al., 

2014).  

 

The rest of the paper is organised as follows. Section 2 discusses the analytical and 

empirical dimensions of the research field and their implications for the heterogeneity of 

the evidence base. In section 3, we report the systematic review strategy we adopted to 

identify eligible studies and the meta-analysis methodology we followed to take account 

of selection bias, heterogeneity, and data dependence in the evidence base.  Section 4 

report both bivariate and multi-variate hierarchical regression results for four sets of 

evidence. Two of the evidence pools are related to private returns to R&D measured as 

elasticities and rates of return at the firm level; and the other two are related to within-

industry social returns measured as elasticity and rates of return estimates at the industry 

level. We conclude in section 5 by providing a systematic summary of our findings and 

their implications for future research.  

 

2. R&D and productivity: Analytical and empirical dimensions of the research field  

 

Primary studies on R&D and productivity usually draw on a Cobb-Douglas production 

function, augmented with R&D (knowledge) capital. Estimates from these studies 

constitute the evidence base from the primal approach as opposed to the dual approach 

based on cost or profit functions.1 Assuming perfect competition in factor markets and 

separability of the conventional inputs (capital and labour) from knowledge capital, the 

production function can be stated as follows: 

 

𝑄𝑖𝑡 = 𝑌𝑖𝑡/𝑃𝑗𝑖𝑡 =  𝐴𝑒𝜆𝑡𝐶𝑖𝑡
𝛼𝐿𝑖𝑡

𝛽
𝐾𝑖𝑡

𝛾
𝑒𝑢𝑖𝑡          (1) 

 

Here, 𝑄𝑖𝑡 is real output of firm or industry i at time t. Real output is nominal output (𝑌𝑖𝑡) 

deflated with industry price deflators (𝑃𝑗𝑖𝑡).  Cit is deflated physical capital stock; Kit is 

deflated R&D capital; Lit is labour (number of employees or hours worked); and 𝐴𝑒𝜆𝑡  is 

technological progress with a rate of disembodied technological change 𝜆. Taking natural 

logarithms and using lower-case letters, the empirical model can be written as: 

 

                                                           
1 This review excludes the dual-approach studies as the latter are small in number and their model 
specifications are more varied than the primal-approach studies. 
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𝑞𝑖𝑡 =  𝑦𝑖𝑡 − 𝑝𝑠𝑖𝑡 = 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜂𝑖 + 𝜆𝑡 + 𝑢𝑖𝑡      (2) 

 

The logarithm of technical progress yields a firm- or industry-specific effect (𝜂𝑖) and a 

time effect (𝜆𝑡). Following Mairesse and Griliches (1988), the empirical work adopts 

various assumptions about the intercept ( 𝜂𝑖) and the slope coefficient of interest (𝛾). 

Some studies assume that both the intercept and the slope coefficient are constant across 

firms/industries and hence use pooled OLS for estimation. Some others assume random 

intercept drawn from the same distribution and constant slopes. Then the parameters are 

estimated either with a random-effect estimator where the intercept is the expected value 

of the idiosyncratic intercept coefficients; or with a between estimator that consists of a 

cross-sectional (total) OLS with data averaged over time for each cross-sectional unit. 

Elasticity estimates from OLS, random-effect or between estimators are referred to as 

elasticity estimates in the level dimension.  

 

Some studies assume firm-specific intercepts and a common slope parameter. To 

eliminate the firm-specific fixed effects, model (2) can be time-differenced as follows2:  

 

∆𝑞𝑖𝑡 =  𝛼∆𝑐𝑖𝑡 + 𝛽∆𝑙𝑖𝑡 + 𝛾∆𝑘𝑖𝑡 + ∆𝜆𝑡 + ∆𝑢𝑖𝑡     (3) 

 

Time-differencing eliminates the fixed-effect and the time effect is now a growth-rate 

effect. Estimations based on differencing between two subsequent years are referred to 

as first-differenced and those based on longer periods are usually referred to as long-

differenced.  Alternatively, the fixed-effect can be eliminated by estimating model (2) with 

a within estimator, where all terms in the model are expressed as deviations from the 

mean over the time period. The ‘within’ model corresponds to growth rates of the 

covariates in (2), given that the latter are in logarithms (Cincera, 1998). Hence, 

productivity estimates from time-differenced or within estimators are referred to as 

elasticity estimates in the temporal dimension.  

 

Estimates from the level and temporal dimensions will be consistent if model (2) is 

specified correctly and the covariates are not subject to mismeasurement. Assuming 

correct model specification, time-differencing exacerbates any measurement errors and 

usually leads to downward bias in estimated coefficients of interest (Mairesse and 

Griliches, 1988; Hall et al., 2010). Hence, elasticity estimates in the temporal dimension 

are usually expected to be smaller than those in the level dimension. 

 

In (2) and (3), the elasticities (𝛾) are assumed constant across firms or industries. 

However, firms may operate with different factor shares (hence elasticities), depending 

on the competitive equilibria they are faced with (Hall et al., 2010). In this case, it is more 

appropriate to assume rate-of-return rather than elasticity equalisation.  

 

                                                           
2 In (3),  ∆𝑞𝑖𝑡 =  𝑞𝑖𝑡 − 𝑞𝑖𝑡−1; ∆𝑐𝑖𝑡 =  𝑐𝑖𝑡 − 𝑐𝑖𝑡−1; ∆𝑙𝑖𝑡 =  𝑙𝑖𝑡 − 𝑙𝑖𝑡−1 and ∆𝑘𝑖𝑡 =  𝑘𝑖𝑡 − 𝑘𝑖𝑡−1. 
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For rate-of-return estimations, the change in R&D capital stock (∆𝑘𝑖𝑡) is transformed into 

R&D intensity using the definition of the elasticity coefficient below.  

 

𝛾 = (𝜕𝑄𝑖𝑡 𝜕𝐾𝑖)⁄ (𝐾𝑖𝑡 𝑄𝑖𝑡)⁄ =  𝜌(𝐾𝑖𝑡 𝑄𝑖𝑡)⁄       (4a) 

 

Here, 𝜌 = 𝜕𝑄𝑖𝑡 𝜕𝐾𝑖⁄  is the marginal product of R&D capital. If the depreciation rate (𝛿) 

between two years is close to zero, the rate of return to R&D investment can be estimated 

directly using (4b).3   

 

∆𝑞𝑖𝑡 =  ∆𝜆𝑡 + 𝛼∆𝑐𝑖𝑡 + 𝛽∆𝑙𝑖𝑡 + 𝜌
𝑅𝑖𝑡

𝑄𝑖𝑡
+ ∆𝑢𝑖𝑡      (4b) 

 

Some studies use a total factor productivity (TFP) version of (4b) by subtracting 

conventional inputs (capital and labour) from both sides, yielding4:  

 

∆𝑇𝐹𝑃𝑖𝑡 =  ∆𝜆𝑡 + 𝜌
𝑅𝑖𝑡

𝑄𝑖𝑡
+ ∆𝑢𝑖𝑡        (4c) 

 

Rates of return in (4b) or (4c) are gross returns as they are based on the assumption that 

the depreciation rate for R&D capital is zero. They measure the gross return on $1 worth 

of investment in R&D.  

 

If they are estimated with firm-level data, models (2), (3), (4a) and (4b) yield estimates of 

private returns to R&D. The latter may capture transfers when the innovating firm 

increases its revenue at the expense of its competitors. However, this transfer-inclusive 

private returns are different than social returns, which can be estimated only at the 

industry level (Griliches, 1979: 25). 5  

                                                           
3 Model (4b) is derived by substituting 4a in 3. Then, ∆𝑞𝑖𝑡 =  ∆𝜆𝑡 + 𝛼∆𝑐𝑖𝑡 + 𝛽∆𝑙𝑖𝑡 + 𝜌(𝐾𝑖𝑡 𝑄𝑖𝑡)⁄ ∆𝑘𝑖𝑡 + ∆𝑢𝑖𝑡 . 
The term for knowledge capital simplifies as follows: 𝜌(𝐾𝑖𝑡 𝑄𝑖𝑡)⁄ ∆𝑘𝑖𝑡 =  𝜌(𝐾𝑖𝑡 𝑄𝑖𝑡)⁄ (∆𝐾𝑖𝑡 𝐾𝑖𝑡⁄ ) =

 𝜌(∆𝐾𝑖𝑡 𝑄𝑖𝑡⁄ ) = 𝜌(𝐾𝑖𝑡 − 𝐾𝑖𝑡−1)/𝑄𝑖𝑡  =  𝜌
(1−𝛿)𝐾𝑖𝑡−1+𝑅𝑖𝑡−𝐾𝑖𝑡−1

𝑄𝑖𝑡
=  𝜌

𝑅𝑖𝑡−𝛿𝐾𝑖𝑡−1

𝑄𝑖𝑡
 ≅  𝜌

𝑅𝑖𝑡

𝑄𝑖𝑡
 if rate of depreciation (𝛿) is 

close to zero.  
 
4 The use of TFP as dependent variable is rare with estimations based on firm-level data. This is because 
TFP requires the imposition of a priori restrictions, the most important of which is that estimated elasticities 
are equal to factor shares observed in the data. As indicated in Griliches (1979), it is more plausible to 
impose such restrictions at the industry rather than firm level. Hence, we meta-analyse the estimates based 
on TFP at the industry level only.  
 
5 Within-industry social returns can be derived from the Cobb-Douglas production function at the firm level. 
Let 𝑄𝑖  be firm-specific output; 𝑋𝑖  a vector of conventional inputs; 𝐾𝑖  firm-specific R&D capital; and 𝐾𝑎  R&D 

knowledge pool in the industry. The firm-specific output is given by: 𝑄𝑖 = 𝐵𝑋𝑖
1−𝛾

𝐾𝑖
𝛾

𝐾𝑎
𝜇

. Assuming constant 

returns to scale and same relative factor prices for all firms, the output at the industry level is the sum of all 
firm-specific outputs. Hence: ∑ 𝑄𝑖𝑖 = 𝐵(∑ 𝐾𝑖𝑖 / ∑ 𝑋𝑖𝑖 )𝛾𝐾𝜇 ∑ 𝑋𝑖𝑖 . Given that ∑ 𝐾𝑖𝑖 =  𝐾𝑎  and ∑ 𝑋𝑖 =  𝑋𝑎𝑖 , the 

output at the industry level is: ∑ 𝑄𝑖𝑖 = 𝐵𝑋𝑎
1−𝛾

𝐾𝑎
𝛾+𝜇

. The return to R&D capital at the industry level (𝛾 + 𝜇) 
is greater than the return at the firm level (𝛾) if knowledge spillovers (𝜇) are positive. 
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Within-industry social returns are only one of the variants estimated in the wider 

literature. On the one hand, some studies augment the Cobb-Douglas production function 

with inter-industry, inter-region or inter-country spillovers to estimates social returns at 

the firm, industry or country levels (see Griliches, 1992 on the underlying model). On the 

other hand, the spillover pool can be constructed without weights (e.g., Bernstein and 

Nadiri, 1989); by using a weight matrix that capture technological proximity between 

firms or industries (Jaffe, 1986; Griliches, 1992); or by using geographical distance as the 

weight matrix (see Keller, 2004 for a review). More recently, Bloom et al. (2013) have 

proposed a Mahalanobis distance measure based on the co-location of patenting 

technology classes, which can also be extended to construct a weight matrix that captures 

product-market rivalry. The research in this extant literature warrants a systematic 

review in its own right, but this is beyond the scope of our study due to space limitations.  

 

The analytical and empirical framework summarized above is fairly tractable and allows 

for pooling the existing estimates for meta-analysis. However this quality should not 

conceal the potential for high levels of heterogeneity due to measurement, identification, 

sampling and estimation issues discussed widely by leading contributors to and 

reviewers of the research field (Griliches, 1979; Griliches and Mairesse, 1995, Hall et al., 

2010). Table 1 summarizes the potential sources of heterogeneity under five headings: 

publication type; measurement of inputs and output; model specification, sample 

characteristics; and estimation methods. Under each heading, we indicate the moderating 

(dummy) variables we use to capture the sources of heterogeneity and the reference 

category(ies) against which they are defined. We also indicate the expected effects of the 

sources of heterogeneity on the primary-study estimates we meta-analyse. 
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Table 1: Sources of variation in the evidence on R&D and productivity 
 
Sources of variation in the 
evidence base 

Controlled 
category  

Reference 
category 

Expected effect on: 
Elasticities                Rates of return 

A. Publication type     

Journal article, working paper, 
report, thesis 

Journal article 
Working paper, 

report, thesis 
+ / - + / - 

B. Model specification     

Control for spillovers Yes No - - 

Control for capacity  
utilisation 

Yes No + / - + / - 

Industry/sector-dummies in 
estimated models 

Yes No 
(-) 

in level dimension; 
(+/-) otherwise 

+ / - 

Time dummies in estimated 
models 

Yes No + / - + / - 

Variable returns to scale  Yes No - - 

Data corrected for double 
counting 

Yes No + +  

C. Input and Output measurement      

R&D capital constructed with 
perpetual inventory method 

Yes No +  n.a. 

Output is measured as output, 
sales or value added 

Value added Output and sales +  + 

D. Sample characteristics     

Mid-point of data period is 1980 
or after 

Yes No + / - + / - 

Firm size Small firms Mixed-size firms  - - 

French, German, UK and US  firm 
or industry data 

Country(i) 
data 

 
Data from other 
OECD countries 
and Country(j≠i) 

+ / - + / - 

Data relates to R&D-intensive 
firms or industries 

Yes No +  + 

Data relates to publicly-funded 
R&D 

Yes No - - 

E. Estimation method     

Pooled/Total OLS; Common 
factor frame estimators; Time-
differenced estimators; GMM; 
Instrumental variable (IV) 
estimators; within estimators 

ALL – except 
Pooled/Total 

OLS and Long-
differenced 

Pooled/Total 
OLS in levels; 
Long-diff. in 

temporal 
dimension 

First-differenced 
(+/-); GMM,IV (-) 

First-
differenced 

(+/-); 
GMM and IV  

(-) 
Notes: n.a = not applicable; +/- indicates that reported estimates associated with the moderating factor we 
control for are larger/smaller than those associated with the reference category.   

 

 

The expected effects in the last two columns are informed by the theoretical and empirical 

framework discussed in Griliches (1979) and Griliches and Mairesse (1988; 1995).  Those 

related to differences in measurement and sample characteristics are informed by 

empirical patterns reported in Griliches (1979), Hall et al. (2010) and prior reviews. 

Finally, the expected effect of publication types is informed by meta-analysis studies, 

which report that selection may be related to publication types (Card and Krueger, 1995; 

Sterling et al., 1995; Stanley, 2008; Costa-Font et al., 2013). 
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3. Meta-analysis: protocol and method 
 
We follow best-practice guidelines for meta-analysis recommended in Stanley et al. 

(2013). We searched in 9 databases, using 13 search terms in the Title and 20 search 

terms in the Abstract fields. We also used the snowballing approach and identified 32 

studies through backward citations. We included 65 studies that adopt the so-called 

primal approach, which involves estimating a Cobb-Douglas production function 

augmented with R&D capital or R&D intensity. The included studies report R&D 

elasticities when the independent variable is the logarithm of R&D capital and rates of 

return to R&D when the independent variable is R&D intensity defined as the ratio of R&D 

to output. Finally, the included studies report private returns to R&D when the estimation 

is based on firm-level data or within-industry social returns when industry-level data is used 

and the intra-industry R&D capital is aggregated with equal weights (Griliches, 1979; 1992). 

 

Our literature search strategy and study inclusion/exclusion criteria are specified in a 

protocol6, which also contains information on the decisions we made at the study 

selection and critical evaluation stages. We have set 1980 as the initial and 2013 as the 

final year of publication. The initial year7 has been chosen to capture the empirical studies 

published after the publication of the seminal paper by Griliches (1979), who articulated 

a lasting framework for the theoretical and empirical dimensions of the research field. 

The final year corresponded to the start of our research project. We have excluded studies 

that adopt the dual approach on the grounds that the latter are based on cost or profit 

functions, small in number and their model specification is more varied than those adopting 

the primal approach (Hall et al., 2010). We have also excluded studies that follow Crépon et 

al. (1998), where R&D is an input in the innovation production rather than in the output 

production function.  

 

Finally, we have also excluded studies that estimate social returns to R&D at sector, region or 

country levels. This is because social returns in such studies vary in nature and measurement. 

For example, the social returns may capture rent spillovers when the weight matrix is based on 

input/output tables. On the other hand, they may capture pure public good spillovers when R&D 

capital is aggregated with equal weights or asymmetric technology spillovers when the weight 

matrix is based on technology proximity (Griliches, 1992; Hall et al., 2010).  Such differences 

make the within-industry social returns we meta-analyse here non-comparable with social 

returns associated with external spillover pools at the industry, region or country levels.  

 

                                                           
6 The protocol will be made available via live link after completion of the anonymous review process. It 
also contains examples of and reasons for excluded studies.  
7 We note here that the most comprehensive review by Hall et al. (2010) also adopts 1980 as the initial year 
of publication. Although this review refers to the pioneering studies published before 1980, the sample used 
for providing summary measures of the elasticity and rate-of-return estimates consists of studies published 
in 1980 and thereafter.  
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Data extraction yielded 1257 estimates, of which we excluded four outliers with undue 

influence.8 Hence, the meta-analysis is based on 1,253 estimates, of which 773 are 

elasticities at the firm level; 135 are elasticity estimates at the industry level; 192 are rate-

of-return estimates at the firm level; and 153 are rate-of-return estimates at the industry 

level. We take account of all available information by including all elasticity and rate-of-

return estimates reported in the primary studies.  

 

The meta-analysis methodology draws on Stanley (2005, 2008), Doucouliagos and 

Stanley (2013), and Stanley and Doucouliagos (2012). The underpinning theoretical 

framework is that of Egger et al. (1997), who postulate that researchers with small 

samples would search intensely across model specifications, econometric techniques and 

data measures to find sufficiently large (hence statistically-significant) effect-size 

estimates. This simple theoretical framework implies that reported estimates are 

correlated with their standard errors. Denoting the effect size with ei and the standard 

error with 𝑆𝐸𝑖, and assuming that the error term (𝑢𝑖) is independently and identically 

distributed (i.i.d.), the selection process can be modelled as follows:  

 

𝑒𝑖 =  𝛽 + 𝛼𝑆𝐸𝑖 + 𝑢𝑖         (5) 

 

However, the selection model in (5) poses three major estimation issues. First, the model 

is heteroskedastic because effect-size estimates have widely-different standard errors. To 

address this issue, we estimate a weighted least squares (WLS) version (6), where 

precision (1/𝑆𝐸𝑖) is used as weight (Stanley, 2008; Stanley and Doucouliagos, 2012):  

 

𝑡𝑖 = 𝛽 (1
𝑆𝐸𝑖

⁄ ) + 𝛼 + 𝑣𝑖         (6) 

 

Here 𝑡𝑖 is the t-value associated with the reported estimate and the error term 𝑣𝑖  is the 

error term in (5) weighted by precision. If the Gauss-Markov conditions are satisfied, OLS 

estimation of (6) yields minimum-variance linear unbiased estimates. Testing for 𝛼 = 0 

is a test for publication selection bias or funnel asymmetry test (FAT), whereas testing for  

𝛽 = 0  is a ‘genuine effect’ or precision-effect test (PET) after controlling for selection bias. 

The selection bias is considered as substantial if |α| ≥ 1 or severe if |α| ≥ 2 (Doucouliagos 

and Stanley, 2009; 2012). Testing for selection bias is justified given the evidence about 

its prevalence in both social-scientific and medical research (Card and Krueger, 1995; 

Dickersin and Min, 1993; Ioannidis, 2005; and Simmons et al., 2011).9  

                                                           
8 Observations with undue influence are identified through the DFBETA influence statistics.  This procedure 
first estimates the difference between the regression coefficients by excluding an observation and then 
scales this difference by the estimated standard error of the coefficient. An influential observation is 
identified if the difference exceed one standard error, i.e.,  if |DFBETA|>1 (Bollen and Jackman, 1990).  
9 There is a mistaken presumption that the model proposed by Egger et al. (1997) makes the detection of 
publication selection bias almost inevitable because of the positive association between effect-size 
estimates and their standard errors or because of the negative association between effect-size estimates 
and their precision. On the contrary, simulation results in Stanley (2008) indicate that the selection bias test 



13 
 

 

The second issue is about which estimator is better-suited for the data at hand. Most meta-

analysis studies tend to estimate (6) with ordinary least squares (OLS). This is the case in 

the two meta-analysis studies on R&D productivity (Wieser, 2005; Møen and Thorsen, 

2015); and in recent meta-analysis studies in related fields (e.g., Castellacci and Lie, 2015). 

However, OLS estimates from (6) would be biased if the primary-study estimates were 

affected by data dependence. The latter arises when primary studies using a particular 

dataset report multiple estimates or when different studies use overlapping segments of 

the survey data compiled by the same national statistical agency (Doucouliagos and 

Laroche, 2009). Data dependence is clearly an issue here as several studies make use of 

the same dataset several times – albeit at different time periods. (See Tables A1.1 – A1.4 

in the Appendix). 

 

Data dependence can be addressed by: (i) obtaining bootstrapped standard errors; (ii) 

conducting clustered data analysis; and (iii) using hierarchical models (Doucouliagos and 

Laroche, 2009). The first two approaches only correct the standard errors for within-

study dependence. Hierarchical models (HM), however, allow for robust standard errors 

clustered on studies and take account of both within-study and between-study 

dependence explicitly. An added feature is that HMs allow for a range of likelihood ratio 

(LR) tests to choose between least-square and HM estimators and between the latter 

themselves with respect to how dependence should be modelled. Therefore, we estimate 

model (6) as a HM – provided that the choice is justified by LR tests.  
 

Data dependence is modelled by allowing for random variation between study-specific 

estimates, which may be due to study-specific intercepts and/or study-specific slopes 

(Demidenko, 2004; McCulloch et al., 2008). Stated differently, productivity estimates 

reported by primary studies are nested within each study; and the estimates are modelled 

to differ between studies either because they share a common intercept (a fixed 

component) and/or a common slope within each primary study.  

 

The random-intercept-only and random-intercept-and-slope versions of the HM are 

stated in (7) and (8), respectively.  

 

𝑡𝑖𝑗 =  α + β (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑣0𝑗 +  𝜀𝑖𝑗                          (7) 

𝑡𝑖𝑗 =  α + β (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑣0𝑗 + 𝑣1𝑗 (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑢𝑖𝑗        (8) 

 
Here, subscripts j and i refer to primary studies and effect-size estimates respectively; and 
εij and 𝑢𝑖𝑗  are normally distributed error terms with zero mean and fixed variance. The 

random effects  (𝑣0𝑗) and (𝑣1𝑗) are not estimated directly, but their variances are. Finally, 

parameters α and β are as defined above and estimated with maximum likelihood (ML). 

                                                           
based on Egger et al (1997) has low power - i.e., it tends to fail detecting publication selection when the 
latter actually exists.   
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The third issue in estimating the Egger et al. (1997) model is that the relationship between 

primary-study estimates and their standard errors may be non-linear. Indeed, Moreno et 

al. (2009) provide evidence that a quadratic specification is superior if ‘genuine effect’ 

exists beyond selection bias, i.e., if the PET in (6), (7) or (8) rejects the null hypothesis of 

zero effect. Then, the correct specification is obtained by weighting both sides of the Egger 

regression with precision-squared instead of precision. This inverse-variance weighting 

is referred to as precision-effect estimation corrected for standard errors (PEESE).   

 
The random-intercept-only and random-intercept-and-slope versions of the hierarchical PEESE 
models are given below in (9) and (10) respectively; and all subscripts, random effects, error 
terms and parameters are as defined above. 
 

𝑡𝑖𝑗 =  α𝑆𝐸𝑖𝑗 + β (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑣0𝑗 +  𝜆𝑖𝑗       (9) 

𝑡𝑖𝑗 =  α𝑆𝐸𝑖𝑗 + β (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑣0𝑗 + 𝑣1𝑗 (1
𝑆𝐸𝑖𝑗

⁄ ) + 𝑤𝑖𝑗     (10) 

 

 

The ‘average’ R&D elasticity or rate-of-return (β) is estimated after controlling for 

selection bias. This is more reliable than simple or weighted means that do not take 

account of selection bias. However, its out-of-sample generalizability may be limited due 

to excessive heterogeneity in the evidence base. Therefore, we provide quantitative 

measures of heterogeneity that cannot be explained by within-study sampling variation 

drawing on the random-effect meta-regression proposed by Harbord and Higgins (2008). 

Then we use a multivariate meta-regression model (MRM) through which we estimate 

the effects of the potential sources of heterogeneity summarized in Table 1. The random-

intercepts-only and random-slopes-and-intercepts versions of the MRM are given in (11) 

and (12), respectively:   

 
𝑡𝑖 =  𝛼 + 𝛽(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝜃𝑘𝑘 𝑍𝑘(1 𝑆𝐸𝑖𝑗)⁄ +  𝑣𝑗 +  𝜖𝑖𝑗                    (11)  

𝑡𝑖 =  𝛼 + 𝛽(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝜃𝑘𝑘 𝑍𝑘(1 𝑆𝐸𝑖𝑗)⁄ +  𝑣0𝑗 + 𝑣1𝑗(1 𝑆𝐸𝑖𝑗)⁄ +  𝜇𝑖𝑗    (12)  

 

The kx1 vector of covariates (Zk) are dummy variables as defined in Table 1 above and 

summarized in Table A2 in the Appendix. They are all interacted with precision to capture 

their effects on elasticity or rates-of-return estimates reported in primary studies. Given 

that the expected effect of R&D on productivity is positive, the coefficients on the Z dummy 

variables in (11) and (12) are interpreted as follows: (i) a positive (negative) and 

significant coefficient indicates that primary-study estimates for which Zk=1 are larger 

(smaller) than the reference category specified in Table 1; (ii) a non-significant coefficient 

indicates that estimates for which Zk=1 are not systematically different than those 

associated with the reference category.  

 

We estimate the PET/FAT/PEESE and multivariate models for 4 pools of evidence: (1) 

elasticity estimates at the firm level; (2) elasticity estimates at the industry level; (3) rate-
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of-return estimates at the firm level; and (4) rate-of-return estimates at the industry level. 

Estimates from (1) and (3) measure private returns, whereas estimates from (2) and (4) 

measure within-industry social returns to R&D.  

 

To avoid multicollinearity and overfitting, we follow a general-to-specific model-

estimation routine. We present the general model results, together with relevant 

diagnostic statistics including the variance inflation factor (VIF) in Table A3 in the 

Appendix. The specific models are obtained by omitting the most insignificant covariates 

(those with the largest p-value) one at a time until all remaining covariates are statistically 

significant. The estimates from the specific model are presented in the main text and used 

for inference about sources of heterogeneity.  

 

 

4. Meta-analysis results: R&D effects and sources of heterogeneity 
 

We report three sets of meta-analysis evidence: (1) descriptive statistics about the 

dimensions of the research field and funnel plots for visual inspection of heterogeneity 

and selection bias; (2) bivariate meta-regression estimates of publication selection bias 

and average ‘effects’ beyond selection bias; and (3) multivariate meta-regression 

estimates aimed at identifying the sources of variation in the evidence base.  

 

4.1 Overview of the evidence base 

 

Tables A1.1 - A1.4 in the Appendix summarize the evidence base by study, reported 

elasticity or rate of return, and unit of analysis (firm or industry). Tables A1.1 and A1.2 

include studies that report elasticity estimates at the firm and industry levels; whereas 

Tables A1.3 and A1.4 include studies that report rate-of-return estimates at the firm and 

industry levels respectively. Further study characteristics include publication type, 

country origin of the data, mid-point of the data period, dependent variable, estimation 

method,  number of firms or industries, median of the estimates reported in the study, 

median t-value, and the number of estimates reported.  

 

The majority of the studies consists of journal articles (59%) followed by working papers 

(25%). Also, a large proportion of the primary studies utilize US data (41%) followed by 

French, German and UK data (at about 8% each). The outcome variable is TFP in about 

10% of the total observations, with the rest consisting of output, value added or sales. 

Whilst 77% of the studies utilise firm-level data, 23% are based on industry-level data. Of 

the latter, 43% (9 out of 21 studies) draw on US data and this is comparable with the 

overall share of US studies (41%) in the full sample.   
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Figure 1: Funnel plots: potential selection bias and heterogeneity10 

 

 
1. Elasticity estimates: Firm level   2.    Elasticity estimates: Industry level 

Heterogeneity: 98%            Heterogeneity: 86% 

 

 
 3.     Rate of return estimates: Firm level   4.     Rate of return estimates: Industry level 

         Heterogeneity: 81%             Heterogeneity: 17% 

 

The number of estimates reported by each study varies between 2 and 82, depending on 

the evidence pool. Median values of the estimates by study are positive, with the exception 

of Odagiri (1983). The median t-value is greater than 1.645 in 90% of the studies. This 

overview points out to positive and significant median estimates, but the latter are fairly 

heterogeneous. The median estimate ranges from 0.03 to 0.255 for elasticities at the firm 

                                                           
10 The heterogeneity measure is a generalization of Cochran’s Q and indicates the proportion of residual 
between-study variation due to heterogeneity, as opposed to within-study sampling variability (Harbord 
and Higgins, 2008). Higgins et al. (2003) suggest that heterogeneity is low if the measure is between 25%–
50%, moderate if it is between 50%–75%, and high if over 75%. 
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level; from 0.008 to 0.313 for elasticities at the industry level; from -0.110 to 0.380 for 

rates of return at the firm level; and from 0.08 to 0.683 for rates of return at industry level. 

 

The funnel plots in Figure 1 above are centred on the fixed-effect ‘average’ of the 

productivity effect, which is positive for both elasticity and rate-of-return estimates at the 

firm and industry levels. However, the distribution of the estimates around the mean (the 

vertical line) indicates a tendency to report larger estimates more often than otherwise. 

This is an indication of potential selection bias, which must be verified by funnel-

asymmetry tests (FAT). Moreover, a large number of estimates lie beyond the 95% 

pseudo confidence intervals, indicating heterogeneity that cannot be explained by 

sampling errors (Sterne and Harbord, 2004). The random-effect meta-regression 

estimator proposed by Harbord and Higgins (2008) indicate that residual heterogeneity 

is 98% and 86% for the elasticity estimates at the firm and industry levels respectively (1 

and 2); and 81% and 17% for rate-of-return estimates at the firm and industry levels (3 

and 4). Given these indicators of selection bias and heterogeneity, summary measures 

may lead to incorrect inference, the risk of which is exacerbated when the summary 

statistics are based on selected estimates chosen by primary-study authors or reviewers.  

 
 

4.2 Elasticities and rates of return beyond selection bias 
 
Hierarchical meta-regression model (HM) estimates of mean productivity effects beyond 

selection bias are reported in Table 2 below. The HMs are fitted with random slopes and 

intercepts (models 1-3 and 5-7) or random intercepts only (models 4 and 8) in accordance 

with LR test results. Furthermore, LR tests favour the HM specification for all models as 

the null hypothesis that the least-squares models are nested within the HMs is rejected 

strongly. Further justification for the choice of HMs is provided by the log-likelihood 

values, which are smaller in magnitudes in the HMs compared to least-squares models. 

Finally, the standard errors are clustered at the study level to ensure correct inference. 

 

Publication selection bias (α) is significant and substantial in the evidence pool that 

consists of rate-of-return estimates at the firm level (model 3); and moderate in the 

evidence pool for rate-of-return estimates at the industry level (model 4). The test results 

are in line with funnel graphs (3) and (4) above, where the proportion of individual 

estimates above the fixed-effect average is higher. The selection bias is positive but 

insignificant in the evidence pools for elasticity estimates at the firm and industry levels 

(1 and 2).11  Selection bias does not invalidate the ‘genuine’ effect (β), which is positive 

and significant in all evidence pools after controlling for selection. Therefore, the 

consistent PEESE estimates are reported in columns 5 – 8, where we control for non-

linear relationship between primary-study estimates and their standard errors (Moreno 

et al., 2009).  

                                                           
11 The absence of statistically-significant bias in these pools may reflect the low power of the funnel-
asymmetry test as indicated in note 9 above.  
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Table 2: Productivity effects of R&D: Average effects and selection bias 

Notes: (1) & (5): Elasticity estimates at the firm level; (2) & (6): Elasticity estimates at the industry level; (3) & (7): Rate-of-return estimates at the firm level; (4) & (8): Rate-

of-return estimates at the industry level. Robust standard errors (in brackets) are clustered at the study level. Significance of random effects is based on the natural logarithms 
of the standard deviations. Observations with undue influence are excluded, using the DFBETA influence statistics. LR Test Chi-squares indicate that the hierarchical 
models are preferred to least-squares estimators. LR tests for the specifications of the hierarchical models (not reported to save space) favour random-intercepts-
and-slopes specification in (1, 2, 3) and (5, 6, 7); and random-intercepts-only specification in (4) and (8). Log likelihood values for the hierarchical and comparator 
models provide additional evidence in favour of HMs.  # indicates the proportion of residual between-study variation due to heterogeneity, as opposed to within-study 
sampling variability.  *, **, *** indicate significance at 10%, 5% and 1%, respectively.   
 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable: t-value PET/FAT PET/FAT PET/FAT PET/FAT PEESE PEESE PEESE PEESE 

β 0.073*** 0.066*** 0.089*** 0.115*** 0.077*** 0.074*** 0.140*** 0.144*** 

 (0.015) (0.022) (0.018) (0.037) (0.012) (0.021) (0.017) (0.027) 

α 0.479 0.501 1.404*** 0.746***     

 (0.531) (0.392) (0.290) (0.270)     

Std. error     0.779 -0.232 2.244** -0.157 

     (2.639) (0.710) (0.890) (0.162) 

Std. dev. of random slopes (log) -2.813*** -2.964*** -3.543***  -2.808*** -2.994*** -3.200***  

 (0.173) (0.354) (0.265)  (0.165) (0.334) (0.492)  

Std. dev. of random intercepts (log) 0.466** -0.435 -0.867*** -0.512 0.471*** -0.106 -0.457 -0.151 

 (0.215) (0.344) (0.307) (0.324) (0.178) (0.437) (0.278) (0.313) 

Std. dev of residuals (log) 1.473*** 0.480 0.700*** -0.069 1.474*** 0.477 0.719*** -0.077 

 (0.229) (0.297) (0.255) (0.146) (0.229) (0.299) (0.265) (0.164) 

Observations 773 135 192 153 773 135 192 153 

Studies 37 9 21 12 37 9 21 12 

LR Test chi2 23.454 9.364 23.249 9.425 39.025 12.086 145.096 30.146 

P> chi2 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.000 

Log-likelihood (HM)  -2293.001 -270.072 -456.764 -188.969 -2293.556 -270.694 -464.735 -191.501 

Log-likelihood (Comp. model) -2601.318 -323.428 -466.604 -199.970 -2610.669 -323.061 -479.624 -217.009 

Heterogeneity# 98% 86% 81% 17%     
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In columns 5 and 6, the mean elasticity estimate is around 0.07 – with no significant 

difference between the elasticities at the firm level (column 5) compared to the industry 

level (column 6). The mean elasticity at the firm level is smaller than most comparable 

elasticities reported in prior reviews. Wieser (2005: 596) reports an average elasticity of 

0.118 in the level and temporal dimensions; whereas Møen and Thorsen (2015) report 

mean elasticities of 0.109 before and 0.098 after correcting for selection bias in the level 

dimension. The closest to our finding is that of Hall et al. (2010), who report a median 

elasticity of 0.08 in the level and temporal dimensions combined.  

 

The gross rate-of-return estimates in columns (7) and (8) are around 14% and smaller 

than those reported in prior reviews. The latter range from 20% to 30% in Hall et al. 

(2010) and from16% to 28% in Weiser (2005). The closest mean values (13% with and 

18% without correction for selection bias) have been reported by Møen and Thorsen 

(2015).   

 

The results indicate that the informational content of the primary-study estimates should 

be evaluated critically for three reasons. First, the gross private rate of return at the firm 

level (14.4%) is lower than the depreciation rate for R&D capital, usually assumed at 15%. 

This finding indicates that the net rate of private returns may be negative or very small – 

depending on the true depreciation rate. As indicated earlier, this is likely to be due to 

downward bias in the rate-of-return estimates based on the Cobb-Douglas production 

function. The sources of downward bias are twofold: (i) rate-of-return estimates are 

derived from contemporaneous estimations that do not take account of time-lags in the 

completion of R&D projects or conversion of the latter into innovative products and 

processes (Añón Higón, 2007; Doraszelski and Jaumandreu, 2013); and (ii) the use of 

gross R&D intensity in the model could bias the rate-of-return estimate downward 

between 5% and 50% (Hall and Mairesse, 1995; Griliches and Mairesse, 1991a).  

 

Secondly, we find no difference between the firm-level private returns and the within-

industry social returns to R&D – irrespective of whether the returns are estimated as 

elasticities (column 5 and 6) or as rates of return (column 7 and 8).12 This is again in 

contrast to what the underlying theoretical model implies. As shown in footnote 5, the 

within-industry social returns are expected to be higher than private returns at the firm 

level provided that within-industry knowledge spillovers exist.  

 

                                                           
12 This is in line with Hall et al. (2010), who also report that estimates with industry data are close to those 
based on firm data. However, Hall et al. (2010) discuss neither the lack of difference between private and 
within-industry social returns to R&D nor the compatibility/incompatibility of this finding with the 
underlying theoretical model. 
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Our finding indicates that either the methods of estimating the underlying theoretical 

model or the measurement of within-industry knowledge spillovers or both may be 

inadequate for capturing the difference between private and within-industry social 

returns to R&D. This interpretation ties in with Eberhardt et al. (2013: 25), who concludes 

that “… search for a more appropriate specification of the knowledge production function 

that … allows identification of private and social returns to R&D” is an important challenge 

for future research. It is also in line with Bloom et al. (2013) who report larger technology 

spillover effects when the weight matrix used to aggregate the R&D capital is based on a 

Mahalanobis distance measure of technological proximity. 

 

This finding, however, should be interpreted in the light of relatively small number of 

industry-level studies. This aspect of the research field is already documented in prior 

reviews. Although our sample (21 studies) is 61% larger than the most comprehensive 

sample of 13 studies in Hall et al. (2010), it is difficult to ascertain whether the industry-

level social returns would be different in a hypothetically larger sample. Therefore, we 

suggest that an increase in industry-level studies is desirable because industry-level data 

with a sufficiently long time dimension allows for taking account of the lag structure in 

R&D capital (Añón Higón, 2007; Hall et al., 2010) and of the cross-sectional dependence 

in panel data (Erberhardt et al., 2013).  

 

The third reason is that the proportion of between-study variation due to heterogeneity 

as opposed to within-study sampling variability is usually high (between 81% and 98%), 

with the exception of the evidence pool on rate-of-return estimates at the industry level 

(17%). As indicated above, high levels of heterogeneity do not invalidate the average 

elasticity or rate-of-return estimates we report. However, they imply that all summary 

measures, including meta-regression estimates, may conceal a high degree of 

heterogeneity that should be revealed and quantified. The implication for evidence-based 

policy is that public support for R&D investment should be contingent and selective, 

paying attention to evolving evidence on firms/industries/technology classes with higher 

social returns to R&D investments.  

 

The limitations to the informational content of the private and social returns to R&D are 

essentially due to data quality and identification problems. As Griliches and Mairesse 

(1995: 22) have already observed, much of the work “has been guided … by what 

‘econometrics’ as a technology might be able to do … rather than focusing on the more 

important but technically less tractable problems of data quality and model specification.”  

 

We suggest that the informational content of the productivity estimates can be enhanced 

by: (i) availability of firm-level deflators and depreciation rates; (ii) identifying the factors 

that affect firms differently as they choose their inputs, including R&D capital; and (iii) 

using richer models preferably with industry-level data to (a) take account of the lag 

structure in the relationship between R&D capital and productivity, (b) disentangle social 

returns to R&D from cross-sectional dependence due to unobserved common factors, and 
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(c) incorporate technology class and market power into the technological progress 

component of the model. Until further progress along these dimensions, all we can infer 

is that R&D investment is associated with positive private and social returns, but the 

magnitude of the estimated effects is likely to fall short of reflecting the ‘true’ productivity 

or rate-of-return concepts implied by the underlying theory. 

 

 
4.3 Multivariate meta-regression results 
 
In what follows, we investigate how a range of moderating factors (analytical and 

empirical dimensions of the research field) affect the elasticity and rate-of-return 

estimates reported in the primary studies. The moderating factors are captured through 

dummy variables that reflect a specific feature of the research field vis-a-vis a reference 

category as specified in Table 1 above. Summary statistics for the covariates are given in 

Table A2 in the Appendix. For estimation, we use the hierarchical model specification 

justified by LR tests and follow the general-to-specific model routine discussed above.  

 

The general-model estimates are presented in Table A3 in the Appendix. Across evidence 

pools, there is evident variation in the mix of moderating variables that explain 

heterogeneity in the evidence base. In addition, the residual heterogeneity remains high 

in the evidence pools related to firm-level (private) returns to R&D (97% in column 1 and 

77% in column 3). Compared to Table 2 where the only moderating factor is the precision 

of the primary-study estimates, the moderating variables in the general model explain 

only a small percentage (1% and 4%) of the residual heterogeneity in the evidence base 

on private returns to R&D. However, the moderating variables in the general model 

explain a substantial percentage (17% and 21%) of the residual heterogeneity in the 

industry-level (social) returns to R&D. The implication here is that heterogeneity in the 

firm-level estimates is inherently larger and less likely to be explained by study 

characteristics.  

 

As anticipated in the methodology section, the general models suffer from high levels of 

multicollinearity – with variance inflation factors (VIFs) ranging from 4.79 to 166.16. 

Therefore, we follow a general-to-specific model estimation routine, whereby we exclude 

the covariates with the highest p-value one at a time until all remaining covariates are 

significant. The results are presented in Table 3 below. 

 

The routine has led to lower VIF statistics between 2.02 and 3.36, apart from evidence 

pool (3) where the VIF value is 7.03. Although this is relatively high, it is below the 

conventional threshold of 10 adopted in applied econometrics studies. Secondly, the 

specific models do not lead to any loss with respect to the level of heterogeneity explained 

by the remaining covariates. Therefore, our inference will be based on the specific-model 

results in Table 3.  
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Table 3: Sources of heterogeneity: Specific model estimations 
Dependent variable: t-value (1) (2) (3) (4) 

Precision 0.039* 0.116*** 0.162*** 0.215*** 
 (0.023) (0.012) (0.046) (0.052) 
Journal article -0.040** pmc -0.127*** -0.114** 
 (0.020) pmc (0.045) (0.058) 
Control for spillovers  pmc  -0.106***  
 pmc  (0.037)  
Control for capacity utilization  0.039***   
  (0.012)   
Industry dummies included  -0.051*** 0.076*** -0.106*** 
  (0.012) (0.023) (0.035) 
Time dummies included 0.022***  -0.122**  
 (0.004)  (0.048)  
R&D capital constructed with  0.050** pmc n.o. n.o. 
Perpetual inventory method (0.022) pmc n.o. n.o. 
Output measured as value added 0.048***   0.027* 
 (0.005)   (0.016) 
Small firms -0.017** n.o.  n.o. 
 (0.008) n.o.  n.o. 
French data    0.122*** 
    (0.041) 
US data 0.030***    
 (0.009)    
R&D-intensive firm/industry 0.021** 0.082***   
 (0.009) (0.015)   
Publicly-funded R&D -0.142*** n.o. -0.165*** -0.296*** 
 (0.032) n.o. (0.043) (0.030) 
First-differenced estimations -0.053***  0.076***  
 (0.005)  (0.018)  
General method of moments -0.020*   n.o. 
estimators (GMM) (0.012)   n.o. 
Instrumental variable estimators (IV)  -0.150*** n.o. 0.125*** 
  (0.018) n.o. (0.040) 
Long-differenced estimations -0.021**  Reference Reference 
 (0.010)  category category 
Within estimators -0.008* -0.031*** n.o. n.o. 
 (0.004) (0.011) n.o. n.o. 
Constant 0.373 -0.406 1.117*** 0.791* 
 (0.392) (0.469) (0.302) (0.426) 
Std. dev. of random slopes (log) -3.033***    
 (0.154)    
Std. dev. of random intercepts (log) 0.311 0.030 -0.283 0.310 
 (0.200) (0.370) (0.262) (0.251) 
Std. dev. of residuals (log) 1.316*** 0.383*** 0.611*** -0.480*** 
 (0.026) (0.064) (0.050) (0.066) 
Observations 773 135 192 153 
Number of studies 37 9 21 12 

Log-likelihood (HM) -2169.635 -251.690 -439.125 -147.384 
LR Test Chi2 342.366 179.625 102.019 236.519 
P> Chi2  0.000 0.000 0.000 0.000 
Log-likelihood (comparator model) -2365.473 -256.691 -445.803 -175.866 
VIF 2.94 2.02 7.03 3.36 
Heterogeneity  97% 64% 77% 0% 

Notes: pmc: dropped due to perfect multicollinearity; n.o.: no observations for the covariate; blank: insignificant 
in the specific model. (1 and 2): Elasticity estimates at the firm and industry levels, respectively; (3 and 4): Rate-
of-return estimates at the firm and industry levels, respectively. Significance of random effects is based on the 
natural logarithms of the standard deviations. Observations with undue influence are excluded, using the DFBETA 
influence statistics. LR tests for the specifications of the hierarchical models (not reported to save space) favour 
random-intercepts-and-slopes specification in (1), but random-intercepts only in (2), (3) and (4). *, **, *** 
indicate significance at 10%, 5% and 1%, respectively.  
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Given the potential trade-offs between the benefits of reducing the VIF and the cost of 

potentially omitting relevant covariates, in what follows we will qualify our inference by 

comparing the results from the specific models with those of the general counterparts. If 

the sign and significance of the coefficients on a covariate remain the same in both, we 

infer strong consistency. If the covariate is significant only in the specific model, we infer 

moderate consistency. Using this decision rule, we report the following findings. 
 

 

4.3.1  Strongly-consistent evidence on sources of heterogeneity  

 

1. Journal articles tend to report smaller estimates compared to other publication types 

(e.g., book chapters, reports, theses and working papers) for both private and within-

industry social returns to R&D. Given that journals are ‘reputable gatekeepers’ 

concerned with research quality, we infer that the winner’s curse reported in Costa-

Font et al. (2013) is not observed in this research field: journal editors do not seem to 

exploit the benefits of reputation to publish ‘more selected’ evidence.  

 

2. Studies that construct R&D capital with the perpetual inventory method (PIM) tend to 

report larger elasticity estimates compared to others that model R&D capital 

accumulation as a multiplicative process. The PIM accords the same weight to each 

unit of additional R&D investment in the current period irrespective of the R&D 

capital stock in the preceding period. As such, it may be a source of upward bias in 

elasticity estimates if the contribution of new R&D investment to R&D capital is a 

positive function of the latter in the preceding year(s) (Klette, 1994). Our finding 

indicates that modelling of the R&D capital accumulation process is a potential area 

for further research.  

 

3. Small firm data is associated with lower elasticity estimates at the firm level. From a 

Schumpeterian perspective (Aghion et al., 2014), this finding can be interpreted as 

indicator of lower market power enjoyed by small firms. However, it may also be due 

to higher risks of measurement errors and self-selection in small-firm R&D data. Small 

firms are usually not subject to the same level of auditing rigour as large firms, which 

tend to be listed. Secondly, the response rate of small firms to statistical agency 

surveys is usually lower than large firms. Therefore, the smaller elasticity estimates 

associated with small-firm data may reflect not only lower market power but also a 

mixture of measurement errors and sample selection.  

 

4. Elasticity estimates for R&D-intensive firms or industries are larger to non-R&D-

intensive or mixed firms/industries. This finding is in line with Hall et al. (2010) and 

reflects the larger and more precise estimates reported in several primary studies 

(Griliches, 1980; Griliches and Mairesse, 1981; Cunéo and Mairesse, 1984; Odagiri, 

1983; Bartelsman, 1990; and Hall, 1993). The explanation is that R&D-intensive 

firms/industries have better capacities to exploit the benefits of innovation.  
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5. However, the rate-of-return estimates do not differ between R&D-intensive 

firms/industries and their counterparts (columns 3 and 4). We checked whether this 

may be due to differences in the R&D intensity that underpins the elasticity and rate-

of-return samples. The sample average of R&D intensity in studies estimating 

elasticity (e.g., Aldieri et al., 2008; Cincera, 1998; and Cunéo and Mairesse, 1984) 

ranges between 5% and 10%; whereas the interval is from 3% to 5% in the rate-of-

return studies (e.g., Harhoff, 1994; Verspagen, 1995; and Wakelin, 2001). Our 

interpretation is that rates of return to R&D may vary not only between R&D-

intensive firms and their reference category, but also with the level of R&D intensity 

itself. Therefore, we suggest that it is appropriate to control for scale effects in the 

R&D-productivity relationship.  

 

In the neoclassical theory of innovation, the marginal product of knowledge capital 

exhibits increasing returns to scale (Arrow, 1962, 1996; Romer, 1986). However, the 

only study that controls for scale effects in the R&D-productivity relationship in our 

sample reports decreasing returns to scale (Lokshin et al., 2008). The latter is in line 

with case-study findings (Pammolli et al., 2011) and review evidence (DiMasi and 

Grabowski, 2012) on the pharmaceutical industry. It is also in line with Schumpeterian 

models (Aghion et al., 2014), which establish an inverted-U relationship between R&D 

intensity and productivity. The inverted-U pattern is explained by the type of competition 

in technology (leap-frogging or neck-and-neck competition) and the distance to the 

technology frontier. In these models, firms closer to the technology frontier have to 

maintain high levels of R&D investment just to maintain their positions relative to the 

technology leader(s). Given the conflicting theoretical insights and empirical evidence, we 

argue that more work is required to ascertain whether the productivity effects of R&D 

(measured as elasticities or rates of return) are subject to scale effects and whether the latter 

are increasing or decreasing with the level of R&D investment.  

 

6. Publicly-funded R&D is associated with lower estimates for both private and social 

returns to R&D.  Although this finding is based on a relatively small number of 

estimates from five primary studies (Bartelsman, 1990; Lichtenberg and Siegel, 1991; 

Mansfield, 1980; Terleckyj, 1980 and Wolf and Nadiri, 1993), it remains significant 

after we control for any outlier effect. The existing literature suggests three reasons 

as to why elasticity and rate-of-return estimates based on publicly-funded R&D may 

be lower: (a) public support for business R&D may be rightly concentrated in 

firms/industries that generate higher levels of R&D (knowledge) spillovers and hence 

lower levels of appropriability (e.g., health and defence); (b) public funds may be 

concentrated in industries with lower returns due to the large scale of the R&D 

investments at the capacity building phase (e.g., aircraft and communications sectors); 

and (c) firms may be less efficient in the use of public subsidies in general, or subsidies 

may be misdirected (Hall et al., 2010; Lichtenberg and Siegel, 1991).  
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Nevertheless, we think a fourth explanation is also possible and perhaps more 

relevant. As Griliches (1979) has indicated, decomposing the R&D capital into public 

and private components is admissible if both types are complements and enter the 

production function in a multiplicative form. If they are substitutes, they should be 

subsumed under total R&D. Given that the theory is ambiguous on this issue, ad hoc 

disaggregation may be associated with model specification bias. Therefore, we argue 

for further modelling and estimation work to identify the correct functional form and 

obtain more reliable estimates for the productivity effects of different R&D types, 

including publicly-funded R&D. 

 

7. The effects of different estimations methods on elasticities (columns 1 and 2 in Table 

3) are relative to the excluded category of pooled/total OLS estimators. This 

specification enables us to compare time-differenced estimators for temporal 

elasticities with OLS estimators in the level dimension. We report that estimators 

based on time-differencing (including first-differenced, long-differenced and within 

estimators) yield lower elasticity estimates compared to pooled OLS. This finding 

confirms the attenuation bias in time-differenced estimators reported in primary 

studies and existing reviews. However, we are also able to rank the downward bias 

associated with time-differenced data, which appears to be the largest in the first-

differenced estimations followed by long-differenced and within estimations. This is 

in line with Draca et al. (2007), who report that the attenuation bias associated with 

longer differences is smaller than that associated with shorter differences as the 

transitory shocks are averaged out in the former. 

 

8. We find that GMM and other IV estimators yield smaller elasticity estimates on average 

compared to OLS estimators. This finding suggests that R&D investments and 

productivity may be responding to unobserved shocks in the same direction, leading 

to upward bias in the OLS estimates of elasticity.  

 

 
4.3.2  Moderately-consistent or insignificant sources of heterogeneity  

 
1. The effects of time and/or industry dummies on reported estimates are uncertain. The 

effect is positive when industry dummies are included in the private rate-of-return 

models, but negative in within-firm social rate-of-return models. In addition, the effect 

of including time dummies is positive in private elasticity models, but negative in 

private rate-of-return models. These conflicting findings resonate with Hall et al. 

(2010) who report that the effect of industry dummies on primary-study estimates is 

ambiguous in the temporal dimension. In addition, time dummies may capture 

unobserved variations across time, but these variations may be related to actual 

relationship between R&D and productivity.  
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2. The effect of controlling for spillovers through an additional term in the production 

function is significant only when the sample consists of firm-level (private) rates of 

return in column 3 of Table 3. This finding reinforces our concern about the absence 

of difference between private and social returns – particularly when the latter are 

based on rate-of-return estimations. Despite the attenuation effect of controlling for 

spillovers through an additional term, the private rates of returns are not smaller than 

social rates returns - as predicted by the theoretical model. Hence, we reiterate that 

the absence of difference between private and within-industry social returns calls for 

further modeling, identification and estimation effort to disentangle private and social 

returns to R&D.  

 

3. In the rate-of-return pools (columns 3 and 4), the data is time-differenced and the 

reference category is long-differenced estimators. There is evidence of moderate 

consistency that IV estimators are associated with larger rate-of-return estimates 

compared to estimations based on long-differenced data. The attenuation 

(downward) bias in rate-of-return estimates is smaller when the data is long-

differenced, but it may not be eliminated altogether because time-differencing is 

based on the assumption that a given investment has a constant weight over its 

estimated life. This assumption does not hold if there are gestation lags beyond the 

period over which time-differencing is carried out. Hence long-differencing can still 

be a source of downward bias when there is mismatch between the gestation lags and 

the period over which long-differencing is carried out. Therefore, the positive 

coefficient on the IV estimators indicate that the latter may be correcting for the 

residual downward bias in the long-differenced estimations (the reference category). 

Nevertheless, the positive coefficient on the IV dummy may also reflect upward bias 

in IV estimators, which are reported to perform less satisfactorily with time-

differenced data (Griliches and Mairesse, 1995). Hall et al. (2010) indicate that only 

system GMM estimates based on both level and difference equations yield precise 

estimates, but the GMM dummy turns out to be insignificant in the rate-of-return pool. 

Therefore, we reiterate the need to identify and model the lag structure of the returns 

to R&D with a obtain estimates of long-term returns. This is more feasible with 

industry or finely-grained product line data over long time horizons compared to 

firm-level data (Hall et al., 2010).  

 
4. The meta-regression results also indicate that a range of moderating factors are 

insignificant in explaining the variation in the evidence base. One such factor concerns 

correction for double counting. Schankerman (1981) demonstrates that elasticities 

and rates-of-return calculated indirectly are biased downwards if primary studies do 

not correct for double counting. The latter requires deducting the capital-related part 

of the R&D expenditures and the number of R&D personnel from capital and labour. 

However, the downward bias occurs mainly in the level dimension (Hall et al., 2010). 
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In our samples, correction for double counting is insignificant and this may be due to 

pooling together of the elasticity estimates in the level and temporal dimensions.13  

 
Another set of moderating variables that remain inconsistent or insignificant in this 

meta-analysis relate to sample characteristics. For example, we do not find systematic 

differences between elasticities or rates of return based on different country data. 

Although US data is associated with larger elasticity and French data with larger rate-

of-return estimates, the relationship does not carry across evidence pools. Similarly, 

we find that relatively more recent data with a mid-point after 1980 is not associated 

with a significant effect on either elasticities or rates return, compared to earlier 

data.14  

 
 
5.   Conclusions 
 

The work on R&D and productivity has made significant contributions to existing 

knowledge by producing a wealth of evidence and addressing a wide range of 

measurement, modelling and estimation challenges. However, our analysis suggests that 

some of the challenges identified by the pioneering contributors still lie ahead. As Zvi 

Griliches concludes in a posthumously published volume:  

 
“There is much that remains to be learned about productivity, especially in understanding its 
economic determinants and its economic and social consequences... But in the pursuit of this 
knowledge, we should always remember that we can see farther than our predecessors 
because we stand on their shoulders.” (Griliches, 2001: 120). 

 
Embracing this perspective, we offer the following conclusions. 
 
Meta-analysis is a useful method for synthesizing the evidence on returns to R&D 
investment and for identifying the sources of variation in the evidence base. The method 
enables us to report that the private and within-industry social returns to R&D are 
positive but smaller and more heterogeneous than what is reported in prior reviews. The 
upward bias in the latter is due to reliance on selected samples. This potential source of 
bias in prior reviews is combined with limited attention to the extent of heterogeneity in 
the evidence base.  
 
Two of the findings in this study call for caution in the interpretation of the estimates for 
returns to R&D investment. The first concerns the lack of difference between private and 

                                                           
13 Weiser (2005) also pools both dimension and reports that control for double counting corrects for 
downward bias in elasticity estimates. However, this result is based on studies that only use value added as 
the measure of output. 
14 We have conducted 16 more estimations with different dummies for different data mid-points, including 
more recent data mid-points after 1985 and 1990 and older data mid-points before 1975 and 1965. The 
choice of the data mid-point has no significant effect on primary-study estimates in 14 estimations. In the 
remaining two estimations, the effect of using data with mid-point before 1965 was negative in one and 
positive in the other. Hence, we reiterate our argument that the time frame for the data is not a source of 
systematic variation in the evidence base. These estimations are not reported here to save space, but can be 
provided on request.  
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within-industry social returns to R&D. The second finding indicates that the gross private 
returns are smaller than the commonly-assumed depreciation rate for R&D capital. 
Whereas the first runs against the prediction of higher within-industry social returns to 
R&D from the underlying theoretical model, the latter implies negative or very small net 
private returns to R&D in the face of continued firm investments in R&D and public policy 
support for the latter. We are of the view that these anomalies reflect the range of 
modeling, data and estimation challenges that the leading contributors to the field have 
been aware of. Although the existing reviews acknowledge these issues as sources of 
variation in the evidence base, they stop short of spelling out the extent to which they may 
constrain the informational content of the estimates reported in primary studies.  
 
Our reading of the literature and the synthesized evidence suggests four possible causes 
for the wedge between existing estimates and ‘true’ returns to R&D. First, the lack of firm-
level price deflators implies that private returns to R&D may reflect a mixture of both 
market power and ‘true’ productivity effects. Secondly, the elasticity and rate-of-return 
estimates are likely to be biased downward as they are usually based on 
contemporaneous estimations that do not take account of lagged effects. Third, the private 
rate-of-return estimates are likely to be biased downward as they are based on gross R&D 
intensity. Finally, the perpetual inventory method used to construct R&D capital may lead 
to upward bias in the elasticity estimates as it accords the same weight to a given increase 
in R&D investment irrespective of the levels of R&D capital in the preceding period(s).  
 
Further insights we distil from the multivariate meta-regression includes the following: 

(a) it is necessary to control for scale effects in the R&D-productivity relationship as there 

is evidence that returns to R&D may vary with different levels of R&D intensity; (b) 

further modelling and estimation work is required to identify the correct functional form 

and obtain more reliable estimates for the productivity effects of different R&D types, 

including publicly-funded R&D; (c) the downward bias in time-differenced estimates is 

the largest in first-differenced estimations followed with long-differenced and within 

estimations; and (d) IV estimations may not be effective in tackling endogeneity when the 

estimation is based on time-differenced data. 

 

We offer some suggestions for future research and evidence-based policy. First, further 

work is required to clarify whether different R&D types such as privately-funded versus 

publicly-funded business R&D, intramural versus extramural R&D, basic versus applied 

R&D, etc. are complements or substitutes; and whether the productivity effects of R&D 

are subject to scale effects. Further work is also required to model the firm-specific 

technology as a function of market structure and distance to the technology frontier with 

a view to differentiate between ‘true’ and revenue productivity effects. The 

Schumpeterian models of competition, innovation and growth discussed in Aghion et al. 

(2014) are pertinent in this respect.  

 

A third set of suggestion ties in with recent contributions by Bloom et al. (2013), who 

draw attention to two issues that may distort the informational content of the estimates 

for private and social returns to R&D capital. One relates to the ‘reflection problem’ 

discussed in Manski (1993), who draw attention to the fact that social returns to R&D may 
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be upward-biased if all firms in the industry increase their R&D investment in reaction to 

an exogenous increase in new research opportunities. In this case the social return 

estimate picks up not only the effect of spillovers but also that of own R&D on 

productivity. To address this issue and estimate causal effects either matching techniques 

or external instruments are required. Another issue concerns the separation of the 

positive technology spillover effects from the negative effects on private returns due to 

product-market rivalry (or market-stealing effect) among firms sharing similar product-

market positions. Bloom et al (2013) address this issue by identifying the firm’s position 

in the product market space using information on the distribution of its sales activity 

across different industries. This specification allows for distinguishing between 

technology and product-market spillovers. 

 

Fourth, further econometric work with long industry data can help enhancing the 

informational content of the estimated private or social returns to R&D for several 

reasons.  

 It is desirable to increase the number of industry-level studies as the latter are 

fewer than those based on firm-level data.  

 Industry-level data is found to be associated with lower levels of residual 

heterogeneity and the latter has been reduced significantly when we control for 

the dimensions of the research field.  

 Industry-level data with a long time dimension allows for identifying the lag 

structure of the R&D capital and for estimating both short and long-run effects of 

R&D on productivity. Autoregressive distributed lag (ARDL) estimations (see Añón 

Higón, 2007) or Markov chain approaches (Doraszelski and Jaumandreu, 2013) can 

be applied in this line of research. Pesaran and Shin (1999) demonstrate that the 

ARDL modeling framework can yield consistent estimates of the long-run effects 

even when the regressors are potentially endogenous. On the other hand, the 

Markov chain modelling of productivity allows for recovering the full distribution 

of the elasticity estimates, but need explicit tests for homogeneity and Markov 

property, which are often missing in empirical studies of the field.  

 As demonstrated in Eberhardt et al. (2013), industry-level data with a sufficiently 

long time dimension also allows for accounting for cross-sectional dependence 

between industries and reduce the risk of upward bias in the estimates of social 

returns based on weighted measures of R&D (knowledge) spillovers.  

 

Fifth, we would like to indicate that the transition to capitalisation of R&D expenditures 

has the potential of reducing measurement errors and/or differences between data 

quality. It also has the potential of generating industry-level data with long time periods 

and with finer disaggregation along technology classes and product lines. 

 

Finally, we think that the prevalent policy stance in favour of public support for R&D 

investment may be too sanguine given the extent of heterogeneity in the evidence base 

and the limitations to the informational content of the existing evidence. Therefore, we 
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suggest that public support for R&D investment should be conditional and time-variant in 

order to: (a) prioritise R&D projects with better scope for generating social returns; and 

(b) take account of new evidence from the evolving modeling, estimation and evidence 

synthesis techniques.  
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Table A1.1: Overview of study characteristics: Elasticity estimates at the firm level 

Study 
Publication 

type 
Country  

Dependent 
variable 

Estimation  
method 

Data period 
Number of 

firms / 
industries 

Median 
estimate 

Median 
t-value 

Reported 
estimates 

Aiello and Cardamone (2005) Journal article OECD Other 
Value 
Added (VA) 

First Diff., GMM 1995-2000 1017 0.069 5.410 4 

Aldieri et al (2008) Journal article 
OECD Other, 
US 

Sales 
First Diff., GMM, 
Within 

1988-1997 116-465 0.255 1.945 16 

Ballot et al (2006) Journal article 
OECD Other, 
France 

VA 
GMM, Pooled 
OLS 

1987-1993 101-268 0.059 8.890 10 

Bartelsman (1990) Working paper US Output 
Pooled OLS, 
Within 

1956-1988 n.a. 0.052 1.954 12 

Bartelsman et al (1996) Report OECD Other  Output, VA 
Total OLS, Long 
Diff. 

1985-1993 159-436 0.055 2.526 22 

Blanchard et al (2005) Journal article France VA 
GMM, Pooled 
OLS, Within 

1994-1998 793-3141 0.115 2.245 7 

Boler et al (2012) Working paper OECD Other Sales 
GMM, Pooled 
OLS 

1997-2005  850-850 0.030 3.000 5 

Bond et al (2002) Working paper UK, Germany Sales 
GMM, Pooled 
OLS, Within 

1987-1996 234-239 0.053 1.810 12 

Branstetter (1996) Working paper 
OECD Other, 
US 

Sales Long Diff. 1985-1989  205-209 0.188 1.528 2 

Cincera (1998) Thesis OECD Other Sales 

GMM, Pooled 
OLS, Within, 
Long Diff., First 
Diff., Between 

1987-1994 101-2445 0.230 7.442 58 

Cuneo and Mairesse (1984) Working paper France VA  
Pooled OLS, 
Within 

1972-1977 84-182 0.130 3.000 20 

Doraszelski and Jaumandreu 
(2013) 

Journal article OECD Other Output, VA GMM 1991-1999 131-304 0.018 1.563 18 

Griffith et al (2006) Journal article UK VA 
GMM, Pooled 
OLS, IV 

1990-2000 89-188 0.024 2.116 14 

Griliches (1980) Book chapter US Sales, VA 
Total OLS, 
Between 

1957-1965 31-883 0.075 2.875 59 

Griliches (1998) Journal article US Sales, VA 
Total OLS, First 
Diff. 

1966-1977 386-911 0.117 5.235 17 

Griliches and Mairesse 
(1981) 

Working paper US Sales 
Pooled OLS, 
Within, Between 

1966--1977 20-133 0.143 4.848 32 
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Griliches and Mairesse 
(1991b) 

Book chapter OECD Other Sales First Diff. 1973-1978 528-528 0.025 0.834 2 

Hall (1993) Journal article US Sales 
Pooled OLS, 
Long Diff, First 
Diff. 

1964-1990 200-1600 0.030 1.375 85 

Hall and Mairesse (1995) Journal article US VA 
Pooled OLS, 
Long Diff, First 
Diff., Within 

1980-1987  197-340 0.093 2.431 56 

Harhoff (1994) Working paper Germany Sales 
Pooled OLS, 
Long Diff, First 
Diff., Within 

1977-1989 188-443 0.116 4.737 59 

Harhoff (2000) Journal article Germany Sales Long Diff. 1977-1989 439-439 0.068 2.429 5 

Hsing (1998) Journal article US Sales Total OLS 1994 30-30 0.204 1.892 2 

Kafouros (2005) Journal article UK Sales Pooled OLS 1989-2002 19-78 0.040 4.316 17 

Kwon and Inui (2003) Working paper OECD Other VA 
Pooled OLS, 
Long Diff, First 
Diff., Within 

1995-1998 400-3830 0.052 2.650 82 

Lehto (2007) Journal article OECD Other VA 
Pooled OLS, 
Within, 
Between, IV 

1987-1998 1362-2171 0.031 5.000 18 

Los and Verspagen (2000) Journal article US Sales 
First Diff., 
Within, Between 

1977-1991 211-680 0.014 1.220 11 

Mairesse and Hall (1996) Working paper US, France Sales, VA 
Pooled OLS, First 
Diff., Within, 
GMM, IV 

1981-1989 381-1232 0.031 1.000 63 

Ortega-Argiles et al (2010) Journal article OECD Other VA 
Pooled OLS, 
Between 

2000-2005 532-532 0.110 5.359 8 

O’Mahony and Vecchi (2000) Book chapter 
OECD Other, 
US 

Sales 
Pooled OLS, First 
Diff. 

1993-1997 160-783 0.168 5.026 9 

O’Mahony and Vecchi (2009) Journal article 
OECD Other, 
US 

Sales GMM, First Diff. 1988-1997 285-6803 0.124 2.182 9 

Rogers (2010) Journal article UK VA Pooled OLS 1989-2000  86-719 0.131 11.340 11 

Schankerman (1981) Journal article US VA Total OLS 1963 31-419 0.082 3.592 18 

Smith et al (2004) journal article OECD Other VA 
Total OLS, First 
Diff. 

1995-1997 109-378 0.090 2.701 10 

Total         773 
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Table A1.2: Overview of study characteristics: Elasticity estimates at the industry level 

Study 
Publication 

type 
Country  

Dependent 
variable 

Estimation  
method 

Data period 
Number of 

firms / 
industries 

Median 
estimate 

Media
n t-

value 

Reported 
estimates 

Añón Higón (2007) Journal article UK Output 
Panel Coin., CF 
Framework  

1970-1997 18-18 0.313 2.617 4 

Bonte (2003) Journal article Germany VA 
First Diff, Long Diff., 
Within, Between 

1980-1993 26-26 0.008 0.224 6 

Eberhardt et al (2013) Journal article OECD Other VA 
Pooled OLS, First Diff, 
GMM, CF Frame. 

 1980-2005  84-144 0.037 0.960 17 

Frantzen (2002) Journal article OECD Other Output Pooled OLS  1972-1994 308-308 0.152 13.170 7 

Goto and Suzuki (1989) Journal article OECD Other Output First Diff.   1976-1984 13-99 0.250 1.960 21 

Griliches (1980a) Journal article US 
Output, 
VA 

Within 1959-1977 39-39 0.044 1.692 5 

Ortega-Argiles et al 
(2010) 

Journal article OECD Other VA Pooled OLS, Between  1987-2002  15-15 0.062 3.936 8 

Verspagen (1995) Journal article 
US, UK, France, 
Germany, 
OECD Other 

Output IV  1973-1988 15-15 0.019 0.430 55 

Verspagen (1997) Journal article OECD Other Output Within, Between 1974-1992 22-22 0.081 4.190 12 

Total         135 
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Table A1.3: Overview of study characteristics: Rate-of-return estimates at the firm level 

Study 
Publication 

type 
Country  

Dependent 
variable 

Estimation 
method 

Data 
period 

Number of 
firms / 

industries 

Median 
estimate 

Median 
t-value 

Reported 
estimates 

 
Bartelsman et al (1996) Report OECD Other Output, VA Long Diff. 1985-1993  159-368 0.173 2.110 9 

Cincera (1998) Thesis OECD Other Sales First Diff.  1987-1994 625-625 0.380 6.333 1 

Clark and Griliches 
(1998) 

Book chapter US Sales First Diff.  1970-1980 924-924 0.190 3.800 6 

Griliches and Mairesse 
(1991a) 

Book chapter OECD Other, US Sales First Diff.  1973-1980 406-525 0.285 2.519 6 

Griliches and Mairesse 
(1991b) 

Book chapter 
OECD Other, 
US, France 

Sales First Diff. 1973-1978 185-528 0.120 1.727 13 

Hall and Mairesse (1995) Journal article US VA Long /First Diff.  1980-1987 197-340 0.213 2.028 20 

Harhoff (1994) Working paper Germany Sales 
Long / First 

Diff. 
 1977-1989 188-443 0.221 3.277 6 

Heshmati and Hyesung 
(2011) 

Journal article OECD Other VA First Diff. 1986-2002 1200-1200 0.129 2.210 2 

Klette (1991) Working paper OECD Other Output First Diff. 1976-1985 218-1268 0.108 4.154 20 

Kwon and Inui (2003) Working paper OECD Other VA First Diff.   1995-1998 516-3830 0.232 5.300 2 
Lichtenberg and Siegel 

(1991) 
Journal article US Output First Diff. 1972-1985  2000-2000 0.189 3.930 33 

Link (1981) Journal article US Output Long Diff.  1973-1978 51-51 1.250 2.850 2 

Link (1983) Journal article OECD Other Output Long Diff. 1975-1979 302-302 0.055 1.810 2 

Lokshin et al (2008) Journal article OECD Other VA 
GMM, Within, 

Between 
 1996-2001 304-304 0.302 2.988 4 

Mansfield (1980) Journal article US VA Long Diff. 1960-1976  16-16 0.105 1.850 25 

Mate-García and 
Rodriguez-Fernandez (20 

Journal article OECD Other VA GMM  1993-1999  1312-1312 0.266 2.163 1 

Medda et al (2003) Working paper OECD Other Output Long Diff.  1988-1997  2215-2268 0.327 4.316 2 

Odagiri (1983) Journal article OECD Other Sales First Diff.  1966-1980  370-370 -0.110 0.521 2 

Odagiri and Iwata (1986) Journal article OECD Other Output First Diff.  1966-1973 135-135 0.170 1.876 4 

Rogers (2010) Journal article UK VA First Diff., GMM  1989-2000  86-719 0.205 2.060 18 

Wakelin (2001) Journal article UK Sales First Diff.  1988-1992  85-170 0.265 1.275 14 

Total         192 
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Table A1.4: Overview of study characteristics: Rate-of-return estimates at the industry level 

Study 
Publication  

type 
Country  

Dependent 
variable 

Estimation 
method 

Data period 
Number of 

firms / 
industries 

Median 
estimate 

Median 
t-value 

Reported 
estimates 

 
Cameron et al (2005) Journal article UK TFP First Diff.  1970-1992 14-14 0.638 2.438 9 

Griffith et al (2004) Journal article OECD Other TFP First Diff.  1974-1990 12-12 0.473 2.621 15 

Griliches and Lichtenberg 
(1984) 

Journal article US TFP Long Diff. 1959-1978  193-193 0.233 2.515 20 

Hanel (2000) Journal article OECD Other TFP First Diff.  1974-1989 22-22 0.152 1.735 8 

Scherer (1982) Journal article US TFP Long Diff. 1948-1978 20-20 0.192 1.625 4 

Scherer (1983) Journal article US TFP Long Diff.  1964-1978 87-87 0.364 1.605 4 

Sterlacchini 1989 Journal article UK TFP First Diff.  1954-1984  15-15 0.125 1.775 6 

Sveikauskas (1981) Journal article US TFP Long Diff. 1959-1969  69-144 0.194 2.270 20 

Terleckyj (1980) Book chapter US TFP Long Diff. 1948-1966  20-20 0.225 2.130 12 

Verspagen (1995) Journal article 

OECD Other, 
France, 

Germany, UK, 
US 

Output IV 1973-1988 15-15 0.226 0.455 26 

Wolff and Nadiri (1993) Journal article US TFP Long Diff.  1958-1977 19-50 0.181 2.310 14 

van Meijl (1997) Journal article France TFP Long Diff.  1978-1992 30-30 0.080 1.640 15 

Total         153 
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Table A2: Summary statistic for moderating variables by evidence pool 

Evidence  pools 
Elasticity at firm level: 
773 observations 

Elasticity at industry 
level: 135 observations 

Rate of return at firm 
level: 192 
observations 

Rate of return at 
industry level: 153 
observations 

Moderating variables       
 Mean Min Max Mean Min Max Mean Min Max Mean Min Max 
Effect indicators             

t-value 5.778 -6.067 52.290 2.130 -7.059 18.970 2.781 -1.611 13.090 1.873 -0.810 5.270 
Precision 76.34

1 
1.455 999.900 30.35

2 
1.087 142.854 16.088 1.135 77.037 9.735 0.335 27.737 

Publication type             
Journal article 0.435 0 1 1 1 1 0.693 0 1 0.910 0 1 

Model specification             
Control for spillovers 0.128 0 1 0.259 0 1 0.146 0 1 0.301 0 1 

Control for capacity utilisation n.o. n.o. n.o. 0.052 0 1 0.137 0 1 0.188 0 1 
Industry dummies included 0.290 0 1 0.496 0 1 0.571 0 1 0.278 0 1 

Time dummies included 0.577 0 1 0.170 0 1 0.344 0 1 0.278 0 1 
Variable return to scales allowed 0.396 0 1 0.719 0 1 0.382 0 1 0.233 0 1 

Correction for double counting 0.301 0 1 0.200 0 1 0.175 0 1 0.323 0 1 
Measurement             

R&D capital is constructed with perpetual 
inventory method 

0.695 0 1 1.000 1 1 n.o. n.o. n.o. n.o. n.o. n.o. 

Output is measured as value added 0.199 0 1 0.126 0 1 0.245 0 1 n.o. n.o. n.o. 
Sample characteristics             

Mid-point of data period is post-1980 0.719 0 1 0.400 0 1 0.495 0 1 0.361 0 1 
Small firms 0.018 0 1 n.o. n.o. n.o. 0.014 0 1 0.000 0 0 

French data 0.094 0 1 0.030 0 1 0.024 0 1 0.128 0 1 
German data 0.091 0 1 0.089 0 1 0.028 0 1 0.023 0 1 

UK data 0.062 0 1 0.074 0 1 0.151 0 1 0.135 0 1 
US data 0.423 0 1 0.081 0 1 0.542 0 1 0.429 0 1 

R&D-intensive firm/industry 0.195 0 1 0.215 0 1 0.033 0 1 0.045 0 1 
Publicly-funded R&D 0.008 0 1 n.o. n.o. n.o. 0.042 0 1 0.045 0 1 

Estimation method             
Common factor frame estimators n.o. n.o. n.o. 0.104 0 1 n.o. n.o. n.o. n.o. n.o. n.o. 

First-differenced estimation 0.135 0 1 0.170 0 1 0.613 0 1 0.286 0 1 
General method of moments (GMM) 0.120 0 1 0.007 0 1 0.033 0 1 0.000 0 0 

Instrumental variable (IV) estimators 0.010 0 1 0.407 0 1 n.o. n.o. n.o. 0.195 0 1 
Long-differenced estimation 0.085 0 1 0.015 0 1 0.344 0 1 0.519 0 1 

Within estimation 0.190 0 1 0.119 0 1 n.o. n.o. n.o. n.o. n.o. n.o. 
Note: n.o. indicates no observations for the moderating variable in the evidence pool. 
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Table A3: Multivariate meta-regression results: General models 

 

Dependent variable: t-value (1) (2) (3) (4) 

     
Precision 0.026 0.098** 0.153*** 0.221*** 
 (0.027) (0.044) (0.055) (0.084) 
Journal article -0.043** pmc -0.124** -0.103 
 (0.021) pmc (0.052) (0.065) 
Control for spillovers  0.017 -0.145 -0.044* -0.024 
 (0.016) (0.181) (0.024) (0.016) 
Control for capacity utilization n.o. 0.010 -0.072 0.009 
 n.o. (0.043) (0.047) (0.030) 
Industry dummies included 0.006 0.042** -0.012 -0.006 
 (0.004) (0.017) (0.035) (0.041) 
Time dummies included 0.012 -0.035 0.070 -0.093** 
 (0.011) (0.033) (0.061) (0.038) 
Variable returns to scale allowed -0.006 -0.001 -0.044 0.022 
 (0.004) (0.025) (0.055) (0.018) 
Control for double counting 0.022*** 0.001 -0.106* 0.008 
 (0.004) (0.012) (0.058) (0.126) 
R&D capital constructed with  0.054** pmc n.o. n.o. 
Perpetual inventory method (0.023) pmc n.o. n.o. 
Output measured as value added 0.049*** -0.164 0.012 0.029 
 (0.005) (0.178) (0.031) (0.021) 
Data mid-point is post-1980 -0.004 0.167 0.005 0.004 
 (0.008) (0.180) (0.019) (0.055) 
Small firms -0.020** n.o. 0.062 n.o. 
 (0.008) n.o. (0.060) n.o. 
French data 0.008 0.012 0.020 0.105 
 (0.012) (0.021) (0.112) (0.082) 
German data 0.014 -0.021 0.024 0.004 
 (0.041) (0.020) (0.109) (0.063) 
UK data 0.004 0.015 0.038 -0.006 
 (0.031) (0.021) (0.080) (0.065) 
US data 0.038*** 0.004 0.004 -0.015 
 (0.014) (0.020) (0.036) (0.060) 
R&D-intensive firm/industry 0.021** 0.089*** -0.010 0.023 
 (0.009) (0.016) (0.084) (0.087) 
Publicly-funded R&D -0.140*** n.o. -0.169*** -0.299*** 
 (0.032) n.o. (0.043) (0.030) 
Common factor frame estimators n.o. 0.147 n.o. n.o. 
 n.o. (0.179) n.o. n.o. 
First-differenced estimations -0.053*** -0.032 0.091*** -0.007 
 (0.005) (0.032) (0.032) (0.094) 
General method of moments -0.026** 0.406 0.060 n.o. 
estimators (GMM) (0.013) (0.323) (0.061) n.o. 
Instrumental variable estimators (IV) -0.010 -0.135*** n.o. 0.064 
 (0.013) (0.052) n.o. (0.175) 
Long-differenced estimations -0.018* -0.011 Reference Reference 
 (0.011) (0.038) category category 
Within estimators -0.011** -0.035** n.o. n.o. 
 (0.005) (0.014) n.o. n.o. 
Constant 0.384 -0.345 1.126*** 0.797* 
 (0.384) (0.442) (0.312) (0.441) 
Std. dev. of random slopes (log)     
 -3.019***    
 (0.160)    
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Std. dev. of random intercepts (log)     
 0.262 -0.188 -0.336 0.265 
 (0.207) (0.416) (0.320) (0.278) 
Std. dev. of residuals (log)     
 1.310*** 0.368*** 0.597*** -0.490*** 
 (0.026) (0.065) (0.051) (0.067) 
Observations 773 135 192 153 
Studies 37 9 21 12 

Log-likelihood (HM) -2165.458 -248.138 -435.830 -145.683 
Chi2 353.067 220.976 111.872 243.983 
p>Chi2 0.000 0.000 0.000 0.000 
Log-likelihood (comparator model) -2347.730 -250.780 -438.984 -160.747 
VIF 4.79 166.16 9.74 18.09 
Heterogeneity# 97% 65% 77% 0% 

Notes: pmc: dropped due to perfect multicollinearity; n.o.: no observations for the covariate. (1 and 2): Elasticity 

estimates at the firm and industry levels, respectively; (3 and 4): Rate-of-return estimates at the firm and 

industry levels, respectively. Significance of random effects is based on the natural logarithms of the standard 

deviations. Observations with undue influence are excluded, using the DFBETA influence statistics. LR Test Chi-

squares indicate that the hierarchical models are preferred to least-squares estimators. LR tests for the 

specifications of the hierarchical models (not reported to save space) favour random-intercepts-and-slopes 

specification in (1), but random-intercepts only in (2), (3) and (4). # indicates the proportion of residual between-

study variation due to heterogeneity, as opposed to within-study sampling variability.  *, **, *** indicate 

significance at 10%, 5% and 1%, respectively.  

 


