
Graph Editing to a Given Degree SequenceI,II

Petr A. Golovacha, George B. Mertziosb,∗

aDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway
bSchool of Engineering and Computing Sciences, Durham University, UK

Abstract

We investigate the parameterized complexity of the graph editing problem called
Editing to a Graph with a Given Degree Sequence where the aim is
to obtain a graph with a given degree sequence σ by at most k vertex deletions,
edge deletions and edge additions. We show that the problem is W[1]-hard
when parameterized by k for any combination of the allowed editing opera-
tions. From the positive side, we show that the problem can be solved in time
2O(k(∆∗+k)2)n2 log n for n-vertex graphs, where ∆∗ = maxσ, i.e., the problem is
FPT when parameterized by k+ ∆∗. We also show that Editing to a Graph
with a Given Degree Sequence has a polynomial kernel when parameter-
ized by k + ∆∗ if only edge additions are allowed, and there is no polynomial
kernel unless NP ⊆ co-NP /poly for all other combinations of the allowed editing
operations.

Keywords: Parameterized complexity, graph editing, degree sequence

1. Introduction

The aim of graph editing (or graph modification) problems is to modify a
given graph by applying a bounded number of permitted operations in order
to satisfy a certain property. Typically, vertex deletions, edge deletions and
edge additions are the considered as the permitted editing operations, but in
some cases other operations like edge contractions and vertex additions are also
permitted.

We are interested in graph editing problems where the aim is to obtain a
graph satisfying some given degree constraints. These problems usually turn

IA preliminary version of this paper appeared as an extended abstract in the proceedings
of CSR 2016.

IIThe research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC
Grant Agreement n. 267959, the Government of the Russian Federation grant 14.Z50.31.0030
and by the EPSRC Grant EP/K022660/1.

∗Corresponding author
Email addresses: petr.golovach@uib.no (Petr A. Golovach),

george.mertzios@durham.ac.uk (George B. Mertzios)

Preprint submitted to Elsevier November 26, 2016

out to be NP-hard (with rare exceptions). Hence, we are interested in the
parameterized complexity of such problems. Before we state our results we
briefly discuss the known related (parameterized) complexity results.

Related work. The investigation of the parameterized complexity of the edit-
ing problems with degree constraints was initiated by Moser and Thilikos in [24]
and Mathieson and Szeider [23]. In particular, Mathieson and Szeider [23] con-
sidered the Degree Constraint Editing problem that asks for a given graph
G, nonnegative integers d and k, and a function δ : V (G) → 2{0,...,d}, whether
G can be modified into a graph G′ such that the degree dG′(v) ∈ δ(v) for each
v ∈ V (G′), by using at most k editing operations. They classified the com-
plexity of the problem depending on the set of allowed editing operations. In
particular, they proved that if only edge deletions and additions are permitted,
then the problem can be solved in polynomial time for the case where the set
of feasible degrees |δ(v)| = 1 for v ∈ V (G). Without this restriction on the size
of the sets of feasible degrees, the problem is NP-hard even on subcubic planar
graphs whenever only edge deletions are allowed [10] and whenever only edge
additions are allowed [16]. If vertex deletions can be used, then the problem
becomes NP-complete and W[1]-hard with parameter k, even if the sets of feasi-
ble degrees have size one [23]. Mathieson and Szeider [23] showed that Degree
Constraint Editing is FPT when parameterized by d+ k. They also proved
that the problem has a polynomial kernel in the case where only vertex and edge
deletions are allowed and the sets of feasible degrees have size one. Further ker-
nelization results were obtained by Froese, Nichterlein and Niedermeier [16]. In
particular, they proved that the problem with the parameter d admits a polyno-
mial kernel if only edge additions are permitted. They also complemented these
results by showing that there is no polynomial kernel unless NP ⊆ co-NP /poly
if only vertex and edge deletions are allowed. Golovach proved in [19] that, un-
less NP ⊆ co-NP /poly, the problem does not admit a polynomial kernel when
parameterized by d + k if vertex deletion and edge addition are in the list of
operations, even if the sets of feasible degrees have size one. The case where the
input graph is planar was considered by Dabrowski et al. in [14]. Golovach [18]
introduced a variant of Degree Constraint Editing in which, besides the
degree restrictions, it is required that the graph obtained by editing should be
connected. This variant for planar input graphs was also considered in [14].

Froese, Nichterlein and Niedermeier [16] also considered the Π-Degree Se-
quence Completion problem which, given a graph G, a nonnegative integer
k, and a property Π of graph degree sequences, asks whether it is possible to
obtain a graph G′ from G by adding at most k edges such that the degree se-
quence of G′ satisfies Π. They stated some sufficient conditions for Π such that
the problem is FPT and, in some cases, admits a polynomial kernel when pa-
rameterized by k and the maximum degree of G if these conditions are fulfilled.
There are numerous results (see, e.g., [4, 9, 12, 13]) about the graph editing
problem where the aim is to obtain a (connected) graph whose vertices satisfy
some parity restrictions on their degree. In particular, if the obtained graph is
required to be a connected graph with vertices of even degree, we obtain the

2

classical Editing to Eulerian Graph problem (see. [4, 13]).
Another variant of graph editing with degree restrictions is the Degree

Anonymization problem introduced by Liu and Terzi [22] motivated by some
privacy and social networks applications. A graph G is h-anonymous for a
positive integer h if for any v ∈ V (G), there are at least h−1 other vertices of the
same degree. Degree Anonymization asks, given a graph G, a nonnegative
h, and a positive integer k, whether it is possible to obtain an h-anonymous
graph by at most k editing operations. The investigation of the parameterized
complexity of Degree Anonymization was initiated by Hartung et al. [20]
and Bredereck et al. [6] (see also [5, 21]). In particular, Hartung et al. [20]
considered the case where only edge additions are allowed. They proved that
the problem is W[1]-hard when parameterized by k, but it becomes FPT and
has a polynomial kernel when parameterized by the maximum degree ∆ of the
input graph. Bredereck et al. [6] considered vertex deletions. They proved that
the problem is W[1]-hard when parameterized by h + k, but it is FPT when
parameterized by ∆ + h or by ∆ + k. Also the problem was investigated for
the cases when vertex additions [5] and edge contractions [21] are the editing
operations.

Our results. Recall that the degree sequence of a graph is the nonincreasing
sequence of its vertex degrees. We introduce the graph editing problem where
the aim is to obtain a graph with a given degree sequence by using the operations
vertex deletion, edge deletion, and edge addition, denoted by vd , ed , and ea,
respectively. Formally, the problem is stated as follows. Let S ⊆ {vd , ed , ea}.

Editing to a Graph with a Given Degree Sequence
Instance: A graph G, a nonincreasing sequence of nonnegative

integers σ and a nonnegative integer k.
Question: Is it possible to obtain a graph G′ with the degree

sequence σ from G by at most k operations from S?

Notice that we can assume that the length of σ is at most |V (G)| and it is
exactly |V (G)| if vd /∈ S as, otherwise, we have a trivial no-answer. Also if
vd ∈ S, then the number of vertex deletions is implicitly defined by the length
of σ and is |V (G)| − |σ|.

It is worth highlighting here the difference between this problem and the
Editing to a Graph of Given Degrees problem studied in [16, 19, 23]. In
Editing to a Graph of Given Degrees, a function δ : V (G)→ {1, . . . , d}
is given along with the input and, in the target graph G′, every vertex v is
required to have the specific degree δ(v). In contrast, in the Editing to a
Graph with a Given Degree Sequence, only a degree sequence is given
with the input and the requirement is that the target graph G′ has this degree
sequence, without specifying which specific vertex has which specific degree.
To some extend, this problem can be seen as a generalization of the Degree
Anonymization problem [5, 6, 20, 21], as one can specify (as a special case)
the target degree sequence in such a way that every degree appears at least h
times in it.

3

In practical applications with respect to privacy and social networks, we
might want to appropriately “smoothen” the degree sequence of a given graph
in such a way that it becomes difficult to distinguish between two vertices with
(initially) similar degrees. In such a setting, it does not seem very natural to
specify in advance a specific desired degree to every specific vertex of the target
graph. Furthermore, for anonymization purposes in the case of a social network,
where the degree distribution often follows a so-called power law distribution [2],
it seems more natural to identify a smaller number of vertices having all the same
“high” degree, and a greater number of vertices having all the same “small”
degree, in contrast to the more modest h-anonymization requirement where
every different degree must be shared among at least h identified vertices in the
target graph.

In Section 2, we observe that for any nonempty S ⊆ {vd , ed , ea}, Editing to
a Graph with a Given Degree Sequence is NP-complete and W[1]-hard
when parameterized by k. Therefore, we consider a stronger parameterization
by k + ∆∗, where ∆∗ = maxσ. In Section 3, we show that Editing to a
Graph with a Given Degree Sequence is FPT when parameterized by
k + ∆∗. In fact, we obtain this result for the more general variant of the
problem, where we ask whether we can obtain a graph G′ with the degree
sequence σ from the input graph G by at most kvd vertex deletions, ked edge
deletions and kea edge additions. We show that the problem can be solved in
time 2O(k(∆∗+k)2)n2 log n for n-vertex graphs, where k = kvd + ked + kea. The
algorithm uses the random separation techniques introduced by Cai, Chan and
Chan [8] (see also [1]). First, we construct a true biased Monte Carlo algorithm,
that is, a randomized algorithm whose running time is deterministic and that
always returns a correct answer when it returns a yes-answer but can return a
false negative answer with a certain (small) probability. Then we explain how it
can be derandomized. In Section 4, we show that Editing to a Graph with
a Given Degree Sequence has a polynomial kernel when parameterized by
k + ∆∗ if S = {ea}, but for all other nonempty S ⊆ {vd , ed , ea}, there is no
polynomial kernel unless NP ⊆ co-NP /poly. Finally in Section 5 we conclude
the paper and discuss future research directions.

2. Basic definitions and preliminaries

Graphs. We consider only finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and the edge set is
denoted by E(G).

For a set of vertices U ⊆ V (G), G[U] denotes the subgraph of G induced by
U , and by G−U we denote the graph obtained from G by the removal of all the
vertices of U , i.e., the subgraph of G induced by V (G)\U . If U = {u}, we write
G− u instead of G− {u}. Respectively, for a set of edges L ⊆ E(G), G[L] is a
subgraph of G induced by L, i.e, the vertex set of G[L] is the set of vertices of
G incident to the edges of L, and L is the set of edges of G[L]. For a nonempty
set U ,

(
U
2

)
is the set of unordered pairs of elements of U . For a set of edges L,

by G−L we denote the graph obtained from G by the removal of all the edges

4

of L. Respectively, for L ⊆
(
V (G)

2

)
\ E(G), G + L is the graph obtained from

G by the addition of the edges that are elements of L. If L = {a}, then for
simplicity, we write G− a or G+ a.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the
set of vertices which are adjacent to v, and for a set U ⊆ V (G), NG(U) =
(
⋃

v∈U NG(v)) \ U . The closed neighborhood NG[v] = NG(v) ∪ {v}, and for
a positive integer r, Nr

G[v] is the set of vertices at distance at most r from
v. For a set U ⊆ V (G) and a positive integer r, Nr

G[U] =
⋃

v∈U N
r
G[v]. The

degree of a vertex v is denoted by dG(v) = |NG(v)|. The maximum degree
∆(G) = max{dG(v) | v ∈ V (G)}.

For a graph G, we denote by σ(G) its degree sequence. Notice that σ(G) can
be represented by the vector δ(G) = (δ0, . . . , δ∆(G)), where δi = |{v ∈ V (G) |
dG(v) = i}| for i ∈ {0, . . . ,∆(G)}. We call δ(G) the degree vector of G. For
a sequence σ = (σ1, . . . , σn), we define δ(σ) = (δ0, . . . , δr), where r = maxσ
and δi = |{σj | σj = i}| for i ∈ {0, . . . , r}. Clearly, δ(G) = δ(σ(G)), and the
degree vector can be easily constructed from the degree sequence and vice versa.
Slightly abusing notation, we write for two vectors of nonnegative integers, that
(δ0, . . . , δr) = (δ′0, . . . , δ

′
r′) for r ≤ r′ if δi = δ′i for i ∈ {0, . . . , r} and δ′i = 0 for

i ∈ {r + 1, . . . , r′}.

Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One di-
mension is the input size n and another one is a parameter k. It is said that
a problem is fixed parameter tractable (or FPT), if it can be solved in time
f(k) · nO(1) for some function f . A kernelization for a parameterized problem
is a polynomial algorithm that maps each instance (x, k) with the input x and
the parameter k to an instance (x′, k′) such that i) (x, k) is a YES-instance if
and only if (x′, k′) is a YES-instance of the problem, and ii) |x′|+k′ is bounded
by f(k) for a computable function f . The output (x′, k′) is called a kernel.
The function f is said to be a size of a kernel. Respectively, a kernel is poly-
nomial if f is polynomial. A decidable parameterized problem is FPT if and
only if it has a kernel, but it is widely believed that not all FPT problems have
polynomial kernels. In particular, Bodlaender et al. [3] introduced techniques
that allow to show that a parameterized problem has no polynomial kernel un-
less NP ⊆ co-NP /poly. We refer to the recent books of Cygan et al. [11] and
Downey and Fellows [15] for detailed introductions to parameterized complexity.

Solutions of Editing to a Graph with a Given Degree Sequence. Let
(G, σ, k) be an instance of Editing to a Graph of Given Degree Se-

quence. Let U ⊂ V (G), D ⊆ E(G − U) and A ⊆
(
V (G)\U

2

)
\ E(G). We say

that (U,D,A) is a solution for (G, σ, k), if |U | + |D| + |A| ≤ k, and the graph
G′ = G−U −D+A has the degree sequence σ. We also say that G′ is obtained
by editing with respect to (U,D,A). If vd , ed or ea is not in S, then it is
assumed that U = ∅, D = ∅ or A = ∅ respectively. If S = {ea}, then instead of
(∅, ∅, A) we simply write A.

We conclude this section by showing that Editing to a Graph with a
Given Degree Sequence is hard when parameterized by k.

5

Theorem 1. For any nonempty S ⊆ {vd , ed , ea}, Editing to a Graph with
a Given Degree Sequence is NP-complete and W[1]-hard when parameter-
ized by k.

Proof. Suppose that ed ∈ S. We reduce the Clique problem which asks, given
a graph G and a positive integer k, whether G has a clique of size k. This
problem is known to be NP-complete [17] and W[1]-hard when parameterized
by k [7] even if the input graph restricted to be regular. Let (G, k) be an instance
of Clique, where G is an n-vertex d-regular graph, d ≥ k − 1. Consider the
sequence σ = (σ1, . . . , σn), where

σi =

{
d if 1 ≤ i ≤ n− k,
d− (k − 1) if n− k + 1 ≤ i ≤ n.

Let k′ = k(k−1)/2. We claim that (G, k) is a yes-instance of Clique if and only
if (G, σ, k′) is a yes-instance of Editing to a Graph with a Given Degree
Sequence. If K is a clique of size k in G, then the graph G′ obtained from G
by the deletion of the k′ = k(k − 1)/2 edges of D = E(G[K]) has the degree
sequence σ. Assume that (U,D,A) is a solution of (G, σ, k). Clearly, U = ∅
even if vd ∈ S, because σ contains n elements. Since

∑n
i=1 σi = dn− k(k − 1),

we have that A = ∅. The degree sequence of G−D contains exactly k elements
d − (k − 1), that is, k vertices of G − D have degree d − (k − 1). Denote by
K the set of these vertices. Since k′ = k(k − 1)/2 and the deletion of an edge
decreases the degree of its end-vertices by one, all deleted edges should have
their end-vertices in K and each vertex of K is incident to k − 1 deleted edges.
It means that K is a clique of G.

Suppose that ea ∈ S. We reduce Independent Set problem which asks,
given a graph G and a positive integer k, whether G has an independent set of
size k. The reduction is essentially dual to the reduction in the previous case.
Again, Independent Set is NP-complete [17] and W[1]-hard when parame-
terized by k [7] even if the input graph restricted to be regular. Let (G, k) be
an instance of Independent Set, where G is an n-vertex d-regular graph and
k ≤ n. Consider the sequence σ = (σ1, . . . , σn), where

σi =

{
d+ (k − 1) if 1 ≤ i ≤ k,
d if k + 1 ≤ i ≤ n.

Let k′ = k(k − 1)/2. We show that (G, k) is a yes-instance of Independent
if and only if (G, σ, k′) is a yes-instance of Editing to a Graph with a
Given Degree Sequence. If I is an independent set of size k in G, then
we can add k′ = k(k − 1)/2 edges joining the vertices of I. Then the degree
sequence of the obtained graph G′ is σ. Suppose that (U,D,A) is a solution of
(G, σ, k). Clearly, U = ∅ even if vd ∈ S, because σ contains n elements. Since∑n

i=1 σi = dn + k(k − 1), we have that D = ∅. The degree sequence of G + A
contains exactly k elements d+ (k− 1), that is, k vertices of G+A have degree
d + (k − 1). Denote by I the set of these vertices. Since k′ = k(k − 1)/2 and

6

the addition of an edge increases the degree of its end-vertices by one, all added
edges should have their end-vertices in I and each vertex of I is incident to k−1
added edges. It means that I is an independent set of G.

Finally, assume that S = {vd}. We again reduce the Clique problem
for regular graphs. Let (G, k) be an instance of Clique, where G is an n-
vertex d-regular graph with m edges. We assume without loss of generality
that d − (k − 1) ≥ 3. The graph G′ is constructed from G by subdividing
each edge of G, i.e., for each xy ∈ E(G), we construct a new vertex uxy and
replace xy by xuxy and yuxy. We say that uxy is a subdivision vertex of G′. Let
k′ = k(k − 1)/2. Consider the sequence σ = (σ1, . . . , σp), where p = n+m− k′
and

σi =


d if 1 ≤ i ≤ n− k,
d− (k − 1) if n− k + 1 ≤ i ≤ n,
2 if n+ 1 ≤ i ≤ p.

We prove that that (G, k) is a yes-instance of Clique if and only if (G′, σ, k′) is
a yes-instance of Editing to a Graph with a Given Degree Sequence.
Let K be a clique of size k in G. We define U = {uxy | x, y ∈ K, xy ∈ E(G)},
that is, U contains vertices obtained by the subdivision of the edges joining
the vertices of K. Since K is a clique of size k, |U | = k(k − 1)/2 = k′. It is
straightforward to verify that G′ − U has the degree sequence σ. Assume now
that (U,D,A) is a solution of (G′, σ, k′). Since S = {vd}, D = A = ∅. Notice
that σ contains m − k′ elements 2 and G′ has m vertices of degree 2 by the
condition d − (k − 1) ≥ 3 and the definition of σ. Moreover, all vertices of
degree 2 are subdivision vertices. It implies that U contains only subdivision
vertices. The deletion of a subdivision vertex decreases the degrees of its two
neighbors by one. Let K be the set of neighbors of the vertices of U . Clearly,
K ⊆ V (G). Observe that K has exactly k vertices of degree d−(k−1) in G′−U
by the definition of σ. Therefore, for each x ∈ K, U contains k − 1 subdivision
vertices that are adjacent to x in G′. Since |U | ≤ k′, we conclude that K is a
clique of G.

3. FPT-algorithm for Editing to a Graph with a Given Degree Se-
quence

In this section we show that Editing to a Graph with a Given Degree
Sequence is FPT when parameterized by k+ ∆∗, where ∆∗ = maxσ. In fact,
we obtain this result for the more general variant of the problem:

Extended Editing to a Graph with a Given Degree Sequence
Instance: A graph G, a nonincreasing sequence of nonnegative

integers σ and nonnegative integers kvd, ked, kea.
Question: Is it possible to obtain a graph G′ with σ(G′) = σ from G

by at most kvd vertex deletions, ked edge deletions and
kea edge additions?

7

Notice that we can solve Editing to a Graph with a Given Degree Se-
quence using an algorithm for Extended Editing to a Graph with a
Given Degree Sequence by trying all at most (k+1)2 possible values of kvd,
ked and kea with kvd + ked + kea = k.

Theorem 2. Extended Editing to a Graph with a Given Degree Se-
quence can be solved in time 2O(k(∆∗+k)2)n2 log n for n-vertex graphs, where
∆∗ = maxσ and k = kvd + ked + kea.

Proof. First, we construct a randomized true biased Monte Carlo FPT-
algorithm for Extended Editing to a Graph with a Given Degree Se-
quence parameterized by k + ∆∗ based on the random separation techniques
introduced by Cai, Chan and Chan [8] (see also [1]). Then we explain how this
algorithm can be derandomized.

Let (G, σ, kvd, ked, kea) be an instance of Extended Editing to a Graph
with a Given Degree Sequence, n = |V (G)|.

In the first stage of the algorithm we preprocess the instance to get rid of
vertices of high degree or solve the problem if we have a trivial no-instance by
the following reduction rule.

Vertex deletion rule. If G has a vertex v with dG(v) > ∆∗ + kvd + ked, then
delete v and set kvd = kvd − 1. If kvd < 0, then stop and return a NO-answer.

To show that the rule is safe, i.e., by the application of the rule we ei-
ther correctly solve the problem or obtain an equivalent instance, assume that
(G, σ, kvd, ked, kea) is a yes-instance of Extended Editing to a Graph with
a Given Degree Sequence. Let (U,D,A) be a solution. We show that if
dG(v) > ∆∗ + kvd + ked, then v ∈ U . To obtain a contradiction, assume that
dG(v) > ∆∗+kvd+ked but v /∈ U . Then dG′(v) ≤ ∆∗, where G′ = G−U−D+A.
It remains to observe that to decrease the degree of v by at least kvd + ked + 1,
we need at least kvd+ked+1 vertex or edge deletion operations; a contradiction.
We conclude that if (G, σ, kvd, ked, kea) is a yes-instance, then the instance ob-
tained by the application of the rule is also a yes-instance. It is straightforward
to see that if (G′, σ, k′vd, ked, kea) is a yes-instance of Extended Editing to
a Graph with a Given Degree Sequence obtained by the deletion of a
vertex v and (U,D,A) is a solution, then (U ∪ {v}, D,A) is a solution for the
original instance. Hence, the rule is safe.

We exhaustively apply the rule until we either stop and return a NO-answer
or obtain an instance of the problem such that the degree of any vertex v is at
most ∆∗ + k. To simplify notations, we assume that (G, σ, kvd, ked, kea) is such
an instance.

In the next stage of the algorithm we apply the random separation technique.
We color the vertices of G independently and uniformly at random with three
colors. In other words, we partition V (G) into three sets Rv, Yv and Bv (some
sets could be empty), and say that the vertices of Rv are red, the vertices of
Yv are yellow and the vertices of Bv are blue. Then the edges of G are colored
independently and uniformly at random either red or blue. We denote by Re

the set of red and by Be the set of blue edges respectively.

8

G

Boundary vertices

Marked vertices end edges

Figure 1: The structure of a solution. The vertices of U are shown by black bullets, the
vertices of X are shown by black squares, the vertices of Y are white squares, the edges of D
are shown by thick lines and the edges of A are shown by dashed lines.

Before we proceed with the formal description of our algorithm, we briefly
discuss main ideas behind it. Assume that (G, σ, kvd, ked, kea) is a yes-instance,
and let (U,D,A) be a solution. Let also X and Y be the sets of vertices incident
to the edges of D and A respectively. See Fig. 1. We say that the vertices of
U , the neighbors of the vertices of U and the vertices of the sets X and Y are
marked vertices (of a solution). Notice that the marked vertices are exactly the
vertices whose degrees are modified by the editing operations with respect to the
solution including the deleted vertices. Respectively, the degrees of unmarked
vertices remain the same. We say that the unmarked vertices adjacent to the
marked vertices are boundary. We also call edges incident to the marked vertices
marked. Notice that |X| ≤ 2|D| ≤ 2ked and |Y | ≤ 2|A| ≤ 2kea and recall that
|U | ≤ kvd. Taking into account that ∆(G) ≤ ∆∗ + k, we obtain that for the
components of G induced by marked vertices and edges, we have that they have
size O(k(∆∗+ k)) and are separated from each other and the remaining part of
the graph by O(k(∆∗ + k)2) boundary vertices. Because we color vertices and
edges independently and uniformly at random, with sufficiently high probability
(1/2)O(∆∗+k) that depends only on the parameters, the marked vertices and
edges together with boundary vertices are colored correctly with respect to the
solution, that is, the vertices of U are red, the vertices of Y are yellow, the edges
of D are red and the remaining vertices and edges are blue. The correctness here
means that the random coloring allows to distinguish elements of the solution.
In our algorithm, we are trying to find (U,D,A) (or another solution) using these
structural properties and the assumption that a solution is colored correctly. To
do it, we analyze the sets of vertices Rv, Yv, Bv and the sets of edges Re, Be. We
consider the vertices of Rv, their neighbors, the vertices of Yv and the vertices
incident to the edges of Re to be candidates to be marked vertices of a solution.
Respectively, the edges incident to these vertices are candidates to be marked
edges of a solution, and the neighbors of these candidate vertices are candidates
to be the boundary vertices. We consider the components of G induced by the

9

candidates to be marked vertices. By the assumption about the correctness of
the coloring, we have that either all red or all yellow elements of each component
are participating in a solution (that is, all red vertices and edges are deleted and
at least one edge incident to each yellow vertex is added) or is excluded from
a solution. In particular, it means that we can ignore components that are
too big. We order the remaining components and use a dynamic programming
algorithm to find a solution. In this algorithm, we consider components and
decide whether we include its elements in a solution or not. We also keep track
of added edges using the observation that the components are separated by
the candidates to be the boundary vertices. It ensures that yellow vertices of
distinct components are not adjacent.

Now we formalize these ideas. We are looking for a solution (U,D,A) of
(G, σ, kvd, ked, kea) such that the vertices of U are colored red, the vertices inci-
dent to the edges of A are yellow and the edges of D are red. Moreover, if X and
Y are the sets of vertices incident to the edges of D and A respectively, then the
vertices of (N2

G[U]∪NG[X ∪Y])\ (U ∪Y) and the edges of E(G)\D incident to
the vertices of NG[U]∪X ∪ Y should be blue. We say that a solution (U,D,A)
of (G, σ, kvd, ked, kea) is a colorful solution if there are R∗v ⊆ Rv, Y ∗v ⊆ Yv and
R∗e ⊆ Re such that the following holds.

i) |R∗v| ≤ kvd, |R∗e | ≤ ked and |Y ∗v | ≤ 2kea.

ii) U = R∗v, D = R∗e , and for any uv ∈ A, u, v ∈ Y ∗v and |A| ≤ kea.

iii) If u, v ∈ Rv ∪ Yv and uv ∈ E(G), then either u, v ∈ R∗v ∪ Y ∗v or u, v /∈
R∗v ∪ Y ∗v .

iv) If u ∈ Rv ∪ Yv and uv ∈ Re, then either u ∈ R∗v ∪ Y ∗v , uv ∈ R∗e or
u /∈ R∗v ∪ Y ∗v , uv /∈ R∗e .

v) If uv, vw ∈ Re, then either uv, vw ∈ R∗e or uv, vw /∈ R∗e .

vi) If distinct u, v ∈ Rv and NG(u) ∩ NG(v) 6= ∅, then either u, v ∈ R∗v or
u, v /∈ R∗v.

vii) If u ∈ Rv and vw ∈ Re for v ∈ NG(u), then either u ∈ R∗v, vw ∈ R∗e or
u /∈ R∗v, vw /∈ R∗e .

We also say that (R∗v, Y
∗
v , R

∗
e) is the base of (U,D,A).

Our aim is to find a colorful solution if it exists. We do it by a dynamic
programming algorithm based on the following properties of colorful solutions.

Let

L = Re∪{e ∈ E(G) | e is incident to a vertex of Rv}∪{uv ∈ E(G) | u, v ∈ Yv},

and H = G[L]. Denote by H1, . . . ,Hs the components of H. Let Ri
v = V (Hi)∩

Re, Y
i
v = V (Hi) ∩ Yv and Ri

e = E(Hi) ∩Re for i ∈ {1, . . . , s}.
Claim A. If (U,D,A) is a colorful solution and (R∗v, Y

∗
v , R

∗
e) is its base, then

if Hi has a vertex of R∗v ∪ Y ∗v or an edge of R∗e, then Ri
v ⊆ R∗v, Y i

v ⊆ Y ∗v and
Ri

e ⊆ R∗r for i ∈ {1, . . . , s}.

10

Proof of Claim A. Suppose that Hi has u ∈ R∗v ∪ Y ∗v or e ∈ R∗e .
If v ∈ Ri

v∪Y i
v , then Hi has a path P = x0 . . . x` such that u = x0 or e = x0x1,

and x` = v. By induction on `, we show that v ∈ R∗v or v ∈ Y ∗v respectively. If
` = 1, then the statement follows from iii) and iv) of the definition of a colorful
solution. Suppose that ` > 1. We consider three cases.

Case 1. x1 ∈ Rv ∪ Yv. By iii) and iv), x1 ∈ R∗v ∪ Y ∗v and, because the (x1, x`)-
subpath of P has length `− 1, we conclude that v ∈ R∗v or v ∈ Y ∗v by induction.

Assume from now that x1 /∈ Rv ∪ Yv.

Case 2. x0x1 ∈ Re. Clearly, if for the first edge e of P , e ∈ R∗e , then x0x1 =
e ∈ R∗e . Suppose that for the first vertex u = x0 of P , u ∈ R∗v ∪ Y ∗v . Then by
iv), x0x1 ∈ R∗e . If x1x2 ∈ Re, then x1x2 ∈ R∗e by v). Since x1x2 ∈ R∗e and
the (x1, x`)-subpath of P has length ` − 1, we have that v ∈ R∗v or v ∈ Y ∗v by
induction. Suppose that x1x2 /∈ Re. Then because x1x2 ∈ L, x2 ∈ Rv and by
vii), x2 ∈ R∗v. If ` = 2, then x` ∈ R∗v. Otherwise, as the (x2, x`)-subpath of P
has length `− 2, we have that v ∈ R∗v or v ∈ Y ∗v by induction.

Case 2. x0x1 /∈ Re. Then u = x0 ∈ R∗v ∪ Y ∗v . Because x0x1 ∈ L, x0 ∈ R∗v. If
x1x2 ∈ Re, then x1x2 ∈ R∗e by vii). Since x1x2 ∈ R∗e and the (x1, x`)-subpath
of P has length ` − 1, we have that v ∈ R∗v or v ∈ Y ∗v by induction. Suppose
that x1x2 /∈ Re. Then because x1x2 ∈ L, x2 ∈ Rv and by vi), x2 ∈ R∗v. If ` = 2,
then x` ∈ R∗v. Otherwise, as the (x2, x`)-subpath of P has length `− 2, we have
that v ∈ R∗v or v ∈ Y ∗v by induction.

Suppose that e′ ∈ Ri
e. Then Hi has a path P = x0 . . . x` such that u = x0

or e = x0x1, and x`−1x` = e′. Using the same inductive arguments as before,
we obtain that e′ ∈ R∗e .

By Claim A, we have that if there is a colorful solution (U,D,A), then for
its base (R∗v, Y

∗
v , R

∗
e), R∗v =

⋃
i∈I R

i
v, Y ∗v =

⋃
i∈I Y

i
v and R∗e =

⋃
i∈I R

i
e for some

set of indices I ⊆ {1, . . . , s}.
The next property is a straightforward corollary of the definition of H.

Claim B. For distinct i, j ∈ {1, . . . , s}, if u ∈ V (Hi) and v ∈ V (Hj) are
adjacent in G, then either u, v ∈ Bv or (u ∈ Y i

v and v ∈ Bv) or (u ∈ Bv and
v ∈ Y j

v).

We construct a dynamic programming algorithm that consecutively for i =
0, . . . , s, constructs the table Ti that contains the records of values of the function
γ:

γ(tvd, ted, tea, X, δ) = (U,D,A, I),

where

i) tvd ≤ kvd, ted ≤ ked and tea ≤ kea,

ii) X = {d1, . . . , dh} is a collection (multiset) of integers, where h ∈
{1, . . . , 2tea} and di ∈ {0, . . . ,∆∗} for i ∈ {1, . . . , h},

11

iii) δ = (δ0, . . . , δr), where r = max{∆∗,∆(G)} and δi is a nonnegative integer
for i ∈ {0, . . . , r},

such that (U,D,A) is a partial solution with the base (R∗v, Y
∗
v , R

∗
e) defined by

I ⊆ {1, . . . , i} with the following properties.

iv) R∗v =
⋃

i∈I R
i
v, Y ∗v =

⋃
i∈I Y

i
v and R∗e =

⋃
i∈I R

i
e, and tvd = |R∗v| and

ted = |R∗e |.

v) U = R∗v, D = R∗e , |A| = tea and for any uv ∈ A, u, v ∈ Y ∗v .

vi) The multiset {dG′(y) | y ∈ Y ∗v } = X, where G′ = G− U −D +A.

vii) δ(G′) = δ.

In other words, tvd ,ted and tea are the numbers of deleted vertices, deleted edges
and added edges respectively, X is the multiset of degrees of yellow vertices in
the base of a partial solution, and δ is the degree vector of the graph obtained
from G by the editing with respect to a partial solution. Notice that the values
of γ are defined only for some tvd, ted, tea, X, δ that satisfy i)–iii), as a partial
solution with the properties iv)–vii) not necessarily exists, and we only keep
records corresponding to the arguments tvd, ted, tea, X, δ for which γ is defined.

Now we explain how we construct the tables for i ∈ {0, . . . , s}.

Construction of T0. The table T0 contains the unique record (0, 0, 0, ∅, δ) =
(∅, ∅, ∅, ∅), where δ = δ(G) (notice that the length of δ can be bigger than the
length of δ(G)).

Construction of Ti for i ≥ 1. We assume that Ti−1 is already constructed. Ini-
tially we set Ti = Ti−1. Then for each record γ(tvd, ted, tea, X, δ) = (U,D,A, I)
in Ti−1, we construct new records γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′) and put
them in Ti unless Ti already contains the value γ(t′vd, t

′
ed, t

′
ea, X

′, δ′). In the last
case we keep the old value.

Let (tvd, ted, tea, X, δ) = (U,D,A, I) in Ti−1.

• If tvd + |Ri
v| > kvd or ted + |Ri

e| > ked or tea + 2|Y i
v | > kea, then stop

considering the record. Otherwise, let t′vd = tvd+ |Ri
v| and t′ed = ted+ |Ri

e|.

• Let F = G− U −D +A−Ri
v −Ri

e.

• Let
⋃

j∈I Y
j
v = {x1, . . . , xh}, dF (xf) = df for f ∈ {1, . . . , h}. Let Y i

v =

{y1, . . . , y`}. Consider every E1 ⊆
(
Y i
v
2

)
\ E(F [Y i

v]) and E2 ⊆ {xfyi |
1 ≤ f ≤ h, 1 ≤ j ≤ `} such that |E1| + |E2| ≤ kea − tea, and set αf =
|{xfyj | xfyj ∈ E2, 1 ≤ j ≤ `}| for f ∈ {1, . . . , h} and set βj = |{e |
e ∈ E1, e is incident to yj}| + |{xfyj | xfyj ∈ E2, 1 ≤ f ≤ h}| for j ∈
{1, . . . , `}.

– If df + αf > ∆∗ for some f ∈ {1, . . . , h} or dF (yj) + βj > ∆∗ for
some j ∈ {1, . . . , `}, then stop considering the pair (E1, E2).

12

– Set t′ea = tea + |E1| + |E2|, X ′ = {d1 + α1, . . . , dh + αh, dF (y1) +
β1, . . . , dF (y`) + β`}.

– Let F ′ = F + E1 + E2. Construct δ′ = (δ′0, . . . , δ
′
r) = δ(F ′).

– Set U ′ = U ∪ Ri
v, D′ = D ∪ Ri

e, A
′ = A ∪ E1 ∪ E2, I ′ = I ∪ {i}, set

γ(t′vd, t
′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′) and put the record in Ti.

We consecutively construct T1, . . . , Ts. The algorithm returns a YES-answer
if Ts contains a record (tvd, ted, tea, X, δ) = (U,D,A, I) for δ = δ(σ) and
(U,D,A) is a colorful solution in this case. Otherwise, the algorithm returns a
NO-answer.

The correctness of the algorithm follows from the next claim.

Claim C. For each i ∈ {1, . . . , s}, the table Ti contains a record γ(tvd, ted, tea, X, δ) =
(U,D,A, I), if and only if there are tvd, ted, tea, X, δ satisfying i)-iii) such
that there is a partial solution (U∗, D∗, A∗) and I∗ ⊆ {1, . . . , i} that sat-
isfy iv)-vii). In particular tvd, ted, tea, X, δ, (U,D,A) and I satisfy i)–vii) if
γ(tvd, ted, tea, X, δ) = (U,D,A, I) is in Ti.

Proof of Claim C. We prove the claim by induction on i. It is straightforward
to see that it holds for i = 0. Assume that i > 0 and the claim is fulfilled for
Ti−1.

Suppose that a record γ(t′vd, t
′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′) was added in
Ti. Then ether γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′) was in Ti−1 or it was
constructed for some record (tvd, ted, tea, X, δ) = (U,D,A, I) from Ti−1. In the
first case, t′vd, t

′
ed, t

′
ea, X

′, Q′, (U ′, D′, A′) and I ′ ⊆ {1, . . . , i} satisfy i)-vii) by
induction. Assume that γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′) was constructed
for some record (tvd, ted, tea, X,Q) = (U,D,A, I) from Ti−1. Notice that i ∈ I ′
in this case. Let I = I ′ \ {i}. Consider

⋃
j∈I Y

j
v = {x1, . . . , xh} and Y i

v =
{y1, . . . , y`}. By Claim B, xf and yj are not adjacent for f ∈ {1, . . . , h} and
j ∈ {1, . . . , `}. Then it immediately follows from the description of the algorithm
that t′vd, t

′
ed, t

′
ea, X

′, δ′, (U ′, D′, A′) and I ′ satisfy i)–vii).
Suppose that there are tvd, ted, tea, X, δ satisfying i)-iii) such that there is a

partial solution (U∗, D∗, A∗) and I∗ ⊆ {1, . . . , i} that satisfy iv)-vii). Suppose
that i /∈ I∗. Then Ti−1 contains a record γ(tvd, ted, tea, X, δ) = (U,D,A, I) by
induction and, therefore, this record is in Ti. Assume from now that i ∈ I∗. Let
I ′ = I∗ \ {i}. Consider R′v =

⋃
j∈I′ R

j
v and Y ′v =

⋃
j∈I′ Y

j
v . Let E1 = {uv ∈ A |

u, v ∈ T i
v} and E2 = {uv ∈ A | u ∈ Y ′v , v ∈ Y i

v }. Define U ′ = U \Ri
v, D′ = D\Ri

e

and A′ = A \ (E1 ∪E2). Let t′vd = |U ′|, ted = |D′| and tea = |A′|. Consider the
multiset of integers X ′ = {dF (v) | v ∈ Y ′v} and the sequence δ′ = (δ′1, . . . , δ

′
r) =

δ(F) for F = G− U ′ −D′ + A′. We obtain that t′vd, t
′
ed, t

′
ea, X

′, δ′, (U ′, D′, A′)
and I ′ ⊆ {1, . . . , i − 1} satisfy i)-vii). By induction, Ti−1 contains a record
γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′′, D′′, A′′, I ′′). Let Y ′v = {x1, . . . , xh},
⋃

j∈I′′ Y
j
v =

{x′1, . . . , x′h} and assume that dF (xf) = dF ′(x
′
f) for f ∈ {1, . . . , h}, where F ′ =

G−U ′′−D′′+A′′. Consider E′2 obtained from E2 by the replacement of every
edge xfv by x′fv for f ∈ {1, . . . , h} and v ∈ Y i

v . It remains to observe that when
we consider γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′′, D′′, A′′, I ′′) and the pair (E1, E
′
2), we

13

obtain γ(tvd, ted, tea, X, δ) = (U,D,A, I) for U = U ′′ ∪ Ri
v, D = D′′ ∪ Ri

e,
A = A′′ ∪ E1 ∪ E′2 and I = I ′′ ∪ {i}.

Now we evaluate the running time of the dynamic programming algorithm.
First, we upper bound the size of each table. Suppose that γ(tvd, ted, tea, X, δ) =

(U,D,A, I) is included in a table Ti. By the definition and Claim C, δ = δ(G′)
for G′ = G − U − D + A. Let δ = {δ0, . . . , δr} and δ(G) = (δ′0, . . . , δ

′
r).

Let i ∈ {0, . . . , r}. Denote Wi = {v ∈ V (G) | dG(v) = i}. Recall that
δ(G) ≤ ∆∗ + k. If δ′i > δi, then at least δ′i − δi vertices of Wi should be
either deleted or get modified degrees by the editing with respect to (U,D,A).
Since at most kvd vertices of Wi can be deleted and we can modify degrees of at
most (k+∆∗)kvd +2(ked +kea) vertices, δ′i−δi ≤ (k+∆∗+1)kvd +2(ked +kea).
Similarly, if δi > δ′i, then at least δi − δ′i vertices of V (G) \Wi should get modi-
fied degrees. Since we can modify degrees of at most (k+ ∆∗)kvd + 2(ked + kea)
vertices, δi − δ′i ≤ (k + ∆∗)kvd + 2(ked + kea). We conclude that for each
i ∈ {0, . . . , r},

δ′i − (k + ∆∗ + 1)kvd + 2(ked + kea) ≤ δi ≤ δ′i + (k + ∆∗)kvd + 2(ked + kea)

and, therefore, there are at most (2(k + ∆∗)kvd + 4(ked + kea) + 1)r distinct
vectors δ. Since r = max{∆∗,∆(G)} ≤ ∆∗ + k, we have 2O((∆∗+k) log(∆∗+k))

distinct vectors δ. The number of distinct multisets X is at most (∆∗ + 1)2k

and there are at most 3(k + 1) possibilities for tvd, ted, tea. We conclude that
each Ti has 2O((∆∗+k) log(∆∗+k)) records.

To construct a new record γ(t′vd, t
′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′) from
γ(tvd, ted, tea, X, δ) = (U,D,A, I) we consider all possible choices of E1 and
E2. Since these edges have their end-vertices in a set of size at most 2kea and
|E1| + |E2| ≤ kea, there are 2O(k log k) possibilities to choose E1 and E2. The
other computations in the construction of γ(t′vd, t

′
ed, t

′
ea, X

′, δ′) = (U ′, D′, A′, I ′)
can be done in linear time. We have that Ti can be constructed from Ti−1 in
time 2O((∆∗+k) log(∆∗+k)) · n for i ∈ {1, . . . , s}. Since s ≤ n, the total time is
2O((∆∗+k) log(∆∗+k)) · n2.

We proved that a colorful solution can be found in time 2O((∆∗+k) log(∆∗+k)) ·
n2 if it exists. Clearly, any colorful solution is a solution for (G, σ, kvd, ked, kea)
and we can return it, but nonexistence of a colorful solution does not imply that
there is no solution. Hence, to find a solution, we run the randomized algorithm
N times, i.e., we consider N random colorings and try to find a colorful solution
for them. If we find a solution after some run, we return it and stop. If we do
not obtain a solution after N runs, we return a NO-answer. The next claim
shows that it is sufficient to run the algorithm N = 62k(∆∗+k)2 times.

Claim D. There is a positive p that does not depend on the instance such that if
the randomized algorithm has not found a solution for (G, σ, kvd, ked, kea) after

N = 62k(∆∗+k)2 executions, then the probability that (G, σ, kvd, ked, kea) is a
no-instance is at least p.

14

Proof of Claim D. Suppose that (G, σ, kvd, ked, kea) has a solution (U,D,A).
Let X be the set of end-vertices of the edges of D and Y is the set of end-
vertices of A. Let W = N2

G[U] ∪ NG[X ∪ Y] and denote by L the set of edges
incident to the vertices of NG[U] ∪X ∪ Y . The algorithm colors the vertices of
G independently and uniformly at random with three colors and the edges are
colored by two colors. Notice that if the vertices of W and the edges of L are
colored correctly with respect to the solution, i.e., the vertices of U are red, the
vertices of Y are yellow, all the other vertices are blue, the edges of D are red
and all the other edges are blue, then (U,D,A) is a colorful solution. Hence,
the algorithm can find a solution in this case.

We find a lower bound for the probability that the vertices of W and the
edges of L are colored correctly with respect to the solution. Recall that ∆(G) ≤
∆∗ + k. Hence, |W | ≤ kvd(∆∗ + k)2 + 2(ked + kea)(∆∗ + k) ≤ 2k(∆∗ + k)2 and
|L| ≤ kvd(∆∗ + k)2 + 2(ked + kea)(∆∗ + k) ≤ 2k(∆∗ + k)2. As the vertices are
colored with three colors and the edges by two, we obtain that the probability
that the vertices of W and the edges of L are colored correctly with respect to
the solution is at least 3−2k(∆∗+k)2 · 2−2k(∆∗+k)2 = 6−2k(∆∗+k)2 .

The probability that the vertices of W and the edges of L are not colored
correctly with respect to the solution is at most 1− 6−2k(∆∗+k)2 , and the prob-
ability that these vertices are not colored correctly with respect to the solution
for neither of N = 62k(∆∗+k)2 random colorings is at most (1− 1/N)N , and the
claim follows.

Claim D implies that the running time of the randomized algorithm is
2O(k(∆∗+k)2) · n2.

The algorithm can be derandomized by standard techniques (see [1, 8])
because random colorings can be replaced by the colorings induced by universal
sets. Let m and r be positive integers, r ≤ m. An (m, r)-universal set is a
collection of binary vectors of length m such that for each index subset of size
r, each of the 2r possible combinations of values appears in some vector of the
set. It is known that an (m, r)-universal set can be constructed in FPT-time
with the parameter r. The best construction is due to Naor, Schulman and
Srinivasan [25]. They obtained an (m, r)-universal set of size 2r · rO(log r) logm,
and proved that the elements of the sets can be listed in time that is linear in
the size of the set.

In our case we havem = |V (G)|+|E(G)| ≤ ((∆∗+k)/2+1)n and r = 4k(∆∗+
k)2, as we have to obtain the correct coloring of W and L corresponding to a
solution (U,D,A). Observe that colorings induced by a universal set are binary
and we use three colors. To fix it, we assume that the coloring of the vertices and
edges is done in two stages. First, we color the elements of G with two colors: red
and green, and then recolor the green elements by yellow or blue. By using an
(m, r)-universal set of size 2r · rO(log r) logm, we get 4r · rO(log r) logm colorings
with three colors. We conclude that the running time of the derandomized
algorithm is 2O(k(∆∗+k)2) · n2 log n.

15

4. Kernelization for Editing to a Graph with a Given Degree Se-
quence

In this section we show that Editing to a Graph with a Given Degree
Sequence has a polynomial kernel when parameterized by k+ ∆∗ if S = {ea},
but for all other nonempty S ⊆ {vd , ed , ea}, there is no polynomial kernel unless
NP ⊆ co-NP /poly.

Theorem 3. If S = {ea}, then Editing to a Graph with a Given Degree
Sequence parameterized by k + ∆∗ has a kernel with O(k∆∗2) vertices, where
∆∗ = maxσ.

Proof. Let (G, σ, k) be an instance of Editing to a Graph with a Given
Degree Sequence and ∆∗ = maxσ. If ∆(G) > ∆∗, (G, σ, k) is a no-instance,
because by edge additions it is possible only to increase degrees. Hence, we
immediately stop and return a NO-answer in this case. Assume from now that
∆(G) ≤ ∆∗.

For i ∈ {0, . . . ,∆∗}, denote Wi = {v ∈ V (G) | dG(v) = i} and δi = |Wi|.
Our kernelization algorithm is based in the following observation. If some Wi is
sufficiently large, then we can choose a subset W ′i ⊆ Wi whose size is bounded
by a polynomial of k and ∆∗ and assume that we never add edges incident to
the vertices Wi \W ′i , that is, the vertices of Wi \W ′i are irrelevant. Formally,
let si = min{δi, 2k(∆∗ + 1)} and let W ′i ⊆ Wi be an arbitrary set of size si for

i ∈ {0, . . . ,∆∗}. We consider W =
⋃∆∗

i=0W
′
i and prove the following claim.

Claim A. If (G, σ, k) is a yes-instance of Editing to a Graph with a Given

Degree Sequence, then there is A ⊆
(
V (G)

2

)
\E(G) such that σ(G+A) = σ,

|A| ≤ k and for any uv ∈ A, u, v ∈W .

Proof of Claim A. Suppose that A ⊆
(
V (G)

2

)
\ E(G) is a solution for (G, σ, k),

i.e., σ(G + A) = σ and |A| ≤ k, such that the total number of end-vertices of
the edges of A in V (G) \W is minimum. Suppose that there is i ∈ {0, . . . ,∆∗}
such that at least one edge of A has at least one end-vertex in Wi \W ′i . Clearly,
si = 2k(∆∗ + 1). Denote by {x1, . . . , xp} the set of end-vertices of the edges
of A in Wi and let {y1, . . . , yq} be the set of end-vertices of the edges of A in
V (G) \ Wi. Since p + q ≤ 2k, ∆(G) ≤ ∆∗ and si = 2k(∆∗ + 1), there is a
set of vertices {x′1, . . . , x′p} ⊆ W ′i such that the vertices of this set are pairwise
nonadjacent and are not adjacent to the vertices of {y1, . . . , yq}. We construct

A′ ⊆
(
V (G)

2

)
\ E(G) by replacing every edge xiyj by x′iyj for i ∈ {1, . . . , p} and

j ∈ {1, . . . , q}, and every edge xixj is replaced by x′ix
′
j for i, j ∈ {1, . . . , p}. It

is straightforward to verify that A′ is a solution for (G, σ, k), but A′ has less
end-vertices outside W contradicting the choice of A. Hence, no edge of A has
an end-vertex in V (G) \W .

If δi ≤ 2k(∆∗ + 1) for i ∈ {0, . . . ,∆∗}, then we return the original instance
(G, σ, k) and stop, as |V (G)| ≤ 2k(∆∗ + 1)2. From now we assume that there
is i ∈ {0, . . . ,∆∗} such that δi > 2k(∆∗ + 1). Using Claim A, we construct

16

the graph G′ from G by the deletion of the set of irrelevant vertices V (G) \W .
Notice that the deletion of this set could decrease the degrees of the remaining
vertices. To avoid this situation, we add auxiliary vertices v1, . . . , vh and join
them by edges with each u ∈ W in such a way that dG(u) = dG′(u). Formally,
we do the following.

• Delete all the vertices of V (G) \W .

• Construct h = ∆∗ + 2 new vertices v1, . . . , vh and join them by edges
pairwise to obtain a clique.

• For any u ∈W such that r = |NG(u) ∩ (V (G) \W)| ≥ 1, construct edges
uv1, . . . , uvr.

Notice that dG′(v1) ≥ . . . ≥ dG′(vh) ≥ ∆∗ + 1 and dG′(u) = dG(u) for u ∈ W .
Observe also that |V (G′)| ≤ 2k(∆∗ + 1)2. Now we consider the sequence σ and
construct the sequence σ′ as follows.

• The first h elements of σ′ are dG′(v1), . . . , dG′(vh).

• Consider the elements of σ in their order and for each integer i ∈
{0, . . . ,∆∗} that occurs ji times in σ, add ji − (δi − si) copies of i in
σ′.

We claim that (G, σ, k) is a yes-instance of Editing to a Graph with a
Given Degree Sequence if and only if (G′, σ′, k) is a yes-instance of the
problem.

Suppose that (G, σ, k) is a yes-instance of Editing to a Graph with a

Given Degree Sequence. By Claim A, it has a solution A ⊆
(
V (G)

2

)
\ E(G)

such that for any uv ∈ A, u, v ∈W . It is straightforward to verify that σ(G′ +

A) = σ′, i.e., A is a solution for (G′, σ′, k). Assume that A ⊆
(
V (G′)

2

)
\E(G) is a

solution for (G′, σ′, k). Recall that dG′(v1), . . . , dG′(vh) are the first elements of
σ′, dG′(v1) ≥ . . . ≥ dG′(vh) ≥ ∆∗ + 1 and dG′(u) = dG(u) ≤ ∆∗ for u ∈ W . It
follows that for any uv ∈ A, u, v /∈ {v1, . . . , vh}. Otherwise, if A contains some
edge viu, the degree of vi gets increased and we cannot obtain a graph with the
degree sequence σ′. We conclude that for any uv ∈ A, u, v ∈ W . Then it is
straightforward to check that σ(G+A) = σ, i.e., A is a solution for (G, σ, k).

It is easy to verify that (G′, σ′, k) can be constructed in polynomial time.
Since |V (G′)| = O(k∆∗2), we obtain a required kernel.

We complement Theorem 3 by showing that it is unlikely that Editing to
a Graph with a Given Degree Sequence parameterized by k + ∆∗ has a
polynomial kernel for S 6= {ea}. The proof is based on the cross-composition
technique introduced by Bodlaender, Jansen and Kratsch [3].

Theorem 4. If S is nonempty and S ⊆ {vd , ed , ea} but S 6= {ea}, then Edit-
ing to a Graph with a Given Degree Sequence has no polynomial ker-
nel unless NP ⊆ co-NP /poly when the problem is parameterized by k + ∆∗ for
∆∗ = maxσ.

17

Proof. We refer to the book of Cygan et al. [11] for the detailed introduction to
the cross-composition technique. Here we only briefly remind main definitions
and statements that are needed for the proof.

Recall that, formally, a parameterized problem P ⊆ Σ∗ × N, where Σ is a
finite alphabet.

Let Σ be a finite alphabet. An equivalence relation R on the set of strings
Σ∗ is called a polynomial equivalence relation if the following two conditions
hold:

i) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in time polynomial in |x|+ |y|,

ii) for any finite set S ⊆ Σ∗, the equivalence relation R partitions the ele-
ments of S into a number of classes that is polynomially bounded in the
size of the largest element of S.

Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation on Σ∗,
and let P ⊆ Σ∗×N be a parameterized problem. An OR-cross-composition of L
into P (with respect toR) is an algorithm that, given t instances x1, x2, . . . , xt ∈
Σ∗ of L belonging to the same equivalence class of R, takes time polynomial in∑t

i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

i) the parameter value k is polynomially bounded in max{|x1|, . . . , |xt|} +
log t,

ii) the instance (y, k) is a yes-instance for P if and only if at least one instance
xi is a yes-instance for L for i ∈ {1, . . . , t}.

It is said that L OR-cross-composes into P if a cross-composition algorithm
exists for a suitable relation R.

In particular, Bodlaender, Jansen and Kratsch [3] proved that if an NP-hard
language L OR-cross-composes into the parameterized problem P, then P does
not admit a polynomial kernelization unless NP ⊆ co-NP /poly.

We prove that the Clique problem which asks, given a graph G and a
positive integer k, whether G has a clique of size k, OR-cross-composes into
Editing to a Graph with a Given Degree Sequence if S 6= {ea}. Re-
call that Clique is NP-complete [17] for regular graphs. Notice also that the
constructions used here are very similar to the reduction used in the proof of
Theorem 1.

Suppose that ed ∈ S. We assume that two instances (G, k) and (G′, k′)
of Clique are equivalent if |V (G)| = |V (G′)|, k = k′ and G,G′ are d-regular
for some nonnegative integer d. Let (G1, k), . . . , (Gt, k) be equivalent instances
of Clique, where G1, . . . , Gt are d-regular, n = |V (G1)| = . . . = |V (Gt)| and
d ≥ k − 1. We construct the graph G by taking the disjoint union of copies of
G1, . . . , Gt. Consider the sequence σ = (σ1, . . . , σnt), where

σi =

{
d if 1 ≤ i ≤ nt− k,
d− (k − 1) if nt− k + 1 ≤ i ≤ nt.

18

Let k′ = k(k − 1)/2. We claim that (Gi, k) is a yes-instance of Clique for
some i ∈ {1, . . . , t} if and only if (G, σ, k′) is a yes-instance of Editing to a
Graph with a Given Degree Sequence. If K is a clique of size k in Gi,
then the graph G′ obtained from G by the deletion of the k′ = k(k− 1)/2 edges
of D = E(G[K]) has the degree sequence σ. Assume that (U,D,A) is a solution
of (G, σ, k). Clearly, U = ∅ even if vd ∈ R, because σ contains nt elements.
Since

∑nt
i=1 σi = dn − k(k − 1), we have that A = ∅. It remains to notice that

since in G − D exactly k vertices have degree d − (k − 1), G[D] is a compete
graph with k vertices, i.e., G contains a clique of size k. Clearly, any clique K
of size k is a clique of some Gi for i ∈ {1, . . . , t}.

Assume that vd ∈ S. Now we assume that two instances (G, k) and (G′, k′)
of Clique are equivalent if |V (G)| = |V (G′)|, |E(G)| = |E(G′)|, k = k′ and
G,G′ are d-regular for some nonnegative integer d. Let (G1, k), . . . , (Gt, k) be
equivalent instances of Clique, where G1, . . . , Gt are d-regular, n = |V (G1)| =
. . . = |V (Gt)|, m = |E(G1)| = . . . = |E(Gt)| and d− (k − 1) ≥ 3. We construct
the graph G as follows.

• Take the disjoint union of copies of G1, . . . , Gt.

• For each edge uv ∈ E(Gi) for i ∈ {1, . . . , t}, subdivide it, i.e., construct
a new vertex w and replace uv by uw and wv. We call the new vertices
subdivision vertices.

Let k′ = k(k − 1)/2. Consider the sequence σ = (σ1, . . . , σp), where p =
(n+m)t− k′ and

σi =


d if 1 ≤ i ≤ nt− k,
d− (k − 1) if nt− k + 1 ≤ i ≤ nt,
2 if nt+ 1 ≤ i ≤ p.

We claim that (Gi, k) is a yes-instance of Clique for some i ∈ {1, . . . , t} if
and only if (G, σ, k′) is a yes-instance of Editing to a Graph with a Given
Degree Sequence. If K is a clique of size k in Gi, then the graph G′ obtained
from G by the deletion of the k′ = k(k−1)/2 subdivision vertices corresponding
to the edges G[K] has the degree sequence σ. Assume that (U,D,A) is a solution
of (G, σ, k). Because σ has p elements and |V (G)| − p = t(n + m) − p = k′,
U contains k′ vertices and D = A = ∅. By the construction of G and σ, U
contains only vertices of degree 2. As d− (k − 1) ≥ 3, we have that U contains
k′ subdivision vertices. It remains to notice that because in G − U k vertices
have degree d − (k − 1), the subdivision vertices of U correspond to the edges
of a compete graph with k vertices, i.e., G contains a clique of size k. Clearly,
any clique K of size k is a clique of some Gi for i ∈ {1, . . . , t}.

5. Conclusions

In this paper we investigated the parameterized complexity of the problem,
given a graph G and a degree sequence σ, to construct a graph G′ from G by at

19

most k vertex deletions, edge deletions, and edge additions, such that σ is the
degree sequence of G′. We proved that, for any combination of these permitted
edit operations, the problem is W[1]-hard parameterized by k. On the positive
side we proved that the problem is FPT when parameterized by k + ∆∗, where
∆∗ = maxσ. Furthermore we proved that, when parameterized by k + ∆∗,
the problem admits a polynomial kernel if only edge additions are allowed,
while there is no polynomial kernel for all other combinations of permitted edit
operations unless NP ⊆ co-NP /poly.

It can be noted that we can obtain similar result using the maximum degree
of the input graph ∆(G) instead of ∆∗, that is, for the for the parameterization
by k+ ∆(G). Notice that if ∆(G) < ∆∗ − k, then we have a trivial no-instance
of the problem, because the degree of a vertex can be increased only by edge
additions and we cannot add more than k edges. Therefore, if Editing to
a Graph with a Given Degree Sequence is FPT when parameterized by
k + ∆∗, then it is FPT when parameterized by k + ∆(G). In the same way, we
obtain that if S = {ed}, then Editing to a Graph with a Given Degree
Sequence admits a polynomial kernel when parameterized by k + ∆(G). Fi-
nally, we observe that for the graphs constructed in the proof of Theorem 4,
the maximum degree is the same as the maximum value in the corresponding
degree sequences. Hence, we have that if S is nonempty and S ⊆ {vd , ed , ea}
but S 6= {ea}, then Editing to a Graph with a Given Degree Sequence
has no polynomial kernel unless NP ⊆ co-NP /poly when the problem is param-
eterized by k + ∆(G). It would be interesting to study the complexity of the
problem with respect to other parameters as well.

A further interesting research direction is to consider the same problem using
a different type of edit operations such as vertex additions and edge contractions,
among others. Moreover, specific graph classes could be also investigated in
order to reduce the complexity in special cases of the input. A related question
that deserves a separate effort is to investigate the problem where the aim is
to obtain a graph with the degree sequence that is close, in some sense, to a
given degree sequence. In particular, it could be interesting in the context of
anonymizing social networks to modify a graph to get its degree sequence close
to a power-law degree distribution.

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.

[2] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Sci-
ence 286 (5439) (1999) 509–512.

[3] H. L. Bodlaender, B. M. P. Jansen, S. Kratsch, Kernelization lower bounds
by cross-composition, SIAM J. Discrete Math. 28 (1) (2014) 277–305.
URL http://dx.doi.org/10.1137/120880240

[4] F. T. Boesch, C. L. Suffel, R. Tindell, The spanning subgraphs of Eulerian
graphs, Journal of Graph Theory 1 (1) (1977) 79–84.

20

[5] R. Bredereck, V. Froese, S. Hartung, A. Nichterlein, R. Niedermeier, N. Tal-
mon, The complexity of degree anonymization by vertex addition, in:
AAIM 2014, vol. 8546 of Lecture Notes in Computer Science, Springer,
2014, pp. 44–55.

[6] R. Bredereck, S. Hartung, A. Nichterlein, G. J. Woeginger, The complexity
of finding a large subgraph under anonymity constraints, in: ISAAC 2013,
vol. 8283 of Lecture Notes in Computer Science, Springer, 2013, pp. 152–
162.

[7] L. Cai, Parameterized complexity of cardinality constrained optimization
problems, Comput. J. 51 (1) (2008) 102–121.
URL http://dx.doi.org/10.1093/comjnl/bxm086

[8] L. Cai, S. M. Chan, S. O. Chan, Random separation: A new method for
solving fixed-cardinality optimization problems, in: IWPEC, vol. 4169 of
Lecture Notes in Computer Science, Springer, 2006, pp. 239–250.

[9] L. Cai, B. Yang, Parameterized complexity of even/odd subgraph problems,
J. Discrete Algorithms 9 (3) (2011) 231–240.

[10] G. Cornuéjols, General factors of graphs, J. Comb. Theory, Ser. B 45 (2)
(1988) 185–198.
URL http://dx.doi.org/10.1016/0095-8956(88)90068-8

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-319-21275-3

[12] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, I. Schlotter, Parameter-
ized complexity of Eulerian deletion problems, Algorithmica 68 (1) (2014)
41–61.

[13] K. K. Dabrowski, P. A. Golovach, P. van ’t Hof, D. Paulusma, Editing to
Eulerian graphs, in: FSTTCS 2014, vol. 29 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014, pp. 97–108.

[14] K. K. Dabrowski, P. A. Golovach, P. van ’t Hof, D. Paulusma, D. M.
Thilikos, Editing to a planar graph of given degrees, in: CSR 2015, vol.
9139 of Lecture Notes in Computer Science, Springer, 2015, pp. 143–156.

[15] R. G. Downey, M. R. Fellows, Fundamentals of Parameterized Complexity,
Texts in Computer Science, Springer, 2013.
URL http://dx.doi.org/10.1007/978-1-4471-5559-1

[16] V. Froese, A. Nichterlein, R. Niedermeier, Win-win kernelization for degree
sequence completion problems, in: SWAT 2014, vol. 8503 of Lecture Notes
in Computer Science, Springer, 2014, pp. 194–205.

21

[17] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979.

[18] P. A. Golovach, Editing to a connected graph of given degrees, in: MFCS
2014, Part II, vol. 8635 of Lecture Notes in Computer Science, Springer,
2014, pp. 324–335.

[19] P. A. Golovach, Editing to a graph of given degrees, Theor. Comput. Sci.
591 (2015) 72–84.
URL http://dx.doi.org/10.1016/j.tcs.2015.04.034

[20] S. Hartung, A. Nichterlein, R. Niedermeier, O. Suchý, A refined complexity
analysis of degree anonymization in graphs, Inf. Comput. 243 (2015) 249–
262.
URL http://dx.doi.org/10.1016/j.ic.2014.12.017

[21] S. Hartung, N. Talmon, The complexity of degree anonymization by graph
contractions, in: TAMC 2015, vol. 9076 of Lecture Notes in Computer
Science, Springer, 2015, pp. 260–271.

[22] K. Liu, E. Terzi, Towards identity anonymization on graphs, in: SIGMOD
2008, ACM, 2008, pp. 93–106.

[23] L. Mathieson, S. Szeider, Editing graphs to satisfy degree constraints: A
parameterized approach, J. Comput. Syst. Sci. 78 (1) (2012) 179–191.

[24] H. Moser, D. M. Thilikos, Parameterized complexity of finding regular
induced subgraphs, J. Discrete Algorithms 7 (2) (2009) 181–190.

[25] M. Naor, L. Schulman, A. Srinivasan, Splitters and near-optimal derandom-
ization, in: 36th Annual Symposium on Foundations of Computer Science
(FOCS 1995), IEEE, 1995, pp. 182–191.

22

