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Abstract: In this work we study a classically scale invariant extension of the Standard
Model that can explain simultaneously dark matter and the baryon asymmetry in the uni-
verse. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector
coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Ma-
jorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector
are mass-degenerate and stable, and this makes them suitable as dark matter candidates.
Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asym-
metry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos,
and converted to the baryon asymmetry by the electroweak sphalerons. All the character-
istic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass
scales, are generated radiatively, have a common origin and related to each other via scalar
field couplings in perturbation theory.
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1 Introduction

The question of why the only scale parameter in the Standard Model (SM) Lagrangian,
−M2

SM|H|2, is much smaller than the Planck scale is at heart of the naturalness problem.
The idea of generating a scale radiatively, originally proposed in Ref. [1] can be applied to
explain the origin of the electroweak scale in the SM [2, 3]. In this article we will discuss
an extension of the Standard Model that addresses some of the main shortcomings of the
minimal theory, namely the dark matter (DM), the baryon asymmetry of the universe
(BAU) and the origin of the electroweak scale. Our Beyond the Standard Model framework
is based on a theory which contains no explicit mass-scale parameters in its tree-level
Lagrangian, and all new scales will be generated dynamically at or below the TeV scale.
Our specific approach is motivated by the earlier work in Refs. [4–10] and [11, 12]. The
idea of generating the electro-weak scale and various scales of new physics via quantum
corrections, by starting from a classically scale-invariant theory, has generated a lot of
interest. For related studies on this subject we refer the reader to recent papers including
Refs. [13–30].

In our set-up we extend the Standard Model by a dark sector, namely a non-Abelian
SU(2)DM hidden sector that is coupled to the Standard Model via the Higgs portal, and a
singlet sector that includes a real singlet σ and three right-handed Majorana neutrinos Ni.
Due to an SO(3) custodial symmetry all three gauge bosons Z ′a have the same mass and
are absolutely stable, making them suitable dark matter candidates [31] (this also applies
to larger gauge groups SU(N)DM [32, 33] and to scalar fields in higher representations [34],
albeit symmetry breaking patterns get more complicated).

– 1 –



The tree-level scalar potential of our model is given by

V0 = λφ|Φ|4 + λh|H|4 +
λσ
4
σ4 − λhφ|H|2|Φ|2 −

λφσ
2
|Φ|2σ2 +

λhσ
2
|H|2σ2, (1.1)

where Φ denotes the SU(2)DM doublet, H is the SM Higgs doublet, and σ is a gauge-singlet
introduced in order to generate the Majorana masses for the sterile neutrinos, and hence
the visible neutrinos masses and mixings via the see-saw mechanism. The portal couplings
λhφ, λφσ and λhσ will play a role in order to induce non-trivial vacuum expectation values
for all three scalar. As will become clear from Table 1 we will scan over positive as well
as negative values of the portal couplings λhφ and λhσ. As we are working with multiple
scalars we will adopt the Gildener-Weinberg approach [35], which is a generalisation of
the Coleman-Weinberg mechanism to multiple scalar states and will be briefly reviewed
in Section 2. Later on we shall see that the most interesting region in parameter space
leading to both the correct dark matter abundance and the correct baryon asymmetry is
for 〈σ〉 � 〈φ〉 and hence one can think of σ as a Coleman-Weinberg scalar that once it
acquires a non-zero vev it will be communicated to φ and h through the portal couplings
λφσ and λhσ.

The interactions for the right-handed neutrinos in the Lagrangian are given by

LN = −1

2

(
YM
ij σNi

c
Nj + YM†

ij σNiN
c
j

)
− Y D

ia Ni(εH)lLa − Y D†
ai lLa(εH)†Ni, (1.2)

where the first two term give rise to the Majorana mass once σ acquires a vev, while the
last two terms are responsible for the CP-violating oscillations of Ni.

Since we do not wish to break the lepton-number symmetry explicitly, it follows from
(1.2) that our new singlet scalar field σ should have the lepton number L = −2. We can
think of it as the real part of a complex scalar Σ = (σ+ iπ)/

√
2 where S transforms under

a U(1)L symmetry associated with the lepton number, which is broken spontaneously by
〈σ〉 6= 0. If this is a global U(1) symmetry then there must exist a massless (or very
light) (pseudo)-Goldstone boson. Since the Higgs can pair-produce them and decay, this
would severely constrain the portal coupling of Σ with the Higgs, λhσ < 10−5, see e.g.
Ref. [5]. If we wish to avoid such fine-tuning, a much more appealing option would be to
gauge the lepton number. A compelling scenario is the B−L theory with the anomaly
free U(1)B−L factor. The generation of matter-anti-matter asymmetry via a leptogenesis
mechanism through sterile neutrino oscillations in a classically-scale-invariant U(1)B−L×SM

theory was considered in Ref. [6], and their results will also apply to our model. The main
difference with the set-up followed in this paper is that here we allow for a separate non-
Abelian Coleman-Weinberg sector (i.e. it remains distinct from the U(1)B−L gauge sector)
and as a result we have a non-Abelian vector DM candidate.

Finally, it should also be possible to restrict the complex singlet Σ back to the real
singlet σ, just as we have in (1.1). In this case the continuous lepton number U(1) symmetry
is reduced to a discrete sub-group:

σ → −σ , (N,N
c
, lL) → eiπ/2(N,N

c
, lL) , (N,N c, lL) → e−iπ/2(N,N c, lL) . (1.3)
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In general all three possibilities corresponding to global, local and discrete lepton-number
symmetries can be accommodated and considered simultaneously in the context of Eqs. (1.1)-
(1.2) by either working with the real scalar σ or the complex one by promoting σ →

√
2Σ

(or
√

2Σ† in the second term in the brackets on the r.h.s. of (1.2)). In this work we consider
σ to be a real scalar singlet.

2 From Coleman-Weinberg to the Gildener-Weinberg mechanism

The scalar field content of our model consists of an SU(2)L doublet H, an SU(2)DM doublet
Φ and a real scalar σ; the latter giving mass to the sterile neutrinos after acquiring a vev
in similar fashion to Ref. [10]. Working in the unitary gauge of the SU(2)L×SU(2)DM, the
two scalar doublets in the theory are reduced to,

H =
1√
2

(
0

h

)
, Φ =

1√
2

(
0

φ

)
,

and the tree-level potential becomes,

V0 =
λh
4
h4 +

λφ
4
φ4 +

λσ
4
σ4 −

λhφ
4
h2φ2 −

λφσ
4
φ2σ2 +

λhσ
4
h2σ2 . (2.1)

There are no mass scales appearing in the classical theory, and at the origin in the field
space, all scalar vevs are zero, in agreement with classical scale invariance. We impose a
conservative constraint on all the scalar couplings for the model to be perturbative |λi|<
3, we also impose gDM < 3 and in order to ensure vacuum stability the following set of
constraints need to be satisfied,

λh ≥ 0, λφ ≥ 0, λσ ≥ 0, (2.2)

λhφ

2
√
λhλφ

≤ 1, − λhσ

2
√
λhλσ

≤ 1,
λφσ

2
√
λφλσ

≤ 1, (2.3)

λhφ

2
√
λhλφ

− λhσ

2
√
λhλσ

+
λφσ

2
√
λφλσ

≤ 1. (2.4)

For more detail we refer to Table 1.

2.1 The Coleman-Weinberg approximation

For simplicity, let us temporarily ignore the singlet σ and concentrate on the theory with
two scalars, φ and h. We will further refer to the hidden SU(2)DM sector with φ as the
Coleman-Weinberg (CW) sector. In the near-decoupling limit, λhφ � 1, between the CW
and the SM sectors, we can view electroweak symmetry breaking effectively as a two-step
process [5].

First, the CW mechanism [1] generates 〈φ〉 in the hidden sector through running cou-
plings (or more precisely the dimensional transmutation). To make this work, the scalar
self-coupling λφ at the relevant scale µ = 〈φ〉 should be small – of the order of g4DM � 1, as
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we will see momentarily. This has the following interpretation: in a theory where λφ has
a positive slope, we start at a relatively high scale where λφ is positive and move toward
the infrared until approach the value of the µ where λφ(µ) becomes small and is about to
cross zero. This is the Coleman-Weinberg scale where the potential develops a non-trivial
minimum and φ generates a non-vanishing vev.

To see this, consider the 1-loop effective potential evaluated at the scale µ (cf. [9]):

V (φ, h) =
λφ(µ)

4
φ4 +

9

1024π2
g4DM(µ)φ4

(
log

φ2

µ2
− 25

6

)
−
λhφ(µ)

4
h2φ2 , (2.5)

Here we are keeping 1-loop corrections arising from interactions of φ with the SU(2) gauge
bosons in the hidden sector, but neglecting the loops of φ (since λφ is close to zero) and
the radiative corrections from the Standard Model sector. The latter would produce only
subleading corrections to the vevs. Minimising at µ = 〈φ〉 gives:

λφ =
33

256π2
g4DM + λhφ

v2

2〈φ〉2
at µ = 〈φ〉 . (2.6)

For small portal coupling λhφ, this is a small deformation of the original CW condition,
λφ(〈φ〉) = 33

256π2 g
4
DM(〈φ〉).

The second step of the process is the transmission of the vev 〈φ〉 to the Standard
Model via the Higgs portal, generating a negative mass squared parameter for the Higgs
= −λhφ〈φ2〉 which generates the electroweak scale v,

v = 〈h〉 =

√
2λhφ
λh
〈φ〉 , mh =

√
2λhv . (2.7)

The fact that for λhφ � 1 the generated electroweak scale is much smaller than 〈φ〉,
guarantees that any back reaction on the hidden sector vev 〈φ〉 is negligible. Finally, the
mass of the CW scalar is obtained from the 1-loop potential and reads:

m2
φ =

9

128π2
g4DM 〈φ〉2 + λhφv

2 . (2.8)

As already stated, this approach is valid in the near-decoupling approximation where
all the portal couplings are small. The dynamical generation of all scales is visualised here
as first the generation of the CW scalar vev 〈φ〉, which then induces the vevs of other scalars
proportional to the square root of the corresponding portal couplings� 1, as in (2.7). This
implies the hierarchy of the vevs.

For multiple scalars, φ, h and σ, it is not a priori obvious why the portal couplings
should be small and which of the scalar vevs should be dominant. For example on one part
of the parameter space we can find 〈φ〉 > 〈σ〉 and on a different part one has 〈σ〉 > 〈φ〉 (so
that σ rather than φ effectively plays the role of the CW scalar). To consider all such cases
and not be constrained by the near-decoupling limits we will utilise the Gildener-Weinberg
set-up [35], which is a generalization of the Coleman-Weinberg method.
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2.2 The Gildener-Weinberg approach

We now return to the general case with the three scalars in the model are described by the
tree-level massless scalar potential (2.1). The Gildener-Weinberg mechanism was recently
worked out for this case in Ref. [10], which we will follow. All three vevs can be generated
dynamically but neither of the original scalars is solely responsible for the intrinsic scale
generation; this instead is a collective effect generated by a linear combination of all three
scalars ϕ.

Following [35], we change variables and reparametrise the scalar fields via,

h = N1ϕ, φ = N2ϕ, σ = N3ϕ. (2.9)

where each Ni is a unit vector in three-dimensions. The Gildener-Weinberg mechanism tells
us that a non-zero vacuum expectation value will be generated in some direction in scalar
field space Ni=ni, so this direction must satisfy the condition,

∂V0
∂Ni

∣∣∣∣
n

= 0, (2.10)

and furthermore the value of the tree-level potential in this vacuum is independent of ϕ,

V0(n1ϕ, n2ϕ, n3ϕ) = 0 . (2.11)

The latter condition is simply the statement that the potential restricted to the single degree
of freedom ϕ, is of the form 1

4λϕ ϕ
4 with the corresponding coupling constant vanishing

λϕ = 0. This is nothing but the definition of scale µGW where λϕ(µGW) vanishes, and is a
reflection of a similar statement in the Coleman-Weinberg case for the single scalar that its
self-coupling was about to cross zero, but was stabilised at the small positive value by the
gauge coupling at the Coleman-Weinberg scale µCW, see Eq. (2.6).

Being a unit vector in three-dimensions, ni’s can be parametrised in terms of two
independent angles, α and γ and we will call the ϕ vev, w, so that,

n1 = sinα , n2 = cosα cos γ n3 = cosα sin γ , (2.12)

〈h〉 = wn1 , 〈φ〉 = wn2 , 〈σ〉 = wn3. (2.13)

The three linearly-independent conditions arising from the Gildener-Weinberg minimisation
(2.10) of the tree-level potential amount to the following set of relations,

2λhn
2
1 = λhφn

2
2 − λhσn23, (2.14)

2λφn
2
2 = λhφn

2
1 + λφσn

2
3, (2.15)

2λσn
2
3 = λφσn

2
2 − λhσn21. (2.16)

These conditions hold at the scale µGW where the scalar fields develop the vev 〈ϕ〉 = w

(2.13). Due to the three scalars acquiring non-zero vacuum expectation values, the three
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states will mix among each other. The mass matrix M2 is diagonalised for h1, h2 and h3
eigenstates via the rotation matrix O,

diag
(
M2
h1 ,M

2
h2 ,M

2
h3

)
= O(−1)M2O ,

hφ
σ

 = Oij

h1h2
h3

 , (2.17)

and we further identify the state h1 with the SM 125 GeV Higgs boson. Following [10] we
parametrise the rotation matrix in terms of three mixing angles α, β and γ,

O =

 cosα cosβ sinα cosα sinβ

− cosβ cos γ sinα+ sinβ sin γ cosα cos γ − cos γ sinα sinβ − cosβ sin γ

− cos γ sinβ − cosβ sinα sin γ cosα sin γ cosβ cos γ − sinα sinβ sin γ

 ,

(2.18)
and use it to compute the scalar mass eigenstates (2.17) at tree-level. The resulting expres-
sions for the scalar masses can be found in Ref. [10]. There is one classically flat direction in
the model – along ϕ – in which the potential develops the vacuum expectation value. Our
choice of parametrisation in (2.13) and in the second row of (2.18) in terms of the same two
angles α and γ, selects this direction to be identified with h2. Hence, at tree level, Mh2 = 0,
but it will become non-zero, see Eq. (2.22) below, when one-loop effects are included.

At the scale µGW the one-loop effective potential along the minimum flat direction can
be written as [35],

V (ϕn) = Aϕ4 +Bϕ4 log

(
ϕ2

µ2GW

)
, (2.19)

where the A and B coefficients are computed in the MS [36] scheme and given by,

A =
1

64π2w4

∑
i=1,3

M4
hi

(
−3

2
+ log

M2
hi

w2

)
+ 6M4

W

(
−5

6
+ log

M2
W

w2

)
+ 3M4

Z

(
−5

6
+ log

M2
Z

w2

)

+ 9M4
Z′

(
−5

6
+ log

M2
Z′

w2

)
− 12M4

t

(
−1 + log

M2
t

w2

)
− 2

3∑
i=1

M4
Ni

(
−1 + log

M2
Ni

w2

)]
,

B =
1

64π2w4

∑
i=1,3

M4
hi

+ 6M4
W + 3M4

Z + 9M4
Z′ − 12M4

t − 2
3∑
i=1

M4
Ni

 ,

where Mhi are the tree-level masses of the three scalar eigenstates, h1, h2 and h3, and the
rest are the masses of the SM and the hidden sector vector bosons as well as the top quark
and the right-handed Majorana neutrinos. We can now see that at the RG scale µGW the
1-loop corrected effective potential has a fixed vacuum expectation value w that satisfies,

log

(
w

µGW

)
= −1

4
− A

2B
, (2.20)

and using this relation we can rewrite the one-loop effective potential as,

V = Bϕ4

(
log

ϕ2

w2
− 1

2

)
, (2.21)
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Z ′a

Z ′a

hi

Z,W+

Z,W−

Z ′a

Z ′a

hi

f,N

f̄ , N̄

Figure 1: Dark matter annihilation diagrams into Standard Model gauge bosons and
fermions, we also include annihilation into right-handed neutrinos.

Z ′a

Z ′a

hi

hj

Z ′a

Z ′a

hk

hi

hj

Z ′a

Z ′a

Z ′a

hi

hj

Z ′a

Z ′a

Z ′a

hi

hj

Figure 2: Dark matter annihilation diagrams into scalar states.

Z ′a

Z ′b

Z ′c

Z ′c

hi

Z ′a

Z ′b

Z ′b

Z ′c

hi

Z ′a

Z ′b

Z ′b

hi

Z ′c

Figure 3: Vector dark matter semi-annihilation diagrams. In contrast to some other
models of dark matter, Z ′a is stable due to an remnant global symmetry.

and we can also evaluate the potential at the minimum to be V (ϕ=w) =−Bw4/2, which
gives the requirement B > 0 for this to be a lower minimum than the one at the origin.
The mass of the pseudo-dilaton h2 is then given by,

M2
h2 =

∂2V

∂ϕ2

∣∣∣∣
n

=
1

8πw2

(
M4
h1 +M4

h3 + 6M4
W + 3M4

Z + 9M4
Z′ − 12M4

t − 2
3∑
i=1

M4
Ni

)
.

(2.22)

In summary, at the scale µGW the conditions Eqs. (2.14)–(2.16) will be satisfied and the
scalar potential will develop a non-trivial vev w giving rise to non-zero vacuum expectation
values 〈h〉, 〈φ〉, and 〈σ〉. For one scalar field, the Coleman-Weinberg mechanism requires
the scalar quartic coupling to take very small values λφ ∼ g4DM, in the Gildener-Weinberg
scenario it is a combination of the quartic couplings that needs to vanish, so these couplings
can take larger values individually.

The formulae for the mixing angles in terms of the coupling constants and the vevs
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follow from the diagonalisation of the tree-level mass matrix,

tan2 α =
〈h〉2

〈φ〉2 + 〈σ〉2
=

4λφλσ − λ2φσ
2(λσλhφ − λφλhσ) + λφσ(λhφ − λhσ)

, (2.23)

tan2 γ =
〈σ〉2

〈φ〉2
=

2λhλφσ − λhφλhσ
4λhλσ − λ2hσ

, (2.24)

tan 2β =
〈h〉〈φ〉〈σ〉w(λhσ + λhφ)

(λφ + λσ + λφσ)〈φ〉2〈σ〉2 − λh〈h〉2w2
. (2.25)

Experimental searches of a scalar singlet mixing with the SM Higgs provide constraints on
the mixing angles [37–39]. In our case, these translate as,

cos2 α cos2 β > 0.85. (2.26)

In the region where the decay h1 → h2h2 is allowed we impose the stronger constraint
cos2 α cos2 β > 0.96. Nonetheless, due to the Gildener-Weinberg conditions the decay
h1 → h2h2 is highly suppressed. In the scan we perform Mh3 is always greater than Mh1 ,
so there is no need to worry about the SM Higgs decaying into two h3 scalars. At the
same time, strong constraints could come when the decays h1 → Z ′aZ ′a are allowed, we
set MZ′>Mh1/2 so that these decays are kinematically forbidden.

For the study of dark matter the Lagrangian contains ten dimensionless free parameters,
which are reduced to eight after fixing 〈h〉= 246 GeV and Mh1 = 125 GeV. We perform a
random scan on the remaining eight parameters in the ranges given in Table 1.

Parameter Scan range
λφσ (0, 0.5)
λhφ (-0.5, 0.5)
λhσ (-0.25, 0.25)
λφ (0, 3)
gDM (0, 3)
MNi (0, 100) GeV

Table 1: Ranges for the input parameters in the scan.

The matrix Y D has no impact on the dark matter phenomenology, but it is crucial for
Leptogenesis and it will be parametrised by three complex angles ωij using the Casas-Ibarra
parametrisation [40]. Therefore, once we set all the parameters for the active neutrinos to
their best experimental fit, there are twelve free parameters in the model.

3 Dark matter phenomenology

Evidence from astrophysics suggests that most of the matter in the universe is made out of
cosmologically stable dark matter that interacts very weakly with ordinary matter. Being
able to identify what constitutes this dark matter is one of the deepest mysteries in both
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Figure 4: Left panel shows scatter plot of the dark matter mass MDM =MZ′ versus the
scalar mass Mh2 . Right panel gives scatter plot of the dark matter mass versus the mass of
the heavier scalar h3. Different colours indicate whether the vector gauge triplet accounts
for more or less than 100%, 10% and 1% of the observed dark matter abundance.

particle physics and astrophysics. In this work we consider the possibility of dark matter
being a spin-1 particle from a hidden sector with non-Abelian SU(2)DM gauged symmetry.
The idea of vector dark matter was first introduced in Ref. [31] and later studied in Refs. [7,
9, 32, 41]. Note that if the hidden sector had been U(1), the kinetic mixing among the hidden
sector and the hypercharge will have made our dark matter candidate unstable.

After radiative symmetry breaking breaking of SU(2)DM by Φ, which is in the funda-
mental representation of the group, there is a remnant SO(3) symmetry that ensures the
three gauge bosons Z ′a acquire the same mass MZ′ = 1

2 gDM〈φ〉, and are stable. In contrast
to models where the DM is odd under a Z2 discrete symmetry, in the present scenario
we can have dark matter semi-annihilation processes where a DM particle is also present
in the final state. The DM annihilation diagrams are shown in Figs. 1 and 2, while the
semi-annihilation ones are shown in Fig. 3.

Also, due to the radiative generation of 〈φ〉 in most region of parameter space the
scalar mass will be smaller than the gauge boson mass, Mh2 < MZ′ . This means that
semi-annihilation processes Z ′aZ ′b → Z ′c hi will be dominant over annihilation ones in
most of the parameter space. To leading order the non-relativistic cross-section from the
semi-annihilation diagrams is given by (cf. [9]),

〈σabcv〉 =
3g4DM

128π

(O2i)
2

M2
Z′

(
1−

M2
hi

3M2
Z′

)−2(
1−

10M2
hi

9M2
Z′

+
M4
hi

9M4
Z′

)3/2

. (3.1)

In order to take into account all annihilation channels into SM particles and properly
take into account thresholds and resonances we have implemented the model in micrOMEGAs
4.1.5 [42]. We fix the dark matter relic abundance from the latest Planck satellite mea-
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Figure 5: Left panel: Scatter plot of the vev 〈φ〉 versus the vev of the scalar singlet 〈σ〉.
Due to the small mixing angles, we can see that the dark matter relic density is almost
independent of 〈σ〉. Right panel: Scatter plot of the dark matter mass MZ′ versus the
gauge coupling gDM. Different colours indicate whether the vector gauge triplet accounts
for more or less than 100%, 10% and 1% of the observed dark matter abundance.

Figure 6: Left panel: Scatter plot of sin γ against the quartic coupling λσ. Larger values
of sin γ are preferred. Right panel: Scatter plot of sinα versus the scalar mass Mh2 . Due
to 〈σ〉 � 〈h〉 we get small values for the mixing angle α. Different colours indicate whether
the vector gauge triplet accounts for more or less than 100%, 10% and 1% of the observed
dark matter abundance.

surement Ωh2 = 0.1197±0.0022 [43]. Figure 4 shows the dark matter fraction as a function
of MZ′ and the scalar mass Mh2 ; the isolated strip of points on the left side of the plots
corresponds to the resonance Mh2≈ 2MZ′ .
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Figure 7: Spin-independent DM-nucleon cross section as a function of the DM candidate
mass MZ′ . We show current experimental limits from LUX [44] (red line), future limits
from LZ [45] (green line) and the neutrino coherent scattering limit [46] (black line).

On the left plot in Fig. 4 there is a large red coloured region on the left side (producing
too much dark matter), in this region Mh2 has a close value to MZ′ (note that this region
does not exist in the Coleman-Weinberg limit). This region exists thanks to very large
values of Mh3 and 〈φ〉 �MZ′ . In the left panel of Fig. 5 we show the dark matter fraction
as a function of both vevs, 〈φ〉 and 〈σ〉, from this plot we see there is an upper bound on
〈φ〉 in order not to overproduce dark matter, 〈φ〉 < 17 TeV. Later on we shall see that there
is a lower bound on 〈σ〉 coming from leptogenesis, 〈σ〉 > 2.5 TeV, we have already imposed
this bound on all the scatter plots we show.

In the right panel of Fig. 5 we show the dark matter fraction as a function of MZ′

and the gauge coupling gDM. In this plot it becomes clear that as we increase the gauge
coupling, the relic density decreases. The left panel of Fig. 6 shows the same analysis for
the mixing angle sin γ and the quartic couplng λσ. Here we can already notice a preference
for the region sin γ ≈ 1, where λσ takes on small values and 〈σ〉 � 〈φ〉. Due to the lower
bound on 〈σ〉 the mixing angle α takes on very small values, this is shown in the right panel
of Fig. 6.

The spin-independent cross section between Z ′a and a nucleon is given by,

σSI =
f2Nm

4
NM

2
Z′

π 〈h〉2 〈φ〉2

(
3∑
i=1

O2iO1i

M2
hi

)2

, (3.2)

where mN is the nucleon mass, fN = 0.303 [33] is the nucleon form-factor, and Oij are the
elements of the rotation matrix Eq. (2.18) that relates the scalar mass eigenstates states to
the ones in the Lagrangian. This orthogonal matrix O is the one that diagonalises the mass
matrix. Due to the form of this matrix, the direct detection diagrams have a destructive
interference when the scalar state with a large φ component has a mass very close to Mh1 ,
this has been previously noted in [7, 47]; while the scalar state with a large σ component
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Figure 8: Spin-independent DM-nucleon cross section as a function of the vector DM
candidate mass MZ′ , for benchmark point BP 1. We show current experimental limits
from LUX [44] (red line), future limits from LZ [45] (green line) and the neutrino coherent
scattering limit [46] (black line). To generate this plot we fix all the scalar couplings and
vary only gDM, which means that MZ′ and Mh2 are also varied while all other parameters
remain fixed.

has no direct couplings either to dark matter or to Standard Model particles and hence
gives only a small contribution to σSI. Figure 7 shows that except for resonances, the region
with MZ′<250 GeV has been already excluded by the existing experiments, while a large
region of parameter space will be tested by future underground experiments such as LZ [45]
and XENON1T [48]. In Fig. 8 we show the direct-detection cross section as a function of
the dark matter mass for benchmark point BP 1, we fix all the scalar couplings and vary
only gDM, the dip corresponds to Mh2≈Mh1 .

4 Leptogenesis via oscillations of right-handed neutrinos

Leptogenesis is an attractive and minimal mechanism to solve the baryon asymmetry of the
universe (BAU). This means being able to produce the observed value of

nbobs

s
= (8.75± 0.23)× 10−11. (4.1)

In the Akhmedov-Rubakov-Smirnov framework [11] a lepton flavour asymmetry is pro-
duced during oscillations of the right-handed Majorana neutrinos Ni with masses around
the electroweak scale or below, which makes this approach compatible with classical scale
invariance.1 From Big Bang nucleosynthesis we obtain the lower bound MN >200 MeV, in

1In the sense that no additional very large scales are required to be introduced in the model to make
this type of leptogenesis work.
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order not to spoil primordial nucleosynthesis. For our calculations we make use of the the
Casas-Ibarra parametrisation [40] for the matrix Y D,

Y D † = Uν ·
√
mν · R ·

√
MN ×

√
2

〈h〉
, (4.2)

where mν and MN are diagonal mass matrices of active and Majorana neutrinos respec-
tively. The active-neutrino-mixing matrix Uν is the PMNS matrix which contains six real
parameters, including three measured mixing angles and three CP-phases. The matrix R
is parametrised by three complex angles ωij . Using this framework with three right-handed
neutrinos one can generate the correct baryon asymmetry without requiring tuning the Ni

mass splittings, but rather enhancing the entries in the Dirac Yukawa matrix through the
imaginary parts of the complex angles ωij [49].

Due to the non-trivial topological structure of the vacuum in SU(2)L there exist elec-
troweak sphaleron processes which violate B +L quantum number, and these will transfer
the lepton flavour asymmetry nLe into a baryon asymmetry nb, with the conversion factor
given by,

nb
s
' − 3

14
× 0.35× nLe

s
. (4.3)

A critical condition for the mechanism of [11] to work, is that two of three neutrino flavours,
N2 and N3, should come into thermal equilibrium with their Standard Model counterparts
before the universe cools down to TEW (when electroweak sphaleron processes freeze out),
while the remaining flavour does not. In other words, the present mechanism consists
of different time scales Tosc � Teq3 ∼ Teq2 > TEW > Teq1 , where Teqi represents the
temperature at which Ni equilibrates with the thermal plasma and Tosc is the temperature
at which the oscillations start to occur. In terms of the decay rates for the three sterile
neutrino flavours this implies,

Γ2(TEW) > H(TEW) , Γ3(TEW) > H(TEW) , Γ1(TEW) < H(TEW), (4.4)

where H is the Hubble constant,

H(T ) =
T 2

M∗P
, M∗P ≡

MP
√
g∗
√

4π3/45
' 1018 GeV (4.5)

and M∗P is the reduced Planck mass. Therefore, we require,

Γ1(TEW) =
1

2

∑
i

Y D †
ei Y D

ie γav TEW < H(TEW) . (4.6)

Here the dimensionless quantities γav ≈ 3 × 10−3 are derived from the decay rates of the
right-handed neutrino Ne of the ‘electron flavour’ tabulated in Ref. [50]. These right-handed
neutrino decay (or equivalently production) rates were computed in [50] using 1 ↔ 2 and
2 ↔ 2 processes2 involving the neutrino vertices Y D†

ai lLa(εH)†Ni and Y D
ia Ni(εH)lLa with

the Dirac Yukawas.
2These processes are shown in Figs. 1 and 2 in Ref. [50] and contain a single external N leg – as relevant

for the N -production or decay processes of interest.
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Figure 9: The region in dark green can explain the baryon asymmetry through leptogen-
esis; we have fixed the mass splittings to be ∆MNi≥MN1/10. This plot shows that there is
a lower bound 〈σ〉 > 2.5 TeV in order to produce the correct amount of baryon asymmetry.
The region in light green cannot produce enough baryon symmetry and/or does not satisfy
the wash-out criterion Eq. (4.6).

One can also ask if the new interactions present in our model, those involving the
Majorana Yukawas, 1

2 Y
M
ij σNi

c
Nj and 1

2 Y
M†
ij σNiN

c
j , could affect the dynamics. These

interactions always contain a pair of right-handed neutrinos and do not change the right-
handed neutrino number (the singlet σ carries the N -number −2 but above the electroweak
phase transition temperature, the vev of σ vanishes). Hence these processes could contribute
to the N production or decay into the Standard Model particles only in combination with
other interactions. As the Majorana Yukawa couplings are small YM ≈10−5 on the part of
the parameter space relevant for us (see Table 3) and the cross-section being proportional
to (YM )2 means that these interactions will give subleading effects to all the processes
considered in [50]. Therefore, we can follow [12] and make the assumption that the number
density of sterile neutrinos is very small compared to their equilibrium density at high
temperatures, Tosc ≈ 106 GeV, around which the main contributions to the lepton-flavour
asymmetry are generated.

It was already shown in [6] that flavoured leptogenesis can work in a classically scale
invariant framework. In their set-up three right-handed neutrinos are coupled to a scalar
field that acquires a vev, as in the present model. The main difference being that in the
present scenario we have not gauged the B−L quantum number. We quote the final result
for the lepton flavour asymmetry (of ath flavour) obtained in [6] from extending the results
of Ref. [12] to the classically scale-invariant case,

nLa
s

= −γ2av × 7.3× 10−4
∑
c

∑
i 6=j

i (Y D †
ai Y

D
ic Y

D †
cj Y D

ja − Y Dt
ai Y

D ∗
ic Y Dt

cj Y D ∗
ja ) × Iij , (4.7)

where the quantity Iij is given by,

Iij =
16∑

k(Y
M †
ik Y M

ki − Y
M †
jk Y M

kj )

MP

〈σ〉

(
1− 〈σ〉

Tosc
+

1

4
tan−1

(
4 〈σ〉
TEW

)
− 1

4
tan−1 (4)

)
, (4.8)
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for 〈σ〉 < Tosc. For the case 〈σ〉 ≥ Tosc and further details on the derivation of Eq. (4.7)
we refer the reader to Ref. [6]. It follows from (4.8) that the amount of the lepton flavour
asymmetry is proportional to 〈σ〉MP /∆M

2
Ni
. Hence if we want to avoid any excessive

fine-tuning of the mass splittings between different flavours of Majorana neutrinos, the
relatively large values of 〈σ〉 & 104 GeV are preferred. From Fig. 9 we can see that there
is a lower bound on 〈σ〉 if we impose some restriction on the mass splittings of the right-
handed neutrinos. In view that we would like to stay far away from the fine-tuning region,
we impose ∆MNi ≥MN1/10 which gives the limit 〈σ〉 > 2.5 TeV in order for leptogenesis
to explain the baryon asymmetry. Imposing this condition removes the points with very
small mixing angle γ, as can be seen in the left panel of Fig. 6.

As we can see from Fig. 9 there is also an upper bound on MNi for each value of 〈σ〉,
this bound is mainly due to the wash-out criterion Eq. (4.6) not being satisfied any more.
This upper bound becomes weaker once we reach 〈σ〉 ≥ 104 GeV. This sits well with our
approach based on the common dynamical origin of all vevs: once an explanation for dark
matter is included, 〈σ〉 cannot be too large compared to 〈φ〉.

The procedure to obtain the plot in Fig. 9 is as follows. We fix the complex phases ω12

and ω13 to the benchmark values given in [12] (ω12 = 1 + 2.6i and ω13 = 0.9 + 2.7i), and
for each point we scan over ω23, if we find at least one point that works well then we label
it as a good point (dark green) otherwise it is a bad point (light green). In further scans
we have found that varying ω12 and ω13 has a negligible impact on the final results.

The generated total lepton asymmetry is proportional to 〈σ〉, (cf. (4.7), (4.8))

nL ∼ (Y D)4
〈σ〉MP

∆M2
Ni

∼ 〈σ〉MP
m2
ν

v4
, (4.9)

where we used the see-saw mechanism for the masses mν of visible neutrinos, and v is the
SM Higgs vev. Hence nL vanishes as 〈σ〉 approaches zero. This also explains why in Fig. 9,
there is a stronger dependence on 〈σ〉 than on the masses MNi .

We carried out a scan over all free parameters in our model to determine the region
of the parameter space where the leptogenesis mechanism outlined above can generate the
observed baryon asymmetry. At the same time we require that the model provides a viable
candidate for cosmological dark matter. We would like to mention in passing that all the
present results on leptogenesis also hold when a generic scalar generates a mass for the
sterile neutrinos (i.e with no reference to classical scale invariance).

The results of the scan and the connection between the leptogenesis and dark matter
scales are reviewed in the following Section. Furthermore, in Tables 2 and 3 we present
four benchmark points to illustrate the viable model parameters. In the remainder of this
Section we would like to comment on the choice of parameters for the leptogenesis part of
the story.

We first note that our leptogenesis realisation does not require any sizeable fine-tuning
of the mass splittings ∆MNi . For example our first benchmark point BP 1 has (cf. Table 3),

MN = (0.225 , 0.25 , 0.275) GeV. (4.10)
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At the same time, the masses of active neutrinos are set to agree with the observed mass
splittings; for BP 1 we have,

mν = (0 , 8.7 , 49.0) meV. (4.11)

The lepton asymmetry (4.7) also depends on the matrix of Dirac Yukawa couplings Y D.
We compute Y D in the Casas-Ibarra parametrisation Eq. (4.2) using (4.10) and (4.11)
along with the PMNS matrix and the R matrix. We have carried out a general scan on
the complex angles ωij of the R matrix and found that having non-vanishing Im[ωij ] is
important in order to obtain the required amount of lepton asymmetry.3 At the same time
this does not lead to any excessive fine-tuning. We have checked this for the numerical
values of R matrix elements in our scan. For example, for BP 1 we have (using the ωij
values in Table 3),

R =

−36.52− 33.80i 34.11 − 36.97i 5.854 + 4.604i

84.43 + 100.0i −101.0 + 85.98i −16.63− 14.20i

−105.4 + 91.81i −93.42− 106.4i 14.94 − 17.61i

 , (4.12)

and the resulting matrix of Dirac Yukawa couplings,

Y D =

 17.87 − 2.12i −73.37− 125.6i −210.9− 127.3i

−2.168− 19.11i −134.4 + 77.79i −136.9 + 224.6i

−3.395− 0.2434i 9.677 + 24.56i 34.69 + 28.93i

× 10−8. (4.13)

These matrices do not exhibit a high degree of tuning, and we have checked that this is
also the case for generic points of our scan.

5 Connection among the scales

After having performed a scan over all free parameters in our model, we find that:
(1) 〈φ〉 < 17 TeV in order for dark matter not to overclose the universe, and
(2) 〈σ〉 > 2.5 TeV in order in order for leptogenesis to explain the baryon asymmetry.

From the left plot of Fig. 6 we can see that the interesting region in parameter space has
large values of sin γ, and with this in mind we can separate the interesting regime into two
regions:

1. 〈σ〉 ≈ 〈φ〉 ∼ TeV
In this region4 we have sin γ ≈ cos γ (γ ≈ π/4) so there is a strong mixing between
the scalar states φ and σ, and due to the Gildener-Weinberg conditions λφ ≈ λσ.
To avoid overproducing DM, both 〈σ〉 and 〈φ〉 have to be less than 10 TeV. Due to
the not so large values of 〈σ〉, a large part of this region requires some amount of
fine-tuning of the right-handed neutrino mass splittings in order for leptogenesis to
work. The use of the Gildener-Weinberg mechanism is crucial in this region.

3Note that positive values of Im[ωij ] enhance the elements of the Dirac Yukawa matrix Y D.
4Recall that tan2 γ = 〈σ〉2/〈φ〉2.
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BP 1 BP 2 BP 3 BP 4
Ωh2 0.122 0.12 0.12 0.118

σSI (cm2) 1.90× 10−46 3.32× 10−46 1.06× 10−46 3.11× 10−47

〈h〉 (GeV) 246 246 246 246

〈φ〉 (GeV) 2260 1260 1020 4590
〈σ〉 (GeV) 3080 5930 2830 11790
λhφ 0.035 0.406 -0.335 0.017
λφσ 0.164 0.122 0.40 0.141
λhσ 0.0185 0.018 -0.045 0.003
λh 0.131 0.159 0.147 0.130
λσ 0.044 0.003 0.027 0.011
λφ 0.152 1.352 1.527 0.464
gDM 0.61 1.39 0.96 2.41
Mh1 (GeV) 125 125 125 125
Mh2 (GeV) 81.6 94.1 137.3 839.1
Mh3 (GeV) 1544 2124 1900 4745
MZ′ (GeV) 690 880 490 5527
sinα 0.06 0.04 0.08 0.02
sinβ 0.01 0.03 -0.025 0.001
sin γ 0.80 0.98 0.94 0.93
µGW (GeV) 829 1149 1110 4550

Table 2: Four benchmark points for the model presented in this work. All four points
give the correct dark matter abundance within 2σ.

2. 〈σ〉 � 〈φ〉 ∼ TeV
In this region we have sin γ ≈ 1, so it can be seen as the Coleman-Weinberg limit
of the more general Gildener-Weinberg mechanism. The scalar σ overlaps maximally
with h2 and can be thought of as the Coleman-Weinberg scalar. In this region the
radiative symmetry breaking is induced by λσ � 1 and we get Mh2 �Mh3 . This
region also corresponds to the majority of good (blue) points in Figs. 4-6. Most
points have MDM > Mh2 . This is the region of most interest since the large values of
〈σ〉 require almost no fine-tuning in ∆MNi in order for leptogenesis to work.

In Table 2 we give a set of benchmark points that satisfy all experimental constraints
and give the correct dark matter abundance within 2σ. The benchmark points BP1, BP2
and BP3 are within reach of future direct detection dark matter experiments. For these
same points we provide in Table 3 numerical values that generate the correct amount
of baryon asymmetry via leptogenesis. We work with the current experimental central
values for the neutrino sector taken from [51], we assume normal ordering for the active
neutrino masses. The values for 〈Y D〉 are computed as the average of

√
2MNmν/〈h〉. This

estimate corresponds to the naive see-saw relation and it is smaller than the actual entries
in the matrix Y D due to the enhancement by the imaginary parts of ωij in the R matrix.
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BP 1 BP 2 BP 3 BP 4
〈σ〉 (GeV) 3080 5930 2830 11790
MN1 (GeV) 0.225 0.30 0.20 0.9

MN2 (GeV) 0.25 0.33 0.22 1.0

MN3 (GeV) 0.275 0.36 0.24 1.1

m1 (meV) 0.0 0.0 0.0 0.0

m2 (meV) 8.7 8.7 8.7 8.7

m3 (meV) 49.0 49.0 49.0 49.0

sin θ12 0.55 0.55 0.55 0.55
sin θ23 0.67 0.67 0.67 0.67
sin θ13 0.15 0.15 0.15 0.15
δ −π/4 −0.6 −π/4 π

α1 0 0.3 0 −π
α2 −π/2 −1.1 −π/2 π

ω12 1.5 + 2.6i 1.5 + 2.6i 1.0 + 2.6i 1.5 + 2.6i

ω13 0.9 + 2.7i 0.9 + 2.7i 0.9 + 2.7i 0.9 + 2.7i

ω23 0.03− 1.8i −0.30− 1.4i 0.05− 1.85i −1.4i

nLe/(s× 2.5× 10−10) -4.71 -5.75 -5.36 -6.43
nLµ/(s× 2.5× 10−10) -1.66 -44.18 19.03 -75.82
nLτ/(s× 2.5× 10−10) 6.37 49.93 -13.67 82.25
Γe/H(TEW) 0.90 0.82 0.91 0.98
Γµ/H(TEW) 58.43 42.29 56.61 315.5
Γτ/H(TEW) 167.63 99.03 163.07 115.56
Tosc (GeV) 4.43× 106 1.90× 106 3.71× 106 4.84× 106

Y M
1 7.3× 10−5 5.1× 10−5 7.1× 10−5 7.6× 10−5

Y M
2 8.1× 10−5 5.6× 10−5 7.8× 10−5 8.5× 10−5

Y M
3 8.9× 10−5 6.1× 10−5 8.5× 10−5 9.4× 10−5〈
Y D
〉

1.26× 10−8 1.45× 10−8 1.18× 10−8 2.5× 10−8

Table 3: Parameters for leptogenesis, same benchmark points as in Table 2.

Nevertheless, for our benchmark points these enhancement factors are always less than
1.5× 102.

Finding a connection between the scale 〈φ〉, responsible for dark matter, and the scale
〈σ〉, responsible for leptogenesis, would be of high interest. From Eq. (4.7) and applying
the conversion factor (4.3), we can approximate the baryon relic abundance as,

Ωbh
2 ≈ 2.045MP

∆(Y 4
D)〈σ〉

∆(M2
N )

. (5.1)

Regarding the dark matter relic density, in a large portion of our parameter scan semi-
annihilations are dominant over annihilations, and hence we can approximate by,

ΩDMh
2 ≈

1.07× 109 xf√
g?MP 2〈σabcv〉/3

×GeV−1 , (5.2)
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Figure 10: Relation among the two vacuum expectation values, 〈φ〉 and 〈σ〉, that yields
the observed value of ΩDMh

2/Ωbh
2 = 5. Different colours correspond to different values of

the parameter ε defined in Eq. (5.6).

where xf =MZ′/Tf , Tf is the freeze-out temperature for dark matter, and g? is the effective
number of relativistic degrees of freedom. A good approximation for the mixing angles is
to take α≈β≈0 and sin γ ≈ 0.9, substituting these values into Eq. (3.1) leads to,

ΩDMh
2 ≈ 7.76× 1011

MP

〈φ〉2

g2DM

×GeV−1 . (5.3)

Using Eqs.(5.1) and (5.3) we can find the ratio

ΩDMh
2

Ωbh2
≈

3.79× 1011∆(M2
N )

M2
P g

2
DM∆(Y 4

D)

〈φ〉2

〈σ〉
×GeV−1 = 5 , (5.4)

where the last equality comes from the observed relic densities [43]. After imposing this
relation we find a connection among the scales in the model,

〈σ〉 ≈ ε 〈φ〉2 ×GeV−1 , (5.5)

where the parameter ε is defined as,

ε =
7.59× 1010 ∆(M2

N )

M2
P g

2
DM∆(Y 4

D)
. (5.6)

The parameter MN has a dependence on 〈σ〉, but from a physical perspective it is more
relevant to fix the mass splittings rather than the Majorana Yukawa couplings. The pa-
rameter ε gives the connection between both scales, typical values for this parameter are
around 10−4. Figure 10 illustrates this connection between the scales keeping the parameter
ε fixed to different values.
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6 Conclusions

We have presented a model that can explain dark matter and the baryon asymmetry of the
universe simultaneously, where all the scales in the theory are dynamically generated and
have a common origin.

In order to ensure the stability of the dark matter candidate, one usually needs to
introduce a discrete symmetry by hand. One of the attractive features of the present
model is that it leads to a stable DM candidate without the need of introducing an extra
discrete symmetry. We already know that in the Standard Model lepton number and
baryon number are accidental symmetries, the latter being responsible for the stability
of the proton. In our framework the hidden vector DM is stable due to the accidental
non-Abelian global symmetry SO(3). This accidental symmetry could be broken by non-
renormalizable operators leading to the decay of Z ′a and producing an intense gamma-ray
line that could be detected in future experiments [52].

The theory also predicts two extra scalar states that have a Higgs-like behaviour and
masses around the electroweak scale. From the relation for tan2 α, Eq. (2.23), the interesting
region 〈σ〉 � 〈h〉 already requires a small mixing angle α with the SM Higgs boson, due to
the small mixing angles we obtain values of cos2 α cos2 β > 0.95, so their detection would
only be feasible at future colliders. Nevertheless, the LHC at high luminosity will improve
the current constraints on the mixing angles α and β.

From dark matter considerations the value of 〈φ〉 is required to be around the TeV
scale and due to the common origin of all the vevs, 〈σ〉 cannot be too large, compared to
〈φ〉, which means that sterile neutrinos should have small masses of order O(1) GeV in
order for leptogenesis to work without severe tuning of the mass splittings ∆MNi . Under
some mild assumptions, we found a connection among the scales 〈φ〉 (responsible for dark
matter) and 〈σ〉 (responsible for leptogenesis) Eq. (5.5), in order to match the observed
ratio ΩDMh

2/Ωbh
2 = 5. Using classical scale invariance as an underlying symmetry, we

have constructed a minimal extension of the SM that addresses dark matter, the baryon
asymmetry of the universe and the origin of the electroweak scale.

Acknowledgments

ADP would like to thank Brian Shuve, Jessica Turner and Ye-Ling Zhou for helpful discus-
sions on the topic of leptogenesis. This work is supported by STFC through the IPPP grant.
ADP acknowledges financial support from CONACyT. Research of VVK is supported in
part by a Royal Society Wolfson Research Merit Award.

References

[1] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous
Symmetry Breaking, Phys. Rev. D7 (1973) 1888–1910.

[2] W. A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on
Particle Physics Ontake Mountain, Japan, August 27-September 2, 1995, 1995.

– 20 –



[3] R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B379 (1996)
153–158, [hep-ph/9604278].

[4] W. F. Chang, J. N. Ng and J. M. S. Wu, Shadow Higgs from a scale-invariant hidden
U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254].

[5] C. Englert, J. Jaeckel, V. V. Khoze, and M. Spannowsky, Emergence of the Electroweak Scale
through the Higgs Portal, JHEP 04 (2013) 060, [arXiv:1301.4224].

[6] V. V. Khoze and G. Ro, Leptogenesis and Neutrino Oscillations in the Classically Conformal
Standard Model with the Higgs Portal, JHEP 10 (2013) 075, [arXiv:1307.3764].

[7] T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys.
Rev. D88 (2013) 055022, [arXiv:1306.2329].

[8] C. D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark
matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428].

[9] V. V. Khoze, C. McCabe, and G. Ro, Higgs vacuum stability from the dark matter portal,
JHEP 08 (2014) 026, [arXiv:1403.4953].

[10] A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant
multi-Higgs portal, Phys. Rev. D92 (2015), no. 7 075010, [arXiv:1508.03031].

[11] E. K. Akhmedov, V. A. Rubakov, and A. Yu. Smirnov, Baryogenesis via neutrino
oscillations, Phys. Rev. Lett. 81 (1998) 1359–1362, [hep-ph/9803255].

[12] M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy,
JHEP 03 (2013) 096, [arXiv:1206.5537].

[13] K. A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett.
B648 (2007) 312–317, [hep-th/0612165].

[14] R. Foot, A. Kobakhidze, K. McDonald, and R. Volkas, Neutrino mass in radiatively-broken
scale-invariant models, Phys. Rev. D76 (2007) 075014, [arXiv:0706.1829].

[15] R. Foot, A. Kobakhidze, K. L. McDonald, and R. R. Volkas, A Solution to the hierarchy
problem from an almost decoupled hidden sector within a classically scale invariant theory,
Phys. Rev. D77 (2008) 035006, [arXiv:0709.2750].

[16] S. Iso, N. Okada, and Y. Orikasa, Classically conformal B− L extended Standard Model,
Phys. Lett. B676 (2009) 81–87, [arXiv:0902.4050].

[17] M. Holthausen, M. Lindner, and M. A. Schmidt, Radiative Symmetry Breaking of the
Minimal Left-Right Symmetric Model, Phys. Rev. D82 (2010) 055002, [arXiv:0911.0710].

[18] L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the
Standard Model, JHEP 09 (2010) 021, [arXiv:1006.5916].

[19] J. S. Lee and A. Pilaftsis, Radiative Corrections to Scalar Masses and Mixing in a Scale
Invariant Two Higgs Doublet Model, Phys. Rev. D86 (2012) 035004, [arXiv:1201.4891].

[20] M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann, and K. Tuominen, Physical
Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A29
(2014) 1450077, [arXiv:1304.7006].

[21] A. Farzinnia, H.-J. He, and J. Ren, Natural Electroweak Symmetry Breaking from Scale
Invariant Higgs Mechanism, Phys. Lett. B727 (2013) 141–150, [arXiv:1308.0295].

– 21 –

http://arxiv.org/abs/hep-ph/9604278
http://arxiv.org/abs/hep-ph/0701254
http://arxiv.org/abs/1301.4224
http://arxiv.org/abs/1307.3764
http://arxiv.org/abs/1306.2329
http://arxiv.org/abs/1307.8428
http://arxiv.org/abs/1403.4953
http://arxiv.org/abs/1508.03031
http://arxiv.org/abs/hep-ph/9803255
http://arxiv.org/abs/1206.5537
http://arxiv.org/abs/hep-th/0612165
http://arxiv.org/abs/0706.1829
http://arxiv.org/abs/0709.2750
http://arxiv.org/abs/0902.4050
http://arxiv.org/abs/0911.0710
http://arxiv.org/abs/1006.5916
http://arxiv.org/abs/1201.4891
http://arxiv.org/abs/1304.7006
http://arxiv.org/abs/1308.0295


[22] V. V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant
Standard Model, JHEP 11 (2013) 215, [arXiv:1308.6338].

[23] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal, and C. Spethmann,
Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys.
Rev. D89 (2014), no. 1 015017, [arXiv:1309.6632].

[24] C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098,
[arXiv:1309.0913].

[25] S. Abel and A. Mariotti, Novel Higgs Potentials from Gauge Mediation of Exact Scale
Breaking, Phys. Rev. D89 (2014), no. 12 125018, [arXiv:1312.5335].

[26] K. Allison, C. T. Hill, and G. G. Ross, Ultra-weak sector, Higgs boson mass, and the dilaton,
Phys. Lett. B738 (2014) 191–195, [arXiv:1404.6268].

[27] S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP
01 (2015) 143, [arXiv:1409.5776].

[28] A. D. Plascencia, Classical scale invariance in the inert doublet model, JHEP 09 (2015) 026,
[arXiv:1507.04996].

[29] K. Ghorbani and H. Ghorbani, Scalar Dark Matter in Scale Invariant Standard Model, JHEP
04 (2016) 024; [arXiv:1511.08432].

[30] A. Ahriche, A. Manning, K. L. McDonald, and S. Nasri, Scale-Invariant Models with
One-Loop Neutrino Mass and Dark Matter Candidates, arXiv:1604.05995.

[31] T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028, [arXiv:0811.0172].

[32] C. Gross, O. Lebedev, and Y. Mambrini, Non-Abelian gauge fields as dark matter, JHEP 08
(2015) 158, [arXiv:1505.07480].

[33] S. Di Chiara and K. Tuominen, A minimal model for SU(N ) vector dark matter, JHEP 11
(2015) 188, [arXiv:1506.03285].

[34] V. V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, JHEP 10 (2014) 61,
[arXiv:1406.2291].

[35] E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D13 (1976)
3333.

[36] S. P. Martin, Two loop effective potential for a general renormalizable theory and softly
broken supersymmetry, Phys. Rev. D65 (2002) 116003, [hep-ph/0111209].

[37] V. Martín Lozano, J. M. Moreno, and C. B. Park, Resonant Higgs boson pair production in
the hh→ bb WW → bb`+ν`−ν decay channel, JHEP 08 (2015) 004, [arXiv:1501.03799].

[38] T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model
after LHC Run 1, Eur. Phys. J. C75 (2015) 104, [arXiv:1501.02234].

[39] A. Falkowski, C. Gross, and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05
(2015) 057, [arXiv:1502.01361].

[40] J. A. Casas and A. Ibarra, Oscillating neutrinos and muon —> e, gamma, Nucl. Phys.
B618 (2001) 171–204, [hep-ph/0103065].

[41] C. Boehm, M. J. Dolan, and C. McCabe, A weighty interpretation of the Galactic Centre
excess, Phys. Rev. D90 (2014), no. 2 023531, [arXiv:1404.4977].

– 22 –

http://arxiv.org/abs/1308.6338
http://arxiv.org/abs/1309.6632
http://arxiv.org/abs/1309.0913
http://arxiv.org/abs/1312.5335
http://arxiv.org/abs/1404.6268
http://arxiv.org/abs/1409.5776
http://arxiv.org/abs/1507.04996
http://arxiv.org/abs/1511.08432 
http://arxiv.org/abs/1604.05995
http://arxiv.org/abs/0811.0172
http://arxiv.org/abs/1505.07480
http://arxiv.org/abs/1506.03285
http://arxiv.org/abs/1406.2291
http://arxiv.org/abs/hep-ph/0111209
http://arxiv.org/abs/1501.03799
http://arxiv.org/abs/1501.02234
http://arxiv.org/abs/1502.01361
http://arxiv.org/abs/hep-ph/0103065
http://arxiv.org/abs/1404.4977


[42] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, MicrOMEGAs: A Program for
calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103–120,
[hep-ph/0112278].

[43] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological
parameters, arXiv:1502.01589.

[44] LUX Collaboration, D. S. Akerib et al., First results from the LUX dark matter experiment
at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303,
[arXiv:1310.8214].

[45] D. C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103.

[46] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the
reach of next generation dark matter direct detection experiments, Phys. Rev. D89 (2014),
no. 2 023524, [arXiv:1307.5458].

[47] S. Baek, P. Ko, W.-I. Park, and E. Senaha, Higgs Portal Vector Dark Matter : Revisited,
JHEP 05 (2013) 036, [arXiv:1212.2131].

[48] E. Aprile et al. [XENON Collaboration], Physics reach of the XENON1T dark matter
experiment, JCAP 1604 (2016) no.04, 027 [arXiv:1512.07501].

[49] B. Shuve and I. Yavin, Baryogenesis through Neutrino Oscillations: A Unified Perspective,
Phys. Rev. D89 (2014), no. 7 075014, [arXiv:1401.2459].

[50] D. Besak and D. Bodeker, Thermal production of ultrarelativistic right-handed neutrinos:
Complete leading-order results, JCAP 1203 (2012) 029. [arXiv:1202.1288].

[51] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Updated fit to three neutrino mixing:
status of leptonic CP violation, JHEP 11 (2014) 052, [arXiv:1409.5439].

[52] C. Arina, T. Hambye, A. Ibarra, and C. Weniger, Intense Gamma-Ray Lines from Hidden
Vector Dark Matter Decay, JCAP 1003 (2010) 024, [arXiv:0912.4496].

– 23 –

http://arxiv.org/abs/hep-ph/0112278
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1310.8214
http://arxiv.org/abs/1110.0103
http://arxiv.org/abs/1307.5458
http://arxiv.org/abs/1212.2131
http://arxiv.org/abs/1512.07501
http://arxiv.org/abs/1401.2459
http://arxiv.org/abs/1202.1288
http://arxiv.org/abs/1409.5439
http://arxiv.org/abs/0912.4496

	1 Introduction
	2 From Coleman-Weinberg to the Gildener-Weinberg mechanism
	2.1 The Coleman-Weinberg approximation
	2.2 The Gildener-Weinberg approach

	3 Dark matter phenomenology
	4 Leptogenesis via oscillations of right-handed neutrinos
	5 Connection among the scales
	6 Conclusions

