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1 Introduction

The question of why the only scale parameter in the Standard Model (SM) Lagrangian,

−M2
SM|H|2, is much smaller than the Planck scale is at heart of the naturalness problem.

The idea of generating a scale radiatively, originally proposed in ref. [1] can be applied to

explain the origin of the electroweak scale in the SM [2, 3]. In this article we will discuss

an extension of the Standard Model that addresses some of the main shortcomings of

the minimal theory, namely the dark matter (DM), the baryon asymmetry of the universe

(BAU) and the origin of the electroweak scale. Our Beyond the Standard Model framework

is based on a theory which contains no explicit mass-scale parameters in its tree-level

Lagrangian, and all new scales will be generated dynamically at or below the TeV scale.

Our specific approach is motivated by the earlier work in refs. [4–10] and [11, 12]. The

idea of generating the electro-weak scale and various scales of new physics via quantum

corrections, by starting from a classically scale-invariant theory, has generated a lot of

interest. For related studies on this subject we refer the reader to recent papers including

refs. [13–30].

In our set-up we extend the Standard Model by a dark sector, namely a non-Abelian

SU(2)DM hidden sector that is coupled to the Standard Model via the Higgs portal, and a

singlet sector that includes a real singlet σ and three right-handed Majorana neutrinos Ni.

Due to an SO(3) custodial symmetry all three gauge bosons Z ′a have the same mass and

are absolutely stable, making them suitable dark matter candidates [31] (this also applies

to larger gauge groups SU(N)DM [32, 33] and to scalar fields in higher representations [34],

albeit symmetry breaking patterns get more complicated).
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Parameter Scan range

λφσ (0, 0.5)

λhφ (−0.5, 0.5)

λhσ (−0.25, 0.25)

λφ (0, 3)

gDM (0, 3)

MNi (0, 100) GeV

Table 1. Ranges for the input parameters in the scan.

The tree-level scalar potential of our model is given by

V0 = λφ|Φ|4 + λh|H|4 +
λσ
4
σ4 − λhφ|H|2|Φ|2 −

λφσ
2
|Φ|2σ2 +

λhσ
2
|H|2σ2, (1.1)

where Φ denotes the SU(2)DM doublet, H is the SM Higgs doublet, and σ is a gauge-singlet

introduced in order to generate the Majorana masses for the sterile neutrinos, and hence

the visible neutrinos masses and mixings via the see-saw mechanism. The portal couplings

λhφ, λφσ and λhσ will play a role in order to induce non-trivial vacuum expectation values

for all three scalar. As will become clear from table 1 we will scan over positive as well

as negative values of the portal couplings λhφ and λhσ. As we are working with multiple

scalars we will adopt the Gildener-Weinberg approach [35], which is a generalisation of

the Coleman-Weinberg mechanism to multiple scalar states and will be briefly reviewed

in section 2. Later on we shall see that the most interesting region in parameter space

leading to both the correct dark matter abundance and the correct baryon asymmetry is

for 〈σ〉 � 〈φ〉 and hence one can think of σ as a Coleman-Weinberg scalar that once it

acquires a non-zero vev it will be communicated to φ and h through the portal couplings

λφσ and λhσ.

The interactions for the right-handed neutrinos in the Lagrangian are given by

LN = −1

2

(
YM
ij σNi

c
Nj + YM †

ij σNiN
c
j

)
− Y D

ia Ni(εH)lLa − Y D †
ai lLa(εH)†Ni, (1.2)

where the first two term give rise to the Majorana mass once σ acquires a vev, while the

last two terms are responsible for the CP-violating oscillations of Ni.

Since we do not wish to break the lepton-number symmetry explicitly, it follows

from (1.2) that our new singlet scalar field σ should have the lepton number L = −2. We

can think of it as the real part of a complex scalar Σ = (σ+iπ)/
√

2 where S transforms un-

der a U(1)L symmetry associated with the lepton number, which is broken spontaneously

by 〈σ〉 6= 0. If this is a global U(1) symmetry then there must exist a massless (or very

light) (pseudo)-Goldstone boson. Since the Higgs can pair-produce them and decay, this

would severely constrain the portal coupling of Σ with the Higgs, λhσ < 10−5, see e.g.

ref. [5]. If we wish to avoid such fine-tuning, a much more appealing option would be to

gauge the lepton number. A compelling scenario is the B−L theory with the anomaly free
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U(1)B−L factor. The generation of matter-anti-matter asymmetry via a leptogenesis mech-

anism through sterile neutrino oscillations in a classically-scale-invariant U(1)B−L × SM

theory was considered in ref. [6], and their results will also apply to our model. The main

difference with the set-up followed in this paper is that here we allow for a separate non-

Abelian Coleman-Weinberg sector (i.e. it remains distinct from the U(1)B−L gauge sector)

and as a result we have a non-Abelian vector DM candidate.

Finally, it should also be possible to restrict the complex singlet Σ back to the real

singlet σ, just as we have in (1.1). In this case the continuous lepton number U(1) symmetry

is reduced to a discrete sub-group:

σ → −σ , (N,N
c
, lL) → eiπ/2(N,N

c
, lL) , (N,N c, lL) → e−iπ/2(N,N c, lL) .

(1.3)

In general all three possibilities corresponding to global, local and discrete lepton-

number symmetries can be accommodated and considered simultaneously in the context of

eqs. (1.1)–(1.2) by either working with the real scalar σ or the complex one by promoting

σ →
√

2Σ (or
√

2Σ† in the second term in the brackets on the r.h.s. of (1.2)). In this work

we consider σ to be a real scalar singlet.

2 From Coleman-Weinberg to the Gildener-Weinberg mechanism

The scalar field content of our model consists of an SU(2)L doublet H, an SU(2)DM doublet

Φ and a real scalar σ; the latter giving mass to the sterile neutrinos after acquiring a vev

in similar fashion to ref. [10]. Working in the unitary gauge of the SU(2)L × SU(2)DM, the

two scalar doublets in the theory are reduced to,

H =
1√
2

(
0

h

)
, Φ =

1√
2

(
0

φ

)
,

and the tree-level potential becomes,

V0 =
λh
4
h4 +

λφ
4
φ4 +

λσ
4
σ4 −

λhφ
4
h2φ2 −

λφσ
4
φ2σ2 +

λhσ
4
h2σ2 . (2.1)

There are no mass scales appearing in the classical theory, and at the origin in the field

space, all scalar vevs are zero, in agreement with classical scale invariance. We impose

a conservative constraint on all the scalar couplings for the model to be perturbative

|λi|< 3, we also impose gDM< 3 and in order to ensure vacuum stability the following set

of constraints need to be satisfied,

λh ≥ 0, λφ ≥ 0, λσ ≥ 0, (2.2)

λhφ

2
√
λhλφ

≤ 1, − λhσ

2
√
λhλσ

≤ 1,
λφσ

2
√
λφλσ

≤ 1, (2.3)

λhφ

2
√
λhλφ

− λhσ

2
√
λhλσ

+
λφσ

2
√
λφλσ

≤ 1. (2.4)

For more detail we refer to table 1.
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2.1 The Coleman-Weinberg approximation

For simplicity, let us temporarily ignore the singlet σ and concentrate on the theory with

two scalars, φ and h. We will further refer to the hidden SU(2)DM sector with φ as the

Coleman-Weinberg (CW) sector. In the near-decoupling limit, λhφ � 1, between the CW

and the SM sectors, we can view electroweak symmetry breaking effectively as a two-step

process [5].

First, the CW mechanism [1] generates 〈φ〉 in the hidden sector through running

couplings (or more precisely the dimensional transmutation). To make this work, the

scalar self-coupling λφ at the relevant scale µ = 〈φ〉 should be small — of the order of

g4DM � 1, as we will see momentarily. This has the following interpretation: in a theory

where λφ has a positive slope, we start at a relatively high scale where λφ is positive and

move toward the infrared until approach the value of the µ where λφ(µ) becomes small and

is about to cross zero. This is the Coleman-Weinberg scale where the potential develops a

non-trivial minimum and φ generates a non-vanishing vev.

To see this, consider the 1-loop effective potential evaluated at the scale µ (cf. [9]):

V (φ, h) =
λφ(µ)

4
φ4 +

9

1024π2
g4DM(µ)φ4

(
log

φ2

µ2
− 25

6

)
−
λhφ(µ)

4
h2φ2 . (2.5)

Here we are keeping 1-loop corrections arising from interactions of φ with the SU(2) gauge

bosons in the hidden sector, but neglecting the loops of φ (since λφ is close to zero) and

the radiative corrections from the Standard Model sector. The latter would produce only

subleading corrections to the vevs. Minimising at µ = 〈φ〉 gives:

λφ =
33

256π2
g4DM + λhφ

v2

2〈φ〉2
at µ = 〈φ〉 . (2.6)

For small portal coupling λhφ, this is a small deformation of the original CW condition,

λφ(〈φ〉) = 33
256π2 g

4
DM(〈φ〉).

The second step of the process is the transmission of the vev 〈φ〉 to the Standard

Model via the Higgs portal, generating a negative mass squared parameter for the Higgs

= −λhφ〈φ2〉 which generates the electroweak scale v,

v = 〈h〉 =

√
2λhφ
λh
〈φ〉 , mh =

√
2λhv . (2.7)

The fact that for λhφ � 1 the generated electroweak scale is much smaller than 〈φ〉,
guarantees that any back reaction on the hidden sector vev 〈φ〉 is negligible. Finally, the

mass of the CW scalar is obtained from the 1-loop potential and reads:

m2
φ =

9

128π2
g4DM 〈φ〉2 + λhφv

2 . (2.8)

As already stated, this approach is valid in the near-decoupling approximation where

all the portal couplings are small. The dynamical generation of all scales is visualised here

as first the generation of the CW scalar vev 〈φ〉, which then induces the vevs of other scalars
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proportional to the square root of the corresponding portal couplings� 1, as in (2.7). This

implies the hierarchy of the vevs.

For multiple scalars, φ, h and σ, it is not a priori obvious why the portal couplings

should be small and which of the scalar vevs should be dominant. For example on one part

of the parameter space we can find 〈φ〉 > 〈σ〉 and on a different part one has 〈σ〉 > 〈φ〉 (so

that σ rather than φ effectively plays the role of the CW scalar). To consider all such cases

and not be constrained by the near-decoupling limits we will utilise the Gildener-Weinberg

set-up [35], which is a generalization of the Coleman-Weinberg method.

2.2 The Gildener-Weinberg approach

We now return to the general case with the three scalars in the model are described by the

tree-level massless scalar potential (2.1). The Gildener-Weinberg mechanism was recently

worked out for this case in ref. [10], which we will follow. All three vevs can be generated

dynamically but neither of the original scalars is solely responsible for the intrinsic scale

generation; this instead is a collective effect generated by a linear combination of all three

scalars ϕ.

Following [35], we change variables and reparametrise the scalar fields via,

h = N1ϕ, φ = N2ϕ, σ = N3ϕ, (2.9)

where each Ni is a unit vector in three-dimensions. The Gildener-Weinberg mechanism

tells us that a non-zero vacuum expectation value will be generated in some direction in

scalar field space Ni=ni, so this direction must satisfy the condition,

∂V0
∂Ni

∣∣∣∣
n

= 0, (2.10)

and furthermore the value of the tree-level potential in this vacuum is independent of ϕ,

V0(n1ϕ, n2ϕ, n3ϕ) = 0 . (2.11)

The latter condition is simply the statement that the potential restricted to the single degree

of freedom ϕ, is of the form 1
4λϕ ϕ

4 with the corresponding coupling constant vanishing

λϕ = 0. This is nothing but the definition of scale µGW where λϕ(µGW) vanishes, and is a

reflection of a similar statement in the Coleman-Weinberg case for the single scalar that

its self-coupling was about to cross zero, but was stabilised at the small positive value by

the gauge coupling at the Coleman-Weinberg scale µCW, see eq. (2.6).

Being a unit vector in three-dimensions, ni’s can be parametrised in terms of two

independent angles, α and γ and we will call the ϕ vev, w, so that,

n1 = sinα , n2 = cosα cos γ n3 = cosα sin γ , (2.12)

〈h〉 = wn1 , 〈φ〉 = wn2 , 〈σ〉 = wn3. (2.13)
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The three linearly-independent conditions arising from the Gildener-Weinberg minimisa-

tion (2.10) of the tree-level potential amount to the following set of relations,

2λhn
2
1 = λhφn

2
2 − λhσn23, (2.14)

2λφn
2
2 = λhφn

2
1 + λφσn

2
3, (2.15)

2λσn
2
3 = λφσn

2
2 − λhσn21. (2.16)

These conditions hold at the scale µGW where the scalar fields develop the vev 〈ϕ〉 =

w (2.13). Due to the three scalars acquiring non-zero vacuum expectation values, the three

states will mix among each other. The mass matrix M2 is diagonalised for h1, h2 and h3
eigenstates via the rotation matrix O,

diag
(
M2
h1 ,M

2
h2 ,M

2
h3

)
= O(−1)M2O ,

hφ
σ

 = Oij


h1

h2

h3

 , (2.17)

and we further identify the state h1 with the SM 125 GeV Higgs boson. Following [10] we

parametrise the rotation matrix in terms of three mixing angles α, β and γ,

O =


cosα cosβ sinα cosα sinβ

− cosβ cos γ sinα+ sinβ sin γ cosα cos γ − cos γ sinα sinβ − cosβ sin γ

− cos γ sinβ − cosβ sinα sin γ cosα sin γ cosβ cos γ − sinα sinβ sin γ

 ,

(2.18)

and use it to compute the scalar mass eigenstates (2.17) at tree-level. The resulting expres-

sions for the scalar masses can be found in ref. [10]. There is one classically flat direction

in the model — along ϕ — in which the potential develops the vacuum expectation value.

Our choice of parametrisation in (2.13) and in the second row of (2.18) in terms of the

same two angles α and γ, selects this direction to be identified with h2. Hence, at tree

level, Mh2 = 0, but it will become non-zero, see eq. (2.22) below, when one-loop effects are

included.

At the scale µGW the one-loop effective potential along the minimum flat direction can

be written as [35],

V (ϕn) = Aϕ4 +Bϕ4 log

(
ϕ2

µ2GW

)
, (2.19)

where the A and B coefficients are computed in the MS [36] scheme and given by,

A =
1

64π2w4

∑
i=1,3

M4
hi

(
−3

2
+ log

M2
hi

w2

)
+ 6M4

W

(
−5

6
+ log

M2
W

w2

)
+ 3M4

Z

(
−5

6
+ log

M2
Z

w2

)

+ 9M4
Z′

(
−5

6
+ log

M2
Z′

w2

)
− 12M4

t

(
−1 + log

M2
t

w2

)
− 2

3∑
i=1

M4
Ni

(
−1 + log

M2
Ni

w2

),
B =

1

64π2w4

∑
i=1,3

M4
hi

+ 6M4
W + 3M4

Z + 9M4
Z′ − 12M4

t − 2

3∑
i=1

M4
Ni

,
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where Mhi are the tree-level masses of the three scalar eigenstates, h1, h2 and h3, and the

rest are the masses of the SM and the hidden sector vector bosons as well as the top quark

and the right-handed Majorana neutrinos. We can now see that at the RG scale µGW the

1-loop corrected effective potential has a fixed vacuum expectation value w that satisfies,

log

(
w

µGW

)
= −1

4
− A

2B
, (2.20)

and using this relation we can rewrite the one-loop effective potential as,

V = Bϕ4

(
log

ϕ2

w2
− 1

2

)
, (2.21)

and we can also evaluate the potential at the minimum to be V (ϕ=w)=−Bw4/2, which

gives the requirement B > 0 for this to be a lower minimum than the one at the origin.

The mass of the pseudo-dilaton h2 is then given by,

M2
h2 =

∂2V

∂ϕ2

∣∣∣∣
n

=
1

8πw2

(
M4
h1 +M4

h3 + 6M4
W + 3M4

Z + 9M4
Z′ − 12M4

t − 2

3∑
i=1

M4
Ni

)
.

(2.22)

In summary, at the scale µGW the conditions eqs. (2.14)–(2.16) will be satisfied and the

scalar potential will develop a non-trivial vev w giving rise to non-zero vacuum expectation

values 〈h〉, 〈φ〉, and 〈σ〉. For one scalar field, the Coleman-Weinberg mechanism requires

the scalar quartic coupling to take very small values λφ ∼ g4DM, in the Gildener-Weinberg

scenario it is a combination of the quartic couplings that needs to vanish, so these couplings

can take larger values individually.

The formulae for the mixing angles in terms of the coupling constants and the vevs

follow from the diagonalisation of the tree-level mass matrix,

tan2 α =
〈h〉2

〈φ〉2 + 〈σ〉2
=

4λφλσ − λ2φσ
2(λσλhφ − λφλhσ) + λφσ(λhφ − λhσ)

, (2.23)

tan2 γ =
〈σ〉2

〈φ〉2
=

2λhλφσ − λhφλhσ
4λhλσ − λ2hσ

, (2.24)

tan 2β =
〈h〉〈φ〉〈σ〉w(λhσ + λhφ)

(λφ + λσ + λφσ)〈φ〉2〈σ〉2 − λh〈h〉2w2
. (2.25)

Experimental searches of a scalar singlet mixing with the SM Higgs provide constraints on

the mixing angles [37–39]. In our case, these translate as,

cos2 α cos2 β > 0.85. (2.26)

In the region where the decay h1 → h2h2 is allowed we impose the stronger constraint

cos2 α cos2 β > 0.96. Nonetheless, due to the Gildener-Weinberg conditions the decay

h1 → h2h2 is highly suppressed. In the scan we perform Mh3 is always greater than Mh1 ,

so there is no need to worry about the SM Higgs decaying into two h3 scalars. At the

same time, strong constraints could come when the decays h1 → Z ′aZ ′a are allowed, we

set MZ′>Mh1/2 so that these decays are kinematically forbidden.

– 7 –
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Z ′a

Z ′a

hi

Z,W+

Z,W−

Z ′a

Z ′a

hi

f,N

f̄ , N̄

Figure 1. Dark matter annihilation diagrams into Standard Model gauge bosons and fermions, we

also include annihilation into right-handed neutrinos.

Z ′a

Z ′a

hi

hj

Z ′a

Z ′a

hk

hi

hj

Z ′a

Z ′a

Z ′a

hi

hj

Z ′a

Z ′a

Z ′a

hi

hj

Figure 2. Dark matter annihilation diagrams into scalar states.

For the study of dark matter the Lagrangian contains ten dimensionless free parame-

ters, which are reduced to eight after fixing 〈h〉=246 GeV and Mh1 =125 GeV. We perform

a random scan on the remaining eight parameters in the ranges given in table 1.

The matrix Y D has no impact on the dark matter phenomenology, but it is crucial for

Leptogenesis and it will be parametrised by three complex angles ωij using the Casas-Ibarra

parametrisation [40]. Therefore, once we set all the parameters for the active neutrinos to

their best experimental fit, there are twelve free parameters in the model.

3 Dark matter phenomenology

Evidence from astrophysics suggests that most of the matter in the universe is made out

of cosmologically stable dark matter that interacts very weakly with ordinary matter.

Being able to identify what constitutes this dark matter is one of the deepest mysteries

in both particle physics and astrophysics. In this work we consider the possibility of dark

matter being a spin-1 particle from a hidden sector with non-Abelian SU(2)DM gauged

symmetry. The idea of vector dark matter was first introduced in ref. [31] and later studied

in refs. [7, 9, 32, 41]. Note that if the hidden sector had been U(1), the kinetic mixing

among the hidden sector and the hypercharge will have made our dark matter candidate

unstable.

After radiative symmetry breaking breaking of SU(2)DM by Φ, which is in the funda-

mental representation of the group, there is a remnant SO(3) symmetry that ensures the

three gauge bosons Z ′a acquire the same mass MZ′ = 1
2 gDM〈φ〉, and are stable. In contrast

to models where the DM is odd under a Z2 discrete symmetry, in the present scenario we

can have dark matter semi-annihilation processes where a DM particle is also present in

the final state. The DM annihilation diagrams are shown in figures 1 and 2, while the

semi-annihilation ones are shown in figure 3.
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Z ′a

Z ′b

Z ′c

Z ′c

hi

Z ′a

Z ′b

Z ′b

Z ′c

hi

Z ′a

Z ′b

Z ′b

hi

Z ′c

Figure 3. Vector dark matter semi-annihilation diagrams. In contrast to some other models of

dark matter, Z ′a is stable due to an remnant global symmetry.

Figure 4. Left panel shows scatter plot of the dark matter mass MDM =MZ′ versus the scalar

mass Mh2 . Right panel gives scatter plot of the dark matter mass versus the mass of the heavier

scalar h3. Different colours indicate whether the vector gauge triplet accounts for more or less than

100%, 10% and 1% of the observed dark matter abundance.

Also, due to the radiative generation of 〈φ〉 in most region of parameter space the

scalar mass will be smaller than the gauge boson mass, Mh2 < MZ′ . This means that

semi-annihilation processes Z ′aZ ′b → Z ′c hi will be dominant over annihilation ones in

most of the parameter space. To leading order the non-relativistic cross-section from the

semi-annihilation diagrams is given by (cf. [9]),

〈σabcv〉 =
3g4DM

128π

(O2i)
2

M2
Z′

(
1−

M2
hi

3M2
Z′

)−2(
1−

10M2
hi

9M2
Z′

+
M4
hi

9M4
Z′

)3/2

. (3.1)

In order to take into account all annihilation channels into SM particles and prop-

erly take into account thresholds and resonances we have implemented the model in

micrOMEGAs 4.1.5 [42]. We fix the dark matter relic abundance from the latest Planck

satellite measurement Ωh2 = 0.1197±0.0022 [43]. Figure 4 shows the dark matter fraction

as a function of MZ′ and the scalar mass Mh2 ; the isolated strip of points on the left side

of the plots corresponds to the resonance Mh2≈ 2MZ′ .

On the left plot in figure 4 there is a large red coloured region on the left side (producing

too much dark matter), in this region Mh2 has a close value to MZ′ (note that this region

– 9 –
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Figure 5. Left panel: scatter plot of the vev 〈φ〉 versus the vev of the scalar singlet 〈σ〉. Due to

the small mixing angles, we can see that the dark matter relic density is almost independent of 〈σ〉.
Right panel: scatter plot of the dark matter mass MZ′ versus the gauge coupling gDM. Different

colours indicate whether the vector gauge triplet accounts for more or less than 100%, 10% and 1%

of the observed dark matter abundance.

does not exist in the Coleman-Weinberg limit). This region exists thanks to very large

values of Mh3 and 〈φ〉 � MZ′ . In the left panel of figure 5 we show the dark matter

fraction as a function of both vevs, 〈φ〉 and 〈σ〉, from this plot we see there is an upper

bound on 〈φ〉 in order not to overproduce dark matter, 〈φ〉 < 17 TeV. Later on we shall

see that there is a lower bound on 〈σ〉 coming from leptogenesis, 〈σ〉 > 2.5 TeV, we have

already imposed this bound on all the scatter plots we show.

In the right panel of figure 5 we show the dark matter fraction as a function of MZ′

and the gauge coupling gDM. In this plot it becomes clear that as we increase the gauge

coupling, the relic density decreases. The left panel of figure 6 shows the same analysis for

the mixing angle sin γ and the quartic couplng λσ. Here we can already notice a preference

for the region sin γ ≈ 1, where λσ takes on small values and 〈σ〉 � 〈φ〉. Due to the lower

bound on 〈σ〉 the mixing angle α takes on very small values, this is shown in the right

panel of figure 6.

The spin-independent cross-section between Z ′a and a nucleon is given by,

σSI =
f2Nm

4
NM

2
Z′

π 〈h〉2 〈φ〉2

(
3∑
i=1

O2iO1i

M2
hi

)2

, (3.2)

where mN is the nucleon mass, fN = 0.303 [33] is the nucleon form-factor, and Oij are the

elements of the rotation matrix eq. (2.18) that relates the scalar mass eigenstates states to

the ones in the Lagrangian. This orthogonal matrix O is the one that diagonalises the mass

matrix. Due to the form of this matrix, the direct detection diagrams have a destructive

interference when the scalar state with a large φ component has a mass very close to Mh1 ,

this has been previously noted in [7, 47]; while the scalar state with a large σ component

has no direct couplings either to dark matter or to Standard Model particles and hence
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Figure 6. Left panel: scatter plot of sin γ against the quartic coupling λσ. Larger values of sin γ

are preferred. Right panel: scatter plot of sinα versus the scalar mass Mh2 . Due to 〈σ〉 � 〈h〉 we

get small values for the mixing angle α. Different colours indicate whether the vector gauge triplet

accounts for more or less than 100%, 10% and 1% of the observed dark matter abundance.

gives only a small contribution to σSI. Figure 7 shows that except for resonances, the region

with MZ′<250 GeV has been already excluded by the existing experiments, while a large

region of parameter space will be tested by future underground experiments such as LZ [45]

and XENON1T [48]. In figure 8 we show the direct-detection cross-section as a function of

the dark matter mass for benchmark point BP 1, we fix all the scalar couplings and vary

only gDM, the dip corresponds to Mh2≈Mh1 .

4 Leptogenesis via oscillations of right-handed neutrinos

Leptogenesis is an attractive and minimal mechanism to solve the baryon asymmetry of

the universe (BAU). This means being able to produce the observed value of

nbobs
s

= (8.75± 0.23)× 10−11. (4.1)

In the Akhmedov-Rubakov-Smirnov framework [11] a lepton flavour asymmetry is produced

during oscillations of the right-handed Majorana neutrinos Ni with masses around the

electroweak scale or below, which makes this approach compatible with classical scale

invariance.1 From Big Bang nucleosynthesis we obtain the lower bound MN >200 MeV, in

order not to spoil primordial nucleosynthesis. For our calculations we make use of the the

Casas-Ibarra parametrisation [40] for the matrix Y D,

Y D † = Uν ·
√
mν · R ·

√
MN ×

√
2

〈h〉
, (4.2)

where mν and MN are diagonal mass matrices of active and Majorana neutrinos respec-

tively. The active-neutrino-mixing matrix Uν is the PMNS matrix which contains six real

1In the sense that no additional very large scales are required to be introduced in the model to make

this type of leptogenesis work.
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Figure 7. Spin-independent DM-nucleon cross-section as a function of the DM candidate mass

MZ′ . We show current experimental limits from LUX [44] (red line), future limits from LZ [45]

(green line) and the neutrino coherent scattering limit [46] (black line).
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Figure 8. Spin-independent DM-nucleon cross-section as a function of the vector DM candidate

mass MZ′ , for benchmark point BP 1. We show current experimental limits from LUX [44] (red

line), future limits from LZ [45] (green line) and the neutrino coherent scattering limit [46] (black

line). To generate this plot we fix all the scalar couplings and vary only gDM, which means that

MZ′ and Mh2 are also varied while all other parameters remain fixed.

parameters, including three measured mixing angles and three CP-phases. The matrix R
is parametrised by three complex angles ωij . Using this framework with three right-handed

neutrinos one can generate the correct baryon asymmetry without requiring tuning the Ni

mass splittings, but rather enhancing the entries in the Dirac Yukawa matrix through the

imaginary parts of the complex angles ωij [49].

Due to the non-trivial topological structure of the vacuum in SU(2)L there exist elec-

troweak sphaleron processes which violate B+L quantum number, and these will transfer
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the lepton flavour asymmetry nLe into a baryon asymmetry nb, with the conversion factor

given by,
nb
s
' − 3

14
× 0.35× nLe

s
. (4.3)

A critical condition for the mechanism of [11] to work, is that two of three neutrino flavours,

N2 and N3, should come into thermal equilibrium with their Standard Model counterparts

before the universe cools down to TEW (when electroweak sphaleron processes freeze out),

while the remaining flavour does not. In other words, the present mechanism consists

of different time scales Tosc � Teq3 ∼ Teq2 > TEW > Teq1 , where Teqi represents the

temperature at which Ni equilibrates with the thermal plasma and Tosc is the temperature

at which the oscillations start to occur. In terms of the decay rates for the three sterile

neutrino flavours this implies,

Γ2(TEW) > H(TEW) , Γ3(TEW) > H(TEW) , Γ1(TEW) < H(TEW), (4.4)

where H is the Hubble constant,

H(T ) =
T 2

M∗P
, M∗P ≡

MP
√
g∗
√

4π3/45
' 1018 GeV , (4.5)

and M∗P is the reduced Planck mass. Therefore, we require,

Γ1(TEW) =
1

2

∑
i

Y D †
ei Y D

ie γav TEW < H(TEW) . (4.6)

Here the dimensionless quantities γav ≈ 3 × 10−3 are derived from the decay rates of the

right-handed neutrino Ne of the ‘electron flavour’ tabulated in ref. [50]. These right-handed

neutrino decay (or equivalently production) rates were computed in [50] using 1 ↔ 2 and

2 ↔ 2 processes2 involving the neutrino vertices Y D †
ai lLa(εH)†Ni and Y D

ia Ni(εH)lLa with

the Dirac Yukawas.

One can also ask if the new interactions present in our model, those involving the Ma-

jorana Yukawas, 1
2 Y

M
ij σNi

c
Nj and 1

2 Y
M †
ij σNiN

c
j , could affect the dynamics. These inter-

actions always contain a pair of right-handed neutrinos and do not change the right-handed

neutrino number (the singlet σ carries the N -number −2 but above the electroweak phase

transition temperature, the vev of σ vanishes). Hence these processes could contribute to

the N production or decay into the Standard Model particles only in combination with

other interactions. As the Majorana Yukawa couplings are small Y M≈10−5 on the part of

the parameter space relevant for us (see table 3) and the cross-section being proportional

to (YM )2 means that these interactions will give subleading effects to all the processes

considered in [50]. Therefore, we can follow [12] and make the assumption that the number

density of sterile neutrinos is very small compared to their equilibrium density at high

temperatures, Tosc ≈ 106 GeV, around which the main contributions to the lepton-flavour

asymmetry are generated.

2These processes are shown in figures 1 and 2 in ref. [50] and contain a single external N leg — as

relevant for the N -production or decay processes of interest.
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Figure 9. The region in dark green can explain the baryon asymmetry through leptogenesis;

we have fixed the mass splittings to be ∆MNi
≥MN1

/10. This plot shows that there is a lower

bound 〈σ〉 > 2.5 TeV in order to produce the correct amount of baryon asymmetry. The region in

light green cannot produce enough baryon symmetry and/or does not satisfy the wash-out crite-

rion eq. (4.6).

It was already shown in [6] that flavoured leptogenesis can work in a classically scale

invariant framework. In their set-up three right-handed neutrinos are coupled to a scalar

field that acquires a vev, as in the present model. The main difference being that in the

present scenario we have not gauged the B−L quantum number. We quote the final result

for the lepton flavour asymmetry (of ath flavour) obtained in [6] from extending the results

of ref. [12] to the classically scale-invariant case,

nLa
s

= −γ2av × 7.3× 10−4
∑
c

∑
i 6=j

i (Y D †
ai Y

D
ic Y

D †
cj Y D

ja − Y D t
ai Y

D ∗
ic Y D t

cj Y
D ∗
ja ) × Iij , (4.7)

where the quantity Iij is given by,

Iij =
16∑

k(Y
M †
ik Y M

ki − Y
M †
jk Y M

kj )

MP

〈σ〉

(
1− 〈σ〉

Tosc
+

1

4
tan−1

(
4 〈σ〉
TEW

)
− 1

4
tan−1 (4)

)
, (4.8)

for 〈σ〉 < Tosc. For the case 〈σ〉 ≥ Tosc and further details on the derivation of eq. (4.7)

we refer the reader to ref. [6]. It follows from (4.8) that the amount of the lepton flavour

asymmetry is proportional to 〈σ〉MP/∆M
2
Ni

. Hence if we want to avoid any excessive

fine-tuning of the mass splittings between different flavours of Majorana neutrinos, the

relatively large values of 〈σ〉 & 104 GeV are preferred. From figure 9 we can see that there

is a lower bound on 〈σ〉 if we impose some restriction on the mass splittings of the right-

handed neutrinos. In view that we would like to stay far away from the fine-tuning region,

we impose ∆MNi ≥MN1/10 which gives the limit 〈σ〉 > 2.5 TeV in order for leptogenesis

to explain the baryon asymmetry. Imposing this condition removes the points with very

small mixing angle γ, as can be seen in the left panel of figure 6.

As we can see from figure 9 there is also an upper bound on MNi for each value of 〈σ〉,
this bound is mainly due to the wash-out criterion eq. (4.6) not being satisfied any more.
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This upper bound becomes weaker once we reach 〈σ〉 ≥ 104 GeV. This sits well with our

approach based on the common dynamical origin of all vevs: once an explanation for dark

matter is included, 〈σ〉 cannot be too large compared to 〈φ〉.
The procedure to obtain the plot in figure 9 is as follows. We fix the complex phases

ω12 and ω13 to the benchmark values given in [12] (ω12 = 1 + 2.6i and ω13 = 0.9 + 2.7i),

and for each point we scan over ω23, if we find at least one point that works well then we

label it as a good point (dark green) otherwise it is a bad point (light green). In further

scans we have found that varying ω12 and ω13 has a negligible impact on the final results.

The generated total lepton asymmetry is proportional to 〈σ〉, (cf. (4.7), (4.8))

nL ∼ (Y D)4
〈σ〉MP

∆M2
Ni

∼ 〈σ〉MP
m2
ν

v4
, (4.9)

where we used the see-saw mechanism for the masses mν of visible neutrinos, and v is

the SM Higgs vev. Hence nL vanishes as 〈σ〉 approaches zero. This also explains why in

figure 9, there is a stronger dependence on 〈σ〉 than on the masses MNi .

We carried out a scan over all free parameters in our model to determine the region

of the parameter space where the leptogenesis mechanism outlined above can generate the

observed baryon asymmetry. At the same time we require that the model provides a viable

candidate for cosmological dark matter. We would like to mention in passing that all the

present results on leptogenesis also hold when a generic scalar generates a mass for the

sterile neutrinos (i.e. with no reference to classical scale invariance).

The results of the scan and the connection between the leptogenesis and dark matter

scales are reviewed in the following section. Furthermore, in tables 2 and 3 we present

four benchmark points to illustrate the viable model parameters. In the remainder of this

section we would like to comment on the choice of parameters for the leptogenesis part of

the story.

We first note that our leptogenesis realisation does not require any sizeable fine-tuning

of the mass splittings ∆MNi . For example our first benchmark point BP 1 has (cf. table 3),

MN = diag(0.225, 0.25, 0.275) GeV. (4.10)

At the same time, the masses of active neutrinos are set to agree with the observed mass

splittings; for BP 1 we have,

mν = diag(0, 8.7, 49.0) meV. (4.11)

The lepton asymmetry (4.7) also depends on the matrix of Dirac Yukawa couplings Y D.

We compute Y D in the Casas-Ibarra parametrisation eq. (4.2) using (4.10) and (4.11)

along with the PMNS matrix and the R matrix. We have carried out a general scan on

the complex angles ωij of the R matrix and found that having non-vanishing Im[ωij ] is

important in order to obtain the required amount of lepton asymmetry.3 At the same time

this does not lead to any excessive fine-tuning. We have checked this for the numerical

3Note that positive values of Im[ωij ] enhance the elements of the Dirac Yukawa matrix Y D.

– 15 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
5

BP 1 BP 2 BP 3 BP 4

Ωh2 0.122 0.12 0.12 0.118

σSI (cm2) 1.90× 10−46 3.32× 10−46 1.06× 10−46 3.11× 10−47

〈h〉 (GeV) 246 246 246 246

〈φ〉 (GeV) 2260 1260 1020 4590

〈σ〉 (GeV) 3080 5930 2830 11790

λhφ 0.035 0.406 −0.335 0.017

λφσ 0.164 0.122 0.40 0.141

λhσ 0.0185 0.018 −0.045 0.003

λh 0.131 0.159 0.147 0.130

λσ 0.044 0.003 0.027 0.011

λφ 0.152 1.352 1.527 0.464

gDM 0.61 1.39 0.96 2.41

Mh1 (GeV) 125 125 125 125

Mh2 (GeV) 81.6 94.1 137.3 839.1

Mh3 (GeV) 1544 2124 1900 4745

MZ′ (GeV) 690 880 490 5527

sinα 0.06 0.04 0.08 0.02

sinβ 0.01 0.03 −0.025 0.001

sin γ 0.80 0.98 0.94 0.93

µGW (GeV) 829 1149 1110 4550

Table 2. Four benchmark points for the model presented in this work. All four points give the

correct dark matter abundance within 2σ.

values of R matrix elements in our scan. For example, for BP 1 we have (using the ωij
values in table 3),

R =

−36.52− 33.80i 34.11− 36.97i 5.854 + 4.604i

84.43 + 100.0i −101.0 + 85.98i −16.63− 14.20i

−105.4 + 91.81i −93.42− 106.4i 14.94− 17.61i

 , (4.12)

and the resulting matrix of Dirac Yukawa couplings,

Y D =

 17.87− 2.12i −73.37− 125.6i −210.9− 127.3i

−2.168− 19.11i −134.4 + 77.79i −136.9 + 224.6i

−3.395− 0.2434i 9.677 + 24.56i 34.69 + 28.93i

× 10−8. (4.13)

These matrices do not exhibit a high degree of tuning, and we have checked that this is

also the case for generic points of our scan.

– 16 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
5

BP 1 BP 2 BP 3 BP 4

〈σ〉 (GeV) 3080 5930 2830 11790

MN1 (GeV) 0.225 0.30 0.20 0.9

MN2 (GeV) 0.25 0.33 0.22 1.0

MN3 (GeV) 0.275 0.36 0.24 1.1

m1 (meV) 0.0 0.0 0.0 0.0

m2 (meV) 8.7 8.7 8.7 8.7

m3 (meV) 49.0 49.0 49.0 49.0

sin θ12 0.55 0.55 0.55 0.55

sin θ23 0.67 0.67 0.67 0.67

sin θ13 0.15 0.15 0.15 0.15

δ −π/4 −0.6 −π/4 π

α1 0 0.3 0 −π
α2 −π/2 −1.1 −π/2 π

ω12 1.5 + 2.6i 1.5 + 2.6i 1.0 + 2.6i 1.5 + 2.6i

ω13 0.9 + 2.7i 0.9 + 2.7i 0.9 + 2.7i 0.9 + 2.7i

ω23 0.03− 1.8i −0.30− 1.4i 0.05− 1.85i −1.4i

nLe/(s× 2.5× 10−10) −4.71 −5.75 −5.36 −6.43

nLµ/(s× 2.5× 10−10) −1.66 −44.18 19.03 −75.82

nLτ/(s× 2.5× 10−10) 6.37 49.93 −13.67 82.25

Γe/H(TEW) 0.90 0.82 0.91 0.98

Γµ/H(TEW) 58.43 42.29 56.61 315.5

Γτ/H(TEW) 167.63 99.03 163.07 115.56

Tosc (GeV) 4.43× 106 1.90× 106 3.71× 106 4.84× 106

Y M
1 7.3× 10−5 5.1× 10−5 7.1× 10−5 7.6× 10−5

Y M
2 8.1× 10−5 5.6× 10−5 7.8× 10−5 8.5× 10−5

Y M
3 8.9× 10−5 6.1× 10−5 8.5× 10−5 9.4× 10−5〈
Y D
〉

1.26× 10−8 1.45× 10−8 1.18× 10−8 2.5× 10−8

Table 3. Parameters for leptogenesis, same benchmark points as in table 2.
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5 Connection among the scales

After having performed a scan over all free parameters in our model, we find that:

(1) 〈φ〉 < 17 TeV in order for dark matter not to overclose the universe, and

(2) 〈σ〉 > 2.5 TeV in order in order for leptogenesis to explain the baryon asymmetry.

From the left plot of figure 6 we can see that the interesting region in parameter space has

large values of sin γ, and with this in mind we can separate the interesting regime into two

regions:

1. 〈σ〉 ≈ 〈φ〉 ∼TeV.

In this region4 we have sin γ ≈ cos γ (γ ≈ π/4) so there is a strong mixing between

the scalar states φ and σ, and due to the Gildener-Weinberg conditions λφ ≈ λσ.

To avoid overproducing DM, both 〈σ〉 and 〈φ〉 have to be less than 10 TeV. Due to

the not so large values of 〈σ〉, a large part of this region requires some amount of

fine-tuning of the right-handed neutrino mass splittings in order for leptogenesis to

work. The use of the Gildener-Weinberg mechanism is crucial in this region.

2. 〈σ〉 � 〈φ〉 ∼TeV.

In this region we have sin γ ≈ 1, so it can be seen as the Coleman-Weinberg limit of

the more general Gildener-Weinberg mechanism. The scalar σ overlaps maximally

with h2 and can be thought of as the Coleman-Weinberg scalar. In this region the

radiative symmetry breaking is induced by λσ � 1 and we get Mh2 �Mh3 . This

region also corresponds to the majority of good (blue) points in figures 4–6. Most

points have MDM > Mh2 . This is the region of most interest since the large values of

〈σ〉 require almost no fine-tuning in ∆MNi in order for leptogenesis to work.

In table 2 we give a set of benchmark points that satisfy all experimental constraints and

give the correct dark matter abundance within 2σ. The benchmark points BP1, BP2

and BP3 are within reach of future direct detection dark matter experiments. For these

same points we provide in table 3 numerical values that generate the correct amount

of baryon asymmetry via leptogenesis. We work with the current experimental central

values for the neutrino sector taken from [51], we assume normal ordering for the active

neutrino masses. The values for 〈Y D〉 are computed as the average of
√

2MNmν/〈h〉.
This estimate corresponds to the naive see-saw relation and it is smaller than the actual

entries in the matrix Y D due to the enhancement by the imaginary parts of ωij in the R
matrix. Nevertheless, for our benchmark points these enhancement factors are always less

than 1.5× 102.

Finding a connection between the scale 〈φ〉, responsible for dark matter, and the scale

〈σ〉, responsible for leptogenesis, would be of high interest. From eq. (4.7) and applying

the conversion factor (4.3), we can approximate the baryon relic abundance as,

Ωbh
2 ≈ 2.045MP

∆(Y 4
D)〈σ〉

∆(M2
N )

. (5.1)

4Recall that tan2 γ = 〈σ〉2/〈φ〉2.
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Regarding the dark matter relic density, in a large portion of our parameter scan semi-

annihilations are dominant over annihilations, and hence we can approximate by,

ΩDMh
2 ≈

1.07× 109 xf√
g?MP 2〈σabcv〉/3

×GeV−1 , (5.2)

where xf =MZ′/Tf , Tf is the freeze-out temperature for dark matter, and g? is the effective

number of relativistic degrees of freedom. A good approximation for the mixing angles is

to take α≈β≈0 and sin γ ≈ 0.9, substituting these values into eq. (3.1) leads to,

ΩDMh
2 ≈ 7.76× 1011

MP

〈φ〉2

g2DM

×GeV−1 . (5.3)

Using eqs. (5.1) and (5.3) we can find the ratio

ΩDMh
2

Ωbh2
≈

3.79× 1011∆(M2
N )

M2
P g

2
DM∆(Y 4

D)

〈φ〉2

〈σ〉
×GeV−1 = 5 , (5.4)

where the last equality comes from the observed relic densities [43]. After imposing this

relation we find a connection among the scales in the model,

〈σ〉 ≈ ε 〈φ〉2 ×GeV−1 , (5.5)

where the parameter ε is defined as,

ε =
7.59× 1010 ∆(M2

N )

M2
P g

2
DM∆(Y 4

D)
. (5.6)

The parameter MN has a dependence on 〈σ〉, but from a physical perspective it is more

relevant to fix the mass splittings rather than the Majorana Yukawa couplings. The pa-

rameter ε gives the connection between both scales, typical values for this parameter are

around 10−4. Figure 10 illustrates this connection between the scales keeping the parameter

ε fixed to different values.

6 Conclusions

We have presented a model that can explain dark matter and the baryon asymmetry of

the universe simultaneously, where all the scales in the theory are dynamically generated

and have a common origin.

In order to ensure the stability of the dark matter candidate, one usually needs to

introduce a discrete symmetry by hand. One of the attractive features of the present

model is that it leads to a stable DM candidate without the need of introducing an extra

discrete symmetry. We already know that in the Standard Model lepton number and

baryon number are accidental symmetries, the latter being responsible for the stability

of the proton. In our framework the hidden vector DM is stable due to the accidental

non-Abelian global symmetry SO(3). A large region of the parameter space producing the

correct amount of dark matter will be tested by future direct detection experiments such
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Figure 10. Relation among the two vacuum expectation values, 〈φ〉 and 〈σ〉, that yields the

observed value of ΩDMh
2/Ωbh

2 = 5. Different colours correspond to different values of the parameter

ε defined in eq. (5.6).

as LZ [45] and XENON1T [48]. Also, this accidental symmetry could be broken by non-

renormalizable operators leading to the decay of Z ′a and producing an intense gamma-ray

line that could be detected in future experiments [52].

The theory also predicts two extra scalar states that have a Higgs-like behaviour and

masses around the electroweak scale. From the relation for tan2 α, eq. (2.23), the interesting

region 〈σ〉 � 〈h〉 already requires a small mixing angle α with the SM Higgs boson, due to

the small mixing angles we obtain values of cos2 α cos2 β > 0.95, so their detection would

only be feasible at future colliders. Nevertheless, the LHC at high luminosity will improve

the current constraints on the mixing angles α and β.

From dark matter considerations the value of 〈φ〉 is required to be around the TeV

scale and due to the common origin of all the vevs, 〈σ〉 cannot be too large, compared

to 〈φ〉, which means that sterile neutrinos should have small masses of order O(1) GeV in

order for leptogenesis to work without severe tuning of the mass splittings ∆MNi . Under

some mild assumptions, we found a connection among the scales 〈φ〉 (responsible for dark

matter) and 〈σ〉 (responsible for leptogenesis) eq. (5.5), in order to match the observed

ratio ΩDMh
2/Ωbh

2 = 5. Using classical scale invariance as an underlying symmetry, we

have constructed a minimal extension of the SM that addresses dark matter, the baryon

asymmetry of the universe and the origin of the electroweak scale.
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