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ABSTRACT
We explore the parameter space of the semi-analytic galaxy formation model GALFORM, study-
ing the constraints imposed by measurements of the galaxy stellar mass function (GSMF)
and its evolution. We use the Bayesian emulator method to quickly eliminate vast implausible
volumes of the parameter space and zoom in on the most interesting regions, allowing us to
identify a set of models that match the observational data within model uncertainties. We find
that the GSMF strongly constrains parameters related to quiescent star formation in discs,
stellar and active galactic nucleus feedback and threshold for disc instabilities, but weakly
restricts other parameters. Constraining the model using local data alone does not usually
select models that match the evolution of the GSMF well. Nevertheless, we show that a small
subset of models provides acceptable match to GSMF data out to redshift 1.5. We explore
the physical significance of the parameters of these models, in particular exploring whether
the model provides a better description if the mass loading of the galactic winds generated by
starbursts (β0,burst) and quiescent discs (β0,disc) is different. Performing a principal component
analysis of the plausible volume of the parameter space, we write a set of relations between pa-
rameters obeyed by plausible models with respect to GSMF evolution. We find that while β0,disc

is strongly constrained by GSMF evolution data, constraints on β0,burst are weak. Although it
is possible to find plausible models for which β0,burst = β0,disc, most plausible models have
β0,burst > β0,disc, implying – for these – larger stellar feedback efficiency at higher redshifts.

Key words: galaxies: evolution – galaxies: luminosity function, mass function.

1 IN T RO D U C T I O N

Semi-analytic models (SAMs) of galaxy formation are well-
established tools for exploring galaxy formation scenarios in their
cosmological context. The problem of how galaxies form and evolve
is described by a set of coupled differential equations dealing with
well-defined astrophysical processes. These are driven by dark mat-
ter halo merger trees that determine the source terms in the equation
network (for reviews see e.g. Baugh 2006; Benson 2010; Somerville
& Davé 2015). Due to the approximate nature of the methods used in
these simulations, and the uncertainties in the physical process that
are modelled, these models include a large number of uncertain pa-
rameters. While order of magnitude estimates for these parameters
can be made, their precise values must be determined by comparison
to observational data.

� E-mail: luiz.rodrigues@newcastle.ac.uk (LFSR); i.r.vernon@durham.
ac.uk (IV); r.g.bower@durham.ac.uk (RGB)

Traditionally, parameter values have been set through a trial-
and-error approach, where the galaxy formation modeller varies
an individual parameter developing intuition about its effects on
the model predictions for a particular observable and then uses
this understanding to select a parameter set that gives a good de-
scription of the observations. Despite its simplicity, and obvious
limitations, this procedure has led to substantial progress in the
field. Recently, however, several papers have employed more rigor-
ous statistical methods to explore the high dimensional parameter
space systematically (Kampakoglou, Trotta & Silk 2008; Henriques
et al. 2009; Bower et al. 2010; Henriques et al. 2013; Benson 2014;
Lu et al. 2014; Henriques et al. 2015). Such approaches provide a
richer analysis, and seek to identify the regions of parameter space
that are in agreement with observational data, and not just to find
optimal parameter values. This therefore informs us to the unique-
ness of the parameter choices, and provides understanding of the
degeneracies between different parameters.

In this work, we study which constraints are imposed on the
SAM GALFORM by the observations of galaxy stellar mass func-
tion (GSMF). We first consider the constraints imposed by local
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observations and then investigate how the parameters are further
constrained by the introduction of high-redshift data. This makes
powerful use of the iterative emulator technique described by Bower
et al. (2010), which provides an efficient way of probing a high
dimensional parameter space. Importantly, the method allows ad-
ditional constraints to be added in post-processing. Thus, we start
by finding the region in the parameter space that contains models
that produce a good match to the local Universe GSMF. This region
is, then, further probed to check whether a match to higher redshift
data is possible. By analysing two-dimensional projections of the
plausible models sub-volume and performing a principal compo-
nent analysis (PCA) of it, we are able to study the degeneracies and
interactions between the most constrained parameters. We note that
typical approaches to analysing comparable models using Bayesian
MCMC require millions of model runs (at least), while the approach
used here, which utilizes Bayesian emulation, only required tens of
thousands of model runs, representing a substantial improvement
in efficiency.

Closely reproducing the observed high-redshift galaxy mass
function (Cirasuolo et al. 2010; Henriques et al. 2013) is prob-
lematic for many galaxy formation models. Henriques et al. (2013),
for example, concludes that the effectiveness of galaxy feedback
(specifically the re-incorporation time of expelled gas) must de-
pend on the virial mass of the dark matter halo on the basis of
a Monte Carlo exploration of the parameter space of their model.
This is not fully satisfactory, however, since one would expect the
re-incorporation time to be physically related to the halo dynamical
time and not the halo mass.

In this paper, we explore an appealing and well-motivated al-
ternative. Observations of galaxy winds (e.g. Heckman, Armus &
Miley 1990; Martin et al. 2012) suggest that the effective mass load-
ing is strongly dependent on the surface density of star formation.
It appears that efficient outflows are more readily generated when
star formation occurs in dense bursts than when the star formation
occurs in a smooth and quiescent disc. These observations motivate
a more careful exploration of the treatment of galaxy winds from
starburst and quiescent discs, and in this paper we parametrize the
mass loading of the wind independently in these two cases. This
may naturally resolve the difficulty presented by observations of
the high-redshift GSMF since the cosmic star formation rate den-
sity (SFRD) may be more dominated by starbursts at high redshift,
while it is dominated by quiescent star formation at low redshift
(Malbon et al. 2007).

This paper is organized as follows. In Section 2, we describe the
galaxy formation model, specifying which parameters were varied
and briefly reviewing the physical meaning of the most relevant of
them. In Section 3, the iterative history matching methodology is
reviewed. In Section 4.1, we present our results for the matching to
the local GSMF. In Section 4.2, we examine the effects of including
higher redshift data. In Section 4.3, two-dimensional projections of
the parameter space are analysed. In Section 4.4, the results of a
PCA of the non-implausible volume are shown. Finally, in Section 5,
we summarize our conclusions.

2 G A L A X Y F O R M ATI O N MO D E L

The basis of this paper is the SAM GALFORM, first introduced by
Cole et al. (2000). Our starting point is the model discussed by
Gonzalez-Perez et al. (2014, hereafter GP14), which re-calibrates
the version described in Lagos et al. (2012) to match observational
data taking into account the best-fitting cosmological parameters
obtained by WMAP7 (Komatsu et al. 2011). The model of Lagos
et al. (2012) is itself a development of the version presented by
Bower et al. (2006) – which introduced AGN feedback and disc

instabilities to the original GALFORM model – introducing a modified
prescription for star formation in galaxy discs (Section 2.2.1, see
Lagos et al. 2011 for an in-depth discussion).

We note that there is now a more modern variant of the GALFORM

model that differs from the base model used here. This model, de-
scribed comprehensively by Lacey et al. (2016), assumes two initial
mass functions (IMFs), one for quiescent star formation and a dif-
ferent one for starbursts – an approach that improves the model
predictions for number counts and redshift distribution of sub-
millimetre galaxies. The model presented here assumes a universal
IMF, which considerably simplifies comparison with the GSMF.
A universal IMF is compatible with direct observational measure-
ments: see Bastian, Covey & Meyer (2010) and Smith, Lucey &
Conroy (2015) for a recent discussion.

2.1 Differences from GP14

Although the model we use here is based on GP14, there are a
number of small, but important, differences. First, the merger trees
in the present study were constructed using the Monte Carlo al-
gorithm described by Parkinson, Cole & Helly (2008), which is
based on the Extended Press-Schechter theory (Bower 1991; Lacey
& Cole 1993), while GP14 uses merger trees extracted from a
Millennium-class N-body simulation (Guo et al. 2013). The use of
Monte Carlo merger trees allows GALFORM to run significantly faster
since it is possible to control the number of haloes with a given final
mass in the simulation, whereas in the case of the N-body trees, most
of the computational time is spent on over-represented small mass
haloes. In GP14, ram-pressure stripping is modelled by completely
and instantaneously removing the hot gas halo when a galaxy be-
comes a satellite. Here we follow the same prescription as Font
et al. (2008), which uses the McCarthy et al. (2008) ram-pressure
stripping model that is based on hydrodynamic simulations – a sim-
ilar update to the model is used in Lagos et al. (2014). Finally, the
present model adopts the IMF obtained by Chabrier (2003), while
GP14 uses a Kennicutt (1983) IMF.

2.2 Varied parameters

The semi-analytic approach to the problem of galaxy formation
relies on a large number of parameters that codify the uncertainties
associated with the many astrophysical processes involved. Since
the emulator technique allows us to survey a parameter space of high
dimensionality both quickly and at a relatively low computational
cost, we are able to vary parameters simultaneously. One should
bear in mind that varying a larger number of parameters in the
present approach corresponds to a more conservative choice, since
it requires less a priori assumptions about the role of each parameter.

We varied 20 parameters, all of which are listed, together with
their ranges, in Table 1. We outline the physical meaning of pa-
rameters related to star formation and feedback in the subsections
below; for further details, we refer the reader to the original papers,
and to Lacey et al. (2016).

For the purposes of sampling, computations of volumes and prin-
cipal components analysis, the parameters were rescaled to [−1, 1]
within the initial range, either linearly,

p(s) = 2

(
p − pmin

pmax − pmin

)
− 1 , (1)

or logarithmically,

p(l) = 2

[
log10(p/pmin)

log10(pmax/pmin)

]
− 1 . (2)

The scaling used is also listed in Table 1.
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Table 1. Parameters varied in this work, the physical processes and their ranges. For reference, values of these parameters used in GP14
are shown.

Process modelled Section Parameter name (units) Range GP14 Scaling

Star formation (quiescent) Section 2.2.1 νsf (Gyr−1) 0.025 1.0 0.5 lin
Psf/kB (cm−3 K) 1 × 104 5 × 104 1.7 × 104 log
βsf 0.65 1.10 0.8 lin

Star formation (bursts) Section 2.2.2 fdyn 1.0 100.0 10 log
τmin,burst (Gyr) 10−3 1 0.05 log

Stellar feedback Section 2.2.3 αhot 1.0 3.7 3.2 lin
β0,burst 0.5 40.0 11.16 lin
β0,disc 0.5 40.0 11.16 lin
αreheat 0.15 1.5 1.26027 lin

AGN feedback Section 2.2.4 αcool 0.1 2.0 0.6 log
εedd 0.004 0.1 0.03979 log
fsmbh 0.001 0.01 0.005 lin

Galaxy mergers fburst 0.01 0.5 0.1 log
fellip 0.01 0.5 0.3 log

Disc stability Section 2.2.5 fstab 0.61 1.1 0.8 lin

Reionization Vcut (km s−1) 20 60 30 lin
zcut 5 15 10 lin

Metal enrichment pyield 0.02 0.05 0.021 lin

Ram-pressure stripping εstrip 0.01 0.99 n/a lin
αrp 1.0 3.0 n/a lin

2.2.1 Quiescent star formation

It is assumed in the model that the surface density of the star forma-
tion rate is set by the surface density of molecular gas (see Lagos
et al. 2011 and references therein),

�̇� = ν0,sf �mol = ν0,sffmol�gas , (3)

where �gas is the surface density of cold gas in the disc and the
fraction of molecular hydrogen, fmol = Rmol/(Rmol + 1), is computed
using the pressure relation of Blitz & Rosolowsky (2006)

Rmol =
(

Pext

Psf

)βsf

(4)

with

Pext = π

2
G�gas

[
�gas +

(
σgas

σ�

)
��

]
. (5)

2.2.2 Star formation bursts

During a starburst the star formation rate is set to

SFRburst = Mgas,bulge

τ�,burst
(6)

with

τ�,burst = max
(
fdynτdyn, τmin,burst

)
, (7)

where τ dyn is the dynamical time of the newly formed spheroid and
fdyn and τmin,burst are model parameters.

2.2.3 Stellar feedback

The outflow of gas from the disc or the bulge of a galaxy is modelled
using

Ṁout,disc/burst = β × SFRdisc/burst, (8)

where SFRdisc/burst are the total star formation rates in the quiescent
and starburst cases and β is the mass loading, given by

β = β0,disc/burst

(
Vdisc/bulge

200 km s−1

)−αhot

, (9)

where Vdisc/bulge are the circular velocity associated with the disc
(in the quiescent case) or with the newly formed spheroid (bulge)
component (in a starburst).

In previous GALFORM works, the mass loadings associated with
discs and bursts were assumed to share the same normalization, i.e.
β0,burst = β0,disc = β0. This assumption was relaxed in the present
work. The notation in previous works was also slightly different:
the equivalent parameter

Vhot ≡ (200 km s−1) × β
−1/αhot
0 (10)

was used instead.
The outflowed gas is assumed to be once more available to cool

and form stars on a time-scale

treinc = τhalo

αreheat
, (11)

where τ halo is the dynamical time of the halo. The amount of cold
gas available (as well as the amount of stars formed) is determined
by simultaneously solving for both the star formation rate and the
outflow rate.

2.2.4 AGN feedback

The model assumes the cooling of gas from the hot gas halo can be
disrupted by the injection of energy by the AGN. This is assumed
to happen only at haloes under ‘quasi-hydrostatic equilibrium’,
defined by

tcool(rcool) > α−1
cooltff (rcool), (12)
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where tcool and rcool are the cooling time and radius and tff is the
free fall time. Thus, the parameter αcool determines the halo mass at
which AGN feedback is effective (i.e. lower values of αcool implies
AGN feedback active in smaller mass haloes).

The cooling of gas from the hot gas halo is interrupted if a galaxy
satisfies equation (12), and

Lcool < εeddLedd, (13)

where Ledd is the Eddington luminosity of the central galaxy’s black
hole.

2.2.5 Disc stability

Discs are considered stable if they satisfy

Vmax√
1.68 GMdisc/rdisc

< fstab, (14)

where fstab is a model parameter close to 1. If at any time-step this
criterion is not satisfied, it is assumed that the disc is quickly con-
verted into a spheroid due to a disc instability and a starburst is
triggered – i.e. all the gas and stars are instantaneously moved
into the spheroid component where the star formation follows
equation (7).

3 BAY E S I A N E M U L AT I O N M E T H O D O L O G Y

The use of complex simulation models, such as GALFORM, is now
widespread across many scientific areas. Slow simulators with high
dimensional input and/or output spaces give rise to several major
problems, the most ubiquitous being that of matching the model
to observed data, and the subsequent global parameter search that
such a match entails.

The general area of uncertainty analysis has been developed
within the Bayesian statistical community to solve the correspond-
ing problems associated with slow simulators (Craig et al. 1997;
Kennedy & O’Hagan 2001). A core part of this area is the use
of emulators: an emulator is a stochastic function that mimics the
GALFORM model but which is many orders of magnitude faster to
evaluate, with specified prediction uncertainty that varies across the
input space (O’Hagan 2006; Vernon, Goldstein & Bower 2010a,
2014). Any subsequent calculation one wishes to do with GALFORM

can instead be performed far more efficiently using an emulator
(Heitmann et al. 2009). For example, an emulator can be used within
an MCMC algorithm to greatly speed up convergence (Kennedy &
O’Hagan 2001; Higdon et al. 2004; Henderson et al. 2009). This
is especially useful as for scenarios possessing moderate to high
numbers of input parameters, MCMC algorithms often require vast
numbers (billions, trillions or more) of model evaluations to ad-
equately explore the input space and reach convergence: see for
example the excellent discussion in Geyer (2011). Such numbers of
evaluations are clearly impractical for models that possess substan-
tial run time, such as GALFORM. Another major issue with MCMC is
that of pseudo-convergence: an MCMC algorithm may after a large
number of iterations appear to have converged and hence pass every
convergence test, but continued running would eventually reveal a
sudden and substantial change in chain location, showing that the
chain had not in fact reached equilibrium at all (Geyer 2011).

Hence, although we fully support the Bayesian paradigm, we
do not use an MCMC algorithm here, due both to the reasons
discussed above, and to the fact that a Bayesian MCMC approach
requires a full joint probabilistic specification across all uncertain
quantities, that is often hard to make and hard to justify. We instead

outline a more efficient and robust approach known as iterative
history matching using Bayesian emulation (Vernon et al. 2010a).
Here, the set of all inputs corresponding to acceptable matches to
the observed data is found, by iteratively removing unacceptable
regions of the input space in waves. History matching naturally
incorporates Bayesian emulation and has been successfully
employed in a range of scientific disciplines including galaxy
formation (Bower et al. 2010; Vernon, Goldstein & Bower 2010a,b;
Vernon et al. 2014), epidemiology (Andrianakis et al. 2015, 2016a),
oil reservoir modelling (Craig et al. 1996, 1997; Cumming &
Goldstein 2009a,b), climate modelling (Williamson et al. 2013) and
environmental science (Goldstein, Seheult & Vernon 2013). History
matching can be viewed as a useful precursor to a fully Bayesian
analysis that is often in itself sufficient for model checking and
model development. Here we use it within a Bayes Linear frame-
work, a simpler, more tractable version of Bayesian statistics, where
only expectations, variances and covariances need to be specified
(Goldstein 1999; Goldstein & Wooff 2007). However, if one is com-
mitted to a full Bayesian MCMC approach, performing an a priori
history match can dramatically improve the subsequent efficiency
of the MCMC by first removing the vast regions of input parameter
space that would have extremely low posterior probability.

3.1 Emulator construction

We now outline the core emulator methodology (see Bower
et al. 2010; Vernon et al. 2010a, for further description). We repre-
sent the GALFORM model as a function f(x), where x = (ν0,sf, Psf/kB,
. . . , εstrip, αrp) is a vector composed of the 20 input parameters given
in Table 1, and f is a vector containing all GALFORM outputs of in-
terest, specifically the GSMF at various mass bins and redshifts. To
construct an emulator, we generally perform an initial space filling
set of wave 1 runs, using a maximin Latin hypercube design over
the full 20-dimensional input space (see Sacks et al. 1989; Currin
et al. 1991; Santner, Williams & Notz 2003; Bower et al. 2010, for
details). For each output fi(x), i = 1. . . q, a Bayesian emulator can
be structured as follows:

fi(x) =
∑

j

βij gij (xAi
) + ui(xAi

) + vi(x). (15)

Here, β ij, ui(xAi
) and vi(x) are uncertain quantities to be informed

by the current set of runs. The active variables xAi
are a subset of

the inputs that are found to be most influential for output fi(x). The
gij are known deterministic functions of xAi

, with a common choice
being low order polynomials, and the β ij are unknown regression
coefficients. ui(xAi

) is a Gaussian process with, for example, zero
mean and possible covariance function:

Cor(ui(xAi
), ui(x

′
Ai

)) = σ 2
ui

exp
{−‖xAi

− x ′
Ai

‖2/θ2
i

}
, (16)

where σ 2
ui

and θ i are the variance and correlation length of ui(xAi
)

that must be specified, and vi(x) is an uncorrelated nugget with
expectation zero and Var(vi(x)) = σ 2

vi
, that represents the effect

of the remaining inactive input variables, and/or any stochasticity
exhibited by the model (Vernon et al. 2010a).

We could employ a fully Bayesian approach by specifying joint
prior distributions for all uncertain quantities in equation (15),
and subsequently updating beliefs about fi(x) in light of the wave
1 runs via Bayes theorem. Here instead we prefer to use the
more tractable Bayes Linear approach, a version of Bayesian
statistics that requires only expectations, variances and covari-
ances for the prior specification, and which uses only efficient
matrix calculations, and no MCMC (Goldstein & Wooff 2007).
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Therefore if we are prepared to specify E(β ij), Var(β ij), σ 2
ui

,
σ 2

vi
and θ i, we can obtain the corresponding Bayes Linear pri-

ors for fi(x) namely E(fi(x)), Var(fi(x)) and Cov(fi(x), fi(x′)) using
equations (15) and (16).

The initial wave of n runs is performed at input locations x(1),
x(2), . . . , x(n) that give model output values Di = (fi(x(1)), fi(x(2)),
. . . , fi(x(n))), where i labels the model output. We obtain the Bayes
Linear adjusted expectation EDi

(fi(x)) and variance VarDi
(fi(x))

for fi(x) at new input point x using:

EDi
(fi(x)) = E(fi(x))

+ Cov(fi(x),Di)Var(Di)
−1(Di − E(Di)), (17)

VarDi
(fi(x)) = Var(fi(x))

− Cov(fi(x),Di)Var(Di)
−1Cov(Di, fi(x)). (18)

The emulator thus provides a prediction EDi
(fi(x)) for the behaviour

of the GALFORM model at new input point x along with a correspond-
ing x dependent uncertainty VarDi

(fi(x)). It is the later feature that
strongly contributes to emulators being more advanced than inter-
polators. These two quantities EDi

(fi(x)) and VarDi
(fi(x)) are used

directly in the implausibility measures that form the basis of the
global parameter search described below.

3.2 Simple one-dimensional example

To clarify the above description, we outline the construction of a
simple one-dimensional emulator of the function

f (x) = 3 x sin

(
5π(x − 0.1)

0.4

)
, (19)

for which we perform a set of n = 10 equally spaced wave 1 runs
at locations x(j) = 0.1, . . . , 0.5 giving rise to run data

D = (f (x(1)), f (x(2)), . . . , f (x(n))), (20)

where we have dropped the i subscript as the output is only one-
dimensional.

For simplicity, we reduce the emulator’s regression terms
β ijgij(xA), in equation (15), to a constant β0 and remove the nugget
vi(x) as there are no inactive inputs. The emulator equation (15)
therefore reduces to:

f (x) = β0 + u(x). (21)

A possible prior specification is to treat the constant or mean term
β0 as known, with E(β0) = 0.1 and hence Var(β0) = 0. We also
set σ u = 0.6 and θ = 0.06: a choice that represents curves of
moderate smoothness. We can now calculate all terms on the rhs
of equations (17) and (18) using equations (21), (16) and (20), for
example:

E(f (x)) = β0, (22)

Var(f (x)) = σ 2
u , (23)

E(D) = (β0, . . . , β0)T, (24)

while Cov(f(x), D) is now a row vector of length n with jth compo-
nent

Cov(f (x), D)j = Cov(u(x), u(x(j )))

= σ 2
u exp

{−‖x − x(j )‖2/θ2
}

(25)

Figure 1. The one-dimensional emulator as constructed in Section 3.2. The
dashed (blue) line is the emulator prediction ED(f(x)) as a function of x, and
the credible interval ED(f (x)) ± 3

√
VarD(f (x)) is given by the dotted (red)

lines. The true function f(x) is shown as the black solid line, and the 10
model runs that make up the vector D used to build the emulator are given
as the red points.

and Var(D) is an n × n matrix with (j, k) element

Var(D)jk = Cov(u(x(j )), u(x(k)))

= σ 2
u exp

{−‖x(j ) − x(k)‖2/θ2
}

. (26)

We can now construct the emulator by calculating the adjusted ex-
pectation and variance ED(f(x)) and VarD(f(x)) from equations (17)
and (18), respectively, for any new input point x.

Fig. 1 shows the one-dimensional emulator where ED(f(x)) as
a function of x is given by the dashed blue line, and the credible
interval ED(f (x)) ± 3

√
VarD(f (x)) by the dotted red lines. We can

see that ED(f(x)) precisely interpolates the known runs at outputs
D, with zero uncertainty (as the red lines touch at these points): a
desirable feature as here f(x) is a deterministic function. The credible
regions get wider the further we are from known runs, appropriately
reflecting our lack of knowledge in these regions. The true function
f(x) is given by the solid black line that lies within the credible
region for all x, only getting close to the boundary for x > 0.5. This
demonstrates the power of an emulator: using only a small number
of runs we can successfully mimic relatively complex functions to a
known accuracy, a feature that scales well in higher dimensions due
to the chosen form of the emulator. The speed of Bayesian emulators
is also crucial for global parameter searches where we may need
to evaluate the emulator a huge number of times to fully explore
the input space. Note that the emulator calculation is extremely
fast because it only requires matrix multiplication for each new x.
The inverse Var(Di)−1 that features in equations (17) and (18) is
independent of x (and indeed of Di) and hence can be performed
only once, offline and in advance of even the run evaluations Di.

3.3 Emulating in higher dimensions

When emulating functions possessing high input dimension, the
polynomial regression terms βij gij (xAi

) in the emulator equa-
tion (15) become more important, as they efficiently capture many
of the more global features often present in the physical model
(Vernon et al. 2010a,b). Prior specifications for the β ij can be given,
based say on structural knowledge of the model, or on past expe-
rience running a faster but simpler previous version of the model
(Cumming & Goldstein 2009a). However, if no strong prior knowl-
edge is available and the number of runs performed is reasonably
high, a vague prior limit can be taken in the Bayes linear update
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equations (17) and (18), resulting in the adjusted expectation and
variance of the β ij terms tending towards their generalized least
squares (GLS) estimates. For space filling runs, such as those from
a maximin Latin hypercube, the GLS estimates can be accurately
approximated by the corresponding ordinary least squares (OLS)
estimates, which can also be used to estimate σ 2

ui
, providing further

efficiency gains (Vernon et al. 2010a).
In addition, the choice of active input variables xAi

and the choice
of the specific regression terms βij gij (xAi

) that feature in the em-
ulator, can both be made using linear model selection techniques
based on AIC or BIC criteria. For example, these can be simply em-
ployed using the lm() and step() functions in R (Vernon et al. 2010a;
R 2015). The use of active variables xAi

can lead to substantial di-
mensional reduction of the input space of each of the outputs, and
hence convert a high dimensional problem into a collection of low
dimensional problems, which is often far easier to analyse (see
Vernon et al. 2010b, for further discussion of this benefit). It is
worth noting that reasonably accurate emulators can often be con-
structed just using such regression models. This can be a sensible
first step (see Andrianakis et al. 2016b), before one attempts the
construction of a full emulator of the form given in equation (15).

3.4 Iterative history matching via implausibility

We now describe the powerful iterative global search method known
as history matching (Craig et al. 1996, 1997), which naturally in-
corporates the use of Bayesian emulators, and which has been suc-
cessfully applied across a variety of scientific disciplines. It aims to
identify the setW of all inputs x that would give rise to an acceptable
match between the GALFORM outputs f(x) and the corresponding vec-
tor of observed data w, and proceeds iteratively, discarding regions
of input space that are deemed implausible based on information
from the emulators. For more detail on the contents of this section,
see Vernon et al. (2010a,b).

For an output fi(x), we define the implausibility measure:

I 2
i (x, wi) = (EDi

(fi(x)) − wi)2

VarDi
(fi(x)) + σ 2

εi
+ σ 2

ei

, (27)

which takes the distance between the emulator’s prediction of the ith
output EDi

(fi(x)) and the actual observed data wi and standardizes
it with respect to the variances of the three major uncertainties: the
emulator uncertainty VarDi

(fi(x)), the model discrepancy σ 2
εi

and
the observation error σ 2

ei
.

The least familiar of these is the model discrepancy σ 2
εi

that
is an upfront acknowledgment of the deficiencies of the GALFORM

model in terms of assumptions used, missing physics and simpli-
fying approximations. In addition to ensuring the analysis is more
meaningful, this term guards against overfitting, and the subsequent
technical and robustness problems this can cause for a global pa-
rameter search. See Kennedy & O’Hagan (2001), Brynjarsdottir &
O’Hagan (2014) and Goldstein & Rougier (2009) for extended dis-
cussions on this point.1 The form of the implausibility comes from
the ‘best input approach’ that models the link between the GALFORM

model evaluated at its best possible input x∗ and the real Universe
y as y = f (x∗) + ε, where ε is a random quantity representing the
model discrepancy with variance σ 2

ε , and assumes that the observed

1 It is worthwhile noting that any analysis that does not include a model
discrepancy is only meaningful given that ‘the model f(x) is a precise match
to the real Universe for some input x′, and all conclusions derived from such
an analysis should be written with this conditioning statement attached.

data w is measured with uncertain error e with variance σ 2
e , such

that w = y + e. See Craig et al. (1997); Vernon et al. (2010a,b) for
further justifications and discussions.

Most importantly, a large value of the implausibility Ii(x, wi) for
any output implies that point x is unlikely to yield an acceptable
match between f(x) and w, if GALFORM were run there, hence x is
deemed implausible and can be discarded from further analysis.
We therefore impose cut-offs of the form Ii(x, wi) < c to rule
out regions of input space, where the choice of c is motivated
from Pukelsheim’s 3σ rule2 (Pukelsheim 1994). We can combine
the implausibility measures from several outputs in various ways
e.g.

IM (x,w) = max
i∈Q

Ii(x,wi), (28)

where Q represents the subset of outputs currently considered (often
we will only emulate a small subset of outputs in early iterations).
We may use the second or third maximum implausibility instead
for robustness reasons, or use multivariate implausibility measures
to incorporate correlations (Vernon et al. 2010a,b).

History matching proceeds iteratively, discarding implausible re-
gions of the input parameter space in waves. At the kth wave, we
define the current set of non-implausible input points as Wk and the
set of outputs that have so far been considered for emulation as Qk.
We proceed according to the following algorithm:

1. Design and evaluate a space filling set of wave k runs over the
current non-implausible space Wk .

2. Check if there are informative outputs that can now be emu-
lated accurately (that were difficult to emulate in previous waves)
and add them to Qk, to define Qk+1.

3. Use the wave k runs to construct new, more accurate emulators
defined only over the region Wk for each output in Qk+1.

4. Recalculate the implausibility measures Ii(x, wi), i ∈ Qk+1,
over Wk , using the new emulators.

5. Impose cut-offs Ii(x, wi) < c to define a new, smaller non-
implausible volume Wk+1 that satisfies W ⊂ Wk+1 ⊂ Wk .

6. Unless:

(A) the emulator variances VarDi
(fi(x)) are now small in

comparison to the other sources of uncertainty: σ 2
εi

+ σ 2
ei

,
(B) the entire input space has been deemed implausible or
(C) computational resources have been exhausted,

return to step 1.
7. If 6A is true, generate a large number of acceptable runs from

the final non-implausible volume W , using appropriate sampling
for the scientific purpose.

We are then free to analyse the structure of the non-implausible
volume W and the behaviour of model evaluations from different
locations within it. The history matching approach is powerful for
several reasons:

(i) As we progress through the waves and reduce the non-
implausible volume, we expect the function f(x) to become
smoother, and hence to be more accurately approximated by the
regression part of the emulator βij gij (xAi

) (which is often com-
posed of low order polynomials – see equation 15).

2 Pukelsheim’s 3σ rule is the powerful, general, but underused result that
states for any continuous unimodal distribution, 95 per cent of the probability
must lie within μ ± 3σ , regardless of its asymmetry or skew.
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(ii) At each new wave, we have a higher density of points in
a smaller volume, therefore the emulator’s Gaussian process term
ui(xAi

) will be more effective, as it depends mainly on the proximity
of x to the nearest runs.

(iii) In later waves, the previously strongly dominant active inputs
xAi

from early waves will have had their effects curtailed, and hence
it will be easier to select additional active inputs, unnoticed before.

(iv) There may be several outputs that are difficult to emulate
in early waves (often due to their erratic behaviour in scientifically
uninteresting parts of the input space) but simple to emulate in later
waves, once we have restricted the input space to a much smaller
and more physically realistic region.

History matching can be viewed as the appropriate analysis suitable
for model investigation, model checking and model development.
Should one wish to perform a fully Bayesian analysis using say
MCMC, history matching can be used as a highly effective precur-
sor to such a calculation in order to rule out vast regions of input
space that would only contain extremely low posterior probabil-
ity. However, such an MCMC analysis would only be warranted
assuming one is willing to specify meaningful joint probability dis-
tributions over all uncertain quantities involved, in contrast to only
the expectations, variances and covariances required for the Bayes
Linear history match.

3.5 Application of emulation and history matching
to GALFORM and the GSMF

We now apply the above Bayesian emulation and history match-
ing methodology to GALFORM and the GSMF, and generalize it to
the case of multiple available observed data sets. We first identify
the GALFORM model outputs fi(x) that we wish to emulate, and the
corresponding observed data w

(m)
i to match them to as

fi(x) = log φi,model and w
(m)
i = log φi,obs(m) , (29)

where

φi = d n

d log M�

∣∣∣∣
M�,i ,z

is the GSMF at the stellar mass bin M�,i for redshift z. Here, m labels
the choice of observed data sets we use, represented for output i by
w

(m)
i . Following the discussion in Bower et al. (2010), we adopt a

model discrepancy of 0.1 dex. This term summarizes the accuracy
we expect for the model due to the approximations inherent in
the semi-analytic method. In effect, this means that we will regard
models that lie within 5 per cent of the observed data point as
a perfectly adequate fit, even if the quoted Poisson observational
errors are substantially smaller. This means that if a model has a
marginally acceptable implausibility, I ∼ 3, it may be 0.3 dex away
from the observational data point.

As we have multiple sets of observed data for the GSMF that we
wish to match to, we have to make an additional decision as to how
to combine these within the history matching process. Here, we gen-
eralize the implausibility measure of equation (28) by minimizing
over the m data sets:

IM (x,w) = max
i∈Q

{min
m

Ii(x,w
(m)
i )}, (30)

with the second and third maximum implausibilities defined sim-
ilarly. This implies that our history match search will attempt to
find all inputs that lead to matches to any of the observed data
sets, judged on an individual bin basis. This is a simple way of in-
corporating several (possibly conflicting) data sets into the history

Table 2. Thresholds used for eliminating implausible regions with respect
to the local Universe GSMF after each wave and the fraction of the initial
volume in the non-implausible region.

Wave Threshold Fraction of the
First max. Second max. Third max. initial volume

1 – 3.2 2.5 0.2522
2 4.5 3.0 2.3 0.0494
3 3.75 2.5 2.0 0.0170
4 3.5 2.5 2.0 0.0116
5 3.0 2.25 2.0 0.0036
6 2.4 2.15 1.8 0.0010

match that does not involve additional assumptions or further sta-
tistical modelling, and which is sufficient for our current purposes.
It should lead to the identification of all inputs of interest, subsets
of which (for example those that match a specific data set, or a
combined data set) can be subsequently explored in further detail.

The emulators used in each wave were constructed following the
techniques described in Section 3.1, Section 3.2 and specifically the
high dimensional approaches of Section 3.3.

3.6 Observational data sets used

For the local Universe GSMF, we use the results of Li & White
(2009) based on SDSS and Baldry et al. (2012) on the GAMA
survey.

For larger redshifts, we combine the results of Tomczak et al.
(2014) based on the ZFOURGE and CANDELS surveys, and
Muzzin et al. (2013), based on the ULTRAVISTA survey. In these
papers, the GSMF is reported for redshift intervals/bins. For sim-
plicity, we adopt the midpoint of each redshift bin as the typical
redshift to be compared with the model (e.g. the GSMF obtained
for 0.5 < z < 1.0 will be compared with the model results for
z = 0.75). Both data sets obtain their stellar masses using the FAST

code (Kriek et al. 2009) to fit the stellar population synthesis model
of Bruzual & Charlot (2003) to the measured spectral energy distri-
butions of the galaxies, assuming a Chabrier (2003) IMF. Errors in
the determination of galaxy masses at z > 0 redshifts were assumed
to follow the redshift-dependent estimate as Behroozi, Wechsler &
Conroy (2013), i.e. σ M(z) =σ 0 +σ zz, with σ 0 = 0.07 and σ z = 0.04.
These mass errors were accounted for convolving the model GSMF
with a Gaussian kernel (see Section 4.2 for a discussion).

4 R ESULTS

The parameter space exploration was conducted through successive
waves of runs. After each wave, emulators were generated from its
results and used to design the parameter choices for the next wave,
discarding a vast, specifically implausible, region of the parameter
space. Each wave was designed using a latin hypercube sampling
of 5000 points of the non-implausible region of the parameter space
(full details are given in Appendix A).

4.1 Matching the local GSMF

There were initially six waves of runs, where the implausibilities
were computed with respect to the local Universe GSMF data only.
Table 2 shows the implausibility cut-off thresholds applied, which
decreased after each wave as we build more trustworthy emulators.
Table 2 also shows the fraction of the initial volume that corre-
sponds to the region classified as non-implausible after each wave.
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Figure 2. Histograms of the model implausibilities (with respect to the
local Universe only) obtained at each wave. In the top panel, exploratory
waves 2–6 are shown. Each new wave reduces the tail of very implausible
models. However, the increase in the number of models with I < 2 occurs
only slowly after each wave. In the bottom panel, waves 7a and 7b are
also shown (please, note the different range in I). Wave 7a was designed
specifically to obtain many plausible runs, instead of uniformly covering the
non-implausible parameter space, and Wave 7b (discussed in Section 4.2)
takes into account the constraints by high-redshift data.

To compute the volumes, the parameters were rescaled following
equations (1) and (2) – i.e. lengths associated with the range of
each parameter were considered equivalent. Despite making very
conservative choices for the thresholds, there is a strong decrease
in the volume after each wave and after wave 6 only 10−3 of the
original volume was classified as non-implausible. In Fig. 2, the
evolution of the distribution of the implausibilities can be followed:
after each wave the number of highly discrepant models is strongly
reduced, but the number of acceptable models, with I < 3, increases
only modestly.

After the sixth wave the emulator variance at each point was
already smaller or equal to the other uncertainties, indicating that
no further refinement was possible (condition 6A in the algorithm
described in Section 3.4). A final, wave 7a, was then designed, this
time using the emulator information to aim for the best possible
matches to the GSMF (i.e. step 7 in the algorithm; in contrast to
the previous waves where the non-implausible space was uniformly
sampled to ensure an optimum input for the next wave).

In Fig. 3, the final results of the history matching are shown,
together with our observational constraints. Error bars in this and
other figures show only the quoted observational errors, and do not
include the model discrepancy term, so that the overall quality of
the fits can be judged from figures. The purpose of the model dis-
crepancy is to avoid rejecting models when the observational errors
become very small. All the models in our library with implausibility
I < 3.5 are shown in Fig. 3, with the curves colour-coded by the
implausibility. The width of the lightest shade, corresponding to I ≤

Figure 3. Local GSMF. The coloured curves show all the runs with im-
plausibility I < 3.5, with different shades showing different implausibilities
(see colour-bar in the plot). The surrounding light grey curves correspond
to the initial set of runs (wave 1). Data points show the GSMF data obtained
by Li & White (2009) and Baldry et al. (2012). Note that a 0.1 dex model
discrepancy was assumed (see text for details).

1.0, allows one to visualize the effect of adopted model discrepancy.
Also shown are the wave 1 runs given as the grey curves, many of
which were far from the observed data. The impact of the history
match in terms of the removal of substantial amounts of implausi-
ble regions of the parameter space can be seen by comparing the
coloured region with the grey curves.

While there are models with I ∼ 2.5–3 that produce an excess
in the number of small mass galaxies, the opposite (i.e. φ smaller
than the observations at the low mass end) is very rare. A simi-
lar behaviour is also present in the high mass end. Thus, accept-
able (I � 3) models may display overabundances of very small
[log (M�/ M�) � 8.5] or very large [log (M�/ M�) � 11.5] masses,
but there are no acceptable models with significant underabundances
in these ranges.

Once the locus of models with good fits to the local Universe
GSMF was found, we examined how well these models performed
with respect to high-redshift data. In Fig. 4, the GSMF output by the
models shown in Fig. 3 is now compared with higher redshift data.
One finds that the models selected only by their ability to reproduce
the local Universe GSMF data under-represent the abundance of
high mass galaxies at higher redshifts while simultaneously gener-
ating an excessive number of galaxies of lower masses.

In the following section, we will examine the parameter space
and show that the vast majority of acceptable models have
β0,burst > β0,disc and so lie in a region of parameter space not avail-
able to the original model.

4.2 Constraining models with higher redshift data

To investigate if, and to what extent, the present model could re-
produce the evolution of the GSMF, a new wave of runs was gener-
ated from the wave 6 emulator (wave 7b), this time computing the
implausibilities simultaneously with respect to the GSMF data at
higher redshifts, up to z = 1.75.

After just a single additional wave, the emulation technique in-
dicated that no extra refinement was likely: the emulator variances
became smaller than the other uncertainties, corresponding to step
6A in the algorithm of 3, suggesting that it would be highly unlikely
to find a locus of more plausible runs within any sub-volume of the
parameter space. A new (and final) wave was then designed, to
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Figure 4. The GSMF of selected models colour-coded by their implausibility, I (see colour bar), calculated only with respect to the GSMF data at the local
Universe, from Baldry et al. (2012) and Li & White (2009). Only runs with I < 3.5 are shown. The high-redshift observational data shown were obtained from
Muzzin et al. (2013) and Tomczak et al. (2014). The models selected solely by their good match to z = 0 data produce poor agreement to higher redshift data.

produce runs that provided a good match to the GSMF at those red-
shifts (corresponding to step 7). This set of runs was deliberately fo-
cused towards the regions of lowest emulator implausibility, where
we would now expect the best matches to occur. This is a good tech-
nique for exploring the correlations between parameter sets; how-
ever, it is important to note that the resulting design of runs would
not be a suitable basis for the construction of a statistical emulator.

In Fig. 5, we show the evolution of the GSMF for all the runs
(of all waves) with implausibility I < 3.5 with respect to redshifts
up to z = 1.12. The adoption of higher redshift constraints leads to
tension with the local Universe data: the least implausible models
produce a GSMF with a too shallow high mass end at z = 0 and too
steep at any other redshift. In the low mass end, there is an excess
of �1010 M� galaxies at higher redshift and a small deficit of them
in the local Universe. This is consistent with behaviour seen in the
runs constrained at z = 0 only. It should be noted that, despite the
tension, the level agreement achieved is still better than what is
found in most published models, and is not dissimilar from what is
found by Henriques et al. (2013, 2015).

This tension becomes clearer when the results for specific mass
bins of the GSMF are compared. This is shown in panels below
the diagonal in Fig. 6, for two mass bins, log (m/ M�h) = 9.5 and
11.2, redshifts z = 0.0, 0.35 and 0.75. The observational constraints
are shown as blue bands. By showing the constraints in pairs, we
gain insight into the conflicting pressures imposed on the model.

Initially, successive waves of runs (shown by colours from red to
green, as indicated in the figure) are increasingly focused towards
the point at which the two bands intersect. However, it becomes
increasingly evident that some constraint pairs cannot be matched
by the model and the successive waves lead to no improvement.
For example, the panel showing log (m/ M� h) = 11.2 at z = 0 and
z = 0.35 has a strong diagonal line above which the model is never
able to cross. The same behaviour is found when comparing the
high mass end of the GSMF at z = 0 with other redshifts. For the
constraints at log (m/ M�h) = 9.5, the outputs of all models are
tightly correlated when comparing between redshift. Comparison
between different mass bins appears to be less constraining.

One can best interpret Fig. 6 by comparing the models to a
non-evolving GSMF. This is shown by the dashed diagonal line
in panels that compare the same mass bins. The grey-shaded side
of the dashed diagonal line show the case where the number of
galaxies decreases with time. It can be seen that the observational
data used leads to no evolution (or even decrease) in the number
of 1011.2 h−1 M� galaxies if z = 0 is compared to other data sets.
This makes it clear why it is not possible to find models in the exact
target region. Since GALFORM is inherently hierarchical, it is difficult
to conceive of a mechanism that could lead to a significant decrease
in the abundance of massive galaxies with time. This would only
be possible if 1011.2 h−1 M� galaxies were to grow in mass (and
so leave the mass bin) faster than lower mass (and more abundant)
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Figure 5. The GSMF of selected models colour-coded by their implausibility, I, calculated simultaneously with respect to the GSMF at
z = 0, 0.35, 0.62, 0.75, 0.88, 1.12, 1.25 and 1.43. Only runs with I < 3.5 are shown. The high-redshift observational data shown were obtained from Muzzin
et al. (2013) and Tomczak et al. (2014), and local Universe data were obtained from Baldry et al. (2012) and Li & White (2009). GALFORM models generally
lead to a GSMF with a high mass end that is too shallow at z = 0 and too steep at higher redshifts.

galaxies were able to grow and move into the bin. Clearly, the
situation never arises in the GALFORM model and the only way of
obtaining points in the grey region for the high mass bin panes is due
to the distortion caused by errors in the galaxy mass determination,
as we will discuss below.

Systematic errors in the determination of galaxy masses (‘mass
errors’ for short) arising from the modelling of the star formation
history, choice of dust model and the choice of IMF can significantly
affect the shape of the GSMF that is inferred from the observations
(Mitchell et al. 2013). As mentioned in Section 3.6, mass errors
were accounted for by convolving the model GSMF with a Gaussian
kernel. The main effect of such convolution is making the GSMF
appear less steep at higher redshifts. This raises the question of
whether underestimated mass errors could explain the difficulty in
simultaneously matching the high mass end of the GSMF at different
redshifts.

In the panels above, the diagonal of Fig. 6, we show the conse-
quences of doubling the mass error – i.e. considering σ 0 = 0.14
and σ z = 0.08. This has the effect of loosening the implausibility
contours: the blue regions are the same as those below the diag-
onal. The effect of these much increased mass errors is to allow
models near to the ‘no evolution’ region, alleviating the tension by
allowing the corrected GALFORM results to get closer to the target
region. However, even considering these mass errors, some tension
still persists.

4.3 Plausible models subspace

We examine now what are the main properties of the subspace of
plausible models, which we define as models having implausibility,
I < 3.5, a conservative threshold.

We begin by considering the models that provide a plausible
match to the GSMF at z = 0. The distribution of these models
are shown above the diagonal in Fig. 7. In each panel, we show
the plausible models projected into the two-dimensional space
of a pair of variables. The models are coloured by implausibil-
ity and the lowest implausibility runs are plotted last to ensure
they are visible. This method of plotting also gives a good im-
pression of the ‘optical depth’ of the parameter region in the hid-
den parameters of each panel. We only show the most interesting
variables in this plot, the panels for other variable pairs are less
informative scatter plots.

The most constrained parameters are: the disc wind parameters,
αhot and β0,disc, the normalization of the star formation law, ν0,sf, the
AGN feedback parameters, αcool, and the disc stability threshold,
fstab. Several parameter degeneracies can be picked out in the figure.
For example, values of αhot are strongly correlated with β0,disc,
with larger β0,disc being compensated by a smaller αhot: i.e. the
higher mass loading normalization is compensated by a weaker
mass dependence so that the level of feedback is similar in low-
mass galaxies.
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Figure 6. Each panel compares the output of the GSMF for different mass bins and/or redshifts. Waves 2, 4, 6, 7a, 7b are shown colour-coded as indicated.
The observational constraints of previous figures are shown as blue shades. The light grey shade was added to guide the eye, indicating where the GSMF
values in the vertical axis are smaller than the horizontal axis, and the dashed diagonal line indicates the case where the GSMF for the two is the same. Panels
below the diagonal use the same estimates for the errors in the mass determination as Behroozi et al. (2013): σM = 0.07 + 0.04 z (see text for details). For
comparison, in the panels above the diagonal we double the mass error. After successive waves, there is improvement in the agreement with the low redshift
data and with the low-mass-end of the high-redshift data; however, for the high-mass end, there is still tension at higher redshifts. The increase in the mass
error does not avoid the tension. This tension originates from the data being consistent with small or no evolution for bins of large mass.

Other parameters are more weakly constrained, and it is possible
to find plausible models over most of the range of the parame-
ter considered. The parameter αreheat is a good example. In this
case, smaller values of αreheat can be compensated by reductions in
β0,disc. This makes physical sense. The time-scale on which gas is
re-incorporated into the halo after ejection depends on α−1

reheat (equa-
tion 11), so that increases in the time-scale can be offset by an
overall lower mass loading of the disc wind (Mitchell et al. 2016).

One surprising feature is that the normalization mass loading
associated with starburst galaxies, β0,burst, (see Section 2.2.3) is
weakly constrained. Although the best models (and also the greatest
number of models) have β0,burst > 20, entirely plausible models can
be found with much smaller values. This is presumably because
the impact of the large values of β0,burst can be offset by adjusting

the values of other parameters. The pairs plot does not, however,
reveal an obvious interaction with another individual parameter. In
Section 4.4, we will use a principle component method to try to
isolate simpler interactions between parameter combinations, and
we explore the physical interpretation there.

The panels below the diagonal line show the models that gener-
ate plausible fits to the GSMF over the redshift range z = 0–1.43.
A panel below the diagonal must be rotated and inverted in order
to compare it to the equivalent panel above the diagonal. As we
have already discussed, this is a stringent requirement, and even
the best models have I > 2. The volume of the parameter space
within which plausible models can be found is significantly reduced
compared to the situation if only the z = 0 implausibility is consid-
ered. The plausible range of the parameters αreheat, αcool and ν0,sf is
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Figure 7. The panels show two-dimensional projections of the plausible parameter space. Each circle represents a GALFORM run and is colour coded by its
implausibility (as indicated by the colour bar); lower implausibility runs are plotted on top facilitating the visualization of their clustering in the projected
space; only runs with I < 3.5 are shown. In panels above the diagonal, the implausibility is computed with respect to the observed local GSMF only. In panels
below the diagonal, the implausibility is computed with respect to the GSMF at redshifts z = 0.0, 0.35, 0.62, 0.75, 0.88, 1.12, 1.25 and 1.43. Note that the axes
are labelled consistently above and below the diagonal. A panel below the diagonal should be rotated and inverted in order to compare it to the equivalent panel
above the diagonal. This figure summarizes the main constraints imposed by the GSMF and its evolution on the GALFORM parameters.

particularly affected. For example, the addition of the high-redshift
GSMF excludes very long gas cycling time-scales (and thus small
values of αreheat).

Plotting the data in this way does not, however, expose any new
correlations between parameters, or make it easy to appreciate the
physical differences in the model that result in the very different
behaviour at high redshift that can be seen by comparing Figs 4
and 5. In order to make it easier to identify these differences,
we will analyse the distribution of the plausible models in the
PCA space. This allows us to better identify the critical parame-
ter combinations that are picked out by the data. We have already

noted that several parameters show significant (anti)correlation,
and the PCA analysis will identify the most important
relations.

One of the motivations for undertaking a full parameter space ex-
ploration is the possibility of the existence of multiple disconnected
implausibility minima, which would be unlikely to be found in the
‘traditional’ trial-and-error approach to choosing the parameters.
Nevertheless, we find that the locus of acceptable GALFORM runs is
connected and there are no signs of multiple minima or other com-
plex shapes. Because of this, the distribution of plausible models is
particularly amenable to the PCA method.
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4.4 Principal component analysis

In order to obtain greater insight into the constraints imposed by
the GSMF, and in particular the constraints imposed by the higher
redshift data, we performed a PCA on the volume of the input pa-
rameter space containing runs with I < 3.4 in all the data sets at
z = 0, 0.35, 0.62, 0.75, 0.88, 1.12, 1.25 and 1.43, giving a set of 508
runs in total. The PCA generates a new set of 20 orthogonal vari-
ables defined as the eigenvectors of the covariance matrix formed
from the input parameter locations of the 508 runs, ordered by size
of eigenvalue. Therefore, the first new variable (Var 1) gives the
direction that has the largest variance in the input space, while the
last (Var 20) gives the direction with the smallest variance. Usually,
PCA is applied to find the directions with the largest variance, but
here we are precisely interested in the opposite: we wish to learn
about those directions in input parameter space that have been most
constrained by the observed data. This analysis allows the examina-
tion of the location of acceptable runs in the rotated (and translated)
PCA space, to identify possible hidden features, and the transfor-
mation of the (approximately) orthogonal constraints observed in
the PCA space back on to the original parameters to aid physical
interpretation. For example, acceptable model runs all have similar
values for Var 20, Var 19, etc., and this can be inverted to express the
dependencies of the variables on one another. It is important to note
that the precise components of the PCA variables depend on their
original range (and whether the variables are normalized on to a log
or linear scale). This can be viewed in a Bayesian sense, in that we
are quantifying the increase in knowledge about the values of the
variables relative to our prior knowledge. It is also important to bear
in mind that variables with similar variance are degenerate, and that
alternative combinations of them will describe the distribution of the
data similarly well, but may have a simpler physical interpretation.

The resulting PCA variables (and the centroid of the distribution)
are listed in Appendix B. The standard deviation in the directions
defined by Var 20 and Var 19 is extremely small (less than 0.1
relative to the prior distribution of ±1). Var 18 and Var 17 are also
significantly constrained (std. dev. less than 0.22). The constraints
on the other variables are much less significant, Var 14, Var15 and
Var16 all have std. dev. ∼0.4. This gives us a quantitative measure
of the information content of the GSMF relative to the freedoms of
the model.

The components of the six most constrained variables are shown
in Fig. 8. We begin by considering the strongly constrained compo-
nents Var 19 and Var 20. The variance of these two components is
similar and so we should consider them together. As shown by the
colouring of the histogram, Var 19 is dominated by β0,disc and αcool,
with a smaller contribution from αreheat. Qualitatively, this simply
confirms that the break of the GSMF is controlled by competition
between AGN and stellar feedback; stronger winds from discs in
200 km s−1 galaxies (i.e. larger β0,disc, equation 9), or a longer re-
incorporation time-scale (i.e. smaller αreheat, equation 11), need to be
compensated by an increase the halo mass at which AGN becomes
effective (i.e. smaller αcool, since tcool/tff(rcool) increases with halo
mass, equation 12). As well as providing qualitative insight, this can
be translated into quantitative constraints on the input parameters.
To do this, we neglect the dependence on parameters with small
loads (<0.3, shown in blue in Fig. 8) and assume that they have val-
ues close to the centroid of the PCA expansion. Using superscripts
to denote that this relation applies to the rescaled variables (given
by equations 1 and 2), the constraint can then be simplified to:

|Var 19| = |−0.669(β (s)
0,disc + 0.464) − 0.576(α(l)

cool − 0.065)

+ 0.356(α(s)
reheat − 0.462) | � 0.095. (31)

Figure 8. Summary of results of the PCA. The six most con-
strained components of the region with I < 3.4 with respect to
z = 0, 0.35, 0.62, 0.75, 0.88, 1.12, 1.25 and 1.43 (which contains 508 mod-
els). The bars show the absolute values of the PCA loads associated with each
scaled parameter (only parameters with non-negligible loads are shown). Pa-
rameters with larger loads (>0.3) are drawn in red and have their names and
loads written on the top of the bars. Bright (dark) colours show variables
with positive (negative) loads.

Var 20 is mainly composed of αcool (the AGN feedback param-
eter), αhot and β0,disc (the quiescent feedback parameters). Elim-
inating variables with small weight, we arrive at the following
inequality:

|Var 20| = |+0.401(β (s)
0,disc + 0.464) + 0.583(α(s)

hot − 0.673)

− 0.634(α(l)
cool − 0.065) | � 0.071. (32)

Physically, this relation tells us that if we pick the disc feedback
parameters αhot and β0,disc, the AGN feedback must follow from
the equality. Increases in αhot and/or β0,disc (making supernovae
driven feedback) need to be compensated by increases αcool (making
AGN feedback effective only in higher mass haloes). Since Var 19
already determines αcool, it is more useful to write the constraint as
(neglecting small weights):

|Var 20| ≈ |+1.137(β (s)
0,disc + 0.464) − 0.391(α(s)

reheat − 0.462)

+ 0.583(α(s)
hot − 0.673) | � 0.175, (33)

which expresses the requirement that a given choice of β0,disc (and
αreheat) parameters need to be balanced by a suitable choice of
circular velocity dependence of supernova feedback, αhot.

MNRAS 466, 2418–2435 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/466/2/2418/2691461/Constraints-on-galaxy-formation-models-from-the
by Durham University user
on 10 October 2017



Constraining galaxy formation using the GSMF 2431

The next two components, Var 18 and Var 17, have significantly
larger variances (σ = 0.174 and 0.217, respectively). Var 17 is
almost completely determined by fstab, so that successful models
require a narrow range of the stability parameter, almost indepen-
dent of the other variables.

|Var 17| = |−0.931(f (s)
stab + 0.362) | � 0.217 . (34)

Var 18 relates the star formation efficiency ν0,sf to αhot, the halo
mass dependence of feedback (which in turn relates to the choice
of feedback parameters β0,disc and αreheat, see equation 33):

|Var 18| = | 0.613(ν(s)
0,sf + 0.456)

− 0.604(α(s)
hot − 0.673) | � 0.174. (35)

Increasing the strength of feedback in small galaxies (greater αhot)
requires that star formation is made more efficient to compensate
(i.e. by increasing star formation at higher mass galaxies, maintain-
ing thus the total amount of stars at low z).

The remaining variables are relatively weakly constrained, but
have similar variance. They provide addition constraints on the disc
and AGN feedback parameters (αreheat, αcool, αhot and β0,disc) and
the star formation law (ν0,sf). Although they are weakly constrained,
these relations play an important role in determining whether mod-
els successfully match the higher redshift GSMF data as well as the
z = 0 GSMF, as we will show below.

4.5 Effect of GSMF constraints in PCA space

In order to better understand why some runs generate a plausible
match to the z < 1.43 GSMF (as well as that at z = 0) while others
do not, we select the five components with least variance and rotate
the distribution of the full set of runs with plausible z = 0 into
this space. Note that the variables are defined using the plausible
z < 1.43 GSMF runs, but we can use the same rotation to examine
the distribution of any set of runs. We show projections into pairs
of these variables in Fig. 9. Below the diagonal, we show the runs
selected on the basis of the full redshift range of GSMF data (as
in Fig. 7). The colouring, and plotting order, of points is the same
as in the previous figures. Above the diagonal, we show the set
of runs that provide a good match to the z = 0 GSMF, but a very
implausible match to the full z < 1.4 implausibility (I > 6). We
add the underlying grey points to show the distribution of the runs
giving plausible fits to the z = 0 GSMF (regardless of their z < 1.4
implausibility) in order to make it simpler to compare with panels
above and below the diagonal.

The location of the runs in the strongly constrained variables Var
19 and Var 20 hardly changes. These strong selection rules seem to
primarily select runs with a good match to the z = 0 GSMF, and are
not particularly important in determining whether a run also matches
the higher redshift data or not. Var 15, Var16 and Var17, however,
show systematic shifts above and below the diagonal, showing that
it is these secondary relationships between the feedback variables
and the disc stability parameters that are critical in matching the
evolution of the mass function. In particular, we recall that Var 17
is almost exclusively dependent on the disc stability criterion: runs
that match the z = 0 GSMF but not the higher redshift data tend to
have higher values of Var 17, and thus lower values of fstab that tends
to make discs more unstable at low redshift. Therefore, when larger
redshift data are considered, models where instabilities are mostly
present at higher redshifts are preferred. Var 15 and Var16 also show
shifts, however, showing that the re-incorporation time-scale (i.e.
αreheat) and the strength of disc feedback also play an important role.

In particular, there is significant shift in the median value of Var 15
towards smaller values when higher redshift data are considered,
which implies, simultaneously, an increase in β0,disc and a decrease
in both αhot and ν0,sf. The combined effect is to reduce the efficiency
of star formation in galaxy discs.

4.6 The star formation history of the universe

In this paper, we have deliberately focused on the GSMF. This
encoded the star formation history of the Universe in the fossil
record of the stars that have been formed. It is nevertheless of
interest to examine the star formation histories of the models that
have been selected on this basis. Furthermore, it is interesting to
separate models in which the mass loading in starbursts, β0,burst,
is comparable to that during quiescent star formation (β0,disc). For
simplicity, previous versions of GALFORM have assumed that the
parameters for the normalization of the mass loading in quiescent
discs, β0,disc, and starbursts, β0,burst, were equal. By relaxing this
assumption in this work, we found in Section 4.3 that a larger β0,burst

is favoured. While it is possible to find plausible models for which
β0,burst ∼ β0,disc, we found that most of the volume (and the most
plausible runs) of the plausible parameter space has β0,burst � β0,disc.
Since starbursts are more frequent at earlier times, it is worth noting
that a β0,burst > β0,disc can lead to stronger supernova feedback at
high redshift.

In Fig. 10, we show the evolution of the cosmic SFRD for runs
with β0,burst > 2 β0,disc (upper panel) and for β0,burst ≤ β0,disc (middle
panel), in both cases selecting only ‘acceptable’ runs, with I < 3.5
when conditioned on the full range of GSMF data. A selection of
observational data is shown as coloured points. Runs with a larger
β0,burst/β0,disc ratio match well the observations for the SFRD at
low redshifts (z ≤ 0.5), but fail to reproduce the steep rise in SFRD
with redshift in the interval 0.5 < z < 1.0. When runs with β0,burst

≤ β0,disc are examined, one finds a stronger redshift evolution of
the SFRD, but the normalization is a factor ∼3 off. It should be
remembered, however, that the observational data do not measure
the star formation rate directly, but require calibration. This is usu-
ally based on Kennicutt (1998). However, a more recent study by
Chang et al. (2015) has suggested that this calibration needs revision
(for Mid-IR indicators), bringing the observational data into better
agreement with the β0,burst ≤ β0,disc models. A similar discrepancy
was found in the numerical Eagle simulations (Furlong et al. 2015)
and other SAMs (Henriques et al. 2015, see also Guo et al. 2016).
It is noticeable, however, that these runs – Panel (b) – are generally
in less plausible agreement with the mass function data than those
in Panel (a).

We quantify these differences more clearly in Panel (c). Here the
slope of the SFRD is plotted as a function of β0,burst/β0,disc, with
the colour coding indicating the plausibility of the run. The colour-
shaded regions indicate the constraints implied by the observational
data. The tension between the GSMF and the observed decline in
the SFRD is now evident. While models require very small ratios of
β0,burst/β0,disc to match the SFRD observations, the most plausible
models with respect to the GSMF evolution, i.e. those with I < 2.5,
all have 1.66 < β0,burst/β0,disc < 2.56.

5 SU M M A RY A N D C O N C L U S I O N S

In this work, using an iterative emulator technique, we explored
how the parameter space of GALFORM is constrained by the GSMF.
After six waves of emulation, using only the local Universe
GSMF data, more than 99.9 per cent of initial volume of the
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Figure 9. A comparison of runs that provide plausible fits to the z < 1.43 GSMF data sets (below the diagonal), and those that provide a plausible description
of the z = 0 GSMF, but a very implausible match to the high-z data (above the diagonal). We show the comparison PCA space, with individual panels showing
two-dimensional projections. The PCA variables are defined using the set of plausible z < 1.43 GSMF data sets. We show the six most constrained variables
(see text for discussion). Each circle represents a GALFORM run and is colour coded by its implausibility (as indicated by the colour bar); lower implausibility
runs are plotted on top to facilitate the visualization of their clustering in the projected spaced. To facilitate comparison of the runs above and below the
diagonal, we show the full set of runs with plausibly fits to the z = 0 GSMF as the underlying grey points.

parameter space was deemed too implausible for further explo-
ration and was eliminated. It was possible to find many parameter
choices that provide a good match to the local GSMF. The bi-
variate projections of this space are shown above the diagonal in
Fig. 7. The shape of the GSMF is primarily controlled by param-
eters related to star formation and feedback, namely: αcool, αhot,
β0,disc, αreheat, ν0,sf and fstab. Constraints on other parameters are
weak.

We then included the requirement that the models also match
higher redshift data. This parameter space is shown below the diag-

onal of Fig. 7. This proves to be a much more stringent constraint,
and the only acceptable runs found had I � 2. The high mass end
of the GSMF produced by this version of GALFORM is typically too
shallow for the local universe and becomes too steep at higher
redshifts. This tension is a consequence of the observational data
being consistent with small or no increase in the abundance of high
mass galaxies between z > 0.35 and z = 0.0, compared to the model
in which galaxies cannot avoid growing in mass. This tension would
still be present even if mass errors had been underestimated by a
factor of 2.
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Figure 10. Panels (a) and (b) show the cosmic star formation history
(or comoving SFRD), of runs with I < 3.5 with respect to the redshifts
z = 0.0, 0.35, 0.62, 0.75, 0.88, 1.12 and 1.25. The colours correspond to
their implausibilities as indicated. Observational data from Rodighiero et al.
(2010), Karim et al. (2011), Cucciati et al. (2012) and Burgarella et al.
(2013). Panel (a) shows only models with β0,burst > 2 β0,disc while the panel
(b) shows the case β0,burst ≤ β0,disc. Panel (c) highlights the slope as a
function of the β0,burst/β0,disc ratio with observational constraints shown as
shaded areas (same colours as previous panels). While runs with a larger
β0,burst/β0,disc display a qualitatively a better fit to the SFRD, they fail to
produce the strong increase in SFRD with redshift between z = 0.5 and
z = 1, despite providing a better match to the GSMF evolution at the same
redshift interval (as it can be seen by the colours).

In order to better understand the dimensionality and most im-
portant variables of the parameter space, we perform a PCA of the
non-implausible volume of the parameter space (constrained us-
ing the full range of redshifts, Fig. 9). We show that it is possible
to write approximate relations between the parameters, expressing
conditions that need to be satisfied in order to obtain a model with an
acceptable match to the GSMF. Two principal components (i.e. two
directions in the parameter space) contain most of the information
about the basic shape of the GSMF, and these are mainly combina-
tions of the parameters αcool, αhot, β0,disc, αreheat, i.e. the parameters
controlling feedback processes. The parameters ν0,sf, fstab are also
significantly constrained compared to their initial values.

The PCA analysis provides a simple way to better understand
why some models are able to match both the local and high-redshift
GSMF data (points below the diagonal in Fig. 9), while other models
only match the observational at z = 0 (points above the diagonal in
Fig. 9). We show that the primary differences are encoded in Var 15,
Var16 and (primarily) Var17. Models that match the z = 0 GSMF
but not the higher redshift data tend to have higher values of Var 17,
and thus lower values of fstab that tends to make discs more unstable
at low redshift.

In this paper, we explored a model in which we allowed the mass
loading in starburst (driven by mergers or disc instabilities) to be
different from the mass loading in quiescent star formation. The
normalization of the quiescent mass, β0,disc loading is strongly con-
strained, while marginally acceptable models can be found for most
of the range of values for the burst mass loading, β0,burst. Neverthe-
less, this does not mean that the full range of β0,burst is equally
plausible: there is a much larger density of acceptable models
(I � 3) with 20 < β0,burst < 30 and the most plausible models,
with I < 2.5, have 1.66 < β0,burst/β0,disc < 2.56.

We have deliberately focused the paper on the GSMF. This en-
coded the star formation history of the Universe, but we can also
compare the models to the observed star formation rates of galaxies.
We do this by computing the volume averaged SFRD in the model.
We find that the star formation history is sensitive to the choice of
the ratio β0,burst/β0,disc. While models with β0,burst > β0,disc offer a
reasonable match to the GSMF evolution, they fail to display suf-
ficiently rapid increase in the cosmic SFRD. These results show
the important additional information that can be extracted by con-
fronting the constrained models with additional data sets, but this
needs to be done with care, since it is quite possible that systematic
differences may make it hard to simultaneously provide a plausible
description of all the available data if the observational uncertain-
ties are taken at face value. The apparent contradictions inherent
in different data sets must be carefully accounted for: as they may
point to missing physics in the model. Clearly a future avenue for
further progress is to apply the methods we have developed here to
a much wider range of data sets.

Finally, we note that the main aim of this paper has been to exam-
ine how information on the formation of galaxies can be extracted
from observational data set. We have shown how simple physical
results can emerge from the analysis of a highly complex model.
This approach can equally be applied across a wide range of science
disciplines where observational data are used to constrain seeming
complex numerical models.

AC K N OW L E D G E M E N T S

We thank Cedric Lacey for comments on the paper. LFSR has been
supported by STFC (ST/N000900/1 and ST/L005549/1) and ac-
knowledges support from the European Commission’s Framework
Programme 7, through the Marie Curie International Research Staff
Exchange Scheme LACEGAL (PIRSES-GA-2010-269264). LFSR
thanks Jacqueline Dourado and the Federal University of Piauı́
for the kindness and hospitality during the writing of part of this
work. IV gratefully acknowledges MRC (RF060151) and EPSRC
(EP/E00931X/1) funding. The research was also supported by the
UK Science and Technology Facilities Council (ST/F001166/1 and
ST/I000976/1), Rolling and Consolidating Grants to the ICC. This
work used the DiRAC Data Centric system at Durham University,
operated by the Institute for Computational Cosmology on behalf
of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equip-
ment was funded by BIS National E-infrastructure capital grant

MNRAS 466, 2418–2435 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/466/2/2418/2691461/Constraints-on-galaxy-formation-models-from-the
by Durham University user
on 10 October 2017

http://www.dirac.ac.uk


2434 L. F. S. Rodrigues, I. Vernon and R. G. Bower

(ST/K00042X/1), STFC capital grant (ST/H008519/1) and STFC
DiRAC Operations grant (ST/K003267/1) and Durham University.
DiRAC is part of the National E-Infrastructure. This research has
made use of NASA’s Astrophysics Data System.

R E F E R E N C E S

Andrianakis I., Vernon I., McCreesh N., McKinley T., Oakley J., Nsubuga
R., Goldstein M., White R., 2015, PLoS Comput Biol., 11, e1003968

Andrianakis I., Vernon I., McCreesh N., McKinley T., Oakley J., Nsubuga
R., Goldstein M., White R., 2016a, J. Royal Stat. Soc.: Ser. C, in press

Andrianakis I., McCreesh N., Vernon I., McKinley T., Oakley J., Nsubuga
R., Goldstein M., White R., 2016b, J. Uncertain. Quantification, in press

Baldry I. K. et al., 2012, MNRAS, 421, 621
Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339
Bastos T. S., O’Hagan A., 2008, Technometrics, 51, 425
Baugh C. M., 2006, Rep. Prog. Phys., 69, 3101
Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 770, 57
Benson A. J., 2010, Phys. Rep., 495, 33
Benson A. J., 2014, MNRAS, 444, 2599
Blitz L., Rosolowsky E., 2006, ApJ, 650, 933
Bower R. G., 1991, MNRAS, 248, 332
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh

C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Bower R. G., Vernon I., Goldstein M., Benson A. J., Lacey C. G., Baugh

C. M., Cole S., Frenk C. S., 2010, MNRAS, 407, 2017
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Brynjarsdottir J., O’Hagan A., 2014, Inverse Probl., 30, 24
Burgarella D. et al., 2013, A&A, 554, A70
Chabrier G., 2003, PASP, 115, 763
Chang Y.-Y., van der Wel A., da Cunha E., Rix H.-W., 2015, ApJS, 219, 8
Cirasuolo M., McLure R. J., Dunlop J. S., Almaini O., Foucaud S., Simpson

C., 2010, MNRAS, 401, 1166
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Craig P. S., Goldstein M., Seheult A. H., Smith J. A., 1996, in Bernardo

J. M., Berger J. O., Dawid A. P., Smith A. F. M., eds, Bayesian Statistics
5. Clarendon Press, Oxford, UK, p. 69

Craig P. S., Goldstein M., Seheult A. H., Smith J. A., 1997, in Gatsonis C.,
Hodges J. S., Kass R. E., McCulloch R., Rossi P., Singpurwalla N. D.,
eds, Vol. 3, Case Studies in Bayesian Statistics. Springer-Verlag, New
York, p. 36

Cucciati O. et al., 2012, A&A, 539, A31
Cumming J. A., Goldstein M., 2009a, in O’Hagan A., West M., eds, Hand-

book of Bayesian Analysis. Oxford Univ. Press, Oxford
Cumming J. A., Goldstein M., 2009b, Technometrics, 51, 377
Currin C., Mitchell T., Morris M., Ylvisaker D., 1991, JASA, 86, 953
Font A. S. et al., 2008, MNRAS, 389, 1619
Furlong M. et al., 2015, MNRAS, 450, 4486
Geyer C., 2011, Handbook of Markov Chain Monte Carlo. CRC Press,

London, p. 3
Goldstein M., 1999, in Kotz S., Read C. B., Banks D. L., eds, Bayes Linear

Analysis: In Encyclopaedia of Statistical Sciences Update Vol. 3. Wiley,
New York, p. 29

Goldstein M., Rougier J. C., 2009, JSPI, 139, 1221
Goldstein M., Wooff D. A., 2007, Bayes Linear Statistics: Theory and

Methods. Wiley, Chichester
Goldstein M., Seheult A., Vernon I., 2013, Environmental Modelling: Find-

ing Simplicity in Complexity, 2nd edn. John Wiley & Sons, Ltd, Chich-
ester, UK

Gonzalez-Perez V., Lacey C. G., Baugh C. M., Lagos C. D. P., Helly J.,
Campbell D. J. R., Mitchell P. D., 2014, MNRAS, 439, 264 (GP14)

Guo Q., White S., Angulo R. E., Henriques B., Lemson G., Boylan-Kolchin
M., Thomas P., Short C., 2013, MNRAS, 428, 1351

Guo Q. et al., 2016, MNRAS, 461, 3457
Heckman T. M., Armus L., Miley G. K., 1990, ApJS, 74, 833
Heitmann K., Higdon D., White M., Habib S., Williams B. J., Lawrence E.,

Wagner C., 2009, ApJ, 705, 156

Henderson D. A., Boys R. J., Krishnan K. J., Lawless C., Wilkinson D. J.,
2009, J. Am. Stat. Assoc., 104, 76

Henriques B. M. B., Thomas P. A., Oliver S., Roseboom I., 2009, MNRAS,
396, 535

Henriques B. M. B., White S. D. M., Thomas P. A., Angulo R. E., Guo Q.,
Lemson G., Springel V., 2013, MNRAS, 431, 3373

Henriques B. M. B., White S. D. M., Thomas P. A., Angulo R., Guo Q.,
Lemson G., Springel V., Overzier R., 2015, MNRAS, 451, 2663

Higdon D., Kennedy M., Cavendish J. C., Cafeo J. A., Ryne R. D., 2004,
SIAM J. Sci. Comput., 26, 448

Kampakoglou M., Trotta R., Silk J., 2008, MNRAS, 384, 1414
Karim A. et al., 2011, ApJ, 730, 61
Kennedy M. C., O’Hagan A., 2001, JRSSB, 63, 425
Kennicutt R. C., Jr, 1983, ApJ, 272, 54
Kennicutt R. C., Jr, 1998, ApJ, 498, 541
Komatsu E. et al., 2011, ApJS, 192, 18
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APPENDI X A : D ETAI LS OF THE H I STO RY
M AT C H I N G P RO C E D U R E

At each wave, a set of 5000 runs were performed using space filling
designs based on maximin Latin hypercubes with rejection (see for
example, Sacks et al. 1989; Currin et al. 1991; Santner et al. 2003).
Third order polynomials were used as the set of candidate regression
terms for βij gij (xAi

) in equation (15), with linear model selection
based on AIC criteria used to choose both the list of active inputs xAi

,
and the final list of polynomial terms used, for each output labelled
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by i. As we had access to reasonable numbers of runs at each wave,
we used a vague prior limit for the β ij parameters and corresponding
OLS estimates for the total residual variance σ 2

i = σ 2
ui

+ σ 2
vi

, with
σ 2

vi
= ασ 2

i , where α was chosen so the nugget term represented
a small proportion of the total variance, checked using emulator
diagnostics (Bastos & O’Hagan 2008). The correlation lengths were
specified to be θ i = 0.35, following the argument for the residual
of a third order polynomial fit presented by Vernon et al. (2010a).
The set of outputs to be used in each wave Qk was chosen by
scanning through all possible outputs with approximate linear model

regression based emulators, and selecting those that had the highest
chance of input space reduction, which were then emulated in detail
using equation (15).

APPENDI X B: FULL PCA RESULTS

Table B1 shows the full results of the PCA of the volume of the
parameter space containing models with I < 3.4 with respect to
redshifts z = 0, 0.35, 0.62, 0.75, 0.88, 1.12, 1.25 and 1.43 (which
corresponds to 508 runs in our library).

Table B1. PCA for the acceptable space of GSMFs (see details in the text). Each column shows one PCA variable, ordered here by increasing standard
deviation. Small relative standard deviations correspond to components that are tightly constrained by the requirement of producing a good luminosity function.
Dominant input variables in each of the vectors are highlighted in bold font. The variables have been ordered so that the most constrained components appear
first.

Mean Var20 Var19 Var18 Var17 Var16 Var15 Var14 Var13 Var12 Var11

FSMBH 0.0357 −0.00148 0.00467 0.0113 −0.0102 −0.0557 0.0538 −0.0076 −0.132 0.35 0.112
Psf −0.0176 −0.0116 0.0118 −0.00198 −0.0417 0.0764 0.0503 0.0777 −0.293 −0.274 −0.134
Vcut 0.0341 0.00623 0.00514 0.0309 −0.0103 −0.07 0.00895 −0.0931 −0.121 −0.0229 0.0929
αcool 0.0647 −0.634 −0.576 −0.229 0.029 −0.322 0.226 0.0426 −0.0754 −0.0283 −0.0785
αhot 0.673 0.583 −0.232 −0.604 −0.243 −0.0284 0.404 0.03 0.0473 0.035 −0.00876
αreheat 0.462 0.0444 0.356 −0.0815 −0.0894 −0.843 −0.134 0.0222 0.0401 0.212 0.0795
αrp 0.14 −0.0193 −0.0123 0.00722 0.064 0.0411 −0.0134 0.2 0.494 −0.0779 0.0525
β0,burst 0.0934 −0.141 −0.157 0.158 −0.0282 0.188 0.164 −0.0453 0.136 0.431 0.357
β0,disc −0.464 0.401 −0.669 0.26 0.079 −0.172 −0.509 −0.048 −0.0144 0.0534 0.0391
βsf −0.0574 0.00181 0.00683 −0.00788 0.071 −0.0104 −0.124 0.222 0.364 0.24 −0.29
εedd −0.103 0.0123 −0.00878 0.0584 0.0087 −0.089 −0.0217 −0.242 0.175 −0.0872 −0.238
εstrip 0.0167 0.0143 0.00422 −0.0143 −0.0706 −0.0291 −0.0867 −0.315 −0.356 0.0492 −0.133
ν0,sf −0.456 0.239 −0.0577 0.613 0.191 −0.244 0.637 0.148 −0.0399 −0.0908 −0.0714
τmin,burst −0.181 −0.0143 −0.00137 0.063 −0.017 0.0348 0.191 −0.768 0.237 0.247 −0.16
fburst −0.106 0.00122 0.00577 −0.0279 0.0264 0.096 0.017 0.107 0.148 0.23 0.36
fdyn 0.062 0.00556 0.00795 0.00359 0.049 0.123 −0.00325 0.216 −0.164 0.432 −0.603
fellip −0.0319 −0.00621 −0.00332 0.0121 −0.0198 −0.0612 −0.0399 −0.206 0.307 −0.422 −0.0321
fstab −0.362 −0.0922 −0.0586 0.297 −0.931 0.017 −0.0108 0.106 0.0732 −0.00902 −0.0671
pyield −0.175 0.0974 0.0909 0.102 −0.0257 0.0788 −0.0834 −0.0576 −0.222 0.0669 0.0311
zcut −0.0931 −0.00263 −0.000888 0.0131 −0.0299 −0.00443 0.0278 −0.0683 −0.255 0.0149 0.357

Rel. Std. Dev. 0.0707 0.0952 0.174 0.217 0.354 0.361 0.405 0.442 0.461 0.469

Var10 Var9 Var8 Var7 Var6 Var5 Var4 Var3 Var2 Var1

FSMBH −0.127 0.368 0.431 0.279 −0.175 −0.111 0.349 −0.306 −0.15 −0.381
Psf 0.37 −0.422 0.353 0.262 0.39 0.00731 −0.0154 −0.362 −0.111 0.00302
Vcut 0.534 0.0675 −0.144 0.0874 −0.374 −0.0474 −0.12 0.241 −0.655 −0.0106
αcool −0.0962 −0.0286 −0.113 0.0446 −0.0366 −0.0254 0.0225 −0.0839 −0.0507 0.0843
αhot −0.0202 −0.0176 0.0152 0.0385 −0.0485 0.0562 −0.0579 −0.00184 −0.0117 0.0512
αreheat 0.0525 −0.186 0.00651 −0.037 0.0899 0.134 −0.0759 −0.0512 0.0341 −0.0262
αrp −0.2 0.00332 0.215 −0.358 0.164 0.233 0.0666 −0.22 −0.578 0.132
β0,burst 0.0889 −0.246 0.265 0.129 −0.0482 0.436 −0.381 0.147 0.131 −0.0425
β0,disc 0.0519 −0.0732 0.00204 −0.0501 0.0594 −0.0166 0.0345 −0.0425 0.00823 −0.0667
βsf 0.0626 0.136 0.132 0.349 −0.0256 −0.456 −0.413 −0.0844 0.019 0.328
εedd 0.161 0.0676 0.258 0.22 −0.206 0.35 0.469 0.157 0.15 0.507
εstrip −0.27 0.425 0.0524 0.125 0.449 0.231 −0.307 0.166 −0.237 0.186
ν0,sf −0.0611 0.0929 −0.067 0.0272 0.059 −0.0342 −0.0325 0.0103 −0.00214 0.0434
τmin,burst 0.0595 −0.211 −0.0785 −0.171 0.136 −0.283 0.0462 −0.18 −0.0739 −0.0642
fburst 0.221 0.141 −0.523 0.319 0.422 0.0604 0.314 −0.152 −0.0191 0.161
fdyn 0.23 0.0689 −0.218 −0.262 −0.0617 0.351 0.00458 −0.22 0.0228 −0.0977
fellip 0.0984 0.289 −0.171 0.225 −0.157 0.322 −0.305 −0.413 0.142 −0.304
fstab −0.000828 0.0418 30.043 −0.0288 0.00779 −0.0626 0.0502 0.000526 −0.0122 0.00991
pyield −0.473 −0.371 −0.274 0.27 −0.375 0.0953 −0.0405 −0.348 −0.198 0.281
zcut 0.229 0.275 0.122 −0.429 −0.14 −0.0977 −0.141 −0.425 0.189 0.456

Rel. Std. Dev. 0.476 0.497 0.507 0.522 0.533 0.542 0.566 0.582 0.596 0.619
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