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Efficient Aggregation Induced Phosphorescence Emission 

(AIPE) of an ionic Ir(III) complex occurs when the 

counterion (PF6
−) is exchanged specifically by ClO4

− in 

aqueous media. As a result, a rapid, highly selective “turn-

on” phosphorescent response to ClO4
− is observed in aqueous 

media. These studies pave the way for a new efficient 

phosphorescence-based detection strategy for anions. 

Ionic transition metal complexes (iTMCs), notably those of Ir(III) 

and Pt(III), are of considerable interest1 due to their high 

photoluminescence quantum yields (PLQYs) at room 

temperature, physicochemical stability and long (several 

microseconds) PL lifetimes (τ),2 leading to their applications as 

light-emitting electrochemical cells (LECs), biological labels, 

chemosensors for inorganic ions, data recording and security 

protection devices.3 The photophysical properties of iTMCs are 

attributed primarily to strong spin–orbit coupling within the 

cations. However, the counter anions can also have a profound 

effect on the photophysical properties3b and LECs performance.4 

Therefore, it is important to investigate further the role of 

counterions in the applications of iTMCs. 

The selective detection of certain anions is of vital 

significance.5 For example, perchlorate is a major contaminant 

resulting from the industrial and commercial applications of 

perchlorate salts which are highly soluble and stable in water. 

Due to their similar ionic radii, perchlorate can inhibit iodide 

intake in the thyroid gland, thereby impacting human health.6 

Therefore, the determination of trace levels of ClO4
− in 

environmental and biological samples is very important. The 

detection of anions by fluorescence techniques7 has limitations 

due to: 1) fluorescence “turn-off” rather than “turn-on” is usually 

observed and therefore the sensitivity is limited due to competing 

fluorescence quenching by heavy metal ions;8 2) many systems 

work in organic solvents, but when water is added, the response 

becomes difficult to detect.  

Aggregation-induced emission (AIE) fluorophores, which 

show weak emission when dispersed, but emit efficiently when 

aggregated or in the solid state9 are attracting great attention,10 

and have been applied for the fluorescent turn-on detection of 

various ions.11 However, the highly selective turn-on detection of 

anions in aqueous media by AIE is rare.6b,12 For anion detection 

in vivo, the output signal of AIE-active fluorophores always 

suffers from the interference of short-lifetime background 

fluorescence and scattered light.13 We considered that 

aggregation-induced phosphorescent emission (AIPE) using 

iTMCs may be an alternative, unexplored strategy for the turn-on 

detection of anions due to the long lifetime of phosphorescent 

emission. Moreover, compared with netural complexes, iTMCs 

could show highly selective recognition of anions through the 

interactions between the cation and anion moieties.  

Herein, we demonstrate that the new ionic dinuclear Ir(III) 

Schiff base complex 1•2PF6 (Fig. 1a) shows a highly selective 

response for the turn-on phosphorescent detection of ClO4
− in 

aqueous media and HeLa cells. To the best of our knowledge, this 

is the first report of an iTMC used in phosphorescent turn-on 

detection of an anion by AIPE.  

Fig. 1 (a) Chemical structure of complexes 1•2PF6 and 1•2ClO4; (b) 

Phosphorescence spectra of 1•2PF6 (10 μM) in the presence of different 
anions (15 equiv.) in 10 mM HEPES buffer (CH3CN:H2O, 1:4, v/v); (c) 

The corresponding phosphorescence variations of 1•2PF6. Insert: 

photographs of 1•2PF6 with different anions (15 equiv.) under UV lamp 
irradiation (top) and sunlight (bottom). 
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Complex 1•2PF6 is AIPE-active14 (Fig. S1 and Table S1). The 

faint emission in pure acetonitrile solution can be ascribed to 

structural distortions in the complex’s T1 geometry compared to 

the S0 geometry (Table S2). These distortions induce excited-

state relaxations which suppress radiative decay.15 However, in 

the solid state, intermolecular ππ or CH…π interactions 

between the phenyl rings can restrict intramolecular relaxation 

favouring a more planar geometry which activates the AIPE (Fig. 

S2). 

Anion recognition was studied by monitoring the 

phosphorescence of 1•2PF6 (10 µM) in HEPES buffer (10 mM in 

CH3CN/H2O, 1/4, v/v, pH 7.4) upon addition of 15 equiv. of 

ClO4
−, I−, Br−, Cl−, HCO3

−, Ac−, NO2
−, NO3

−, SO4
2−, CO3

2−, 

SiO3
2−, ClO− or HPO4

2− anions and shaking the sample by hand 

for a few seconds (Fig. 1b and 1c). A 1:4 ratio of CH3CN:H2O 

was optimum for solubilizing the complex and observing AIPE. 

For ClO4
−, phosphorescent turn-on was observed with a long 

decay time (0.24 μs), λmax blue-shifted by 25 nm and the PLQY 

increased to 0.12, which is 430 times higher than that of the blank 

(0.29 × 10-3) (Fig. S3). The blue shift may be due to a counterion 

effect, as observed previously in anion exchange experiments.3b  

Remarkably, the addition of all other anions caused no significant 

change in the emission. The variation of photophysical data for 

ClO4
− is accompanied by aggregation which enables the detection 

of anions readily by the naked eye in daylight (Fig. 1c).  

 

Fig. 2 TEM images of nanoparticles obtained from anion titration 

experiments of 1•2PF6 (10 μM) with (a) blank; (b) 10 equiv. HPO4
2−; (c) 

10 equiv. I−; (d) 3 equiv. ClO4
−; (e) 5 equiv. ClO4

−; (f) 10 equiv. ClO4
− in 

10 mM HEPES buffer (CH3CN:H2O, 1:4, v/v). 

 

The formation of nano-aggregates was established by 

transmission electron microscopy (TEM) and dynamic light 

scattering (DLS) experiments. TEM reveals the nano-aggregates 

in the titration of 1•2PF6 (10 µM) with ClO4
−; their average sizes 

increased with the incremental addition of ClO4
− (Fig. 2a, 2d, 2e 

and 2f). However, the average sizes are unperturbed in the 

presence of HPO4
2− and I− (Fig. 2b and 2c). DLS measurements 

revealed an enhanced light-scattering intensity on addition of 15 

equiv. of NaClO4 in HEPES buffer to 1•2PF6 (10 µM), with an 

average particle size of 405 nm (Fig. S13). However, there was 

no significant change when 15 equiv. of NO3
− or Br− ions were 

added to 1•2PF6 and the average particle size decreased to 120 

nm. These results indicate that aggregation was specifically 

controlled by perchlorate salt. We propose that nano-aggregate 

formation is a critical factor in enhancing the emission.  

Titration experiments with the addition of ClO4
− to 1•2PF6 in 

HEPES buffer showed no further increase in phosphorescence 

intensity beyond 15 equiv. of ClO4
− (Fig. S4a). There is a good 

linear relationship between the emission intensity of 1•2PF6 and 

ClO4
− concentration (R2 = 0.96, 2-120 μM), suitable for 

quantitative detection of ClO4
−. The Hill coefficient n is 0.67 

indicating that the binding between 1•2PF6 and ClO4
− is 1:2 

stoichiometry (Fig. S5) which is consistent with the theoretical 

ion ratio in the complexes. The UV titration experiments showed 

that the absorption bands of 1•2PF6 at ca. 330 nm decreased upon 

addition of ClO4
− and the tail above 500 nm increased gradually 

(Fig. S4b). This is ascribed to the light scattering effect of the 

formed nano-aggregates which is consistent with the TEM and 

DLS results.16 

Competition experiments for the system composed of 1•2PF6 

and 15 equiv. of ClO4
− showed that the emission intensity is 

unperturbed in the presence of 15 equiv. of a range of other 

anions (Fig. S6). Moreover, the titration of 1•2PF6 with ClO4
− in 

the presence of potential competing cations, such as Na+, Li+, 

Mn2+ and Hg2+, showed only a slight effect on the emission (Fig. 

S8). These results demonstrate that 1•2PF6 has a strong affinity 

and selectivity for ClO4
−. The phosphorescence intensity of 

1•2PF6 containing 15 equiv. of ClO4
− is also unaffected over the 

pH range 1-14 (Fig. S9). The lowest detection limit of ClO4
−, as 

determined from a plot of normalized phosphorescence intensity 

as a function of the concentration of added ClO4
−, is as low as 

0.05 ppm (Fig. S10). Therefore, this complex shows highly 

selective and sensitive phosphorescent turn-on detection of ClO4
− 

in the presence of different cations, anions and pH values which 

is sufficient to detect ClO4
− pollution in Eco-water.  

To understand the origin of the selectivity of 1•2PF6 towards 

ClO4
−, 19F NMR experiments were performed. 1•2PF6 was added 

to an internal standard of 1-iodo-3-(trifluoromethyl)benzene in 

the molar ratio (standard: 1•2PF6 = 16:1). Figure S14a shows that 

the integral area ratio between the standard and 1•2PF6 is 4:1. 

However, for a solution of the light yellow precipitate from a 

ClO4
− titration experiment, the integral area ratio (standard: 

complex) is 20:1 (Fig. S14b) showing that partial anion exchange 

has occurred from PF6
− to ClO4

−. 

MALDI-TOF negative-ion mass spectrometry further verified 

which anions exchange the PF6
− of 1•2PF6. After adding 15 equiv. 

of ClO4
−, Br− or NO3

− to 1•2PF6 (in CH3CN:H2O, 1:4, v/v), the 

mass spectra of the filtrates were recorded (Fig. S14c, S14d and 

S14e). The peaks at m/z 98.7 and 144.7 correspond to ClO4
− and 

PF6
−, respectively. In contrast, only the peak at m/z 144.7 

appeared with added Br− and NO3
−. These results are in 

agreement with the 19F NMR studies and indicate that only ClO4
− 

readily exchanges PF6
−. 

The specificity for ClO4
− is supported by DFT calculations. 

The binding energy for complex 1 with ClO4
−, ClO−, Br−, Cl−, 

HCO3
−, Ac−, NO2

−, NO3
−, SO4

2−, CO3
2−, SiO3

2− or HPO4
2− anions 

in the presence of counter cations, is listed in Table S3. The 

formation of the perchlorate adduct is exothermic by −10.1 kcal 

mol-1 in the gas phase and −8.6 kcal mol-1 in acetonitrile solution 

(Fig. 3 and entry 1 in Table S3) whereas all the other reactions 

are endothermic (entries 2-10 in Table S3). Therefore, the highly 
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selective detection of ClO4
− is consistent with thermodynamics 

data.  

To investigate the mechanism of the phosphorescent turn-on 

response to perchlorate, trans-cis isomerization for 1•2PF6 and 

1•2ClO4 was evaluated by DFT calculations (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 3 Optimized structures and relative energies (in kcal mol-1) of cis and 

trans isomers of 1•2PF6 and 1•2ClO4. In parentheses, 

CPCM(acetonitrile)/M06/[6-31G*/LANL2DZ(Ir)] data are shown. 

 

The trans-conformation is more stable than the cis in both 

cases; however, the energy difference between the two 

conformations decreases upon exchanging PF6
− for ClO4

− in both 

solution and the gas phase. This implies that isomerization of 

1•2ClO4 can occur more readily and the ratio of cis-conformation 

will be larger for 1•2ClO4 than for 1•2PF6. This is verified by the 

following experimental observations. Firstly, single crystal X-ray 

structures of 1•2ClO4 reveal two conformations, namely trans-

1•2ClO4 and cis-1•2ClO4. However, for 1•2PF6 only the trans-

conformation was obtained, because the large energy difference 

between cis- and trans-conformations favors the more stable 

isomer.17 Secondly, the 1H NMR data for 1•2PF6 and 1•2ClO4 

(Fig. S16, S17 and S18) show that both complexes have two 

conformations in the solid state. The ratio of cis:trans is larger in 

1•2ClO4 than in 1•2PF6 and the two conformations of 1•2ClO4 

have been readily isolated (Fig. S19 and S20) due to the high 

solubility of trans-1•2ClO4 in hot dichloromethane compared to 

cis-1•2ClO4. This is a rare example where the cis- and trans- 

conformations of a dinuclear metal complex have been 

separated.18 1H NMR titration experiments of 1•2PF6 with ClO4
− 

were carried out in CH3CN:H2O (1:4 v/v, pH 7.4) (Fig. S21). 

Compared with 1•2PF6 (Fig. S16), the ratio of cis-conformation 

increases upon the addition of ClO4
−.  

Thirdly, the X-ray crystal structures of 1•2PF6 and 1•2ClO4 

(Fig. 4) show that the bridging ligand of cis-1•2ClO4 has a 

smaller distortion (46°, 55°) and a more planar geometry than 

both the trans-1•2ClO4 and trans-1•2PF6 conformations. We 

conclude that this change of geometry affects the solubility of the 

complexes, and aggregation (as observed in the TEM studies, Fig. 

2) is induced by the increased ratio of the cis-conformation 

during the titration process.  

 

 

 

Fig. 4 The dication in the X-ray molecular structures of (a) trans-1•2PF6, 

(b) cis-1•2ClO4 and (c) trans-1•2ClO4 in the crystal. The anions and 

solvent molecules are omitted for clarity. 
 

To further understand the large enhancement of the emission 

when nano-aggregates are formed by addition of ClO4
−, PLQYs 

and lifetimes of the complexes in the solid state were determined 

(Table S1). Cis-1•2ClO4 has a significantly higher PLQY (31%) 

than both 1•2PF6
 (17%) and trans-1•2ClO4 (13%). Moreover, cis-

1•2ClO4 has a higher radiative rate than both 1•2PF6 and trans-

1•2ClO4. A distorted geometry (trans-conformation) would 

favour non-radiative processes, whereas the more planar 

geometry (cis-1•2ClO4) would increase radiative processes, as 

observed previously.15,19 Furthermore, the photoluminescence 

(PL) spectra of cis-1•2ClO4 and trans-1•2ClO4 in CH3CN–H2O 

mixtures with various water contents were investigated (Fig. S11). 

Trans-1•2ClO4 in pure CH3CN exhibits faint emission which is 

only slightly enhanced when the water content increased to 90% 

v/v. However, the PL intensity of cis-1•2ClO4 is significantly 

enhanced when the water content exceeds 80% v/v, and is about 

20-fold greater than for the trans-1•2ClO4 system. The result 

confirms that cis-1•2ClO4 has a significant AIE effect. Therefore, 

the large ratio of the cis-conformation with enhanced AIE 

performance is responsible for turning on the phosphorescence in 

ClO4
− titration experiments. 

All the data obtained point to the anion-exchange induced 

AIPE being responsible for the large phosphorescence 

enhancement in the detection of ClO4
−, consistent with the crystal 

structure analysis, 1H NMR titration experiments and DFT 

calculations. We explain this anion recognition mechanism as: 1) 

PF6
−

 is exchanged specifically by ClO4
−, and 1•2PF6 has high 

selectivity for ClO4
−, 2) ClO4

− induces trans to cis 

conformational isomerisation, 3) turn-on phosphorescence anion 

recognition is realized by the larger ratio of cis-1•2ClO4 inducing 

AIPE.  

We have further studied the potential anion recognition 

properties of 1•2PF6 in vivo. Traditional iTMCs are often very 

sensitive to oxygen in solutions and exhibit significantly 

shortened lifetimes which limit their practical applications. 

However, AIPE-active iTMCs can avoid interference from 

oxygen due to the complexes being encapsulated within the nano-

particles formed in suspension, which can protect them from 
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oxygen.13 Therefore, AIPE-active iTMCs may be an ideal choice 

as an in vivo probe. Preliminary results on 1•2PF6 as a probe for 

ClO4
− in living cells have been obtained. HeLa cells (from liver 

cancer cells) were incubated with ClO4
− (30, 90, 200 μM, 

respectively) for 15 min at 37 °C and then supplemented with 

1•2PF6 (10 μM) at 37 °C for another 30 min, and washed with 

phosphate buffer saline (PBS) to remove the remaining complex. 

Confocal laser scanning microscopy revealed a clearly enhanced 

red phosphorescence in the cell membrane with an increased 

amount of ClO4
− compared to the data obtained without added 

ClO4
− (Fig. 5). Complex 1•2PF6 is, therefore, a potential probe for 

phosphorescence imaging of ClO4
− in living cells. These are 

initial proof-of-concept results. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Phosphorescence images of the HeLa cells cultured in the presence 

of complex 1•2PF6 (10 μM) at 37 °C for 30 min (a); Phosphorescence 

images of the HeLa cells cultured in the presence of NaClO4·H2O (30, 90, 
200 μM, respectively (b), (c), (d)) for 15 min, followed by addition of 

complex 1•2PF6 (10 μM) at 37 °C for another 30 min. 

 

In summary, a new dinuclear ionic iridium complex 1•2PF6 

shows a rapid, highly selective phosphorescent turn-on response 

to perchlorate in aqueous media by aggregation induced emission. 

The structural versatility of iTMCs will enable the scope of this 

new “anion-exchange induced AIPE” process to be explored in 

the selective phosphorescence-based detection of anions, for 

which it may be a general strategy. Dinuclear complexes may be 

beneficial as the bridging ligand confers additional 

conformational flexibility compared to mononuclear analogues. 
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