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Glacial geomorphology of the Skálafellsjökull foreland, Iceland: a 26 

case study of “annual” moraines 27 

 28 

Abstract 29 

Small-scale recessional (“annual”) moraines are a characteristic signature of the active 30 

temperate glacial landsystem. These “annual” moraines represent a potentially valuable 31 

terrestrial climate archive, and may provide valuable insights into glacier dynamics. This 32 

paper presents detailed glacial geomorphological maps of “annual” moraines on the foreland 33 

of Skálafellsjökull, SE Iceland. Geomorphological maps have been produced at a scale of 34 

1:3,750 based on 2006 aerial photographs and 2012 satellite imagery. Using UAV-captured 35 

imagery, large-scale sample maps of two selected areas of the glacier foreland have also been 36 

produced at scales of 1:850 and 1:750, respectively. Desk- and field-based mapping reveals 37 

suites of recessional (“annual”) moraines distributed across the glacier foreland, often found 38 

in close association with flutings. Moraines on the foreland typically display distinctive 39 

“sawtooth” planform geometries, with complexities in the pattern occurring due to localised 40 

superimposition. The inventory of glacial geomorphological maps presented here provides a 41 

framework for subsequently exploring the characteristics of the “annual” moraines and recent 42 

ice-marginal fluctuations at Skálafellsjökull. 43 

 44 

Keywords: glacial geomorphology; remote sensing; “annual” moraines; active temperate 45 

glacial landsystem; Skálafellsjökull; Iceland 46 
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1. Introduction 50 

Annual ice-marginal fluctuations at many Icelandic glaciers are manifest in the form of 51 

annual (push/squeeze) moraines (e.g. Price, 1970; Sharp, 1984; Krüger, 1995; Evans and 52 

Twigg, 2002), a characteristic signature of the active temperate glacial landsystem (Evans, 53 

2003, 2005; Evans and Orton, 2015). Annual moraine formation occurs at the ice-margin 54 

during a period when forward ice-front movement exceeds the negligible ablation during the 55 

winter (Lukas, 2012; Bradwell et al., 2013). Long sequences of annual moraines form when 56 

ice-front recession during the summer (ablation season) outstrips advance during the winter 57 

(accumulation season) over the course of a number of years (Boulton 1986; Bennett 2001). 58 

Long sequences of annual moraines potentially contain a seasonal signature of glacier 59 

response to climatic fluctuations, and have been associated with periods of elevated ablation-60 

season temperature (Sharp, 1984; Krüger, 1995; Bradwell, 2004; Beedle et al., 2009; 61 

Bradwell et al., 2013). Given the potential of these features as a terrestrial climate archive, 62 

detailed examination of the characteristics of annual moraines on the forelands of Icelandic 63 

glaciers could yield valuable insights into the nature of, and controls on, recent ice-marginal 64 

retreat. During the past decade Icelandic glaciers have exhibited accelerating rates of ice-65 

marginal retreat and mass loss (e.g. Sigurðsson et al., 2007; Björnsson et al., 2013). 66 

Understanding this current rapid glacier change is crucial to placing current atmospheric 67 

warming and associated glacier retreat in a broader context. This study presents detailed 68 

mapping of “annual” moraines on the foreland of Skálafellsjökull, SE Iceland, with the 69 

intention of providing a framework to examine: (i) the moraine characteristics 70 

(geomorphology, genesis and chronology) in detail; and (ii) patterns and rates of ice-marginal 71 

retreat at this outlet glacier. These “annual” moraines have previously been argued to form on 72 

an annual basis through seasonally-driven ice-marginal processes (cf. Sharp, 1984), and the 73 

detailed mapping will therefore also provide a basis for re-examining this concept. 74 
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 75 

2. Study site and previous work 76 

2.1 Study site 77 

Skálafellsjökull, a non-surging outlet of the southeastern margin of the Vatnajökull ice-cap in 78 

SE Iceland, flows for ~25 km from the Breiðabunga plateau in eastern Vatnajökull (Figure 1). 79 

The glacier descends steeply from the lava plateau onto a low elevation foreland, where it 80 

splays out to form a piedmont lobe. The current ice-margin terminates at an altitude of ~60 m 81 

a.s.l. on the Hornafjördur coastal plain (McKinzey et al., 2004; Evans and Orton, 2015). At 82 

its northern margin, the glacier is topographically confined by the Hafrafellsháls mountain 83 

spur, which reaches a maximum elevation of ~1008 m a.s.l. (Evans and Orton, 2015). The 84 

contemporary Skálafellsjökull ice-margin is fronted by two proglacial lakes, the largest 85 

situated on Heinabergsvötn (Figure 1c), and a smaller proglacial lake at the southeastern 86 

sector of the ice-margin. 87 

 88 

Documentary evidence and maps indicate that Skálafellsjökull formerly coalesced with the 89 

neighbouring Heinabergsjökull, and they remained confluent until sometime between 1929 90 

and 1945 (cf. Thórarinsson, 1943; Hannesdóttir et al., 2014, and references therein). Ice-front 91 

measurements conducted at the glacier since the 1930s indicate Skálafellsjökull underwent 92 

similar fluctuations to other non-surge-type Vatnajökull outlet glaciers (e.g. Sigurðsson, 93 

1998). Since the 1970s, however, measurements have been sporadic, limiting understanding 94 

of glacier change at Skálafellsjökull during this period. Thus, the sequences of recessional 95 

(“annual”) moraines previously identified on the Skálafellsjökull foreland (Sharp, 1984; 96 

Evans and Orton, 2015) offer the opportunity to gain important insights into ice-frontal 97 

fluctuations. 98 

 99 
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2.2 Previous mapping 100 

Skálafellsjökull has been the subject of a number of studies, including the investigation of the 101 

glacial landsystem as whole (Evans and Orton, 2015), component sediment-landform 102 

assemblages (Sharp, 1984; Dowdeswell and Sharp, 1986; Evans, 2000) and the timing of LIA 103 

maxima (e.g. Gordon and Sharp, 1983; Evans et al., 1999; McKinzey et al., 2004). In a recent 104 

study, Evans and Orton (2015) mapped the surficial geology and glacial geomorphology of 105 

the Skálafellsjökull foreland, and neighbouring Heinabergsjökull foreland. Evans and Orton 106 

(2015) established that the Skálafellsjökull glacier foreland constitutes a landsystem imprint 107 

of actively retreating temperate glaciers in a mountain environment with a high glaciofluvial 108 

sediment yield. Moreover, the landsystem is characterised by the three diagnostic 109 

depositional domains of the active temperate landsystem previously identified for Icelandic 110 

piedmont lobes: marginal morainic, subglacial and glaciofluvial/glaciolacustrine (Krüger, 111 

1994; Evans and Twigg, 2002; Evans, 2003, and references therein). The Skálafellsjökull 112 

glacier foreland also contains site-specific sediment-landform assemblages, notably 113 

overridden kame terraces on the southern part of the foreland. The survival of kame terraces 114 

is unusual and therefore the fluted kame terraces at Skálafellsjökull provide an important 115 

modern analogue for studies on palimpsest glacial landscapes, which are traditionally 116 

assumed to be produced by cold-based conditions in contrast to the wet-based conditions at 117 

Skálafellsjökull (e.g. Forman et al., 1987; Hättestrand and Stroeven, 2002; Landvik et al., 118 

2005; Davis et al., 2006). The combined landform record of Skálafellsjökull and 119 

Heinabergsjökull constitutes a modern glacial landsystem analogue for active temperate 120 

piedmont lobes associated with the construction of large outwash heads fed by high 121 

glaciofluvial sediment yields (Evans and Orton, 2015).  122 

 123 
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Research focused on the marginal morainic domain of the Skálafellsjökull foreland has 124 

previously been conducted by Sharp (1984). The study specifically examined a sequence of 125 

“annual” moraines within the southern part of the foreland, located in an area of roches 126 

moutonnées and a discontinuous sheet of fluted subglacial traction till (sensu Evans et al., 127 

2006; Sharp, 1984; Evans and Orton, 2015). Sedimentological investigations by Sharp (1984) 128 

identified four process combinations, argued to be forming moraine ridges on an annual basis 129 

at the southeastern sector of the ice-margin. However, no detailed, large-scale mapping of the 130 

intricate details of the “annual” moraines was presented. 131 

 132 

2.3 Purpose of the mapping 133 

The rationale for producing detailed maps of the “annual” moraines on the foreland of 134 

Skálafellsjökull was twofold: (i)  to provide context for examining the characteristics of these 135 

features (moraine geomorphology, sedimentology and chronology) in detail; and (ii) to 136 

provide a framework for investigating recent ice-marginal fluctuations using moraine 137 

spacing. Importantly, the mapping, combined with additional sedimentological and 138 

chronological analyses, will allow a re-examination of the concept of annual moraine 139 

formation at Skálafellsjökull (cf. Sharp, 1984; Evans and Orton, 2015). The mapping also 140 

aimed to build on the previous small-scale landsystem mapping undertaken by Evans and 141 

Orton (2015). Individual maps have been produced at a scale of 1:3,750 based on the 2006 142 

aerial photographs (Map 1) and 2012 satellite imagery (Map 2), providing a visual 143 

demonstration of recent ice-marginal retreat and the evolution of the glacier foreland. In 144 

addition to these two smaller-scale maps, detailed sample mapping of “annual” moraines has 145 

been conducted based on hillshaded relief models generated from a 2013 high-resolution 146 

DEM (Maps 3 and 4), allowing the complexity of “annual” moraine distribution and 147 

geomorphology to be examined. These large-scale maps have been produced at scales of 148 
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1:850 (Map 3) and 1:750 (Map 4), respectively. As the focus of the mapping was on the 149 

intricate details of the “annual” moraines, the maps do not include detailed mapping of the 150 

surficial geology. An indication of the distribution and coverage of glaciofluvial sediments is 151 

presented, though this mapped unit has been simplified so as not to detract from the detail of 152 

the mapped moraines. As highlighted above, mapping of the surficial geology has been 153 

presented by Evans and Orton (2015). 154 

 155 

3. Methods 156 

3.1 Remote sensing datasets and image preparation 157 

For the purposes of glacial geomorphological mapping, four remote sensing datasets were 158 

acquired (Figure 2). High-resolution scans of 2006 colour aerial photographs with a 159 

resolution of 0.41 m GSD (Ground Sampled Distance) per pixel were obtained from the 160 

Icelandic survey company Loftmyndir ehf, whilst multispectral (8-band) and panchromatic 161 

satellite imagery captured by the WorldView-2 satellite sensor in June 2012 were acquired 162 

from European Space Imaging. The multispectral (8-band) satellite imagery and 163 

panchromatic images have resolutions of 2.0 m GSD and 0.5 m GSD, respectively. In 164 

addition, a further high-resolution remote sensing dataset has been used for mapping: 165 

specifically a Digital Elevation Model (DEM) with a spatial resolution of 0.09 m, derived 166 

from imagery captured using an Unmanned Aerial Vehicle (UAV) during aerial surveys of 167 

the Skálafellsjökull foreland in 2013 (see Hackney and Clayton, 2015). The images were 168 

taken using a fixed-wing QuestUAV 200 craft equipped with a mirrorless camera (Panasonic 169 

Lumix LX5 camera with 10.1 megapixel, 1/1.63 inch high-sensitivity CCD). Surveys were 170 

flown at an altitude of 100 m, yielding images with a resolution of 0.05 m GSD. A total of 171 

1,980 images were used to construct the DEM, selected on the basis of image quality and 172 

coherence of lighting. The final dataset of images used for processing had an approximate 173 

Page 7 of 36

URL: http://mc.manuscriptcentral.com/tjom

Journal of Maps

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

8 

 

photograph endlap of 80% and sidelap of 60%. However, the dataset does not provide 174 

complete coverage of the Skálafellsjökull foreland, covering ~2 km2 of the total area (~4.9 175 

km2) mapped. Thus, the 2006 aerial photographs and 2012 satellite imagery were largely 176 

used in the composition of the smaller-scale geomorphological maps (Maps 1 and 2). 177 

 178 

Digital photogrammetric processing was conducted to remove the varying degrees of 179 

geometric distortion inherent within aerial photographs (Lillesand et al., 2008; Campbell and 180 

Wynne, 2011). For this purpose, both the 2006 aerial photographs and UAV-captured 181 

imagery were processed in Agisoft PhotoScan Professional Edition, which utilises a 182 

Structure-from-Motion (SfM) approach. SfM operates under the same basic principles as 183 

stereoscopic photogrammetry, namely that 3D structure can be reconstructed from a series of 184 

overlapping, offset two-dimensional images. However, it differs fundamentally from 185 

conventional photogrammetry in that the geometry of the scene, camera positions and 186 

orientation are solved automatically without the need to specify a priori a network of targets 187 

with known 3D positions (Westoby et al., 2012). Instead, these are solved simultaneously 188 

using an iterative bundle adjustment procedure, based on a database of features automatically 189 

extracted from a set of multiple overlapping images (Snavely, 2008; Westoby et al., 2012; 190 

Ryan et al., 2015). Position information can then be introduced after model production in an 191 

arbitrary coordinate system, meaning that errors in ground control points (GCPs) will not 192 

propagate in the DEM. 193 

 194 

The first stage of processing in Agisoft Photoscan involves image alignment. The software 195 

implements SfM algorithms to track features through a sequence of overlapping images in 196 

order to estimate the relative location of camera positions for each image and generate a 3D 197 

point-cloud of the tracked features (cf. Ryan et al., 2015, for further details). The point-cloud 198 
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can subsequently be optimised and georeferenced using GCPs and/or using onboard 199 

telemetry data. Following image alignment, a multi-view reconstruction algorithm is applied 200 

to produce a 3D polygon mesh based on pixel values (Verhoeven, 2011; Ryan et al., 2015). 201 

These 3D models can then be transformed and exported as DEMs and orthophotos. Using this 202 

approach raster, grid DEMs with cell sizes of 0.41 m and 0.09 m were generated using the 203 

2006 aerial photographs and 2013 UAV-imagery, respectively. An orthophoto mosaic of the 204 

foreland, with a cell size of 0.41 m, was also produced using the 2006 model for the purposes 205 

of landform mapping. 206 

 207 

Positional ground control for the 2006 model was collected in the field using a Leica 1200 208 

differential Global Positioning System (dGPS) between May and June 2014. The collected 209 

ground control points (GCPs) were processed using the Canadian Spatial Reference System 210 

Precise Point Positioning (CSRS-PPP: http://webapp.geod.nrcan.gc.ca/geod/tools-211 

outils/ppp.php?locale=en) tool, with the corrections then applied in Leica Geo Office 8.3. The 212 

Coordinate Conversion and Datum Transformation in Iceland (cocodati: 213 

http://cocodati.lmi.is/cocodati/cocodat-i.jsp) tool was then employed to generate orthometric 214 

heights for the GCPs and to convert the coordinates to UTM projected coordinates for zone 215 

28N. Orthometric heights generated using the cocodati tool are based on the ISN93 datum, 216 

ellipsoid GRS80 and applies the new Icelandic geoid model. For practical purposes GRS80 217 

and WGS1984 can be considered approximately equal, since there is a difference of only 0.1 218 

mm in the semi-minor axis (cf. Rennen, 2004). The point-cloud generated in Agisoft 219 

PhotoScan using the 2006 aerial photographs was optimised and georeferenced to WGS 1984 220 

/ UTM Zone 28N (ESPG: 32628) using the processed GCPs (n = 50). This coordinate system 221 

is compatible with the system currently employed by Landmælingar Íslands (National Land 222 

Survey of Iceland) in the production of Icelandic maps. The UAV surveys were undertaken in 223 
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conjunction with a Leica dGPS deployed in Real-Time Kinematic (RTK) mode to allow 224 

georeferencing of the UAV-captured imagery (see Hackney and Clayton, 2015). Positional 225 

information for the UAV-imagery was provided by 15 GCPs located in a grid network across 226 

the surveyed area, with the model also georeferenced to WGS 1984 / UTM Zone 28N.  227 

 228 

The satellite imagery obtained from European Space Imaging was purchased as Ortho Ready 229 

Standard and had been projected to UTM Zone 28N, spheroid WGS1984. The supplied 230 

imagery was orthorectified in ArcMap 10.2 using the DEM generated from the 2006 aerial 231 

photographs. Following orthorectification, a pan-sharpened, natural colour multispectral 232 

image (3-band: Blue, Red Green) with a resolution of 0.5 m GSD per pixel was generated 233 

using the IHS method in ArcMap (Figure 3). The IHS method uses Intensity, Hue and 234 

Saturation Colour to merge the high-resolution panchromatic data (0.5 m GSD) with 235 

medium-resolution multispectral data (2.0 m GSD) in order to produce a multispectral image 236 

with higher-resolution properties. 237 

 238 

For meaningful graphical and analytical purposes, the DEM data were converted into 239 

hillshaded relief models using Spatial Analyst in ArcMap. Hillshaded relief models were 240 

produced using an illumination angle of 30° and azimuths set at orthogonal positions of 45° 241 

and 315° (Figure 4). These properties have been extensively used in generating hillshaded 242 

relief models for the purposes of glacial geomorphological mapping and have been suggested 243 

as optimal settings for visualisation (e.g. Smith and Clark, 2005; Chen and Rose, 2008; 244 

Hughes et al., 2010; Boston, 2012; Pearce et al., 2014). Displaying the DEM data as 245 

hillshaded relief models with differing azimuths avoids azimuth bias and permits 246 

geomorphological features to be viewed under different lighting conditions, which can 247 

increase the visibility of subtle landforms (Smith and Clark, 2005; Pearce et al., 2014).  248 
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 249 

3.2 Map production 250 

Detailed glacial geomorphological mapping was conducted from the imagery discussed 251 

above, combined with field investigations conducted in May and June 2014 to ground truth 252 

the desk-based mapping. This approach of applying multiple remote sensing datasets, 253 

augmented by field-based geomorphological investigations, has been extensively applied in 254 

the context of both glacierised and glaciated landscapes, encompassing a variety of 255 

geographical locations (e.g. Bennett et al., 2010; Boston, 2012; Bradwell et al., 2013; 256 

Reinardy et al., 2013; Brynjólfsson et al., 2014; Darvill et al., 2014; Evans et al., 2014, 257 

submitted; Jónsson et al., 2014; Pearce et al., 2014). The application of both the interpretation 258 

of remote sensing data and field surveys permits a holistic approach to mapping, wherein the 259 

advantages of each method can be combined to produce an accurate map with robust genetic 260 

interpretations (Brown et al., 2011; Boston, 2012). 261 

 262 

Overlays of geomorphological features were digitally drawn in ArcMap 10.2 using the 263 

remote sensing data, with individual vector layers created for each geomorphological feature. 264 

The initial interpretation of the remote sensing data and on-screen digitisation was then 265 

checked in the field. In order to enhance the accuracy of mapping and reduce errors which 266 

may arise from misinterpretation of features, examination of the remote sensing data was 267 

conducted both prior to and after the field investigations (cf. Lukas and Lukas, 2006; Boston, 268 

2012; Pearce et al., 2014). The final digitised features were then exported to Adobe Illustrator 269 

CC for final editing and map production, along with a contour layer calculated at 20 m 270 

intervals using Spatial Analyst in ArcMap and the 2006 DEM to derive the elevation data. 271 

Following in the tradition of previous glacial geomorphological maps of Icelandic glacier 272 
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forelands, the glacier surface is represented on the maps by a mask generated directly from 273 

the processed imagery (cf. Evans, 2009). 274 

 275 

4. Results 276 

4.1 Moraine distribution and geomorphology 277 

Glacial geomorphological mapping reveals a series of recessional (“annual”) moraines 278 

distributed across the Skálafellsjökull foreland, with a total of 3,201 moraine fragments 279 

mapped on the glacier foreland based on the 2012 satellite imagery. Long, largely 280 

uninterrupted sequences of moraines occur on the northern and central parts of the glacier 281 

foreland. Additionally, numerous “annual” moraines are evident in close proximity to the 282 

southeastern sector of the Skálafellsjökull margin. Comparison of the 2006 and 2012 maps of 283 

the glacier foreland reveals that moraine formation has occurred at both the southeastern and 284 

northeastern sectors of the Skálafellsjökull ice-margin, with 281 moraine fragments formed 285 

during this period. These individual moraine fragments form part of longer, discontinuous 286 

ridges that appear to reflect the geometry of the ice-margin. The mapping also indicates that 287 

this period of moraine formation coincides with a phase of substantial glacier retreat and ice-288 

marginal lake expansion.  289 

 290 

Following journal guidelines, detailed analysis of “annual” moraine properties are not 291 

presented here, but some characteristic features are briefly outlined. Further detailed analysis 292 

will be presented in a subsequent paper. The moraines typically take the form of 293 

discontinuous ridges, consisting of a number of smaller fragments which form part of longer 294 

chains (Figure 5). Crest-to-crest spacing (or longitudinal) spacing between individual chains 295 

of “annual” moraines ranges from ~5 m to 60 m on the Skálafellsjökull foreland. In planform, 296 

moraine ridges on the Skálafellsjökull foreland exhibit a distinctive “sawtooth” or crenulate 297 
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pattern, with teeth pointing in a down-ice direction and notches pointing upglacier (Figure 6; 298 

cf. Matthews et al., 1979). Teeth exhibit maximum wavelengths and amplitudes of ~50 m and 299 

~39 m, respectively, whilst notches exhibit maximum wavelengths and amplitudes of ~47 m 300 

and ~41 m. Complexities in the general planview geometry occur locally, with individual 301 

moraine ridges exhibiting bifurcations and cross-cutting patterns. The large-scale, sample 302 

mapping of moraines in two selected areas (Maps 3 and 4) of the glacier foreland, based on 303 

UAV-captured imagery, provides a clear visualisation of the characteristic planform 304 

geometry and local complexities in this pattern. The “annual” moraines on the 305 

Skálafellsjökull foreland are typically asymmetrical in cross-section, with cross-profiles 306 

displaying shorter, steeper distal slopes and longer, gently-sloping ice-proximal surface 307 

slopes. Individual moraines have heights ranging from ~0.2 m to 1.5 m, with moraine width 308 

being between ~2 m and 18 m.  309 

 310 

4.2 Associated glacial geomorphological features 311 

Moraines on the Skálafellsjökull foreland are frequently found in close association with 312 

flutings (Figure 7), which may extend on to the ice-proximal slopes of moraines in places. 313 

Mapped flutings range in length from 7 m to 201 m, with a mean value of 42.8 m (n = 951; 314 

2012 imagery). On the reverse basalt bedrock slope near the southeastern sector of the 315 

Skálafellsjökull margin, “annual” moraines and flutings are also found in association with an 316 

abundance of roches moutonnées: flutings often extend from the lee-side faces of roches 317 

moutonnées. This area of the glacier foreland is also characterised by a number of recessional 318 

meltwater channels and a contemporary meltwater stream running along the ice-margin. 319 

Locally, meltwater accumulates along parts of the southeastern margin to form a small ice-320 

marginal lake. At the time of the field surveys (May–June 2014), moraines in close proximity 321 

to the contemporary ice-margin could be found partially submerged by ponded and slow-322 
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moving meltwater. The close association of flutings and “annual” moraines on the 323 

Skálafellsjökull foreland suggests the formation of these geomorphological features may be 324 

intimately linked, as has previously been suggested at Icelandic glaciers (cf. Boulton, 1976; 325 

Boulton and Hindmarsh, 1987; Benn, 1994; Evans and Twigg, 2002; Evans, 2003).  326 

 327 

5. Summary and conclusions 328 

Geomorphological mapping in this study, through a combination of desk- and field-based 329 

mapping, has resulted in the production of detailed, high-resolution glacial geomorphological 330 

maps showing the distribution of “annual” moraines and associated geomorphological 331 

features on the Skálafellsjökull foreland. The geomorphological mapping revealed a series of 332 

small-scale recessional (“annual”) moraines, with long sequences of moraines occurring on 333 

the northern and central parts of the glacier foreland. These “annual” moraines display 334 

distinctive “sawtooth” planform geometries (cf. Price, 1970; Matthews et al., 1979; Bradwell, 335 

2004). Complexities in the general pattern occur locally, with individual moraines exhibiting 336 

bifurcations and cross-cutting patterns. The inventory of geomorphological maps produced in 337 

this study provides a framework for subsequently exploring moraine chronology and 338 

sedimentology, from which recent ice-marginal fluctuations of Skálafellsjökull can be 339 

examined. 340 

 341 

This study has also demonstrated potential of imagery captured using an Unmanned Aerial 342 

Vehicle (UAV) for the purposes of high-resolution mapping of small-scale geomorphological 343 

features. The acquisition of imagery using UAVs represents a potentially effective and low-344 

cost technique for producing high-resolution, 3D georeferenced data (e.g. d’Oleire-Oltmanns 345 

et al., 2012; Hugenholtz et al., 2012, 2013; Lucieer et al., 2014) but its application in 346 

glaciology and glacial geomorphology has so far been limited (e.g. Whitehead et al., 2013; 347 
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Ryan et al., 2015; Evans et al., submitted). In the context of contemporary glacial 348 

environments, UAV imagery represents a potentially valuable tool for repeat surveying and 349 

monitoring, allowing further insights into ice-frontal fluctuations and proglacial landscape 350 

evolution to be gained. 351 

 352 

Software 353 

Image processing was conducted in Agisoft Photoscan Professional Edition, whilst 354 

processing of GPS data was performed in Leica Geo Office 8.3. Desk-based 355 

geomorphological mapping was undertaken in ESRI ArcMap 10.2, with the mapping 356 

exported to Adobe Illustrator CC for final editing and map production. 357 

 358 
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List of Figures 568 

Figure 1. (a) Field photograph of Skálafellsjökull descending from the Breiðabunga plateau 569 

in eastern Vatnajökull (27.05.14). (b) Map showing the location of Skálafellsjökull, SE 570 

Iceland. (c) Skálafellsjökull descends onto Hornafjördur coastal plain where it terminates as a 571 

piedmont lobe. The contemporary ice-margin is fronted by a proglacial lake on 572 

Heinabergsvötn. 573 

 574 

Figure 2. Extracts from the principal remote sensing datasets employed for glacial 575 

geomorphological mapping in this study. (a) Colour aerial photographs (0.41 m GSD) from 576 

2006, Loftmyndir ehf. (b) Panchromatic satellite image (0.5 m GSD) from the WorldView-2 577 

sensor, European Space Imaging (June 2012). (c) Multispectral satellite image (2.0 m GSD) 578 

from the WorldView-2 sensor, European Space Imaging (June 2012). (d) DEM data 579 

visualised as a hillshaded relief model, generated from UAV-captured imagery. 580 

 581 

Figure 3. Comparison of the processed satellite imagery used in this research. (a) 582 

Panchromatic satellite image (0.5 m GSD). (b) Multispectral satellite image (2.0 m GSD). (c) 583 

Pansharpened 3-band natural colour image (0.5 m GSD). 584 

 585 

Figure 4. Extracts from hillshaded relief models showing “annual” moraines on the foreland 586 

of Skálafellsjökull. The models are derived from the UAV-captured imagery. (a) Hillshaded 587 

relief model generated using an illumination angle of 30° and an azimuth of 45°. (b) 588 

Hillshaded relief model generated using an illumination angle of 30° and an azimuth of 315°. 589 

The difference in appearance of the “annual” moraines between the two models is apparent, 590 

demonstrating the value of visualising the data with different azimuths. 591 

 592 
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Figure 5. Histogram and summary statistics of mapped moraine lengths for the entire dataset. 593 

Box-and-whisker plots show the 25th and 75th percentiles (grey box), and the 5th and 95th 594 

percentiles (whisker ends). The mean (horizontal line) is also shown. 595 

 596 

Figure 6. Field photograph showing the characteristic “sawtooth” planform of moraines on 597 

the Skálafellsjökull foreland.  598 

 599 

Figure 7. Field photograph across the southern part of the Skálafellsjökull foreland showing 600 

the close association of moraines and flutings. 601 
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mapping in this study. (a) Colour aerial photographs (0.41 m GSD) from 2006, Loftmyndir ehf. (b) 

Panchromatic satellite image (0.5 m GSD) from the WorldView-2 sensor, European Space Imaging (June 

2012). (c) Multispectral satellite image (2.0 m GSD) from the WorldView-2 sensor, European Space Imaging 
(June 2012). (d) DEM data visualised as a hillshaded relief model, generated from UAV-captured imagery.  
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Figure 3. Comparison of the processed satellite imagery used in this research. (a) Panchromatic satellite 
image (0.5 m GSD). (b) Multispectral satellite image (2.0 m GSD). (c) Pansharpened 3-band natural colour 

image (0.5 m GSD).  
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Figure 4. Extracts from hillshaded relief models showing “annual” moraines on the foreland of 
Skálafellsjökull. The models are derived from the UAV-captured imagery. (a) Hillshaded relief model 

generated using an illumination angle of 30° and an azimuth of 45°. (b) Hillshaded relief model generated 
using an illumination angle of 30° and an azimuth of 315°. The difference in appearance of the “annual” 

moraines between the two models is apparent, demonstrating the value of visualising the data with different 
azimuths.  

90x44mm (300 x 300 DPI)  

 

 

Page 29 of 36

URL: http://mc.manuscriptcentral.com/tjom

Journal of Maps

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 5. Histogram and summary statistics of mapped moraine lengths for the entire dataset. Box-and-
whisker plots show the 25th and 75th percentiles (grey box), and the 5th and 95th percentiles (whisker 

ends). The mean (horizontal line) is also shown.  
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Figure 6. Field photograph showing the characteristic “sawtooth” planform of moraines on the 
Skálafellsjökull foreland.  
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Figure 7. Field photograph across the southern part of the Skálafellsjökull foreland showing the close 
association of moraines and flutings.  
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