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Abstract: 10 

This paper reports a novel method for the incorporation of complex plant 11 

morphologies into a computational fluid dynamics (CFD) model, allowing the 12 

numerical prediction of flows around individual plants.  The morphological 13 

complexity, which comprises the vertical and lateral distribution of individual 14 

branches and leaves is captured through terrestrial laser scanning (TLS) and is 15 

maintained in the numerical prediction of flow fields.  This is achieved where the 16 

post-processed, voxelised plant representation is incorporated into a CFD scheme 17 

through a mass flux scaling algorithm (MFSA).  Flow around Prunus laurocerasus 18 

has been modelled under foliated and defoliated states following the removal of 19 

leaves.  The complex plant morphologies are shown to produce spatially 20 

heterogeneous downstream velocity fields, with velocity profiles that deviate 21 

significantly from the idealised inflected shape.  Rapid transition between the high 22 

velocity free stream zone and the zone of reduced velocity in the plant wake indicate 23 

shearing of flow, with the point of reattachment extending up to seven plant lengths 24 
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downstream.  The presence of leaves significantly modifies the flow field response, 25 

with development of a second, more pronounced wake structure around the dense 26 

foliage.  This approach provides a full flow numerical description of the pressure 27 

field, enabling the vegetative drag force to be quantified.  For the example given 28 

here, drag force is an order of magnitude greater for the foliated state.  The 29 

methodology outlined here demonstrates the importance of accurately representing 30 

complex plant morphology in hydraulic models, and allows drag forces and 31 

coefficients to be calculated for specific plant species.   32 
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Introduction: 36 

Vegetation is abundant in lowland rivers and has a profound influence on the fluvial 37 

system.  It affects the mean and turbulent flow field (Nepf, 2012a), provides habitat, 38 

alters light availability and temperature, and regulates concentrations of oxygen, 39 

carbon, and nutrients (Carpenter and Lodge, 1986).  A correct understanding of the 40 

influence of vegetation on flow is therefore essential and in particular its contribution 41 

as an additional form of flow resistance (Kadlec, 1990).  Increased flow resistance 42 

produces higher water levels per unit discharge, thus increasing the risk of flooding.  43 

However, a numerical description of the flow around river channel vegetation 44 

canopies is challenging given the multitude of scales to be considered (Nepf, 2012b) 45 

and the species-specific nature of plant morphology, which adds further complexity 46 

to the quantification of vegetative flow resistance (Aberle and Järvelä, 2013; Folkard, 47 

2011b; Green, 2006; Kouwen and Unny, 1973). 48 

In vegetated flows, the canopy is defined as the above ground part of the plant stand 49 

consisting of all branches, stems, leaves and stipes (Paul et al., 2014).  One 50 

approach to define canopy geometry is based on the size of the individual stems and 51 

blades, and the number of these elements per bed area (Nepf, 2012a).  It is 52 

assumed that if the canopy elements have a characteristic diameter, d, and an 53 

average spacing between elements, ΔS, then the frontal area per canopy volume is 54 

A = d/ΔS2.  For foliated vegetation types, this is defined as the leaf area index (e.g., 55 

Kaimal and Finnigan, 1994) and when integrated over the plant height, the canopy 56 

density (λf) is predicted from the frontal area per bed area, also known as the 57 

roughness density (Wooding et al., 1973).  However, aquatic canopies exhibit a wide 58 

range of morphologies and densities (Leonard and Luther, 1995; Lightbody and 59 

Nepf, 2006; Valiela et al., 1978), with stiffer, emergent plants tending to have 60 



rounded stems and submerged grasses tending to have a blade geometry (Nepf, 61 

2012a).  Furthermore, variations in the size, shape and density of plant elements can 62 

have a vertical dependence, which contribute towards the overall plant shape 63 

(Wilson et al., 2005).  In natural settings, therefore, a considerable range of 64 

vegetation morphologies exist.   65 

This is further complicated where branches and leaves add to the total surface area, 66 

therefore creating a greater obstacle to flow than the plant stem alone (Leonard and 67 

Luther, 1995).  Within the vegetation canopy flow is forced around each branch or 68 

leaf so that the velocity field is spatially heterogeneous at the scale of these 69 

elements.  Vegetation structure, in particular the vertical and horizontal distribution of 70 

biomass, is therefore reported to control flow through, over and around vegetation 71 

layers (Tempest et al., 2015).  Furthermore, the velocity and driving forces within a 72 

submerged canopy has a range of behaviour depending on the relative depth of 73 

submergence (Nepf and Vivoni, 2000), defined as the ratio of flow depth, H, to 74 

canopy height, h.  In lowland river systems most submerged aquatic canopies occur 75 

in the range of shallow submergence H/h<5 (Chambers and Kaiff, 1985; Duarte, 76 

1991), for which both turbulent stress and potential pressure gradients are important 77 

in driving flow over the canopy.   78 

Our current understanding of flows through shallow submerged vegetation comes 79 

from physically scaled flume models, field studies, and numerical modelling studies.  80 

Flume models have been used to provide a process-based understanding of 81 

complex canopy flows, and the drag processes that contribute towards the 82 

development of a mean velocity profile often described and approximated as S-83 

shaped, or inflected (Nepf, 2012b).  The representation of the vegetation in these 84 

laboratory experiments is crucial, with vegetation generally represented by: (i) 85 



artificial plants or surrogates, or (ii) scaled plants or natural plants (Frostick et al., 86 

2011).   87 

At the simplest level, discrete, rigid cylindrical elements arranged in varying spatial 88 

configurations have been used to represent specific attributes such as stem density 89 

in stiff, emergent plants (Liu et al., 2008; Nepf, 1999).  Conversely, polyethylene 90 

strips have been used to represent the flexibility and reconfiguration commonly 91 

observed in shallowly submerged species e.g. Mediterranean seagrass Posidonia 92 

oceanica (Folkard, 2005; Folkard, 2011a).  To replicate realistic structural 93 

distributions of natural plants, artificial surrogates with an explicit parameterisation of 94 

biomass have recently been used (Schoneboom et al., 2010).  Often, however, 95 

artificial representations of vegetation neglect the horizontal and vertical variation in 96 

plant structure observed in the natural prototype habitat, which can lead to the 97 

incorrect predictions of flow at the plant and canopy scale (Tempest et al., 2015).  98 

Where natural vegetation is used (Järvelä, 2002; Sand-Jensen, 2003; Siniscalchi 99 

and Nikora, 2012), samples can prove difficult to maintain under laboratory 100 

conditions and may not capture the variety of characteristics observed in vegetation 101 

(Frostick et al., 2011).  Misrepresentation of artificial or real vegetation morphology 102 

would be translated into the flow field, and any simplification may therefore 103 

compromise the representativeness of results, where alterations to the velocity and 104 

pressure fields will have primary implications for the calculation of vegetative flow 105 

resistance.     106 

Field studies add further to our understanding, with the collection of three-107 

dimensional velocity fields around large woody debris (Daniels and Rhoads, 2003), 108 

and isolated patches of in-situ submerged macrophytes (Schoelynck et al., 2013).  109 

Furthermore, the turbulence structure has been investigated around 110 



heterogeneously distributed submerged macrophytes (Sukhodolov and 111 

Sukhodolova, 2010), and tree-centred emergent bars (Sukhodolov and 112 

Sukhodolova, 2014).  Although these studies provide great detail of the flow field, an 113 

adequate quantification of the structure of the vegetation can prove difficult.    114 

In high dimensional numerical modelling, vegetation has been represented by adding 115 

a drag-related bulk source and sink term into the continuity equation (Fischer-Antze 116 

et al., 2001; López and García, 2001).  The drag force term is based on plant density 117 

and an assumed rigid, cylindrical representation of vegetation, with a drag coefficient 118 

of unity which is applicable for rigid cylinders with Reynolds numbers between 1x103 119 

- 2x105 (Cheng, 2013; Panton, 1984).  These models reproduce mean and turbulent 120 

flow, although they do not effectively predict the quantitative detail of turbulence 121 

namely shear and wake scales (Defina and Bixio, 2005).  Such an approach has 122 

been further developed by dividing the drag into stem drag and leaf drag (Yue et al., 123 

2007), where stem drag was modelled as above, but leaf drag was modelled 124 

separately using an estimated leaf area index.  An alternative approach is to include 125 

individual vegetation stems.  Stoesser et al. (2009, 2010) included an array of 126 

individually represented rigid cylinders using Large Eddy Simulation, and by using a 127 

fine grid ensured that drag was directly accounted for, removing the need for 128 

empirical drag coefficients.  Several studies have sought to incorporate flexible 129 

vegetation canopies.  Ikeda et al. (2001) developed a biomechanical plant model 130 

based upon the dynamic Euler-Bernoulli cantilever beam equation within a two 131 

dimensional LES framework.  Marjoribanks et al. (2014c) developed a similar model 132 

within a three-dimensional LES framework to look at arrays of semi-rigid stems 133 

within flows.  Similar approaches have been developed for highly flexible vegetation 134 

applying a N-pendula equation (e.g. Abdelrhman, 2007; Dijkstra and Uittenbogaard, 135 



2010).  However, in all of these approaches each plant is represented as a single 136 

stem and does not incorporate the complex plant morphology. 137 

Here we report on a new methodology to incorporate a complex plant morphology 138 

into a numerical model used to predict flow-vegetation interactions.  We model the 139 

three-dimensional velocity and pressure fields, at a high spatial resolution, around an 140 

isolated laboratory plant stand.  The plant is characterised by a complex morphology, 141 

having a natural stem and leaf distribution.  We model the flow around both a foliated 142 

and defoliated representation of the plant, following manual removal of the foliage.  143 

For this initial proof of concept work, a single plant stand has been selected to better 144 

quantify the plant structure, and ensure any differences in the flow response can be 145 

attributed to the different foliation states, therefore enabling the resistance effects of 146 

the leaf body to be quantified.       147 

We describe a physically-based characterisation of vegetation using terrestrial laser 148 

scanning (TLS) which is subsequently incorporated into a computational fluid 149 

dynamics (CFD) model by application of a mass flux scaling algorithm (Hardy et al., 150 

2005).  Application of TLS enabled a three-dimensional model of the vegetation to be 151 

rapidly captured into a Cartesian digital framework; that was subsequently 152 

incorporated into numerical discretisation.  For the first time, the morphological 153 

complexity of the vegetation is then directly represented within the CFD model, 154 

enabling a high resolution prediction of the three-dimensional velocity and pressure 155 

fields, and the improved estimation of the drag force acting on the plant.  The wider 156 

implications for flow and sediment transport modelling around morphologically 157 

complex vegetation, and future methodological developments, are discussed.     158 



Methodology: 159 

Terrestrial Laser Scanning (TLS) and voxelisation 160 

TLS has been used to acquire a three-dimensional representation of Prunus 161 

laurocerasus, an invasive species to the United Kingdom increasingly recorded in 162 

riparian zones.  The evergreen shrub can reach heights of 6 m, with large (0.05-0.18 163 

m) oblong-acute, glossy, dark-green leaves and pale green branches (Polunin and 164 

Everard, 1969; Stace, 2010).  Prunus laurocerasus was selected for scanning given 165 

its complex branch and leaf structure, and its ability to survive in laboratory 166 

conditions for prolonged periods.  The woody shrub shares morphological similarities 167 

to woody riverine vegetation species such as Populus nigra, typically found on gravel 168 

bars (O'Hare et al., 2015).  In this application, a RIEGL VZ-1000 scanner was used 169 

in a controlled laboratory environment.  The scanner has a beam divergence of 0.3 170 

mrad, a field of view 100° x 360° and an effective measurement rate of up to 122 000 171 

measurements per second.  Scans were collected at a distance of 3 m, with π and θ 172 

increments set to 0.012 degrees, controlling the horizontal and vertical alignment 173 

respectively.  Riegl (2015) report that at a distance of 10 m, the scanner has a range 174 

accuracy of 8 mm, and a precision of 5 mm.  The scanner recorded multiple discrete 175 

returns from a single emitted pulse, improving the interrogation of vegetation 176 

elements (Pirotti et al., 2013), thereby heightening point density.  To resolve issues 177 

of occlusion, scans were acquired from four different perspectives to provide the 178 

requisite overlap to capture the full three-dimensionality of the plant morphology 179 

(Moorthy et al., 2008).   180 

Scans were completed under foliated and defoliated states, following manual 181 

removal of leaves (n = 432) (See Fig. 1).  Individual point clouds were registered 182 



using georeferenced reflective targets in RiSCAN PRO, supplemented by multi-183 

station adjustment.  Similar to the workflow of Jalonen et al. (2015) post-processing 184 

was completed using CloudCompare software.  After delineation of the area of 185 

interest, erroneous data points were filtered using a statistical outlier removal tool 186 

(SOR).  The distance-weighted filter removed isolated points on the plant surface, 187 

specifically  those off-centre hits caused by the position and size of the laser pulse 188 

footprint relative to the feature being scanned (Béland et al., 2014).  By calculating 189 

the mean distance between each point in the initial point cloud and a neighbourhood 190 

of its nearest points, and assuming a Gaussian distribution, those points which fall 191 

outside of a defined standard deviation threshold are regarded as outliers and 192 

removed (Rusu et al., 2008).  Following Jalonen et al. (2015), we calculate the mean 193 

distance between every point and its 100 nearest neighbours, and remove those 194 

points which fall outside of 1 standard deviation from the mean.  Point clouds visually 195 

match the actual plant morphology (Fig. 1a), containing 3 500 000 points in the 196 

foliated state (Fig. 1b), and 1 000 000 points in the defoliated state (Fig. 1c).  A 197 

characteristic subsection of the plant, (Fig. 1b and 1c), has been incorporated into 198 

the numerical model.  This subsection shares the same morphological 199 

characteristics (e.g. branch thickness, leaf density) as the remainder of the plant, but 200 

allows flow to be solved at a higher spatial resolution in the modelling domain (see 201 

below).    202 

The millimetre scale spatial resolution of this point cloud exceeded what could 203 

feasibly be discretised within the CFD model, owing to the computational expense 204 

associated with solving flow at such high spatial resolutions.  A simplification 205 

procedure following the gap fraction method of Straatsma et al. (2008) was applied, 206 

with subdivision of the scan into individual voxels (Béland et al., 2011).  207 



Morphological properties of vegetation have previously been established using either 208 

spherical voxels (e.g., Antonarakis et al., 2010) or cubic voxels (e.g., Durrieu et al., 209 

2008), however given the Cartesian grid structure of the CFD domain (see next 210 

section), a cubic voxel representation was used.  Voxelisation involved the fitting of 211 

an octree structure with a user-defined maximum cell size (0.01 m) around the point 212 

clouds, which captured the morphological complexity of the plant in both defoliated 213 

and foliated states.  The voxel size was justified given the branch diameter was in 214 

the range 0.01-0.1 m, and therefore the voxel size closely approximated the finest 215 

morphological elements.  The voxelisation process is summarised for a subsample 216 

of the defoliated and foliated scans (Fig. 1b and 1c), outputting XYZ cell centroid 217 

coordinates that are read directly into the CFD discretisation (see Fig. 2).   218 

The numerical model 219 

The numerical scheme involves a finite volume solution of the full three-dimensional 220 

Navier-Stokes equations in a Cartesian coordinate system, with a Renormalized 221 

Group Theory (RNG) k-ε turbulence model.  The closure model is applied given the 222 

large degree of fluid strain associated with flow around the plant as the RNG k-ε  223 

turbulence model calculates diffusion across the spectrum of scales (Yakhot and 224 

Orszag, 1986).  A hypothetical domain 350 cells long, 120 cells wide and 100 cells 225 

high (4 200 000 grid cells) was created at a spatial resolution of 0.01 m. The 226 

numerical simulations are run until the convergence criteria is met which is 227 

dependent upon the mass conservation and momentum errors.  In this application 228 

the convergence criterion was set such that mass and momentum flux residuals 229 

were reduced to 0.1% of the inlet flux.     230 



A static representation of the plant, through the voxelised blockage, was represented 231 

using the Mass Flux Scaling Algorithm (MFSA) (Hardy et al., 2005; Lane et al., 2002; 232 

Lane et al., 2004).  The MFSA has previously been used to represent flow over 233 

complex topography such as gravel surfaces (Hardy et al., 2007), and idealised 234 

single stemmed vegetation elements that are used to represent a vegetation canopy 235 

(Marjoribanks et al., 2014c).  The MFSA represents the plant as a numerical 236 

porosity, and enables the voxelised plant to occupy a specified fraction of each grid 237 

cell.  For each grid cell a binary occupied/unoccupied porosity is defined because the 238 

0.01 m voxel size is equal to that of the 0.01 m grid cell size.  The voxelised 239 

blockage was incorporated 0.5 m downstream from the inlet (0.14 X/l), and centred 240 

(0.5 Y/w).  The bed was treated as a nonslip boundary using the logarithmic law of 241 

the wall and domain side walls were considered frictionless boundaries. The 242 

vegetation-flow interface is treated as an immersed boundary.  Inlet conditions are 243 

held constant between the defoliated and foliated model runs with the downstream 244 

velocity set to 0.25 m s-1 with an inlet turbulent intensity of 5%.  Thus, the flow was 245 

assumed to be fully turbulent and subcritical.  The outlet was defined using a fixed-246 

pressure boundary condition where mass is allowed to enter and leave the domain.  247 



Results: 248 

Here we present the downstream (u-component) velocity field for the defoliated and 249 

foliated cases (Fig. 2c and 2f) in plan view at 0.4 and 0.6 Z/h (Fig. 3a and 4a).  250 

Under the defoliated state (Fig. 3a), individual stems introduce flow separation and 251 

reattachment with the formation of narrow wakes of reduced velocity.  At 0.4 Z/h, 252 

coalescence of these wakes is observed.  However, this behaviour varies vertically, 253 

and at 0.6 Z/h, where the branches are spaced further apart, wakes behave 254 

independently.  Wake coalescence would therefore depend on the separation 255 

distance between individual branches.  Under the foliated scenario (Fig. 4a), a 256 

single, more pronounced zone of flow separation and reattachment is evident, 257 

indicative of behaviour shown by a bluff object.  In the foliated state, the shape of the 258 

wake is vertically non-uniform, which is a function of the vertical and lateral 259 

distribution of the plant morphology, and results in flow asymmetry.  For example, at 260 

0.4 Z/h the abundance of leaves at lower Y/w values produce an asymmetrical wake 261 

structure that extends further downstream than the corresponding wake in the 262 

defoliated state.  For both the defoliated and foliated states similarities can be 263 

observed; namely a reduction in velocity immediately upstream of the blockage, with 264 

marginal flow acceleration around the blockage edges, indicative of flow in a junction 265 

vortex system (Simpson, 2001).  It is suggested that this canopy shear layer 266 

turbulence is dominated by Kelvin-Helmholtz and Görtler-type vortices generated 267 

through shear instability, which evolve with distance downstream of the plant 268 

(Ghisalberti and Nepf, 2002). 269 

The wake shape is further illustrated through a vertical slice down the midline (0.5 270 

Y/w) (Fig. 3b and 4b).  In both cases, wake shape varies considerably with Z/h.  For 271 

the defoliated state, development of a wake zone at 0.2-0.4 Z/h corresponds with the 272 



main branching point of the plant (see Fig. 2), with a concentration of branches.  The 273 

wake is inclined slightly upwards, thins in the downstream direction and extends 7 274 

plant lengths downstream.  Marginal flow acceleration is evident around the outer 275 

edge of the central branch.  A more complex wake structure consisting of two 276 

discrete layers is evident in the foliated state.  Again, the lower wake corresponds 277 

with the branching point at 0.2-0.4 Z/h, although only extends 3 plant lengths 278 

downstream.  Above this, a pronounced and thicker wake zone at 0.45-0.65 Z/h 279 

corresponds with the dense foliation, and extends 7 plant lengths downstream.  The 280 

dense foliation component is influential in producing a localised velocity response.    281 

The morphological complexity of the plant introduces additional flow heterogeneity, 282 

therefore velocity profiles begin to deviate from the idealised inflected profiles that 283 

are associated with canopy flows (Fig. 5a, inset graph).  Fig. 5 provides evidence for 284 

three distinct velocity zones in the vertical, namely: a zone of relative flow 285 

acceleration beneath the bulk of the plant in the near bed region (sub-canopy flow), a 286 

zone of flow acceleration above the plant in the free stream zone, and between 287 

these a non-uniform low velocity zone associated with flow deceleration around the 288 

plant blockage.  The shape of the vertical velocity profiles clearly differ between the 289 

defoliated and foliated states.  When defoliated, the velocity minima is positioned 290 

lower in the flow depth, and associated with the point at which the main branch splits 291 

into sub-branches (see Fig. 2).  When foliated, however, the velocity minima is 292 

shifted higher in the flow, and associated with the main leaf body.  The magnitude 293 

and size of the low velocity zone in the foliated state is exaggerated relative to the 294 

defoliated state, illustrating the important role of the leaf body in modifying the flow 295 

disturbance.  In both foliation states the accelerated sub-canopy flow component 296 

appears to be similarly sized and shaped, indicating that distance between the bed 297 



and base of the main plant blockage influences the characteristics of this zone.  The 298 

velocity profiles show that with increasing distance downstream, the flow begins to 299 

recover, with velocity profiles becoming more modulated, and velocities reverting 300 

towards the inlet velocity of 0.25 m s-1.           301 

Especially in the foliated state proximal to the blockage (Fig. 5a and Fig. 5b), a sharp 302 

transition is evident between the reduced velocity zone and free stream zone, 303 

characterised by flow acceleration, with this velocity discontinuity indicative of shear 304 

layer formation and the presence of Kelvin-Helmholtz instabilities (Ghisalberti and 305 

Nepf, 2002).  The shear layer appears more prominent where the plant thickness is 306 

larger and therefore the shear layer scales with the local plant thickness.  Vortex 307 

growth stops when turbulent energy production is equal to dissipation (Ghisalberti 308 

and Nepf, 2004).  309 

At the wake scale, mean kinetic energy is converted into wake-generated turbulent 310 

kinetic energy at the scale of the plant stems (Ghisalberti and Nepf, 2002) and 311 

therefore analysis of the turbulent kinetic energy (TKE) provides an estimation of the 312 

amount of form drag introduced by the plant (Raupach and Shaw, 1982).  Direct 313 

comparisons between the defoliated and foliated states are shown at 0.45 Z/h (Fig. 314 

6a and 6b).  In both cases, zones of high TKE (> 0.04 m2/s2) are observed proximal 315 

to the outer edge of the plant, driven by the forcing of flow around the blockage, 316 

resulting in flow acceleration (u-component) and lateral movement (v-component).  317 

For the defoliated state, these high TKE zones are enclosed around individual 318 

branches, whereas in the foliated state the zones are comparably larger and extend 319 

a greater distance from the vegetation front, due to a longer, more pronounced 320 

disturbance to the v-component of velocity.  Because of the complex, interacting 321 



nature of the wakes in the defoliated state, the leeward zone of low TKE (< 0.015 322 

m2/s2) is more fragmented and extends a greater distance downstream than in the 323 

foliated state.  Again this demonstrates canopy shear layer instability, dominated by 324 

Kelvin-Helmholtz and Görtler-type vortices evolving with distance downstream of the 325 

plant.  326 

Pressure fields are analysed to calculate the drag force and subsequent drag 327 

coefficients acting on the plant (Marjoribanks, 2013).  Fig. 7a and 7b show the 328 

pressure fields at 0.45 Z/h.  When defoliated, the high pressure zone located directly 329 

upstream of the blockage is isolated about individual branches.  When foliated, 330 

however, this zone has coalesced to form a comparatively larger, single body 331 

characterised by higher pressures.  Similarly, downstream of the plant, isolated 332 

zones of low pressure are associated with individual branches when defoliated, 333 

compared with a much more pronounced and extended low pressure zone when 334 

foliated.    335 



Calculation of drag forces 336 

The drag force is calculated by integrating the difference in the pressure field acting 337 

normal to the vegetation surface over the entire lateral extent of the plant.  We sum 338 

the difference in pressure from immediately upstream and downstream of the plant.  339 

This is achieved by applying a mask to the three-dimensional vegetation extent, and 340 

extracting pressure values from one cell upstream and one cell downstream of the 341 

mask:    342 

𝐹𝑑 =  ∫ (𝑝𝑓 − 𝑝𝑏)𝑑𝐴
𝐴

 (1) 

where 𝐹𝑑 is the drag force (N/m2), 𝑝𝑓 is the pressure at the blockage front (Pa), 𝑝𝑏 is 343 

the pressure at the blockage back (Pa), and 𝐴 is the frontal area (m2).  In this 344 

instance where the plant is represented by a 0.01 m voxel size, this gives a cell area 345 

of 0.0001 m2.  To calculate the plant frontal area, we count the number of cells at the 346 

blockage front, and multiply this by the cell area.  A full discussion of the drag 347 

calculation is provided by Marjoribanks et al. (2014b).  Drag forces of 0.15 N/m2 and 348 

1.74 N/m2 are calculated for the defoliated and foliated states respectively.  This 349 

order of magnitude difference is attributed to the influence of the additional 350 

morphological complexity introduced by leaf elements, which result in a different flow 351 

response as drag increases with foliage density (Wilson et al., 2003).  As previously 352 

observed, leaves are shown to introduce a second wake structure that extends 7 353 

plant lengths downstream, resulting in a more spatially heterogeneous velocity field.  354 

This corresponds with the more pronounced TKE patterns observed in the foliated 355 

case, indicating a greater form drag contribution.  Both of these factors result from 356 

the greater number of blocked cells in the foliated state, imparting a greater 357 



disturbance on the flow.  The drag force values are of a similar order of magnitude to 358 

the direct measurements of vegetative drag force (0-10 N/m2), for small natural 359 

woody trees, undertaken by Jalonen and Järvelä (2014).  360 

Drag forces are used to calculate a drag coefficient, following: 361 

𝐶𝑑 =  
𝐹𝑑

1
2 𝜌𝑢2𝐴

 (2) 

where 𝐶𝑑 is the drag coefficient, 𝜌 is the density (kg/m3), and 𝑢 is the inlet velocity (m 362 

s-1).  Drag coefficients are well understood for simple geometric shapes (e.g. 363 

cylinders), but are less well understood for the complex geometries associated with 364 

natural vegetation (Marjoribanks et al., 2014a).  Modelling studies typically assign a 365 

drag coefficient value of unity for vegetation, however this is only applicable to the 366 

simplest reed and grass type plants.  A value of unity is true for a single cylinder with 367 

Reynolds numbers between 1x103 - 2x105, although deviates significantly for more 368 

complex vegetation as it is a function of both vegetation density and stem Reynolds 369 

number (Tanino and Nepf, 2008).  For sparsely configured leafy shrub communities, 370 

the flume experiments of Hui et al. (2010) report drag coefficients of up to 4.  Here, 371 

we calculate drag coefficients of 1.54 and 1.24 for the defoliated and foliated states 372 

respectively, exceeding the typically assumed value of 1.  An inverse trend between 373 

drag force and drag coefficient is surprising given the drag coefficient in the 374 

defoliated case is higher, when the drag force is an order of magnitude lower than 375 

the foliated case.  This discrepancy can be explained by morphological differences.  376 

Namely, the dominance of individual branches in the defoliated state, compared to 377 

the dominance of a single leaf body of the foliated state, where sheltering effects 378 

reduce the imposed resistance on the downstream end of the plant.    379 



Discussion and potential applications: 380 

Analysis of downstream velocity, turbulent kinetic energy and pressure field 381 

simulations have demonstrated the importance of explicitly representing the 382 

morphological complexity of plants in the numerical description of flow in vegetated 383 

channels.  The vertical and lateral distribution of the plant morphology is shown to 384 

form canopy shear layer turbulence, likely to be dominated by Kelvin-Helmholtz and 385 

Görtler-type vortices, which evolve downstream of the plant (Ghisalberti and Nepf, 386 

2002).  The approach provides a high resolution, spatially distributed set of modelled 387 

hydraulic data which can provide the framework for evaluating turbulence-388 

vegetation-energy loss relationships, and in particularly a means for calculating drag 389 

coefficients for individual plant species.   390 

The ability to incorporate morphologically complex vegetation into a numerical 391 

scheme has major implications for the modelling of flow, sediment transport and the 392 

associated evolution of vegetated and partially-vegetated near surface landscapes.  393 

When modelling flow, the approach better allows us to understand the flow 394 

disturbance introduced by vegetation, providing a full flow field simulation of the 395 

three-dimensional velocity and pressure fields.  This extends beyond the work of 396 

Manners et al. (2013), who used a vertically averaged two-dimensional model 397 

around stands of Tamarix spp.  We show that the vertical and lateral position of the 398 

vegetation, specifically the distribution of the main body of the foliage, results in a 399 

complex velocity field, and this directly influences the shape of the vertical velocity 400 

profile.  Therefore across different species, it is likely that the distribution of foliage 401 

will be significant in controlling the flow patterns observed.  For shrubs with an open 402 

area beneath the primary leaf mass, Freeman et al. (2000) demonstrated that flow is 403 

significantly diverted beneath the canopy, with an acceleration of the sub-canopy 404 



flow.  Similar velocity profiles were noted in field studies of flow around natural 405 

willows by Bölscher et al. (2005).  In this paper we have successfully modelled 406 

similar velocity profiles (Figure 5), and this sub-canopy flow component will have 407 

direct implications for elevated bed shear stresses around the plant and for surface 408 

scour.  When modelling flow around woody vegetation types, consisting of both a 409 

branch and foliage component, there is a clear need to accurately represent this 410 

morphological complexity.  An over-simplified representation (e.g. a simple cylinder) 411 

would fail to capture the full complexity of flow field, omitting key features such as the 412 

sub-canopy flow, as well as the structure of wake shape.  Järvelä et al. (2006) 413 

specify that for predicting erosion and sediment transport, a three-dimensional 414 

modelling solution that can adequately model the turbulent flow field is needed.  Our 415 

approach meets these demands, and therefore has potential for modelling sediment 416 

transport dynamics.  Crucially, we are developing the method to include a digital 417 

elevation representation of the bed, which is coupled to a sediment routing model, 418 

thereby offering the ability to model vegetation-flow-sediment interactions 419 

simultaneously.  This development will allow sediment particles to be tracked around 420 

vegetation, and the patterns of local scour and deposition to be mapped.   421 

However, the results presented here describe only a static representation of a single 422 

plant morphology.  Aquatic vegetation is seldom found in isolation (Sand-Jensen and 423 

Madsen, 1992), and as such the forces on individual plants can be reduced due to 424 

sheltering and through the reduced velocities in wakes from upstream plants.  425 

Furthermore, flow forcing will cause foliage reconfiguration through streamlining, 426 

which will subsequently reduce the drag.  This has been shown to be more important 427 

in drag reduction than stem bending and enables plant survival through either static 428 

or dynamic reconfiguration (Nikora, 2010; Usherwood et al., 1997).  These 429 



reconfiguration processes occur over a range of spatial scales from individual leaves 430 

to entire plant-patches (Albayrak et al., 2013; Sand-Jensen, 2003), and therefore an 431 

explicit representation of changes to plant posture through time is also essential.  432 

Work is therefore currently underway to develop a dynamic approach that accounts 433 

for multiple dynamic, morphologically complex plants, incorporating reconfiguration 434 

and subsequent form drag reduction by developing further the approach of 435 

Marjoribanks et al. (2014c).  This involves applying a time-varying biomechanical 436 

model coupled with Large Eddy Simulation (LES) to predict plant motion through 437 

time. 438 

Recent experimental work has shown how the interaction of neighbouring emergent 439 

vegetation patches can influence deposition dynamics (Meire et al., 2014).  This has 440 

been extended into a numerical scheme, where de Lima et al. (2015) used CFD to 441 

show that patch distributions and interactions may be responsible for the feedbacks 442 

that influence the evolution of vegetated landscapes at the channel scale.  However, 443 

in both examples vegetation is represented by cylinders of varying densities.  444 

Developing an approach which includes multiple, dynamic representations of 445 

morphologically complex plants derived from TLS will allow sediment dynamics to be 446 

further explored.  Furthermore, the approach we propose is not limited to woody 447 

species associated with riverine settings, it is possible to apply the methodology to a 448 

vegetated estuarine environment where sediment dynamics are of critical 449 

importance.  450 

  451 
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Figures: 458 

 459 

Figure 1: Three-dimensional point cloud of Prunus laurocerasus captured using 460 

TLS: (a) photograph in foliated state, (b) post-processed foliated point cloud with 461 

subsection used in numerical model highlighted (Fig. 2), (c) post-processed 462 

defoliated point cloud, following manual removal of leaves (n = 432), with 463 

characteristic subsection highlighted (Fig. 2).      464 



 465 

Figure 2: Stages of the voxelisation process, for the foliated (a-c) and defoliated (d-f) 466 

subsections: (a and d) illustrate the post-processed point cloud; (b and e) the user-467 

defined octree structure with a cell size of 0.01 m fitted around the point cloud; and 468 

(c and f) the voxelised representation, following extraction of XYZ coordinates of 469 

octree centroids.   470 

  471 



 472 

Figure 3: Downstream (u-) velocity field data for the defoliated state: (a) slices at 0.4 473 

and 0.6 Z/h.  The position of the plant is marked as the solid black region.  474 

Downstream wakes can coalesce or act independently from one another, based on 475 

the separation distance of individual branches.  (b) Vertical slice taken at the midline 476 

(0.5 Y/w), where a spatially non-uniform wake shape in the vertical dimension is 477 

shown.  The wake zone at 0.2-0.4 Z/h is associated with the main branching point, 478 

and extends 7 plant lengths downstream.   479 

  480 



 481 

Figure 4: Downstream (u-) velocity field data for the foliated state: (a) slices at 0.4 482 

and 0.6 Z/h show a single, more pronounced zone of flow separation and 483 

reattachment, indicative of behaviour shown by a bluff object.  (b) Vertical slice taken 484 

at the midline (0.5 Y/w) illustrates two discrete wakes.  Similarly to the defoliated 485 

case, the lower wake corresponds with the branching point at 0.2-0.4 Z/h although 486 

only extends 3 plant lengths downstream.  Above this, a more pronounced wake at 487 

0.45-0.65 Z/h corresponds with the bulk of the leafy blockage, extending 7 plant 488 

lengths downstream.  The leafy component has a first order control on the 489 

production of a spatially heterogeneous velocity field. 490 

  491 



 492 

Figure 5: Vertical velocity profiles extracted from the midline (0.5 Y/w) at increasing 493 

distances downstream: (a) 0.25 X/l, (b) 0.30 X/l, (c) 0.40 X/l.  The inset graph in (a) 494 

illustrates an idealised inflected velocity profile often used to characterise vegetated 495 

flows.  The velocity profiles illustrate the complex vertical structure in the wake of the 496 

flow.  Three velocity zones are identified, namely: a zone of relative flow acceleration 497 

beneath the bulk of the plant in the near bed region (sub-canopy flow), a zone of flow 498 

acceleration above the plant in the free stream zone, and between these, a non-499 

uniform low velocity zone associated with flow deceleration due to the bulk of the 500 

plant blockage.  The magnitude and size of the low velocity zone is exaggerated in 501 

the foliated state, where the leaf body acts to further decelerate flow in the wake.    502 



 503 

Figure 6: Turbulent Kinetic Energy (TKE) for (a) defoliated and (b) foliated 504 

scenarios, 0.45 Z/h.  In both cases, a zone of high TKE (> 0.04 m2/s2) is evident 505 

proximal to the outer edge of the vegetation.  In the defoliated scenario, this is 506 

enclosed by a slightly lower zone of TKE (0.03-0.04 m2/s2), whereas in the foliated 507 

scenario, the high TKE zone is larger, and persists in the downstream direction.  508 

Overall, TKE patterns indicate a greater form drag contribution in the foliated case.    509 



 510 

Figure 7: Pressure fields at 0.45 Z/h for: (a) the defoliated state, where individual 511 

branches cause the formation of isolated zones of high pressure upstream, and low 512 

pressure downstream. (b) The foliated state exhibits different behaviour, with the 513 

formation of a more pronounced zone of high pressure upstream, and coalescence 514 

of the low pressure zone downstream; again indicative of bluff behaviour.  515 
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