
Physiology & Behavior 167 (2016) 92–99

Contents lists available at ScienceDirect

Physiology & Behavior

j ourna l homepage: www.e lsev ie r .com/ locate /phb
Memory-dependent effects on palatability in mice
Joseph M. Austen ⁎, Jasmin A. Strickland, &, David J. Sanderson ⁎
Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK

H I G H L I G H T S

• Consumption in mice is maximal with intermediate concentrations of sucrose.
• Lick cluster size increases monotonically as a function of sucrose concentration.
• A successive negative contrast procedure reduced lick cluster size.
• Flavour habituation led to an increase in lick cluster size.
• Memory has effects on palatability similar to altering the sweetness of a solution.
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While palatability depends on the properties of particular foods, it is also determined by prior experience, sug-
gesting that memory affects the hedonic value of a substance. Here, we report two procedures that affect palat-
ability in mice: negative contrast and flavour habituation. A microstructure analysis of licking behaviour was
employed, with the lick cluster size (the number of licksmade in quick succession before a pause) used as amea-
sure of palatability. It was first confirmed that lick cluster size increased monotonically as a function of sucrose
concentration, whereas consumption followed an inverted U-shaped function. In a successive negative contrast
procedure itwas found thatwhen shifted fromahigh sucrose concentration (32%) to a low sucrose concentration
(4%), micemade smaller lick clusters than a group that only received the low concentration.Mice exposed to fla-
vours (cherry or grape Kool Aid) mixed with sucrose (16%) made larger lick clusters for familiar flavours com-
pared to novel flavours. This habituation effect was evident after short (5 min) and long (24 h) test intervals.
Both successive negative contrast and flavour habituation failed to affect levels of consumption. Collectively,
the results show that prior experience can have effects on lick cluster size that are equivalent to increasing or de-
creasing the sweetness of a solution. Thus, palatability is not a fixed property of a substance but is dependent on
expectation or familiarity that occurs as a result of memory.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Palatability reflects the hedonic value of foods and is a key determi-
nant of feeding behaviour. Although it is determined by the properties
of the food, it is also moderated by prior experience (e.g., [17]). While
the level of intake of a particular food may reflect its palatability, it has
been shown thatmeasures of palatability are dissociable frommeasures
of consumption. For example, dopaminergic manipulations affect levels
of consumption, but not necessarily the orofacial taste reactivity re-
sponses [24] that are taken to reflect palatability responses [13,20]. Sim-
ilarly, there are manipulations that affect consumption, but have
different effects on taste reactivity. For example, Pelchat, Grill, Rozin,
y, Durham University, Science
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and Jacobs [21] found that rats would avoid consuming flavours that
had previously been pairedwith sickness and shocks to a similar extent,
but only flavours that had been paired with sickness elicited negative
taste reactions such as gaping and head shaking.

Given the distinct role of palatability in feeding behaviour it is im-
portant to understand both the psychological and neurobiological pro-
cesses underlying palatability. Crucially, understanding of the
neurobiological processes requires the use of animal models. Due to
the prevalence of genetically modified mouse lines there is a benefit in
identifying valid behavioural manipulations of palatability in mice. Cur-
rently, there arewell-established behavioural procedures for examining
palatability in rats, but there are fewer successful demonstrations in
mice. Therefore, a purpose of the current studywas to determinebehav-
ioural factors that affect palatability in mice by testing the effect of prior
experience on consumption of sucrose solutions.

In order to assess palatability inmicewe used amicrostructure anal-
ysis of licking behaviour during consumption of sucrose. Rodents drink,
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typically, by making a series of licks in quick succession (a lick cluster)
before a pause (e.g., [3,5]). In rats the mean number of licks in a cluster
increasesmonotonically as a function of sucrose concentration,whereas
consumption follows an inverted U-shaped function [7,23]. Therefore,
lick cluster size has been proposed to provide a measure of palatability
that is independent of levels of consumption (see [9], for a discussion).
Consistentwith this proposal, lick cluster size decreases with increasing
concentration of unpalatable tastes (e.g., [14]). In the present study we
used the mean lick cluster size as an alternative measure of palatability
to the orofacial taste reactivity responses. While taste reactivity mea-
sures have been used to measure changes in palatability as a conse-
quence of experience (e.g., [11]), the method requires human coding
of the behaviours and surgery to enable the administration of sub-
stances directly into the oral cavity of rodents. Therefore, the measure-
ment of lick cluster sizes avoids the use of those procedures.

We have previously demonstrated in mice that lick cluster size is af-
fected by sucrose concentration, but this was with only a limited range
of concentrations [1]. In addition it has been suggested that the mono-
tonic effect of sucrose concentration on lick cluster size in mice is ob-
served only when using a particularly large pause criterion (N1 s) to
determine the end of a lick cluster [15]. In order to validate the use of
lick cluster size as a measure of palatability in mice Experiment 1
assessed consumption of a range of sucrose concentrations using a
range of inter-lick cluster interval criteria.

The effect of memory on palatability was assessed using procedures
that should either decrease or increase palatability. Experiment 2 exam-
ined a detrimental effect on palatability using a successive negative con-
trast procedure in which one group of mice was preexposed to 32%
sucrose and another group was preexposed to 4% sucrose. Both groups
were then allowed to consume 4% sucrose. In rats it has been demon-
strated that the shift from a high concentration of sucrose to a low con-
centration results in a reduction in palatability of the low concentration
of sucrose compared to a condition in which animals only experience
the low concentration of sucrose [12]. In mice there are reports of neg-
ative contrast effects on levels of consumption (i.e., a shift from high to
low concentration of sucrose results in reduced intake compared to con-
trols, [19]), but there are few reports of an effect on palatability (see [1]).

A beneficial effect on palatability was examined using a flavour ha-
bituation procedure. A common finding in rats is that exposure to a
novel flavour leads to a reduction in feeding that habituates with in-
creased exposure [2]. In addition, measures of palatability increase as
the flavour becomes familiar [16]. A flavour habituation effect on palat-
ability was examined in Experiment 3 using a between-subjects proce-
dure in which mice were exposed to a novel flavour and then after a
short (5 min) delay half of the mice were exposed to the same flavour
and the other half were exposed to a novel flavour. Experiment 4 exam-
ined the longer lasting effects of flavour habituation using awithin-sub-
jects procedure in which mice were exposed to one flavour over eight
days and then given that flavour, and a novel flavour, 24 h after the
last exposure.

2. Method

2.1. Subjects

Female C57BL/6 J/Ola mice obtained from Charles River, UK were
used. Mice were caged in groups of four, in a temperature controlled
housing room (light-dark cycle: 0800–2000). Mice in Experiment 1
were 10 weeks of age at the beginning of the experiment and weighed
between 16.3 and 20.9 g (mean = 18.9 g). Mice in Experiment 2 were
approximately five months old at the beginning of the experiment
and weighed between 19.4 and 24.3 g (mean= 21.7 g). Mice in Exper-
iment 3 were between 12 and 20 weeks of age at the beginning of the
experiment and weighed between 14.1 and 25.7 g (mean = 21.4 g).
Mice in Experiment 4 were between 16 and 27 weeks old and weighed
between 17.4 and 24.5 g (mean = 20.0 g). Mice were initially allowed
free access to food, but one week prior to training the weights of the
micewere reduced, by receiving a restricted diet, and then subsequent-
ly maintained at 85% of their free-feeding weights. Mice were tested
during the light period between 10 am and 4 pm. Throughout testing
mice had ad libitum access to water in their home cages. All procedures
were in accordance with the United Kingdom Animals Scientific Proce-
dures Act (1986); under project license number PPL 70/7785.
2.2. Apparatus

A set of eight identical operant chambers (interior dimensions:
21.6 × 17.8 × 12.7 cm; ENV-307 W, Med Associates), enclosed in
sound-attenuating cubicles (ENV-022 V, Med Associates) were used.
The operant chamberswere controlled byMed-PC IV software (MedAs-
sociates). The side walls were made from aluminium, and the front and
back walls and the ceiling were made from clear Perspex. The chamber
floors each comprised a grid of 24 stainless steel rods (0.32 cm diame-
ter), spaced 0.79 cm apart and running perpendicular to the front of
the chamber (ENV-307W-GFW, Med Associates). Retractable sippers
(ENV-352AW, Med Associates) and a small hole in one wall of each
chamber allowed graduated pipettes to be extended into, and retracted
from, the chambers. The graduated pipette (0.1 ml) allowed measure-
ment of consumption by comparing the volume before and after testing.
Contact lickometer controllers (ENV-250,Med Associates) allowed con-
tacts between the mice and the graduated pipettes to be recorded at a
resolution of 0.01 s. A fan (ENV-025F, Med Associates) was located
within eachof the sound-attenuating cubicles andwas turned on during
sessions. Sucrose solutions were made weight/volume with commer-
cially available sucrose in distilled water. For Experiments 3 and 4 the
flavours used were cherry and grape Kool Aid (0.05% w/v, Kraft Foods
USA, Rye Brook, NY, USA).
2.3. Procedure

2.3.1. Experiment 1: the effect of sucrose concentration on licking behaviour
Mice ( N= 16) were allowed to consume 2.5%, 5%, 10% and 20% su-

crose solution on four sessions, one session per day. Micewere present-
ed with one of the concentrations per session, and the order in which
the concentrations were presented was counterbalanced across mice.
Specifically, half of the mice received the two low concentrations
(2.5% and 5%) in the first two sessions and the remainingmice received
the twohigh concentrations (10% and 20%).Within eachof these groups
the order of the concentrations in these first two sessions was
counterbalanced. For the last two sessions mice received the two re-
maining concentrations in a counterbalanced order that across mice
was also counterbalanced with respect to the order of the concentra-
tions in the first two sessions. Sessions lasted 30 min and the pipette
was extended into the chamber for the full duration of the session.
2.3.2. Experiment 2: the effect of negative contrast on licking behaviour
Mice were randomly allocated to either group Unshift (N= 8) or

group Shift (N = 8). The groups did not differ in their free-feeding
weights (Unshift: 22.0 g; Shift: 21.0 g; F(1, 14) = 1.8, p = 0.21). Mice
received eight training sessions, consisting of one trial per session, one
session per day, in which a sucrose solution was available for consump-
tion. Each trial lasted 15 min; however, the pipette was only extended
into the chamber for thefinal tenminutes of the trial (similar to the pro-
cedure used by Austen and Sanderson [1]). Group Unshift received 4%
sucrose solution on each training session, and were subsequently
given a single test session 24 h after the final training session, using
the same procedure as during training, in which they were also given
4% sucrose. Group Shift received 32% sucrose during training and then
4% sucrose in the test session.



Fig. 1. Data for Experiment 1. Total number of licks (top panel), mean lick cluster size
(centre panel), and volume of sucrose consumed (bottom panel) are shown for each of
the four sucrose concentrations. Error bars indicate ± SEM.
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2.3.3. Experiment 3: the short-term effect of flavour habituation on licking
behaviour

Mice were randomly allocated to either group Familiar (N= 16) or
group Novel (N = 16). The groups did not differ in their free-feeding
weights (Familiar: 21.5 g; Novel: 21.3 g; F(1, 30) b 1, p=0.89).Mice re-
ceived a single training trial in which they were allowed to consume
16% sucrose paired with a flavour. Five minutes later, mice received a
single test trial, in which they could consume 16% sucrose paired with
a flavour. For group Familiar the flavour during the test trial was the
same as during the training trial. For group Novel the flavour during
the test trial was different from the one during the training trial. For
half of the mice within each group the flavour in the training trial was
cherry and for the remaining mice it was grape. The mice in group
Novel that received the cherry flavour during training received grape
in the test trial, and vice versa for the remaining mice in group Novel.
The training and test trials lasted fifteen minutes, with the pipette ex-
tended into the chamber for the entirety of this time.

2.3.4. Experiment 4: the long-term effect of flavour habituation on licking
behaviour

Mice (N= 16) initially received eight sessions of training, one ses-
sion per day, in which they were allowed to consume 16% sucrose
pairedwith a flavour. For half of themice the flavour thatwas presented
throughout training was cherry, with the remaining mice receiving
grape. Each session consisted of two trials of fifteen minutes, with a
tenminute ITI. In contrast to Experiment 3 the pipette was only extend-
ed into the chamber for the final ten minutes of each trial. Given that
long-term habituation has been proposed to be context-dependent
[26] this procedure was used to allow mice exposure to the context
cues prior to the start of consumption in each session (see [4]). Twen-
ty-four hours after the last session of training, mice received a single
test session. On this test session, which consisted of two trials in the
samemanner as during training,micewere allowed to consume16% su-
crose paired with cherry during one trial and grape during the other.
Half of the mice received the same flavour as during training for the
first trial of the test session, with the remainder receiving the novel fla-
vour first.

2.4. Data and statistical analyses

For all experiments three aspects of licking behaviour were mea-
sured: total number of licks, mean number of licks per cluster (lick clus-
ter size) and amount of sucrose solution consumed (ml). A lick cluster
was defined as a series of two or more licks made with b0.5 s between
the endof one lick and the start of the next. For Experiment 1, in order to
assess the sensitivity of the measure with a range of criteria, additional
analyses were conducted using lick cluster criteria of b0.25 s and b1 s
between licks. For the crucial test phases of Experiments 2–4 licking
was analysed in time bins. The test phase of Experiment 2 was analysed
in five 2-min time bins in order to make comparisons with another
study of negative contrast reported by Austen and Sanderson [1] in
which there was an effect of negative contrast on lick cluster size in
the initial 2-min time bin. The test phase of Experiment 3, in which fla-
vour habituation was examined, was analysed in three 5-min time bins.
Experiment 4 also examined flavour habituation, but the test phase, in
contrast to Experiment 3, lasted only 10 min (see procedural details).
Therefore, in order to analyse flavour habituation in a similar manner
across experiments, Experiment 4 was analysed in two 5-min time
bins. For each time bin lick cluster size was calculated by dividing the
total number of licks made within clusters of licks in that time bin by
the number of lick clusters completed within the time bin. This method
approximates themean lick cluster size for a particular time bin, but po-
tentially leads to a mean that differs to an extent from the mean of the
lick clusters that were started and completed within the time bin. All
data were analysed using one-way or multifactorial ANOVA. Interac-
tions were analysed with simple main effects analysis using the pooled
error term from the original ANOVA, or separate repeated measures
ANOVA for within-subject factors with more than two levels. Where
sphericity of within-subjects variables could not be assumed, a Green-
house-Geisser correction was applied to produce more conservative p-
values.

3. Results

3.1. Experiment 1: the effect of sucrose concentration on licking behaviour

3.1.1. Total licks
The total number of licks for the four sucrose concentrations is

shown in Fig. 1 (top panel). The number of licks increased with concen-
tration from 2.5% to 10% sucrose, but was lower for 20% sucrose than for
both 10% and 5%. A repeated-measures ANOVA of concentration failed
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to show a significant effect of sucrose concentration on total licks,
F(3, 45) = 2.73, p = 0.10.1 Trend analysis, however, showed a
significant quadratic trend between concentration and total licks,
F(1, 15) = 24.3, p b 0.001, but no significant linear trend, F(1, 15) = 0.83,
p=0.38.
3.1.2. Lick cluster size
The mean lick cluster size during consumption of the four sucrose

concentrations, using a lick cluster criterion of b0.5 s between licks, is
shown in Fig. 1 (centre panel). The lick cluster sizes showed amonoton-
ic increase with increasing sucrose concentration. A repeated measures
ANOVA of concentration showed a significant effect of concentration,
F(3, 45) = 37.8, p b 0.001. In addition, trend analysis showed a signifi-
cant linear trend between sucrose concentration and lick cluster size,
F(1, 15) = 72.5, p b 0.001. Additional analyses were carried out using
criteria of b0.25 s and b1 s between licks (data not shown). It was
found that 85% of lick clusters that were separated by at least 0.25 s
were also separated by at least 0.5 s, and 91% of lick clusters that were
separated by at least 0.5 s were also separated by at least 1 s. Similar
to the results found using the b0.5 s criterion, a monotonic increase in
lick cluster size with increasing sucrose concentration was found with
the b0.25 s and b1 s criteria (b 0.25 s: F(3,45) = 19.9, p b 0.001; b 1 s:
F(3,45) = 42.0, p b 0.001). Comparison of the effect sizes revealed
that there was little difference between the 0.5 and 1 s criteria (partial
eta squared equalled 0.72 and 0.74 respectively), but the 0.25 s criterion
produced the lowest effect size (partial eta squared equalled 0.57).
Analyses in the subsequent experiments used the 0.5 s criterion similar
to that commonly used in rat studies (e.g., [7,8]).
3.1.3. Consumption
The volume of each sucrose solution consumed is shown in Fig. 1

(bottom panel). Similar to the pattern of results for total licks, the vol-
ume consumed increased with concentration from 2.5% to 10% sucrose,
but was lower for 20% sucrose than all other concentrations. Consump-
tion data was lost for one animal in the 5% sucrose condition; therefore
the statistical analyses represent data from 15 animals. A repeatedmea-
sures ANOVA of concentration showed a significant effect of concentra-
tion, F(3, 42) = 4.87, p = 0.029. Post-hoc analysis of the effect of
concentration using the Bonferroni correction for multiple comparisons
revealed that mice consumed less of 2.5% sucrose than 5% and 10% (p-
values b0.05), but not 20% sucrose (p N 0.9). Mice consumed less of
20% sucrose than 10% sucrose (p b 0.001). In addition, trend analysis
showed a significant quadratic trend between consumption and con-
centration, F(1, 15) = 57.1, p b 0.001, but no significant linear trend,
F(1, 15) = 0.18, p = 0.68.
3.2. Experiment 2: the effect of negative contrast on licking behaviour

3.2.1. Training
Across training sessions group Shift, exposed to 32% sucrose, made a

significantly greater number of licks per session than group Unshift,
whichwas exposed to 4% sucrose (Shiftmean=748±53 SEM;Unshift
mean = 561 ± 53 SEM; F(1, 14) = 6.29, p = 0.025). Group Shift also
made significantly larger lick clusters (Shift mean = 20.5 ± 1.9 SEM;
Unshift mean= 14.3 ± 1.5 SEM; F(1, 14)= 6.58, p=0.022). Although
group Shift consumedmore than group Unshift across sessions, this dif-
ference failed to reach significance (Shift mean = 0.80 ml ±0.04 SEM;
Unshift mean = 0.68 ml ±0.04 SEM; F(1, 14) = 3.73, p = 0.074).
1 An additional analysiswas conducted inwhich the counterbalancing factor ofwhether
mice received the two higher concentrations first or last was included. It was now found
that the effect of concentration was significant (F(3, 42) = 9.2, p b 0.001). Adding this
counterbalancing factor to the analysis of mean lick cluster size and consumption still re-
sulted in revealing significant effects of concentration.
3.2.2. Test: total licks
Licking during the test sessionwas analysed in five two-minute time

bins. The total number of licks of 4% sucrose made during the test ses-
sion by mice in groups Shift and Unshift are shown in Fig. 2 (top
panel). Licking decreased over time for both groups, with the number
of licks being numerically higher for group Shift than Unshift. A
mixed-model ANOVA of bin x group showed a significant main effect
of bin, F(4, 56) = 46.3, p b 0.001, but no significant main effect of
group, F(1, 14)= 1.54, p=0.24, and no significant interaction between
bin and group, F(4, 56) = 0.75, p = 0.50.

3.2.3. Test: lick cluster size
The lick cluster sizes for groups Shift and Unshift are shown in Fig. 2

(centre panel). Group Unshift initially showed a greater mean lick clus-
ter size than group Shift, but by the second time bin lick cluster sizes for
the two groups were similar. This was due to a reduction in lick cluster
size over time for group Unshift. A mixed-model ANOVA of bin x group
Fig. 2. Test data for Experiment 2. Total number of licks (top panel) and mean lick cluster
size (centre panel) are shown in two-minute time bins for each group. The amount of
sucrose solution consumed by each of the two groups during the test trial is shown in
the bottom panel. Error bars indicate ± SEM.

Image of Fig. 2
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showed a significantmain effect of bin, F(4, 56)=6.38, p b 0.001, but no
significant main effect of group, F(1, 14) = 0.82, p = 0.38. However,
there was a significant interaction between bin and group, F(4, 56) =
3.16, p= 0.021. Simple main effects analysis of the interaction showed
that lick cluster size was higher for group Unshift than for group Shift
during the first twominute bin, F(1, 14)= 5.27, p=0.038, but not dur-
ing any other bins, F-values b0.4, p-values N0.5. The lick cluster size for
group Unshift decreased over the course of the test session, F(4, 28) =
6.29, p = 0.001, but this was not the case for group Shift, F(4, 28) =
1.52, p = 0.22.
3.2.4. Test: consumption
The volume of 4% sucrose solution consumed during the test session

by mice in groups Shift and Unshift is shown in Fig. 2 (bottom panel).
The two groups consumed a similar amount, F(1, 14) = 0.11, p= 0.75.
3.3. Experiment 3: the short-term effect of flavour habituation on licking
behaviour

3.3.1. Training
The mean number of licks during the training sessions was 559

(±38 SEM), the mean lick cluster size was 22.1 (±1.4 SEM), and the
mean consumption was 0.48 ml (±0.03 SEM). There were no signifi-
cant differences between group Familiar and group Novel during the
training stage on any of the three measures, F-values ≤1, p-values N0.3.
3.3.2. Test: total licks
Licking during the test trial was analysed in three five-minute bins.

The total numbers of licks made by group Familiar and group Novel
are shown in Fig. 3 (top panel). The number of licks decreased over
the course of the trial for both groups, with more licks made by group
Familiar than group Novel at the beginning of the trial and fewer licks
made by group Familiar than group Novel at the end. A mixed-model
ANOVA of bin x group showed a significant main effect of bin, F(2,
60) = 22.4, p b 0.001, but no significant main effect of group, F(1,
30) = 0.50, p=0.48. The interaction between these main effects failed
to reach significance, F(2, 60) = 3.17, p = 0.060. Given that the novel
flavour will become increasingly familiar across the test trial the differ-
ence between the groups would be anticipated to be greatest earlier in
the test trial. Therefore, a second analysis was conducted restricted to
just the first time bin. It was found, however, that the effect of novelty
was not significant, F(1, 30) = 2.64, p = 0.12.
Fig. 3. Test data for Experiment 3. Total number of licks (top panel) and mean lick cluster
size (centre panel) are shown in five-minute time bins for each group. The amount of
sucrose solution consumed by each of the two groups during the test trial is shown in
the bottom panel. Error bars indicate ± SEM.
3.3.3. Test: lick cluster size
The lick cluster sizes for group Familiar and group Novel during the

test trial are shown in Fig. 3 (centre panel). The lick cluster sizes were
higher for group Familiar than for group Novel across all three time
bins, although this difference was more marked at the beginning of
the trial. A mixed-model ANOVA of bin x group showed no significant
main effect of bin, F(2, 60)=1.98, p=0.15, and no interaction between
bin and group, F(2, 60) = 0.76, p = 0.47. The main effect of group was
not significant, F(1, 30) = 2.97, p= 0.095. Given that the novel flavour
will become increasingly familiar across the test trial the difference be-
tween the groups would be anticipated to be greatest earlier in the test
trial. Therefore, when the analysis was restricted to the first time bin it
was found that Group Novel made significantly lower lick cluster sizes
than group Familiar, F(1, 30) = 8.66, p = 0.006.
3.3.4. Test: consumption
The amount of sucrose consumed by groups Novel and Familiar dur-

ing the test trial is shown in Fig. 3 (bottom panel). Consumption levels
were similar between the two groups. A between-subjects ANOVA of
group showed no significant main effect, F(1, 30) = 0.01, p = 0.91.
3.4. Experiment 4: the long-term effect of flavour habituation on licking
behaviour

3.4.1. Training
The mean number of licks during the training sessions was 864

(±84 SEM), the mean lick cluster size was 27.9 (±3.5 SEM), and the
mean consumption was 0.78 ml (±0.03 SEM). The number of licks
and mean lick cluster size remained similar across sessions, F-values
b1.4, p-values N0.27, but the amount consumed showed a general in-
crease over sessions, F(7, 105) = 14.5, p b 0.001.
3.4.2. Test: total licks
Licking during the test sessionwas analysed in two five-minute bins.

The total number of licks made during the test session to the novel and
familiar flavours is shown in Fig. 4 (top panel). The number of licks de-
creased across the course of the session for both novel and familiar

Image of Fig. 3


Fig. 4. Test data for Experiment 4. Total number of licks (top panel) and mean lick cluster
size (centre panel) are shown in five-minute time bins for the familiar and novel flavours.
The amount of sucrose solution consumed during each test trial is shown in the bottom
panel. Error bars indicate ± SEM.
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flavours, and there were numerically more licks to the familiar flavour
than to the novel flavour. A repeated measures ANOVA of bin x novelty
showed a significantmain effect of bin, F(1, 15)= 125, p b 0.001, but no
significant main effect of novelty, F(1, 15) = 0.33, p = 0.58, and no in-
teraction between bin and novelty, F(1, 15) = 0.80, p = 0.39.

3.4.3. Test: lick cluster size
The lick cluster sizes made during the test session to the novel and

familiar flavours are shown in Fig. 4 (centre panel). Lick cluster size
could not be calculated for one mouse during the second bin of the
test session due to the mouse failing to make any licks during this peri-
od. To prevent thismouse from being excluded from the statistical anal-
ysis, its lick cluster size was assumed to be the groupmean for this time
bin. Lick cluster sizes decreased across the session for the familiar fla-
vour, but not the novel flavour, with higher lick cluster sizes to the fa-
miliar flavour than to the novel flavour early in the test session. A
repeated measures ANOVA of bin x novelty showed a significant main
effect of bin, F(1, 15) = 11.8, p = 0.004, but no significant main effect
of novelty, F(1, 15) = 3.26, p = 0.091. There was a significant interac-
tion between the two main effects, F(1,15) = 5.08, p = 0.040. Simple
main effects analysis of this interaction showed that the lick cluster
size for the familiar flavour was higher than the novel flavour in the
first time bin, F(1, 15) = 6.26, p = 0.024, but not in the second time
bin, F(1, 15)=0.22, p=0.65. Lick cluster size decreased for the familiar
flavour over the course of the test session, F(1, 15) = 12.1, p = 0.003,
but this was not the case for the novel flavour, F(1, 15)=0.08, p=0.79.

3.4.4. Test: consumption
The volumes of sucrose consumed during the test session to the

novel and familiar flavours are shown in Fig. 4 (bottom panel). The
amount of sucrose consumed was similar between the two conditions.
A repeated measures ANOVA of novelty showed no significant main ef-
fect, F(1, 15) = 0.11, p = 0.75.

4. Discussion

Increasing the sucrose concentration of a solution produced amono-
tonic increase in the size of the lick clusters made during consumption
of that solution. It was found that the negative contrast procedure and
habituation of neophobia procedures affected lick cluster size in a man-
ner that was similar to that caused by decreasing or increasing, respec-
tively, the concentration of sucrose. These results demonstrate that
memory for prior consumption of food can have either a positive or neg-
ative effect on palatability depending on the particular procedure used.

Experiment 1 confirmed that lick cluster size provides an effective
measure of palatability in mice that is dissociable from levels of con-
sumption. It was found that the number of licks within a cluster in-
creased monotonically as a function of the concentration of sucrose. In
contrast, the total number of licks and the volume of sucrose solution
consumed followed an inverted U-shaped function, with moderate su-
crose concentrations producing a greater number of licks and volume
consumed than either low or high concentrations. In contrast to a
study by Johnson et al. [15]we found that C57BL6mice showed an effect
of sucrose concentration on lick cluster size using a variety of pause
criteria (i.e., 0.25, 0.5 and 1 s), suggesting that there are not considerable
differences between these criteria with the majority of pauses between
clusters of licks that lasted 0.25 s also lasting at least 1 s. In the study by
Johnson et al. [15] there was an effect of sucrose concentration on lick
cluster size only when a 1 s pause criterion was used, suggesting that
pauses shorter than 1 s may reflect interruptions in licking that are
not related to the palatability of the solution consumed. It is likely that
the discrepancybetween the current results and those from the Johnson
et al. [15] study is due to differences in the methods used to measure
licking behaviour. In the current study mice were allowed to consume
sucrose solutions from a pipette, such that the flow of the solution
was dependent on the tongue making contact with the pipette. In the
study by Johnson et al. [15] mice were able to lap sucrose solutions
that were periodically pumped into a foodwell. Therefore, the contrast-
ing results may reflect differences in the lick clusters made when lap-
ping sucrose versus licking from a pipette. Importantly, our results
parallel those of a study in rats [23] that demonstrated that lick cluster
sizes, as determined by a relatively short pause criterion (0.3 s) increase
monotonically as a function of sucrose concentration. In this study rats
drank by licking from a spout. Collectively these results may suggest
that the lapping procedure used by Johnson et al. [15] lacks the sensitiv-
ity to detect changes in cluster size at short pause criteria.

A successive negative contrast effect on lick cluster size was found
whenmicewere shifted froma high sucrose concentration to a low con-
centration. The reduction in lick cluster size, compared to the unshifted
control group, was transient, lasting for only the first twominutes of the
ten minute test trial. In contrast, there was no significant effect on the
number of licks or the volume of sucrose solution consumed. The lack
of effect on consumption is surprising given that it is commonly found
in studies with rats (see [10], for a discussion). A successive negative

Image of Fig. 4
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contrast effect has been reported in mice [19], however, in contrast to
the present study, mice received greater exposure to the high concen-
tration prior to the shift to the lower concentration. Therefore, it is pos-
sible that our procedure is suboptimal for producing a negative contrast
effect on consumption. Nonetheless, we have found a similar pattern of
results using a within-subjects design [1]. In that study, mice were ex-
posed to 32% sucrose in one context and 4% in another context. In the
critical testmice received 4% sucrose in both contexts. Similar to the cur-
rent results, mice showed a transient reduction in lick cluster size in the
context in which they had previously experienced 32% sucrose, but
there was no overall effect on consumption. Therefore, it is likely that
the negative contrast effect on lick cluster size in Experiment 2 was
caused by context-dependent memory. The fact that memory retrieval
of the high sucrose concentration had a negative rather than a positive
effect on palatability may reflect habituation, potentially as a result of
conditioned diminution of the unconditioned response [25]. Important-
ly, the between-subjects demonstration of a negative contrast effect on
palatability in the current studymakes it unlikely that the negative con-
trast effect in the Austen and Sanderson [1] study was an artefact of the
within-subjects procedure that was used. For example, the between-
subjects effectmakes it unlikely that thewithin-subject effect depended
on differential conditioning of the contexts that could result in the con-
text paired with 4% sucrose becoming a conditioned inhibitor of 32%
sucrose.

A flavour habituation effect on lick cluster sizewas foundwhenmice
were preexposed to a flavour. Similar to the results for the negative con-
trast study, there was no overall effect on levels of consumption. This
was true when mice received a brief preexposure and were tested
after a short interval (Experiment 3) andwhenmice received extensive
preexposure and were tested after a long interval (Experiment 4). The
procedures used in the two demonstrations of flavour habituation rule
out two potential accounts of the effect on lick cluster size. First, the
larger lick cluster size for the familiar flavour does not simply reflect a
general enhancement in licking behaviour. Both experiments used a
stimulus specific test of habituation, comparing the response to the fa-
miliarflavourwith that for a novelflavour, ruling out nonspecific chang-
es in behaviour. Therefore, the increase in lick cluster sizewas specific to
the preexposed, familiar flavour. Second, the flavour habituation effect
was evident after a relatively long, 24-h, interval making it unlikely
that short-term sensory adaptation can account for the results. While
it is possible that performance in the short interval test reflects habitu-
ation caused by the short-termmemory, it is also possible that it reflects
to someextent sensory adaptation. Sensory adaptationwould, however,
likely recover over a 24-h period. Due to the stimulus-specific and long-
term nature of the effect, the increase in lick cluster size likely reflects a
weakening of the unconditioned, phobic response to the flavour due to
memory retrieval.

In contrast to other tests of habituation of neophobia in feeding be-
haviour (e.g., [16]), we failed to find an effect on consumption. This sug-
gests that the increase in consumption during preexposure that was
observed in Experiment 4 was not due to stimulus-specific habituation.
Other studies have, however, found stimulus-specific effects on con-
sumption (e.g., [22]). The lack of effect in the current study may be
due to the flavours that were used being relatively palatable indepen-
dent of the amount of preexposure, which may have resulted in low
levels of neophobia. Regardless of the reasons for failing to find an effect
on consumption the results may suggest that palatability is a more sen-
sitive measure of habituation and although animals may readily con-
sume novel flavours, they are perceived as less palatable than familiar
flavours.

The effects of negative contrast and flavour habituation were tran-
sient, being evident at the beginning of the test phase, but not by the
end. Two factors are likely to have contributed to the transient nature
of the effects. First, licking typically decreased over the test sessions
such that differences between conditions may have been harder to de-
tect in the latter portions of the test due to a floor effect. Second, the
effects of negative contrast and flavour habituation are likely to reduce
over the course of the test phase. Thus, in the case of negative contrast,
the effect of the down-shift in sucrose concentration is likely to be
greatest initially. Similarly, in the case of flavour habituation, the effect
of noveltywill reduce as the novel flavour becomes increasingly familiar
over the test phase. In Experiment 2 it was found that there was an ef-
fect of negative contrast on lick cluster size in the initial 2-min time
bin, but not thereafter. As mentioned previously, this effect is similar
to that found in a previous study of negative contrast [1], suggesting
that the effect of negative contrast on palatability does not last past
the first two minutes of consumption. Due to differences in the proce-
dural details, Experiments 3 and 4 were analysed in five-minute time
bins. For these experiments, however, it was also found that the effect
of flavour habituation was evident in the first time bin, but not thereaf-
ter. It remains to be determined the degree to which the lack of differ-
ences between conditions in the latter portions of the test phase is
due to a reduction in licking caused by satiety or by extinction of the ef-
fects of the experimental manipulations.
5. Conclusions

The results of the present set of experiments demonstrate behav-
ioural procedures for manipulating the palatability of sucrose in mice,
suggesting that memory plays an important role in the hedonic value
of foods. These procedures will be useful for examining the neural
basis of cognitive factors in feeding behaviour. The results also provide
further evidence that consumption and palatability are dissociable.
Therefore, while initial consumption is linked to the palatability of a
substance (e.g., [6]), overall levels of consumption provide little infor-
mation about palatability. Thus, lick cluster size provides a measure of
palatability that is more informative for models of anhedonia (e.g.,
[18]) than consumption alone.
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