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Abstract

Plots of electronic energy vs. electron number, determined using approximate den-

sity functional theory (DFT) and Hartree-Fock theory, are typically piecewise convex

and piecewise concave, respectively. The curves also commonly exhibit a minimum

and maximum, respectively, in the neutral → anion segment, which lead to positive

DFT anion HOMO energies and positive Hartree-Fock neutral LUMO energies. These

minima/maxima are a consequence of using basis sets that are local to the system,

preventing fractional electron loss. Ground state curves are presented that illustrate

the idealised behaviour that would occur if the basis set were to be modified to enable

fractional electron loss, without changing the description in the vicinity of the system.
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The key feature is that the energy cannot increase when the electron number increases

and so the slope cannot be anywhere positive, meaning frontier orbital energies cannot

be positive. For the convex (DFT) case, the idealised curve is flat beyond a critical

electron number, such that any additional fraction of an electron added to the system

is unbound. The anion HOMO energy is zero. For the concave (Hartree-Fock) case,

the idealised curve is flat up to some critical electron number, beyond which it curves

down to the anion energy. A minimum fraction of an electron is required before any

binding occurs, but beyond that the full fraction abruptly binds. The neutral LUMO

energy is zero. Approximate DFT and Hartree-Fock results are presented for the F→

F− segment, and results approaching the idealised behaviour are recovered for highly

diffuse basis sets. It is noted that if a DFT calculation using a highly diffuse basis set

yields a negative LUMO energy then a fraction of an electron must bind and the elec-

tron affinity must be positive, irrespective of whether an electron binds experimentally.

This is illustrated by calculations on Ne → Ne−.

Introduction

In recent years, there has been significant interest1–18 in the variation of the electronic energy,

E, as a function of electron number, N , due to the relevance of this process to the calcula-

tion of quantities such as charge-transfer excitation energies,19 band-gaps,6 and molecular

dissociation energies1,2,20 in Kohn–Sham density functional theory (DFT) and Hartree-Fock

theory. The exact E vs. N behaviour21 comprises a series of straight line segments with

derivative discontinuities at the integers, with slopes on either side of an integer equal to the

negative of the exact vertical ionisation potential and electron affinity of the integer system.

It is now well established that the deficiencies inherent to approximate DFT and Hartree-

Fock theory mean that this piecewise linearity is not recovered by practical calculations.

Local DFT exchange-correlation functionals such as the local density approximation (LDA)

or generalised gradient approximations (GGAs) instead exhibit piecewise convex curves −
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the energies are usually reasonable at integer electron number, but are underestimated at

non-integer. This deficiency has been termed1–4,9,22,23 many-electron self-interaction error

or delocalisation error and it has significant implications for the aforementioned quantities.

Hartree-Fock theory instead yields piecewise concave curves. It follows that hybrid func-

tionals, which comprise a linear combination of GGA and exact exchange, yield curves that

are intermediate between GGA and Hartree-Fock. The most accurate (minimum curvature)

results are often obtained using range-separated exchange-correlation functionals, which pro-

vide a more sophisticated mechanism for including exact exchange.

The slope of an E vs. N curve is related to the orbital energies.6,24,25 For DFT calculations

using explicit density functionals such as LDA and GGA, the limiting values of ∂E
∂N

on the

electron deficient and electron abundant sides of an integer M are the HOMO energy, εMH ,

and the LUMO energy, εML , of the M -electron system,

lim
δ→0

∂E

∂N

∣∣∣
M−δ

= εMH (1)

lim
δ→0

∂E

∂N

∣∣∣
M+δ

= εML . (2)

Eqs. (1) and (2) are also satisfied for DFT calculations using orbital-dependent hybrid and

range-separated functionals, when the usual generalized Kohn–Sham (GKS) formalism is

used, and they are also satisfied for Hartree-Fock theory. If an optimised effective potential

(OEP) formalism is instead used for orbital-dependent functionals then an additional deriva-

tive discontinuity term must be introduced, as discussed in Ref. 6. In the present study we

focus on LDA and a range-separated functional within the GKS formalism, together with

Hartree-Fock theory, meaning Eqs. (1) and (2) are valid throughout. These relationships are

central to understanding the charge-transfer19 and band-gap6 problems and they form the

basis of DFT tuning approaches,26 whereby an exchange-correlation functional is constrained

to yield frontier orbital energies equal to ionisation potentials and/or electron affinities.

Many E vs. N curves have been presented in the literature.1–12,14,15,18 In addition to the
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aforementioned deviation from piecewise linearity, it is common for LDA/GGA curves to

exhibit an energy minimum in the segment connecting the neutral to anion and for Hartree-

Fock curves to exhibit an energy maximum in that segment; for specific examples, see Refs.

1–7,9–12,14,15. In the present study we highlight the fact that these minima/maxima are

a consequence of using basis sets that are local to the system and that they cannot persist

if fractional electron loss is possible. The analysis provides a simple perspective for under-

standing a range of issues in approximate DFT and Hartree-Fock theory, relating to electron

binding, orbital energies, and electron affinities, as well as providing some unexpected find-

ings. All calculations were performed in an unrestricted manner using the CADPAC27 and

Gaussian0928 programs.

Results and Discussion

Convex E vs. N

Figure 1(a) presents schematic ground-state E vs. N curves for a neutral system that

vertically binds an electron, i.e. where the energy of the anion is below that of the neutral.

We consider the region M ≤ N ≤ M + 1, where M is the electron number of the neutral

system and M +1 is the electron number of the anion. The red solid curve shows the convex

behaviour with an energy minimum that is often observed when LDA/GGA is used with a

basis set that is local to the system (hereafter termed a ‘local basis set’). The limiting slope

on the electron abundant side of integer M is negative, and so it follows from Eq. (2) that

the LUMO energy of the neutral is εML < 0, which is well-known. The energy drops to a

minimum value at some critical electron number, Nc, but then increases again. The limiting

slope on the electron deficient side of the integer M + 1 is positive, and so it follows from

the (M + 1)-electron analogue of Eq. (1) that the HOMO energy of the anion is εM+1
H > 0.

It is well-known that LDA/GGA HOMO energies of anions are often positive and there has

been significant discussion29–35 in the literature about the formal and practical implications
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of this. Figure 1(a) illustrates its origin from an E vs. N perspective.

The presence of the minimum means that the energy of systems with electron number

Nc < N ≤ M + 1 is greater than that of the system with electron number Nc. For these

systems, the energy could in principle be lowered by reducing the electron number in the

vicinity of the system to Nc, with the remaining fraction moving far from the system with

zero energy. However, the use of a local basis set means that all the electrons are constrained

to be in the vicinity of the system, and so this does not occur.

The green dotted curve in Figure 1(a) shows the idealised behaviour that would occur

if the basis set were to be modified to enable fractional electron loss, without changing the

description in the vicinity of the system. For systems with electron number Nc < N ≤

M + 1, the variational ground-state solution is obtained by binding only Nc electrons and

moving the remaining fraction far from the system. The energy of all these systems is

the same as the energy of the system with electron number Nc and so the curve is flat,

exhibiting a degenerate minimum, and εM+1
H = 0. The electron affinity of the neutral system

(AM = E(M) − E(M + 1)) is larger than it was from the red curve, which is somewhat

non-intuitive given that the increase in affinity is associated with fractional electron loss.

Several studies29–35 have discussed fractional electron loss, anion HOMOs approaching zero,

and increased electron affinities, although the tendency has been to consider the issues from

the perspective of the exchange-correlation potential. Figure 1(a) illustrates all of these

aspects from the perspective of an E vs. N curve. It also demonstrates that a positive anion

HOMO energy simply reflects the inability to lose a fraction of an electron, due to a local

basis set.

The shape of the idealised curve in Figure 1(a) highlights a key result: when electron loss

is possible, the E vs. N curve satisfies E(N + δ) ≤ E(N), for δ ≥ 0, i.e. the energy cannot

increase when the electron number increases and the slope of the curve cannot be anywhere

positive.

The idealised electron addition process is therefore as follows: As the electron number
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increases from M to Nc, all of the added fraction binds. Once the electron number exceeds

Nc, however, the number in the vicinity of the system does not change and the remaining

fraction is unbound. The anion has only Nc electrons in the vicinity of the system, with the

remaining M + 1−Nc electrons unbound.

In principle, curves exhibiting the idealised green curve behaviour in Figure 1(a) could

be obtained by augmenting a standard atom-centred gaussian basis set with basis functions

located a long way from the system, which would enable fractional electron loss without

changing the description in the vicinity of the system. In practical calculations, however,

fractional electron loss is usually facilitated (to some extent) by adding diffuse basis functions

centred on or close to the nuclei. The addition of these functions inevitably affects the

description in the vicinity of the system, and so the idealised behaviour in Figure 1(a)

will not be exactly reproduced. The unique minimum must vanish when the basis set is

sufficiently diffuse, but different basis sets will yield different values of Nc and we cannot

rule out the possibility that the lowest energy will occur at the anion, giving a negative εM+1
H .

To investigate the behaviour in real calculations, we consider the F→ F− segment (M =

9) using a series of basis sets of increasing diffuseness. Specifically, we augment the standard

cc-pVTZ basis set with n p functions, reflecting the symmetry of the orbital whose occupation

is changing, with exponents obtained from a geometric progression based on the ratio of

the p exponents in cc-pVTZ and aug-cc-pVTZ. (The basis sets are therefore equivalent to

the regular augmented sets of Woon and Dunning,36 but omitting the s, d, and f diffuse

functions). We denote the basis sets cc-pVTZ+np, where n = 0− 5. Figure 2 presents E vs.

N curves determined using the LDA functional,37,38 for the six basis sets. The curves were

determined by evaluating the electronic energy for a set of equally-spaced N values, with

increment 0.05; unless otherwise stated, the same increment is used throughout the study.

The cc-pVTZ basis set, with no diffuse functions, exhibits strong curvature and a pronounced

minimum. The remaining curves are almost indistinguishable on this scale. The lower plot

expands the shaded region. All the curves exhibit a minimum, although it becomes less
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pronounced with increasing diffuseness, approaching the idealised flattening in Figure 1(a).

To investigate the loss of a fraction of an electron, Figure 3 compares the quantity

z2φ2
HOMO, where φHOMO is the 2pz β HOMO, for N = Nc = 9.87 and N = M + 1 = 10, de-

termined using LDA with the most diffuse cc-pVTZ+5p basis set. On the full scale, the two

orbitals are virtually indistinguishable. However, close inspection reveals that at N = 10,

the orbital acquires non-negligible character at very large distances, reflecting the loss of a

fraction of an electron, which is not present when N = 9.87.

Table 1 lists the values of the LDA neutral LUMO energy, anion HOMO energy, and

electron affinity of the neutral. As the basis set becomes more diffuse, the neutral LUMO

energy is negative and stable, the anion HOMO energy reduces from a positive value towards

zero, and the affinity increases, consistent with Figures 1 and 2. We note that a good estimate

of the limiting electron affinity can be obtained from a knowledge of just the minimum of

the E vs. N curve, without requiring an explicit calculation on the anion, which can be

difficult to converge with highly diffuse basis sets.

Jarecki and Davidson32 performed a detailed investigation into the HOMO energy of the

F− anion, highlighting the importance of ensuring high accuracy with diffuse basis functions

and low electron densities. They found that the LDA HOMO energy was negative when

extremely diffuse functions were added to a quintuple-zeta basis. We have ensured that our

calculations accurately treat diffuse basis functions and low densities. The fact that the two

studies yield different signs for the HOMO energy simply reflects the different underlying

basis sets used. A negative HOMO energy is not inconsistent with the analysis in the present

study (see above).

Concave E vs. N

Next, we extend the analysis to concave curves with an energy maximum. Figure 1(b) again

presents schematic ground-state E vs. N curves for a neutral system that binds an electron.

The red solid curve now shows the concave behaviour that is often observed when Hartree-
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Fock theory is used with a local basis set. The limiting slope on the electron abundant side of

integer M is now positive meaning that εML > 0, which is well-known. The energy increases

to a maximum value and then decreases, becoming equal to the energy of the M -electron

system at some critical electron number, Nc. Beyond this, the energy curves down to the

energy of the (M+1)-electron system. The limiting slope on the electron deficient side of the

integer M + 1 is now negative, meaning that εM+1
H < 0, as is again well-known. In analogy

to Fig. 1(a), systems with M < N < Nc could in principle lower their energy by reducing

the electron number in the vicinity of the system to M , however the use of a local basis set

again prevents this.

The green dotted curve in Figure 1(b) shows the idealised behaviour that would occur

if fractional electron loss was possible, without changing the description in the vicinity of

the system. For systems with electron number M < N < Nc, the variational ground-state

solution is obtained by binding only M electrons and moving the remaining fraction far from

the system. The energy of all these systems is the same as the energy of the M -electron

system and so the curve is flat, exhibiting a degnerate minimum, and εML = 0. This provides

a simple explanation as to why Hartree-Fock LUMO energies approach zero as the basis sets

become more diffuse (e.g. see Refs. 39 and 40). It also demonstrates that a positive neutral

LUMO energy simply reflects the inability to lose a fraction of an electron, due to a local

basis set.

The idealised electron addition process is therefore as follows: As the electron number

increases from M to Nc, all of the added fraction is unbound, leaving only M electrons in

the vicinity of the system. At the point where the electron number exceeds Nc, all electrons

bind, meaning there is an abrupt shift of Nc −M electrons from far away to the vicinity of

the system, with no change in electronic energy. As the electron number is further increased,

all of the additional added fraction binds. The anion has all M + 1 electrons in the vicinity

of the system.

Figure 4 presents E vs. N curves for F → F−, determined using Hartree-Fock theory
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with the same cc-pVTZ+np basis sets. The cc-pVTZ curve exhibits strong curvature with a

pronounced maximum. The lower plot expands the shaded region. With increasing diffuse-

ness, the curves do indeed flatten, approaching the idealised behaviour in Figure 1(b). Note

that for the three most diffuse basis sets, an electron number increment of 0.01 was used, in

order to ensure that the shape is faithfully reproduced.

To investigate the abrupt shift of Nc −M electrons from far away to the vicinity of the

atom at Nc electrons, Figure 5 again plots z2φ2
HOMO, but this time at electron numbers either

side of N = Nc = 9.58, determined using Hartree-Fock theory with the cc-pVTZ+5p basis

set. The entire orbital shifts from very large distance to the vicinity of the atom as the

electron number increases through Nc, precisely as predicted. The origin of this behaviour

is evident from Figure 6, which plots the energies of the two lowest solutions obtained from

the Hartree-Fock calculations, as a function of N , for the cc-pVTZ+5p basis set. The state

denoted ‘Bound’ is the state where the orbital being occupied is localised in the vicinity

of the atom; the state labelled ‘Unbound’ is the state where the orbital being occupied is

located far from the atom. The E vs. N curve in Figure 4 is obtained by choosing the lower

of the bound and unbound energies at each electron number. The state crossing at N = Nc

therefore explains the shape of the curve in Figure 4 and the shift of electrons in Figure 5.

Table 1 lists the values of the Hartree-Fock orbital energies and electron affinities. As

the basis set becomes more diffuse, the neutral LUMO reduces from a positive value towards

zero and the anion HOMO is negative and stable. Unlike in the LDA case, the affinities are

stable with respect to basis set. This is consistent with Figures 1 and 4.

Range-separated exchange-correlation functionals

The curves in Figure 2 were determined using LDA and we have verified that similar be-

haviour is obtained using a GGA functional (specifically BLYP37,41,42). As noted in the

introduction, curves from a hybrid functional would be intermediate between GGA and

Hartree-Fock curves, depending on the amount of orbital exchange. Before completing our
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analysis of F → F−, we comment on the performance of range-separated functionals, since

these have been shown to successfully reduce the curvature. Figure 7 and Table 1 show re-

sults determined using the CAM-B3LYP functional43 (results using the cc-pVTZ+5p basis

set are not included due to convergence problems). The three most diffuse basis sets have

the lowest energy at the anion, with no tendency towards levelling out / fractional electron

loss; the anion HOMO energies are negative.

It is also pertinent to note that the parameters in range-separated functionals are some-

times determined by tuning the functional to approximately recover Koopmans conditions,

either on a system-by-system basis26 or through a parameterised functional.44 The afore-

mentioned observations regarding energy curvature, frontier orbital energies and electron

affinities are pertinent to such approaches and so it is important that the effect of diffuse

functions is correctly accounted for, particularly when the electron affinity is involved.

Implications of a negative LUMO energy

Consider an idealised DFT calculation on a neutral M -electron system, for which fractional

electron loss is possible. If the LUMO energy is negative, then the E vs. N curve must

initially drop as a fraction of an electron is added to the M -electron system (the initial slope

is negative; see Eqn (2)). However, as discussed above, further increasing N cannot lead to

an increase in the energy. It follows that a non-zero fraction of an electron must bind and the

energy of the anion must be below that of the neutral, meaning the electron affinity must be

positive, irrespective of whether the electron vertically binds in reality. To test this, we have

performed calculations on the Ne → Ne− segment (M = 10), which represents an extreme

case where no binding should be observed. The LUMO energy in Ne is much more sensitive

to basis set than it is in the F atom (3s vs. 2p) and the use of an analogous cc-pVTZ+ns basis

set, where s rather than p functions are added due to the new symmetry, does not actually

yield a negative LUMO energy. We therefore instead present results obtained using an even

more extensive aug-cc-pVTZ+ns basis set, obtained by adding additional s diffuse functions
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to aug-cc-pVTZ, using a geometric progression based on the ratio of the s exponents in

aug-cc-pVTZ and d-aug-cc-pVTZ.

Figure 8 presents the LDA E vs. N curves and Table 2 lists the corresponding neutral

LUMO energy, anion HOMO energy, and electron affinity of the neutral. The LUMO energy

is positive for the first two basis sets, but negative for the latter three, meaning that three

E vs. N curves drop as the electron number increases beyond 10. Of these, the aug-cc-

pVTZ+2s and aug-cc-pVTZ+3s basis sets are not sufficiently diffuse for the flattening to give

an anion energy below that of the neutral, meaning the electron affinity is negative. However,

for the most diffuse aug-cc-pVTZ+4s basis set, the flattening is sufficiently pronounced that

the anion energy is below that of the neutral and the electron affinity is positive, as in the

idealised case. We have confirmed that the same behaviour is observed using the BLYP

GGA.

We emphasise that this noble gas atom is an extreme case, where the LUMO energy is

particularly sensitive to basis set. For many closed-shell systems, the LUMO is appreciably

more negative and the effect will be more pronounced. For example, we previously45 per-

formed calculations on C2H4 using a highly diffuse augmented cc-pVTZ basis set, for which

the LUMO energy was more than an order of magnitude more negative than in this Ne

example. We observed that the electron affinity of the molecule was positive, despite the

fact that it does not vertically bind an electron experimentally. The above analysis explains

the origin of that positive affinity.

As discussed and illustrated earlier in this study, it is well established29–35 that when a

highly diffuse basis set is used, approximate DFT functionals can fail to bind a full electron

in cases where it should bind. We now expand that statement to add that if the DFT LUMO

energy is negative then it will incorrectly bind a fraction of an electron and exhibit a positive

electron affinity in cases where it should not bind!

Finally, Table 2 lists the orbital energies and electron affinities determined using Hartree-

Fock theory and CAM-B3LYP. For Hartree-Fock, the LUMO energy is positive for all the
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basis sets and the electron affinity approaches zero from below. For CAM-B3LYP, the aug-

cc-pVTZ+4s basis set does yield a negative LUMO, but the flattening of the E vs. N curve

(not shown) is not sufficient to yield a positive affinity. Neither Hartree-Fock theory nor the

CAM-B3LYP functional therefore predict electron binding or a positive affinity, in agreement

with experiment.

Conclusions

In this study, we highlighted the fact that minima/maxima in E vs. N curves from approx-

imate DFT and Hartree-Fock theory are a consequence of using basis sets that are local to

the system, preventing fractional electron loss. This is distinct from the underlying convex-

ity/concavity of the curves, which arises due to the inherent deficiencies in the electronic

structure methods.

Ground-state E vs. N curves were presented that illustrate the idealised behaviour that

would occur if fractional electron loss was possible, without changing the description in the

vicinity of the system. The key feature is that E(N + δ) ≤ E(N), for δ ≥ 0, i.e. the energy

cannot increase when the electron number increases. It follows that the slope of the E vs.

N curve cannot be anywhere positive and so, from Eqns. (1) and (2), the frontier orbital

energies cannot be positive. Approximate DFT and Hartree-Fock calculations were presented

for F → F− and results approaching the idealised behaviour were recovered. Calculations

on Ne → Ne− verified that for highly diffuse basis sets, a negative LUMO must lead to a

positive electron affinity.

E vs. N curves, frontier orbital energies, and electron affinities are important throughout

contemporary DFT. This study contributes to the understanding of these quantities.
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Table 1: LUMO energy of F, HOMO energy of F−, and electron affinity of F, determined
using LDA, Hartree-Fock (HF), and CAM-B3LYP. Orbital energies are in a.u., electron
affinities are in eV.

LDA HF CAM-B3LYP
εML εM+1

H AM εML εM+1
H AM εML εM+1

H AM

cc-pVTZ −0.366 0.142 3.00 0.067 −0.135 0.58 −0.20 0.01 2.51
cc-pVTZ+1p −0.377 0.051 3.33 0.035 −0.180 1.19 −0.21 0.01 3.52
cc-pVTZ+2p −0.377 0.044 4.14 0.026 −0.180 1.19 −0.21 −0.07 3.53
cc-pVTZ+3p −0.377 0.043 4.14 0.012 −0.180 1.19 −0.21 −0.07 3.53
cc-pVTZ+4p −0.377 0.028 4.15 0.004 −0.180 1.19 −0.21 −0.07 3.53
cc-pVTZ+5p −0.377 0.013 4.18 0.001 −0.180 1.19 −0.21 — —

Table 2: LUMO energy of Ne, HOMO energy of Ne−, and electron affinity of Ne, determined
using LDA, Hartree-Fock (HF), and CAM-B3LYP. Orbital energies are in a.u., electron
affinities are in eV.

LDA HF CAM-B3LYP
εML εM+1

H AM εML εM+1
H AM εML εM+1

H AM

aug-cc-pVTZ 0.089 0.272 −4.64 0.201 0.198 −5.44 0.134 0.216 −4.77
aug-cc-pVTZ+1s 0.009 0.102 −1.17 0.055 0.054 −1.48 0.028 0.068 −1.24
aug-cc-pVTZ+2s −0.002 0.043 −0.27 0.015 0.015 −0.41 0.006 0.024 −0.32
aug-cc-pVTZ+3s −0.003 0.019 −0.03 0.004 0.004 −0.12 0.000 0.009 −0.08
aug-cc-pVTZ+4s −0.003 0.008 0.02 0.001 0.001 −0.03 −0.001 0.004 −0.01
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Figure 1: E vs. N curves for a neutral system that vertically binds an electron. (a) A convex
curve exhibiting an energy minimum (e.g. LDA/GGA). (b) A concave curve exhibiting an
energy maximum (e.g. Hartree-Fock). Red solid curves indicate schematic curves determined
using a local basis set. Green dotted curves indicate idealised curves that would be obtained
if the basis set were to be modified to enable fractional electron loss, without changing the
description in the vicinity of the system.
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Figure 2: E vs. N curves for the F → F− segment, determined using LDA. The lower plot
expands the shaded area.
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Figure 3: Plots of z2φ2
HOMO, for selected values of N , in the F → F− segment, determined

using LDA with the cc-pVTZ+5p basis set. Note the inset plot has a smaller vertical scale.
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Figure 4: E vs. N curves for the F → F− segment, determined using Hartree-Fock theory.
The lower plot expands the shaded area.
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Figure 5: Plots of z2φ2
HOMO, for selected values of N , in the F → F− segment, determined

using Hartree-Fock theory with the cc-pVTZ+5p basis set.
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Figure 6: E vs. N curves for the two lowest energy solutions, in the F → F− segment,
determined using Hartree-Fock theory, with the cc-pVTZ+5p basis set.
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Figure 7: E vs. N curves for the the F → F− segment, determined using CAM-B3LYP.
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Figure 8: E vs. N curves for the the Ne→ Ne− segment, determined using LDA. The lower
plot expands the shaded area.
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