
Mathematics-in-Industry
Case Studies

Avelino et al. Mathematics-in-Industry Case Studies  (2016) 7:5 
DOI 10.1186/s40929-016-0007-2

RESEARCH Open Access

Scheduling the repair of aircraft
components - a case study
Catarina Avelino1*, David Bourne2, Fátima Ferreira1, Deolinda Rasteiro3 and Jorge Santos4

*Correspondence: cavelino@utad.pt
1CMAT-UTAD, CEMAT-IST-UL,
Universidade de Trás-os-Montes e
Alto Douro, Vila Real, Portugal
Full list of author information is
available at the end of the article

Abstract

In aircraft components maintenance shops, components are distributed amongst
repair groups and their respective technicians based on the type of repair, on the
technicians skills and workload, and on the customer required dates. This distribution
planning is typically done in an empirical manner based on the group leader’s past
experience. Such a procedure does not provide any performance guarantees, leading
frequently to undesirable delays on the delivery of the aircraft components. Among
others, a fundamental challenge faced by the group leaders is to decide how to
distribute the components that arrive without customer required dates.
This paper addresses the problems of prioritizing the randomly arriving of aircraft
components (with or without pre-assigned customer required dates) and of optimally
distributing them amongst the technicians of the repair groups.
We proposed a formula for prioritizing the list of repairs, pointing out the importance
of selecting good estimators for the interarrival times between repair requests, the
turn-around-times and the man hours for repair.
In addition, a model for the assignment and scheduling problem is designed and a
preliminary algorithm along with a numerical illustration is presented.

Keywords: Production planning, Assignment, Scheduling, Optimisation

Introduction
The motivation for this paper is a case study proposed by TAP Maintenance &
Engineering, a Portuguese aircraft maintenance, repair and overhaul services provider.
The TAP Maintenance & Engineering aircraft components maintenance shops are

responsible for the maintenance and repair of aircraft components of fleets. They per-
form maintenance on thousands of different aircraft accessories. Annually thousands of
components are repaired, tested or modified, such as navigation instruments, displays,
valves, heat exchangers, generators, oxygen masks and life vests. Also, for each unit there
are distinct types of maintenance, such as overhaul, repair, inspection and testing.
The technicians are divided into groups according to their specialities (hydraulic,

mechanic, pneumatic, instruments, radio, testing, cleaning) that receive, at any time,
units to be worked on. Within each group, some units can be repaired by any techni-
cian, whereas others can only be repaired by few specific skilled technicians. Typically a
maintenance shop receives several new components to repair per day, which are divided
amongst the groups according to the group specialization. A percentage of the total
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units to be maintained arrive with customer required dates (CRDs), i.e., deadlines, pre-
established by the planning department. The other units in process do not have a CRD
externally provided.
Within each group, the respective team leader has to distribute the units to the tech-

nicians based on their skills and workload. The work distribution needs to ensure that
the units are processed on time, thus guaranteeing that the maintenance shop meets its
objectives. The decision of how to assign the incoming components to the technicians is
often based on the experience and intuition of the team leader of each group rather than
according to some assignment and scheduling algorithm.
The first challenge we address is to develop a tool to estimate a CRD for the units

that arrive without one, based on past data of TAP Maintenance & Engineering. In
“Methods” section we present an estimation formula for the CRDs that can be used to
prioritize the list of repairs, i.e., determine which units should be tackled first. This for-
mula depends on several parameters that can be obtained from the data, namely the
interarrival time between requests (IATs), the number of units in stock and in labour, the
turn-around-times (TATs), etc. A review of the literature on setting attainable due dates
can be found in [5].
The second challenge we address is to find an efficient way to assign the work to the

technicians within each group so that all the components are repaired within the required
deadlines.
The units repair times are highly stochastic. Each team leader has to deal with high vari-

ability in the (random) arrival of components, the type of components and the required
maintenance for them. Also, the number of man hours required to repair a part is typi-
cally an order of magnitude smaller than the actual time that part spends in the group.
When a component arrives, the required repair type and time is not known. While one
unit may be repaired just by adjusting the positioning of an electrical switch, another unit
of the same type may need to be completely disassembled. In such cases subparts may
need to be sent to other groups. This causes interruptions in the repair process in the
original group until all the subparts are returned to be reassembled. The arrival of emer-
gency units, the lack of materials or the need for engineering analysis are other causes of
interruption. All these issues make the planning process to guarantee on time delivery of
the aircraft components very challenging.
Several authors have analyzed demand forecasting of spare parts, e.g. [4, 6, 11, 13, 14].

In particular, [4] examines techniques to predict spare parts demand for airline fleets.
Also, many works have addressed the aircraft engine maintenance scheduling problem
(see, e.g., [8]).
In “Methods” sectionwe also explain the issues involved in this assignment and schedul-

ing problem. A mathematical model is presented as well as an algorithm. Preliminary
computational results for this problem are given in “Results and discussion” section.
We conclude this paper by stating some conclusions and final comments.

Methods
CRD estimation formula

The first goal of this work is to develop an estimation formula for the CRD, which will
prioritize the list of repairs, i.e., determine which units should be tackled first. The CRD
assignment affects the timely delivery of the units and the number of repaired units in
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stock. Whenever a type of aircraft unit is required, it should be repaired immediately or
there must exist a similar unit in stock to replace it. Keeping components in stock allows
the aircrafts to be quickly returned to service. On the other hand, the limited space for
stock and its associated cost should be taken into account. Therefore it is not desirable
to have higher levels of stock or shorter CRDs than necessary. Stock levels should be
minimized within a safety level that depends on the costs incurred due to delays on the
delivery dates.When the stock of a unit falls below its safety level, an alarm is issued to the
stock controller to obtain a new unit as soon as possible. Ideally, if the planning process is
carried out more efficiently, i.e., the aircraft components are repaired faster and in a more
systematic way, less components may be needed in stock while still providing the same
desired low probability of an out-of-stock situation. The problem of determining the best
inventory policy in the context of aircraft components was addressed in [1, 3, 7, 12].
Our goal is to estimate a CRD for each aircraft component without a preassigned CRD

that arrives for repair in a given work group. This is challenging due to the dynamic nature
of the process in which new parts for repair are constantly arriving at highly variable,
random times.
To estimate the CRD for each unit of type i, we take into account the date of its entry

in the group (CD), the estimated time until the next request of a unit of the same type
(αi) and the number of units of that type that are in stock (Si) and in labour (Li) at that
time instant. We assume that each unit of type i in labour has probability ρi of being
successfully repaired. Additionally, we assume that each unit of type i has a safety stock
level (SSi) (whose size depends on the cost arising from the lack of units of this type). If
the level of stock falls below the corresponding safety level, then delays in delivery could
occur unless the corresponding units are repaired as soon as possible. In this situation, the
estimated CRD for a new component that arrives should take into account this urgency.
For this reason, we assume that the safety stock level is at least one. If the stock reaches
the value one and a new component arrives, the stock becomes zero. This does not cause
a delay unless a new request arrives before the stock is replenished.
When a unit of type i arrives to the maintenance shop, if its stock is above its safety

level, then the CRD for this unit may be postponed for Si time intervals of length αi after
the current date, since the stock is sufficient to handle Si new requests. In addition, if
there are already Li units of the same type in labour, then ρiLi of these units should be
successfully repaired before the current unit that arrived ends its repair, so the ρiLi units
can be treated as stock. On the other hand, if a unit of type i arrives and its stock is below
its safety level, then the repair of the unit is urgent. In this situation we take the estimated
CRD to be the current date plus the minimum value between the estimated time until the
next request (αi) and the estimated TAT for this type of unit (τi).
These considerations lead to the following simple formula to estimate the CRD:

CRDi =
⎧⎨
⎩
CD + αi (Si + ρiLi) if Si ≥ SSi,

CD + min (αi, τi) otherwise,
(1)

where:

CD Current date,
CRDi Customer required date for units of type i (estimated at CD),
αi Estimated interarrival time between requests of units of type i,
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τi Estimated turn-around-time for units of type i,
SSi Positive safety stock level for units of type i,
Si Number of units of type i in stock at CD,
Li Number of units of type i in labour at CD,
ρi Repair success probability of units of type i.

Figure 1 illustrates this formula for the case that Si = 2 ≥ SSi.
A crucial question to address is how to estimate the time between requests, αi, for each

component of type i, based on past data. Considering the (random) interarrival times
between requests of a given component of type i, this consists of selecting a single number
αi among all the possible IAT data values that represents their “best/most typical” value.
A statistical analysis of IAT data samples provides important information about the IAT
distribution. Several measures for typical values are pointed out in the statistics literature
[9, 15]. They are known as central tendency measures due to their attempt to identify
some sort of central or balanced position within the data set. Themost commonmeasures
of central tendency are the mean (often called the average), the median and the mode,
but there are others such as the trimmed means, the trimean, etc. All of them are valid
central tendency measures, but we should be aware that, depending on the nature of the
data under consideration, some will be more appropriate to use than others. Therefore,
while we can select a “best” measure of central tendency for the data we are analyzing,
there is no “best” central tendency measure for all data sets.
The estimation of αi is often determined by using the mean of the observed IATs.

However, it is important to note that the sample mean is usually considered as the best
measure of central tendency when the data exhibits a symmetric, light-tailed distribution
(such as for normally distributed data). In such cases, the values of the mean, median,
trimean, trimmed means, or mode (for unimodal distributions) are usually similar. The
mean is preferred among the others since it includes all the values in the data set in its
computation, minimizing the error in the prediction of any of its values.
On the other hand, when the data has outliers or has a skewed or heavy-tailed distribu-

tion, which is the case of the typical data of the aircraft components maintenance shops,
the values of the mentioned measures may be quite different and it is not always obvious
which value to choose. In such cases, frequently we find that the mean is a poor measure
of the typical value. The sample mean is usually quite above or below the wide majority
of the data. This is a consequence of the extreme values in the tail that drag the value
of the mean in the direction of the skewness. In these situations, the median (less sensi-
tive to extreme values) is generally considered to be a better representative of the central
location of the data.
For some data distributions, intermediate (robust) estimators between the sample mean

and the sample median may perform better as central location estimators. Examples of

Fig. 1 Examples of formula (1)
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such measures are the trimean and the trimmed means that try to combine the good
properties of both measures.
To select convenient estimators for the interarrival time between requests (IATs), we

perform an exploratory data analysis on the data provided by the maintenance shop for
this case study. The data includes information concerning the repair of 333 distinct types
of components that left the same maintenance shop during the period of January 2009 –
May 2011 and that arrived without any predefined CRD. Nevertheless, for several types
of components, only a few occurrences were observed during this period. Due to this lack
of data, we conducted a statistical analysis only for the 66 component types that had at
least 10 entry dates in the maintenance shop during the mentioned period.
We plot histograms and boxplots and compute the usual measures of location and

spread, which give us a global picture on where and how the data is concentrated and
what the shape of its distribution is. Table 1 and Fig. 2 illustrate the results obtained for
the IATs of fifteen (typical) components, with N − 1 standing for their sample sizes (N
corresponds to the total number of repair requests).
The results revealed that the IATs (denoted by T in Figs. 3, 4 and 5) typically exhibit

high variability and have positively skewed distributions. As a consequence, the IATmean
tends to be significantly higher than the median. Exceptions are components (i) and (m),
for which the IATs are negatively skewed with means lower than their medians, and for
components (g) and (n) that exhibit almost symmetric distributions. For several compo-
nent types (e.g., (b), (e), (h), (j) or (o)) we observe the existence of large extreme values
that can be measurement errors or a consequence of a long-tailed distribution. Without
any way to confirm this, we point out that it would be desirable to identify outliers and
remove them from data before performing the statistical analysis, as they can significantly
bias the results.
The high variability of the data means that it is impossible to obtain an accurate single

value to represent the IAT distributions. Nevertheless, the skewed data with extreme val-
ues implies that using the mean as a typical value of the IATs is not the best option. As can
be seen in Table 1, the mean is strongly distorted by the extreme values, tending to over-
estimate the data. E.g., for components (b), (e) and (o), more than 75 % of their IATs are
below the mean (Q3 <Mean). Therefore, using the mean to obtain a estimate for the IATs
and to compute the CRD would frequently imply that new parts arrive to repair before
previous parts of the same type are finished, pushing the stock to undesirably low levels.
As previously stated, in such cases the use of robust estimators (less sensitive to the

effects of outliers) is undoubtedly a better option. The selection of a singlemeasure among
possible options such as the median, trimean or trimmed means is not straightforward.
Obviously, the smaller the value we choose to estimate the time until the next request,
the smaller the risk we take. Nevertheless, choosing all the values in a conservative fash-
ion leads to shorter CRDs that may be impossible to meet. Therefore, the selection of
a central tendency measure should take into account the risk tolerance of each type
of unit.
Considering for instance the unit (e), we observe a positive skewed distribution with

7 extreme values (see Fig. 2), which distort the mean value. In this case, the median is
the best option since the difference between the IATs and their median value is clustered
tightly and almost symmetrically around 0 (see Fig. 3). Similar conclusions can be made,
e.g., for units (b), (c), (f ) and (h).
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Table 1 Statistics for the IAT (interarrival time between repair requests) of several components

Aircraft component N
Mean Lower Median Upper Trimean Trimmed Trimmed Standard Coefficient

quartile (Q1) (Q2) quartile (Q3)
Q1+2Q2+Q3

4 mean (25 %) mean (5 %) deviation of variation

(a) Valve Ckeck (HTE400115) 12 59.45 25.5 48 96.5 54.5 55.56 49.24 0.83

(b) Valve control wing anti-ice (SAS911-002A) 72 12.77 2 5 11 5.75 6.27 10.51 28.64 2.24

(c) Flow control valve (1303A0000-04) 79 11.12 2 7 14.75 7.69 8.57 10.28 13.56 1.22

(d) Valve engine anti-ice (324195-1) 16 54.2 9 29 100.5 41.88 51.85 52.74 0.97

(e) Valve starter shutoff (3290064-17) 46 17.84 2 5 15 6.75 10 13.35 36.34 2.04

(f) Valve starter shutoff (3290064-20) 88 9.87 2 7 13.5 7.38 8.07 8.99 10.67 1.08

(g) Valve starter shutoff (3291556-3) 14 28 17 26 33 25.5 27 18.23 0.65

(h) Thermostat control temperature (342B040000) 65 11.81 1 4 13.25 5.56 7.58 11.11 16.77 1.42

(i) Auxiliary power unit (3800278-4) 25 34.58 17.5 38 43.75 34.31 33 34.58 24.23 0.7

(j) Actuator (65-20892-13) 82 12 0 0 11 2.75 4.97 8.88 27.12 2.26

(k) Bleed pressure regulating valve (6714D070000) 10 59.11 36 46 104 58 58.86 43.98 0.74

(l) Bleed pressure regulating valve (6774E010000) 87 10.42 3 7 16.75 8.44 8.89 9.83 9.93 0.95

(m) Exchanger heat (753A0000-03) 11 89.4 40.25 99 130.25 92.13 91.5 53.37 0.6

(n) Element filter (856504-5) 10 29.67 20 29 37 28.75 28.86 17.25 0.58

(o) Valve pneu press regulator (898626-3) 11 103.6 7.75 12 88.75 30.13 64.63 178.67 1.72
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Fig. 2 Histograms for the time between requests (in days)
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Fig. 3 (e) Valve starter shutoff (3290064-17)

For units (g) and (n), with near symmetric distributions, the values of themean, median,
trimean and trimmed means are very similar, as expected, and so any of them can be used
to estimate the IATs (see Fig. 4).
A similar but different situation arises for unit (i), in which the IATs distribution is

negatively skewed. In this case, the mean is only slightly lower than the median due to

Fig. 4 (g) Valve starter shutoff (3291556-3)
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Fig. 5 (i) Auxiliary power unit (3800278-4)

the existence of an upper extreme value and the mean, trimean and trimmed means have
very similar values. Any of these values can be used to estimate the IATs.
Another important issue is that components can arrive for repair in batches (see (j) in

Fig. 2). This situation leads to several null IATs and usually to a null median which, even
when the IATs are skewed distributed, should not be used as the typical value to estimate
the CRDs. A better option to estimate αi could be to consider the IAT between batches
instead of units. Also, in such cases the safety stock level should take into account the
mean batch size.
Finally, it is important to point out that the larger the variability of the data, the larger

the sample size should be in order to get accurate estimators. As a consequence, in atypi-
cal cases like for part (o) (see Fig. 2), where there are a small number of observations and
they are highly variable, it is impossible to infer any good measure of central tendency. In
these cases larger samples should be collected.

Assignment and scheduling problem

The second challenge was to find an efficient way to assign the work within each group so
that all the components are repaired on time and as quickly as possible. Figure 6 illustrates
a typical group.
Not every technician within a group is qualified to repair every type of component.

Furthermore, the time required to repair a part varies greatly with the serial number,
and the number of man hours required to repair a part is typically an order of mag-
nitude smaller than the actual time that the part spends in the group. For example, an
actuator (part number 65-20892-13) takes on average 9 man hours to repair but has an
average turn-around-time of 68 days, i.e., there are on average 68 days between the time
when the actuator enters and leaves the group. See Tables 2 and 3. This discrepancy is
due to interruptions in the repair process; rarely does a technician start working on a
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Fig. 6 A typical group

part and work on it until completion without interruptions. Interruptions occur, e.g., if
the part or subparts of it need to be sent to other groups (specialising in other types
of repair/maintenance), due to lack of materials, lack of resources (e.g., if a machine is
unavailable because another technician is using it), or because of the arrival of more
urgent components. All this leads to a challenging assignment problem.

Model

We formulate this problem as a binary constrained nonlinear optimisation problem
[10, 16]. To do this we make several simplifying assumptions.
We assume that each component arriving in the group is assigned to exactly one tech-

nician, i.e., that once a part is assigned to a technician then he is the only person within
the group that will ever work on it. In practice this is not the case and technicians within
a group may rotate between work benches so that several different technicians end up
working on the same part. Note that we still allow for the possibility that a part, or
subparts of it, be sent to other groups for other technicians to work on.
We also assume that a technician can work on only one part at once. In practice a tech-

nician may work on several parts at once if they are small and of the same type (same part
number).
For a given technician, we divide the parts assigned to him into three categories:

(1) The (unique) part that he is working on right now,
(2) The parts waiting in queue to be worked on,
(3) The interrupted parts.

See Fig. 7.
The interrupted parts are those that the technician was forced to stop working on, e.g.,

due to the lack of materials or the dispatch of the parts to other groups. We assume that
when an interruption is over and a part is ready to be worked on again, the part joins the
queue of waiting parts. Thus in our model the queue of waiting parts consists of those
that have yet to be started as well as those that were interrupted but are now ready to
be worked on again. We assume that every part entering the group has a CRD, either
predefined or estimated using formula (1).
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Table 2 Statistics for the MdO (man hours required for repair) of several components

Aircraft component N Mean
Lower Median Upper Trimean Trimmed Trimmed Standard Coefficient
quartile (Q1) (Q2) quartile (Q3)

Q1+2Q2+Q3
4 mean (25 %) mean (5 %) deviation of variation

(a) Valve Ckeck (HTE400115) 12 5 3.51 5.03 6.41 5 4.98 2.28 0.46

(b) Valve control wing anti-ice (SAS911-002A) 72 11 5.19 7.47 14.36 8.62 9.2 10.96 10.25 0.9

(c) Flow control valve (1303A0000-04) 79 14 7.33 11.7 17.74 12.12 12.42 13.36 10.54 0.76

(d) Valve engine anti-ice (324195-1) 16 25 6.46 25.85 34.89 23.26 22.07 21.85 0.86

(e) Valve starter shutoff (3290064-17) 46 13 5.64 12.19 18.73 12.18 11.95 12.72 9.1 0.7

(f) Valve starter shutoff (3290064-20) 88 14 6.65 12.26 17.38 12.13 12.18 13.14 10.76 0.77

(g) Valve starter shutoff (3291556-3) 14 10 7.64 9.19 11.05 9.26 9.79 5.1 0.49

(h) Thermostat control temperature (342B040000) 65 6 0.75 1.5 11.75 3.88 4.67 6.02 7.64 1.21

(i) Auxiliary power unit (3800278-4) 25 15 6.08 10.93 17.57 11.38 11.44 15.49 19.27 1.24

(j) Actuator (65-20892-13) 82 9 1.65 8.7 13.89 8.24 8.28 8.67 7.42 0.82

(k) Bleed pressure regulating valve (6714D070000) 10 22 5.55 12.62 41.66 18.11 20.91 19.46 0.89

(l) Bleed pressure regulating valve (6774E010000) 87 4 0.75 3.14 5.73 3.19 3.36 3.97 4.16 0.99

(m) Exchanger heat (753A0000-03) 11 24 5.62 9.94 42.69 17.05 21.28 22.33 0.93

(n) Element filter (856504-5) 10 3 2.12 2.83 3.58 2.84 3.05 2.11 0.64

(o) Valve pneu press regulator (898626-3) 11 38 14.95 22.97 49.65 27.63 30.67 37.77 0.98

N is the sample size



A
velino

etal.M
athem

atics-in-Industry
Case

Studies
 (2016) 7:5 

Page
12

of18

Table 3 Statistics for the TAT (turn-around-time in days) of several components

Aircraft component N Mean
Lower Median Upper Trimean Trimmed Trimmed Standard Coefficient
quartile (Q1) (Q2) quartile (Q3)

Q1+2Q2+Q3
4 mean (25 %) mean (5 %) deviation of variation

(a) Valve Ckeck (HTE400115) 12 43 6 22 57.75 26.94 37.6 48.26 1.13

(b) Valve control wing anti-ice (SAS911-002A) 72 23 3 9.5 20.25 10.56 12.81 20.3 37.1 1.64

(c) Flow control valve (1303A0000-04) 79 16 3 6 20 8.75 11.43 15.23 20.7 1.28

(d) Valve engine anti-ice (324195-1) 16 56 7.5 24.5 77.5 33.5 40.17 68.53 1.22

(e) Valve starter shutoff (3290064-17) 46 11 4.25 7 17 8.8 10.03 10.8 9.72 0.86

(f) Valve starter shutoff (3290064-20) 88 11 4 7 14.25 8.06 8.83 10.39 11.26 1

(g) Valve starter shutoff (3291556-3) 14 8 4.25 7 8.75 6.75 6.75 5.83 0.76

(h) Thermostat control temperature (342B040000) 65 32 21 24 35 26 27.78 31.7 22.87 0.71

(i) Auxiliary power unit (3800278-4) 25 48 6 17 51 22.75 28.16 48.08 77.80 1.62

(j) Actuator (65-20892-13) 82 68 22.5 49 75 48.88 51.47 62.24 71.09 1.05

(k) Bleed pressure regulating valve (6714D070000) 10 32 7 24 61.25 29.06 31.13 29.86 0.92

(l) Bleed pressure regulating valve (6774E010000) 87 32 22.5 35 42 33.63 31.93 31.77 18.19 0.56

(m) Exchanger heat (753A0000-03) 11 39 28.5 35 52 37.63 38.33 21.89 0.56

(n) Element filter (856504-5) 10 57 45.75 56.5 70.75 57.38 57.5 14.97 0.26

(o) Valve pneu press regulator (898626-3) 11 147 56 132 150 117.5 111.56 155.24 1.05

N is the sample size
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Fig. 7 We divide the parts assigned to a technician into three categories: (1) The part that he is currently
working on, (2) Parts waiting to be worked on, (3) Interrupted parts

Algorithm

In this subsection we present an algorithm for determining the distribution of new com-
ponents amongst the technicians within a single group, and a general methodology for
treating interruptions and the interaction between all the groups.

Events. For each group, we identify four types of event at which a decision about
assignment or scheduling must be made:

1. Arrival of new components.
2. An interruption occurs for some technician.
3. A part that was interrupted is returned (to the same technician).
4. A technician finishes repairing a part.

Event 1. In the case of Event 1 we solve a binary constrained nonlinear optimisation
problem. For a given group, let m be the number of technicians and let n be the number
of arriving components. Let Bn×m be the set of n-by-m binary matrices, i.e., matrices
with entries 0 or 1. Let A ∈ B

n×m represent an assignment of the arriving n parts to the
m technicians, i.e., Ajk is nonzero if and only if part j is assigned to technician k. The
assignment matrix A is subject to the following constraints:

(i) Each part must be assigned to exactly one worker, i.e.,
∑m

k=1 Ajk = 1 for all
j ∈ {1, . . . , n}.

(ii) Part j can only be assigned to technician k if technician k is qualified to repair it.
(iii) Let CRDj be the customer required date for part j, j ∈ {1, . . . , n}. Let fj be the

estimated date by which part j will be finished (repaired and ready to leave the
group). This depends not only on the assignment matrix A but also on the current
workload of the technicians and in fact even on the unknown future events. Thus fj is
difficult to compute. Different models for the function fj(A) are suggested below. The
third set of constraints is that part j is finished on time, i.e., that fj(A) ≤ CRDj for all
j ∈ {1, . . . , n}.

Let K ⊂ B
n×m be the set of binary matrices satisfying these constraints. Below we

describe how to choose an optimal assignment matrix A ∈ K.
Once the new parts have been assigned to the technicians, we schedule the work as

follows. For each technician, his new parts are added to his waiting queue and then the
waiting queue is ordered by customer required date (CRD), with the most urgent part
being at the top of the queue. We stipulate that each technician finishes working on his
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current part (or works on it until it is interrupted) before moving onto the first part in his
waiting queue, even if the first part in the waiting queue is more urgent than his current
part (this simplifying assumption is to avoid situations where, due to an urgent arrival, a
technician stops working on his current part when it is almost finished).
Now we return to the problem of assigning the components. We seek a feasible

assignment matrix A ∈ K that minimises some given cost function c:

min
A∈K

c(A). (2)

The cost function c should be chosen so that minimising it corresponds to finishing the
repairs as fast as possible. Here are two possible choices for c: Let P be a subset of all the
parts in the group (the exact choice of P depends on the choice of fj, see below). We could
take the cost function c to be

c(A) =
∑
j∈P

(fj − CRDj) (3)

so that we minimise the total (signed) delay (this corresponds to maximising the total
slack time). An alternative choice for c is

c(A) = max
j∈P (fj − CRDj). (4)

The constraint (iii) above could be dropped if another choice of c is made that heavily
penalizes delays.
In general solving binary constrained nonlinear optimisation problems is costly (in fact

NP hard [2]), but in this case the number of parts to assign and the number of technicians
is typically a small number. Thus the optimisation problem (2) can be solved quickly. See
the example in “Results and discussion” section.
Now we discuss different ways to compute fj, the estimated date by which part j will be

finished. The difficulty here, as already described, is the large variance in repair times for
each component due to interruptions and new arrivals.
Thus, given a queue of parts waiting to be repaired, it is very difficult to estimate when

work will start and finish for each part, and thus whether each part will be finished on
time.
First we introduce some notation.We divide all the parts in the group into the following

sets:

C The parts that are currently being worked on,
N The new parts that have arrived in the group,
I The interrupted parts,
Ŝ The parts in the waiting queues that have not been started yet,
S The parts in the waiting queues that have already been started.

Note that the size of the set C equals the number of technicians. Here we assume that
the new parts have already been assigned so that N ⊂ Ŝ.
For part j, let τj be the estimated turn-around-time (time between when the part

enters and leaves the group). Depending on the type of part, this value may be chosen
to be, e.g., the mean, median, trimean or any other typical value of the turn-around-
time (as for the problem of estimating the IAT, see the discussion in “CRD estimation
formula” subsection). In the example in “Results and discussion” section we choose the
median value.
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For j ∈ Ŝ, let μj be the estimated MdO (man hours required for repair) for part j. Note
that before work starts on a part, we may not know what type of repair is necessary. Thus
μj must be computed by taking the estimated MdO over all repair types. For j ∈ C∪S∪ I,
the set of parts that have already been started, let μj be the estimated remaining number
of man hours required for repair. This allows for input from the technicians based on their
progress. If these values are too difficult to estimate, then the original estimated MdO
values can simply be used instead.
An approximate upper bound for fj can be computed as follows. If work has already

started on part j, i.e., j ∈ C ∪ S ∪ I, then fj is taken to be the starting date of repair sj plus
the estimated turn-around-time τj:

fj = sj + τj, j ∈ C ∪ S ∪ I. (5)

Note that if work has already started on part j, then the assignment matrix A has no
effect on the value of fj computed by Eq. (5). Thus we do not include these parts in the
set P appearing in the definition of c (see Eqs. (3) and (4)); we define P = Ŝ. In practice
of course the assignment of new parts to a technician can affect the finish times of parts
that he has already started. This effect is hidden in the turn-around-time τj in (5), which
includes the time when the technician is working on other parts.
For parts j ∈ P = Ŝ, which have not been started, we compute fj as follows. Suppose

that the technician who is assigned part j is currently working on a part with an estimated
remaining MdO of μc hours. Suppose that the technician started working on this part
on date sc. Suppose also that in the queue before part j, there are l parts with estimated
(original or remaining) MdOs μ1,μ2, . . . ,μl. Then we estimate sj, the starting date for
part j, by taking it to be the latest date possible, i.e., we assume that all the parts in the
queue before part j are finished without interruptions before part j is started:

sj = sc + (μc + μ1 + μ2 + · · ·μl)/8, j ∈ Ŝ. (6)

Here we divide by 8 to convert hours into working days. Then we can estimate the finish
date by

fj = sj + τj = sc + (μc + μ1 + μ2 + · · ·μl)/8 + τj, j ∈ Ŝ. (7)

Equation 7 will overestimate the finishing date for part j in general. As time progresses,
however, as the number of items in the queue before part j decreases, this upper bound
will improve.
An alternative formula for fj, which underestimates the true finishing dates in general,

can be obtained by replacing the estimated turn-around-time τj in (7) with the estimated
number of man hours required for repair μj, i.e., by ignoring interruptions. In this case,
the estimated finishing date fj of parts j ∈ S, parts that have already been started, should
be computed using Eq. (7) (with τj replaced by μj) rather than using (5). Thus the set
P = Ŝ ∪ S.
Since this alternative formula for fj ignores interruptions it would grossly underestimate

the finishing dates in general and so we do not discuss it further. Obviously there are many
other possibilities for fj other than the approximate upper bound and the lower bound
presented here, e.g., a combination of the two could be used.
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Events 2–4. In the case of Events 2–4, there is no assignment problem to be solved.
For Events 2 and 4 the technician just starts working on the next most urgent part, as
determined by the CRD. For Event 3, the returned part is added to the waiting queue in
the appropriate position. As with the arrival of new parts, we specify that the technician
finishes working on his current part, even if the returned part has a more urgent due date.
In the case of Event 2, an interruption, the interrupted part (or a subpart of it) may be

sent to another group. In this case, this part (or subpart) could be treated as a new part
within the receiving group, i.e., triggers an Event 1 within the receiving group (the CRD
for this part, however, should be modified within the receiving group so that the part
is returned to the original group in time for the rest of the repairs to be completed). In
this way we could develop an algorithm for the assignment of parts within all the groups,
taking into account the interactions between them.

Results and discussion
In this section we give a partial implementation of the algorithm, implementing it in
the case of just one group and one event, the arrival of new parts. A full scale imple-
mentation is beyond the scope of this paper and would be a major programming task.
Moreover, before doing so our algorithm should be generalized to address the limitations
discussed in “Model” subsection and to better meet the needs of an aircraft components
maintenance shop.
Due to the nonsmooth nonlinear nature of the problem addressed, a preliminary imple-

mentation was undertaken using the evolutionary solver of Excel 2010 that combines
genetic algorithms and local search optimization methods. This solver cannot determine
whether a given solution is optimal, nevertheless good solutions can be attained under
heuristic rules or other predefined stopping criteria.
Figure 8 shows the results of our algorithm for a small example, for a group of 4

technicians, the arrival of 4 new parts, and 20 parts in total within the group. The
rows containing the new parts are highlighted. The columns are sorted by the CRDs of
the parts, with the most urgent part at the top. All the repairs are completed in time
and the value of the cost function c is given in the bottom-right, highlighted box. The
minimisation problem (2) was solved in about 10 sec by the Excel evolutionary solver.

Fig. 8 Results of the algorithm for a small example
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The column Status of Part indicates whether the part is a current part for some techni-
cian (C), is a new arrival (N), is in the waiting queue of some technician and has not been
started (̂S), is in the waiting queue and has been started (S), or is interrupted (I).
The column Estimated Remaining MdO (C & S) gives the estimated man hours

of work left for those parts that have already been started (the C and S parts) and
the original estimated MdO (the median MdO in this example) otherwise. The val-
ues of the estimated remaining man hours would be entered by the technicians. If
they are too difficult to estimate, then the original estimated MdOs could simply be
used instead.
The columnTechnician indicates which technician is working on each part. The column

Constraint indicates that constraint (i) (see “Algorithm” subsection) is satisfied (this is
indicated by a 1). The constraints (ii) and (iii) are also enforced by the solver but are not
shown in the spreadsheet.
The column Remaining MdO of Current Part evaluates μc from Eq. (7). The column

Total MdOs of Parts Ahead in Queue evaluates μ1 + · · · + μl from Eq. (7). The col-
umn Estimated Finish Date (N & Ŝ) computes fj using Eq. (7). The last column computes
fj − CRDj.

Conclusions
In “CRD estimation formula” subsection we derived a formula for estimating the CRD
of the components that arrive in the groups without one. As suggested by TAP Mainte-
nance & Engineering, this formula was kept simple and easy to understand. This formula
requires an estimated interarrival time (IAT) for each type of component. We performed
a statistical analysis of data provided by an aircraft components maintenance shop to
determine a good estimator for the IATs. We found that, in general, the data is positively
skewed so that a robust estimator such as themedian performs better than themean (with
a few exceptions, discussed in “CRD estimation formula” subsection, such as for compo-
nents that tend to arrive in large batches). We also point out that the estimated CRDmust
be updated over time as more information becomes available, rather than being a fixed
value, to take into account, e.g., the frequency at which components actually arrive (the
actual IATs) rather than the predicted values. Formula (1) for the CRD should be tested
by comparing it with real data.
In “Assignment and scheduling problem” subsectionwe designed an algorithm to assign

the components to the technicians within a single group, and we implemented it in Excel
for a small example. Several limitations need to be addressed before the algorithm could
be used by an aircraft components maintenance shop, such as our assumptions that a
technician can only work on one part at once and that technicians do not rotate between
work benches. We indicated how the algorithm could be extended to take into account
the interactions between all the groups. This needs further development, however, and its
implementation would be a major programming task. The assignment algorithm should
be tested by comparing the assignments produced by our algorithm with those produced
manually by team leaders.
We solved the binary constrained nonlinear optimisation problem in Excel. Since the

assignment problem is NP hard, finding an optimal solution is difficult and time consum-
ing in general and for larger examples than the one given in “Assignment and scheduling
problem” subsection, the Excel solver may not be able to find an optimal solution. Other
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possible optimisation packages include AIMMS and GAMS. Alternatively, instead of
solving the optimisation problem exactly, a heuristic could be developed.
Many specialized programs are available for assignment and scheduling, such as

SIMUL8 and the TORSCHE Scheduling Toolbox for MATLAB. It would be worth inves-
tigating whether their capabilities could be applied to the optimisation problem presented
in “Assignment and scheduling problem” subsection.
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