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ABSTRACT
We investigate the information content of various cosmic shear statistics on the theory of grav-
ity. Focusing on the Hu–Sawicki-type f(R) model, we perform a set of ray-tracing simulations
and measure the convergence bispectrum, peak counts and Minkowski functionals. We first
show that while the convergence power spectrum does have sensitivity to the current value of
extra scalar degree of freedom |fR0|, it is largely compensated by a change in the present den-
sity amplitude parameter σ 8 and the matter density parameter �m0. With accurate covariance
matrices obtained from 1000 lensing simulations, we then examine the constraining power
of the three additional statistics. We find that these probes are indeed helpful to break the
parameter degeneracy, which cannot be resolved from the power spectrum alone. We show
that especially the peak counts and Minkowski functionals have the potential to rigorously
(marginally) detect the signature of modified gravity with the parameter |fR0| as small as 10−5

(10−6) if we can properly model them on small (∼1 arcmin) scale in a future survey with a sky
coverage of 1500 deg2. We also show that the signal level is similar among the additional three
statistics and all of them provide complementary information to the power spectrum. These
findings indicate the importance of combining multiple probes beyond the standard power
spectrum analysis to detect possible modifications to general relativity.

Key words: gravitational lensing: weak – large-scale structure of Universe.

1 IN T RO D U C T I O N

General relativity (GR) is the standard theory of gravity and plays
an essential role for astronomy, astrophysics and cosmology. The
theory can provide a reasonable explanation for various phenom-
ena, e.g. the anomalous perihelion precession of Mercury’s orbit,
the deflection of radiation from a distant source known as gravita-
tional lensing (e.g. Dyson, Eddington & Davidson 1920; Fomalont
et al. 2009), the time delay by the time dilation in the gravita-
tional lensing in the Sun (e.g. Shapiro et al. 1971; Bertotti, Iess &
Tortora 2003), the redshift of light moving in a gravitational field
(e.g. Vessot et al. 1980), the orbital decay of binary pulsars (e.g.
Taylor & Weisberg 1982) and the propagation of ripples in the cur-
vature of space–time measured by the Advanced LIGO detectors
(Abbott et al. 2016). Assuming that GR is the correct theory of
gravity even on cosmological scales, an array of large astronomi-
cal observations (e.g. Perlmutter et al. 1997; Tegmark et al. 2006;
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Planck Collaboration XIII 2016) has established the standard cos-
mological model called the � cold dark model (�CDM) model.
Although the �CDM model can provide a remarkable fit to various
observational results, the correctness of GR on cosmological scales
is poorly examined so far. A simple extension of the �CDM model
can be realized by modification of GR. This class of cosmological
models is known as modified gravity that can explain the cosmic
acceleration at redshift of z � 1 without introducing the cosmo-
logical constant �. In order to probe the modification of gravity on
cosmological scales, the measurement of the gravitational growth
of cosmic matter density would be essential because the modifica-
tion could lead to some distinct features from the �CDM model in
the matter distribution in the Universe (for a review, see e.g. Clifton
et al. 2012).

f(R) gravity is a type of modified gravity theory that generalizes
GR by introducing an arbitrary function of the Ricci scalar R in the
Einstein–Hibert action. This extension can explain the accelerated
expansion, and the resulting extra scalar degree of freedom can in-
crease the strength of gravity and enhance structure formation. The
deviation from standard gravity must be suppressed locally to pass
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stringent tests of GR in the Solar system, and this can be achieved
by virtue of the chameleon screening. Interestingly, viable models
of f(R) gravity predict that gravitational lensing effect is governed
by the same equation as in GR (e.g. de Felice & Tsujikawa 2010).
Observationally, gravitational lensing is known as a robust probe
of the underlying matter distribution in the Universe independent
of the galaxy-biasing uncertainty. Thus, such measurements in up-
coming imaging surveys could be a powerful tool to constrain cos-
mological scenarios governed by f(R) gravity. Cosmic shear is the
small distortion of images of distant sources originating from the
bending of light rays passing through the large-scale structure in
the Universe. In practice, image distortion induced by gravitational
lensing is smaller than the intrinsic ellipticity of sources. There-
fore, one needs to analyse the data statistically in order to extract
purely cosmological information arising from gravitational lensing.
Furthermore, the statistics of the cosmic shear field significantly
deviates from Gaussian, reflecting the non-linearity of the structure
growth. This fact means that one cannot extract the full information
in cosmic shear by using two-point statistics alone. Ongoing and
future galaxy imaging surveys are aimed at measuring the cosmic
shear signal with a high accuracy over several thousand squared de-
grees. Thus, it is important and timely to investigate the information
about f(R) gravity in various cosmic shear statistics for the purpose
of making the best use of galaxy imaging surveys.

In this paper, we perform ray-tracing simulations of gravitational
lensing in the framework of f(R) gravity and explore the cosmo-
logical information content in four different statistics: the conver-
gence power spectrum, bispectrum, the abundance of peaks and the
Minkowski functionals (MFs). The first statistic is the basic quan-
tity in modern cosmology and describes the correlation of cosmic
shear at two different directions. The other three quantities would
contain information that supplement the power spectrum. They ex-
tract non-Gaussian aspects of the cosmic shear field through the
correlation at three points, the abundance of massive objects as-
sociated with rare peaks near the edge of the (one-point) distribu-
tion and the morphology of the field, respectively. These statistics
have already been measured in existing weak lensing surveys (e.g.
Kilbinger et al. 2013; Fu et al. 2014; Shirasaki & Yoshida 2014;
Liu et al. 2015) and their usefulness in cosmological analyses have
also been demonstrated theoretically (e.g. Takada & Jain 2003;
Hamana, Takada & Yoshida 2004; Kratochvil et al. 2012; Shirasaki
et al. 2012; Valageas, Sato & Nishimichi 2012). We extend the
previous analyses of cosmic shear to modified gravity scenarios
governed by f(R) gravity using numerical simulations and testing
their statistical power to constrain the parameter in the model.

This paper is organized as follows. In Section 2, we briefly
describe the cosmological model based on f(R) gravity and the
characteristics of the model. In Section 3, we summarize the basics
of weak lensing and cosmic shear statistics used in this paper.
We also explain the details of our lensing simulation and the
methodology to measure cosmic shear statistics in Section 4. In
Section 5, we provide results of our lensing analysis in numerical
simulation of modified gravity and compare the results between the
f(R) model and the �CDM model in detail. We then quantify the
information on the deviation from GR in cosmic shear statistics and
compare among different statistics. Conclusions and discussions
are presented in Section 6.

2 C O S M O L O G I C A L M O D E L

In this paper, we study a class of cosmological models with modi-
fied gravity called f(R) gravity. This model can explain the observed

cosmic acceleration at z � 1 without introducing the cosmolog-
ical constant and satisfy the Solar system tests with appropriate
parameters.

2.1 f (R) model

In f(R) model, a general function of the scalar curvature R is intro-
duced in the Einstein–Hilbert action (Nojiri & Odintsov 2006; de
Felice & Tsujikawa 2010; Shi et al. 2015):

SG =
∫

d4x
√−g

[
R + f (R)

16πG

]
, (1)

where g is the determinant of metric and G represents the gravi-
tational constant. The action in equation (1) leads to the modified
Einstein equation as

Gμν + fRRμν −
(

f

2
− �fR

)
gμν − ∇μ∇νfR = 8πGTμν, (2)

where fR ≡ df/dR, Gμν ≡ Rμν − 1/2gμνR and � ≡ ∇α∇α . As-
suming a Friedmann–Robertson–Walker (FRW) metric, one can
determine the time evolution of the Hubble parameter in f(R) model
as follows:

H 2 − fR

(
H

dH

d ln a
+ H 2

)
+ f

6
+ H 2fRR

dR

d ln a
= 8πG

3
ρ̄m, (3)

where a is the scale factor and H = a−1da/dt. Structure formation
in f(R) gravity is governed by the modified Poisson equation and
the equation of motion for the additional scalar degree of freedom
fR

1:

∇2	 = 16πG

3
δρma2 − a2

6
δR, (4)

∇2δfR = a2

3
[δR − 8πGδρm] , (5)

where 	 is the gravitational potential, δfR = fR(R) − fR(R̄),
δR = R − R̄, δρm = ρm − ρ̄m, and we represent the background
quantity with a bar. Equations (4) and (5) show two notable features
in f(R) gravity. In the high curvature limit where R → 8πGρm,
the extra scalar degree of freedom fR in equation (5) would van-
ish and equation (4) can reproduce the Poisson equation in GR
as ∇2	 = 4πGa2δρm. This is known as the chameleon mecha-
nism required to recover GR in high-density region (e.g. Khoury &
Weltman 2004). On the other hand, fR would operate in the low
curvature regime, where R < 8πGρm and equation (4) can be ap-
proximated by ∇2	 = 16πG/3a2δρm in the limit of R � 8πGρm,
making the gravity enhanced by a factor of 1/3. Therefore, the
gravitational force in f(R) model can be enhanced depending on the
local density environment.

In this paper, we will consider the representative example of f(R)
models as proposed in Hu & Sawicki (2007, hereafter denoted as
HS model),

f (R) = −2�
Rn

Rn + μ2n
, (6)

where �, μ and n are free parameters in this model. The sign of
f(R) is determined by the condition d2f/dR2 > 0 to ensure that the

1 Throughout this paper, we work with the quasi-static approximation. de La
Cruz-Dombriz, Dobado & Maroto (2008) and Bose, Hellwing & Li (2015)
have shown that the quasi-static approximation becomes quite reasonable
for models with |fR| � 1 today.
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evolution of linear perturbations is stable at high curvature (i.e.
no tachyonic instability; Song, Hu & Sawicki 2007). Although the
model does not contain a cosmological constant as R → 0 (or the
limit of flat space–time), one can approximate the function of f(R)
as follows for R 	 μ2:

f (R) = −2� − fR0

n

R̄n+1
0

Rn
, (7)

where R̄0 is the present scalar curvature of the background space–
time and fR0 = −2�μ2/R̄2

0 = fR(R̄0). In the following, we focus
on the case of n = 1. In the HS model with |fR0| � 1, the background
expansion is almost equivalent to that in the �CDM model. There-
fore, in practice, geometric tests such as distance measurement with
supernovae could not distinguish between the �CDM model and
the HS model for |fR0| � 10−2 (Martinelli et al. 2012). It is thus
of great importance to have other probes to break this degeneracy
at the background level. A natural choice for this is the measure-
ment of gravitational structure growth. Indeed, equations (4) and
(5) indicate that the signature of modified gravity might exist in the
evolution of perturbations.

The evolution of density perturbations in the HS model has been
investigated with analytic (e.g. Bean et al. 2007) and numerical
approaches (e.g. Oyaizu, Lima & Hu 2008; Schmidt et al. 2009;
Zhao, Li & Koyama 2011; He, Li & Jing 2013; Li et al. 2013;
Zhao 2014). The matter density perturbations in the linear regime is
scale dependent as opposed to GR, while the non-linear gravitational
growth can be even more complicated than that in the �CDM model
(e.g. the chameleon mechanism operates in high-density regions
and the �CDM-like gravity should be recovered in such regions).
Hence, a detailed investigation of matter density distribution in the
Universe would be useful to constrain modification of gravity due
to fR. Note that cosmic shear is among the interesting observables
to measure matter density distribution in an unbiased way.

3 W EAK LENSING

We first summarize the basics of gravitational lensing induced by
large-scale structure. Weak gravitational lensing effect is usually
characterized by the distortion of image of a source object by the
following 2D matrix:

Aij = ∂βi

∂θj
≡

(
1 − κ − γ1 −γ2 − ω

−γ2 + ω 1 − κ + γ1

)
, (8)

where we denote the observed position of a source object as θ and
the true position as β, κ is the convergence, γ is the shear and ω

is the rotation. In the weak lensing regime (i.e. κ , γ � 1), each
component of Aij can be related to the second derivative of the
gravitational potential 	 as

Aij = δij − 	ij , (9)

	ij = 2

c2

∫ χ

0
dχ ′f (χ, χ ′)

∂2

∂xi∂xj

	[r(χ ′)θ , χ ′], (10)

f (χ, χ ′) = r(χ − χ ′)r(χ ′)
r(χ )

, (11)

where χ is the comoving distance, r(χ ) is the angular diameter
distance and xi = rθ i represents the physical distance (Bartelmann
& Schneider 2001). By using the Poisson equation and the Born
approximation (Bartelmann & Schneider 2001), one can express

the weak lensing convergence field as

κ(θ , χ ) = 3

2

(
H0

c

)2

�m0

∫ χ

0
dχ ′f (χ, χ ′)

δ[r(χ ′)θ , χ ′]
a(χ ′)

. (12)

In general, the lensing equation is governed by the so-called lensing
potential (	 + �)/2, where 	 and � are the Bardeen potentials
appearing in the metric perturbation in the Newtonian gauge. The
lensing potential in f(R) gravity would be governed by the same
Poisson equation as in GR, making equations (9), (10) and (12)
applicable in the HS model with |fR0| � 1 (the derivation can be
found in, e.g., Arnold, Puchwein & Springel 2014). In this paper, we
take into account the non-linearity of the convergence field entering
in equation (10) using the ray-tracing technique over simulated
density fields.

3.1 Cosmic shear statistics

We here introduce four different statistics of the cosmic shear. In
this paper, we consider statistical analysis with the convergence
power spectrum, bispectrum, peak counts and MFs. The power spec-
trum has complete cosmological information when the fluctuation
follows the Gaussian statistics. However, the non-linear structure
formation induced by gravity induces non-Gaussianity even if the
initial fluctuations are Gaussian distributed. Therefore, higher or-
der statistics can be important to fully exploit weak lensing maps
beyond the power spectrum analysis.

3.1.1 Power spectrum

The power spectrum is one of the basic statistics in modern cos-
mology (e.g. Anderson et al. 2012; Planck Collaboration XI 2016;
Becker et al. 2016). It is defined as the two-point correlation in
Fourier space. In the case of the convergence field κ , that is

〈κ̃(�1)κ̃(�2)〉 = (2π)2δD(�1 + �2)Pκ (�1), (13)

where δD(x) is the Dirac delta function and the multipole � is
related to the angular scale through θ = π/�. By using the Limber
approximation (Limber 1954; Kaiser 1992) and equation (12), one
can express the convergence power spectrum as

Pκ (�) =
∫ χs

0
dχ

W (χ )2

r(χ )2
Pδ

(
k = �

r(χ )
, z(χ )

)
, (14)

where Pδ(k) represents the three-dimensional matter power spec-
trum, χ s is the comoving distance to the source galaxies and W(χ )
is the lensing weight function defined as

W (χ ) = 3

2

(
H0

c

)2

�m0
r(χs − χ )r(χ )

r(χs)
(1 + z(χ )), (15)

where H0 is the present-day Hubble constant and �m0 represents
the matter density parameter at present. Once Pκ is known, one can
straightforwardly convert it to other two-point statistics such as the
ellipticity correlation function (e.g. Schneider et al. 2002).

Note that the convergence power spectrum can be inferred di-
rectly through the cosmic shear field without resorting to the con-
vergence field itself. Thus, it can be measured without introducing
any filter function. The situation is the same for the convergence bis-
pectrum. This is in contrast to the peak counts and the MFs; one has
to first construct a convergence map with a filter before measuring
them (see Section 3.1.3 for more detail). This gives them an explicit
dependence on the filter scale chosen for the map construction. In
what follows, the results should be interpreted with care as different
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statistics might probe different scales. The scale is specified by the
range of multipole moment � for the two spectra, while it is given
by the filter scale for peak counts and the MFs.

3.1.2 Bispectrum

For the lensing convergence field, the bispectrum is defined as the
three-point correlation in Fourier space as

〈κ̃(�1)κ̃(�2)κ̃(�3)〉 = (2π)2δD(�1 + �2 + �3)Bκ (�1, �2, �3). (16)

This quantity is zero for Gaussian fields and thus Bκ contains the
lowest order non-Gaussian information in the weak lensing field.
Similarly to the case of Pκ , one can relate the convergence bispec-
trum to the three-dimensional matter bispectrum Bδ:

Bκ (�1, �2, �3) =
∫ χs

0
dχ

W (χ )3

r(χ )4
Bδ (k1, k2, k3, z(χ )) |ki=�i /χ . (17)

Recent studies have shown that the convergence bispectrum does
supplement the power spectrum and we can gain 20–50 per cent in
terms of the signal-to-noise ratio (S/N) up to a maximum multipole
of a few thousands (e.g. Kayo, Takada & Jain 2013). However, the
S/N from a combined analysis of the convergence power spectrum
and bispectrum is still significantly smaller than that of the ideal
case of the Gaussian statistics. This result motivates us to consider
other statistical quantities such as the peak counts and MFs.

3.1.3 Peak counts

The local maxima found in a smoothed convergence map would
have cosmological information originated from massive dark mat-
ter haloes and the superposition of large-scale structures (e.g.
Hamana et al. 2004; Dietrich & Hartlap 2010; Kratochvil, Haiman
& May 2010; Yang et al. 2011; Shirasaki, Hamana & Yoshida 2016).
We here consider such local maxima and examine their statistical
power in later sections.

In actual observations, one usually start with the cosmic shear
instead of the convergence field. The reconstruction of smoothed
convergence is commonly based on the smoothed map of cosmic
shear. Let us first define the smoothed convergence map as

K(θ ) =
∫

d2φ κ(θ − φ)U (φ), (18)

where U is the filter function to be specified below. We can calculate
the same quantity by smoothing the shear field γ as

K(θ ) =
∫

d2φ γ+(φ : θ )Q+(φ), (19)

where γ + is the tangential component of the shear at position φ

relative to the point θ . The filter function for the shear field Q+ is
related to U by

Q+(θ ) =
∫ θ

0
dθ ′ θ ′U (θ ′) − U (θ ). (20)

We consider a filter function Q+ that has a finite extent. In such
cases, one can write

U (θ ) = 2
∫ θo

θ

dθ ′ Q+(θ ′)
θ ′ − Q+(θ ), (21)

where θo is the outer boundary of the filter function.

In the following, we consider the truncated Gaussian filter (for
U):

U (θ ) = 1

πθ2
G

exp

(
− θ2

θ2
G

)

− 1

πθ2
o

[
1 − exp

(
− θ2

o

θ2
G

)]
, (22)

Q+(θ ) = 1

πθ2

[
1 −

(
1 + θ2

θ2
G

)
exp

(
− θ2

θ2
G

)]
(23)

for θ ≤ θo and U = Q+ = 0 elsewhere. Throughout this paper, we
set θo = 10 × θG and adopt θG = 1 arcmin as a fiducial case. Note
that this choice of θG is considered to be an optimal smoothing scale
for the detection of massive galaxy clusters using weak lensing for
zsource = 1.0 (Hamana et al. 2004).

Let us now move to the peaks. The height of peaks is in practice
normalized as ν(θ ) = K(θ )/σshape, where σ shape is the noise variance
coming from intrinsic ellipticity of galaxies. We compute σ shape

following:

σ 2
shape = σ 2

int

2ngal

∫ θo

0
dθ Q2

+ (θ ) , (24)

where σ int is the rms value of the intrinsic ellipticity of the source
galaxies and ngal is the number density of galaxies. Unless otherwise
stated, we assume σ int = 0.4 and ngal = 10 arcmin−2 that are typical
values for ground-based imaging surveys.

One can evaluate the smoothed convergence signal arising from
an isolated massive cluster at a given redshift by assuming the
matter density profile of dark matter haloes (e.g. Navarro, Frenk &
White 1997). Based on that, Hamana et al. (2004) present a simple
theoretical framework to predict the number density of the peaks
of the K field. Their calculation provides a reasonable prediction
when the S/N of ν due to massive haloes is larger than ∼4 (see
Hamana et al. 2004, for details). This is then refined by Fan, Shan
& Liu (2010) by including the statistical properties of shape noise
and its impact on the peak position. We here focus on peak counts
in a wider range of ν including peaks with low S/N, which is still
difficult to predict with analytic approach.

3.1.4 Minkowski functionals

MFs are morphological descriptors for smoothed random fields.
There are three kinds of MFs for two-dimensional maps. The func-
tionals V0, V1 and V2 represent the area in which K is above the
threshold Kthre, the total boundary length, the integral of geodesic
curvature along the contours, respectively. Hence, they are given
by

V0(Kthre) ≡ 1

A

∫
Q

dA, (25)

V1(Kthre) ≡ 1

A

∫
∂Q

1

4
d�, (26)

V2(Kthre) ≡ 1

A

∫
∂Q

1

2π
Kd�, (27)

where K is the geodesic curvature of the contours, dA and d� rep-
resent the area and length elements and A is the total area. In the
above, we also defined Q and ∂Q, which are the excursion sets and
boundary sets for the smoothed field K(x), respectively. They are
given by

Q = {x|K(x) > Kthre}, (28)
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Table 1. Cosmological parameters used for N-body simulations. In addition to the parameter in f(R) gravity, two parameters (�m, σ 8) are changed by
±1σ of Planck 2015 constraint (Planck Collaboration XIII 2016). When we vary �m, we also change �� to keep the spatial flatness.

Run fR0 σ 8 �m0 �� No. of N-body sim. No. of maps Explanation

GR 0 0.830 0.315 0.685 1 100 Fiducial �CDM model
F5 −10−5 0.883 0.315 0.685 1 100 HS model with fR0 = −10−5

F6 −10−6 0.845 0.315 0.685 1 100 HS model with fR0 = −10−6

High �m0 0 0.830 0.335 0.665 1 100 1σ higher �m0 model
Low �m0 0 0.830 0.295 0.715 1 100 1σ lower �m0 model
High σ 8 0 0.850 0.315 0.685 1 100 1σ higher σ 8 model
Low σ 8 0 0.810 0.315 0.685 1 100 1σ lower σ 8 model

∂Q = {x|K(x) = Kthre}. (29)

In particular, V2 is equivalent to a kind of genus statistics and equal
to the number of connected regions above the threshold, minus those
below the threshold. Therefore, for high thresholds, V2 is almost the
same as the peak counts.

For a two-dimensional Gaussian random field, the expectation
values of MFs can be described as shown in Tomita (1986):

V0(K) = 1

2

[
1 − erf

(K − K̄
σ

)]
, (30)

V1(K) = 1

8
√

2

τ

σ
exp

(
− (K − K̄)2

σ 2

)
, (31)

V2(K) = 1

2(2π)3/2

(K − K̄
σ

)
τ 2

σ 2

× exp

(
− (K − K̄)2

σ 2

)
, (32)

where K̄ = 〈K〉, σ 2 = 〈K2〉 − K̄2 and τ 2 = 〈|∇K|2〉. Although
MFs can be evaluated perturbatively if the non-Gaussianity of
the field is weak (Matsubara 2003, 2010), it is difficult to adopt
the perturbative approach for highly non-Gaussian fields (Petri
et al. 2013). In this paper, we pay a special attention to the non-
Gaussian cosmological information obtained from convergence
MFs. Therefore, instead of analytical calculations, again, we con-
sider the numerical measurements of MFs from the smoothed con-
vergence field K estimated by equation (19). Ling et al. (2015)
have demonstrated that lensing MFs can be a powerful probe of
f(R) gravity, while we will further investigate them with more
detailed simulation of gravitational lensing in this paper. The
main difference between our analysis and Ling et al. (2015) is
in the method for the projection of the large-scale structure. While
our simulation properly takes into account the contribution from
the structure along the line of sight by ray tracing, Ling et al.
(2015) have focused on the surface mass density field at a specific
redshift of ∼0.1.

4 SI M U L ATI O N A N D A NA LY S I S

4.1 N-body and ray-tracing simulations

We generate three-dimensional matter density fields using a N-body
code ECOSMOG (Li et al. 2012), which supports a wide class of mod-
ified gravity models including f(R) gravity. This code is based on
an adaptive mesh refinement code RAMSES2 (Teyssier 2002). The

2 http://www.itp.uzh.ch/teyssier/ramses/RAMSES.html

simulation covers a comoving box length of 240 h−1 Mpc for each
dimension, and the gravitational force is computed using a uniform
5123 root grid with seven levels of mesh refinement, corresponding
to the maximum comoving spatial resolution of 3.6 h−1 kpc. We
proceed the mesh refinement when the effective particle number in
a grid cell becomes larger than eight. The density assignment and
force interpolation are performed with the triangular-shaped cloud
(TSC) kernel. We generate the initial conditions using the parallel
code MPGRAFIC3 developed by Prunet et al. (2008). The initial red-
shift is set to zinit = 85, where we compute the linear matter transfer
function using LINGER (Bertschinger 1995). As the fiducial cosmo-
logical model, we adopt the following cosmological parameters: the
matter density parameter �m0 = 0.315, the cosmological constant in
units of the critical density ��0 = 0.685, the amplitude of curvature
perturbations ln (1010As) = 3.089 at k = 0.05 Mpc−1, the Hubble
parameter h = 0.673 and the scalar spectral index ns = 0.945.
These parameters are consistent with the result of Planck Collabo-
ration XIII (2016). For the HS model, we consider two variants with
|fR0| = 10−5 and 10−6, referred to F5 and F6, respectively. We fix
the initial density perturbations for these simulations and allow the
amplitude of the current density fluctuations to vary among the mod-
els. The mass variance within a sphere with a radius of 8 Mpc h−1

(denoted by σ 8) is therefore different in the three models: 0.830,
0.883 and 0.845 in �CDM, F5 and F6, respectively. The cosmic
shear statistics are known to be sensitive to the combination of �m0

and σ 8 (e.g. see Kilbinger 2015, for a review). In order to study
the degeneracy of the cosmological parameters and the modified
gravity parameters, we perform four additional sets of �CDM sim-
ulations with different values of �m0 and σ 8. Table 1 summarizes
the parameters in our N-body simulations.

For ray-tracing simulations of gravitational lensing, we generate
light cone outputs using multiple simulation boxes in the following
manner. Our simulation volumes are placed side by side to cover
the past light cone of a hypothetical observer with an angular extent
5◦ × 5◦, from z = 0 to 1, similarly to the methods in White &
Hu (2000), Hamana & Mellier (2001) and Sato et al. (2009). The
exact configuration can be found in the last reference. The angular
grid size of our maps is 5◦/4096 ∼ 0.075 arcmin. For a given cos-
mological model, we use constant-time snapshots stored at various
redshifts. We create multiple light cones out of these snapshots by
randomly shifting the simulation boxes in order to avoid the same
structure appearing multiple times along a line of sight. In total, we
generate 100 quasi-independent lensing maps with the source red-
shift of zsource = 1 from our N-body simulation. See Petri, Haiman
& May (2016) for the validity of recycling one N-body simulation
to have multiple weak-lensing maps.

3 http://www2.iap.fr/users/pichon/mpgrafic.html
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Throughout this paper, we include galaxy shape noise e in our
simulation by adding to the measured shear signal random elliptic-
ities that follow the two-dimensional Gaussian distribution as

P (e) = 1

πσ 2
e

exp

(
− e2

σ 2
e

)
, (33)

where e =
√

e2
1 + e2

2 and σ 2
e = σ 2

int/(ngalθ
2
pix) with the pixel size of

θpix = 0.075 arcmin.

4.2 Statistical analyses

In the following, we summarize our methods to measure cosmic
shear statistics of interest from simulated lensing field.

4.2.1 Power spectrum

We follow the method in Sato et al. (2009) to estimate the con-
vergence power spectrum from numerical simulations based on the
fast Fourier transform. Namely, we measure the binned power spec-
trum of the convergence field by averaging the product of Fourier
modes |κ̃(�)|2 obtained by two-dimensional fast Fourier transform.
We employ 30 bins logarithmically spaced in the range of � = 100
to 5 × 104. However, we consider 10 bins on � < 2000 in evaluating
the expected signal level on modified gravity, since smaller scales
are in general more difficult to predict without theoretical uncer-
tainties, such as baryonic physics (e.g. Zentner et al. 2013; Osato,
Shirasaki & Yoshida 2015) or intrinsic alignment (for a review, see
e.g. Troxel & Ishak 2015).

4.2.2 Bispectrum

We follow the method in Valageas et al. (2012) and Sato &
Nishimichi (2013) to estimate the convergence bispectrum, which
is a straightforward extension of the power spectrum measurement.
We measure the binned bispectrum of the convergence field by
averaging the product of three Fourier modes Re[κ̃(�1)κ̃(�2)κ̃(�3)]
where Re[···] represents the real part of a complex number. We use
12 bins logarithmically spaced in the range of �i(i = 1, 2, 3) = 100
to 1 × 104 for each of the three multipoles, and focus on bins in
which all the multipoles are less than 2000 in later sections for the
same reason as the power spectrum.

4.2.3 Peak counts

We identify convergence peaks as follows. Starting from the dis-
cretized κ fields given on grid obtained from numerical simulations,
we apply the filter function (20) to have a smooth field K. We then
define the peak as a pixel which has a higher value than all of its
eight neighbour pixels. We then measure the number of peaks as a
function of K. We exclude the region within 2θG from the boundary
of map in order to avoid the effect of incomplete smoothing. These
procedures are similar to the method in Liu et al. (2015). We con-
sider 18 bins in the range of −4 < ν < 7. However, we exclude bins
with ν > 4 in the discussion of the statistical power, since we recycle
one simulation to obtain multiple convergence maps and massive
haloes corresponding to such high peaks are heavily affected by the
cosmic variance in that one realization.4

4 Although the abundance of these high peaks in our simulations is broadly
explained by a simple analytical model (Higuchi & Shirasaki 2016), more

4.2.4 Minkowski functionals

After constructing the smooth convergence field K on grid exactly
as in the peak counts, we apply the following estimators of MFs, as
shown in, e.g. Kratochvil et al. (2012),

V0(Kthre) = 1

A

∫
�(K − Kthre)dx dy, (34)

V1(Kthre) = 1

4A

∫
δD(K − Kthre)

√
K2

x + K2
ydx dy, (35)

V2(Kthre) = 1

2πA

∫
δD(K − Kthre)

×2KxKyKxy − K2
xKyy − K2

yKxx

K2
x + K2

y

dx dy, (36)

where �(x) is the Heaviside step function and δD(x) is the Dirac
delta function. The integrals in the above expressions are carried
out by summing up the values over grid points specified by the sky
coordinates x and y. The subscripts on K represent differentiation
with respect to these coordinates. The first and second differenti-
ations are evaluated with finite difference. We compute MFs for
100 equally spaced bins of (K − 〈K〉)/σ between −10 and 10. We
consider only the range −3 < (K − 〈K〉)/σ < 4 in the detectability
analysis, for similar reasons to the peak counts. We will see shortly
that a large amount of the sensitivity to the parameter |fR0| comes
from this range.

5 R ESULTS

5.1 Dependence of parameter in f (R) gravity

5.1.1 Power spectrum

Let us first show the result of the convergence power spectrum Pκ .
The left-hand panels in Fig. 1 summarize the average convergence
power spectrum obtained from 100 ray-tracing maps. In both top and
bottom panels, the red, green and blue points (or lines) correspond to
the �CDM, F5 and F6 model, respectively. The red, green and blue
solid lines in the top panel represent the corresponding theoretical
predictions based on equation (14). To calculate equation (14) for
the f(R) models, we adopt the fitting formula of three-dimensional
matter power spectrum as developed in Zhao (2014). Note that this
fitting formula can reproduce the result in Takahashi et al. (2012)
in the case of |fR0| = 0. We find that the predication provides a
reasonable fit to our simulation results for three different models in
the range of � < 7000. In the bottom panel, we show the relative
difference of Pκ between the f(R) models and �CDM. The red
error bars in the bottom panel corresponds to the standard error
of the average convergence power spectrum for �CDM model.
We confirm that the F5 and F6 models change the convergence
power spectrum in the range of � < 7000 by �20 and �4 per cent,
respectively. In comparison, we also consider the relative difference
of Pκ between two �CDM models with different values of σ 8. The
green dashed line in the bottom left-hand panel shows the relative
difference between σ 8 = 0.883 and 0.830, while the blue one is for
the difference between σ 8 = 0.845 and 0.830 (see also Table 1).
While the overall level of the enhancement of power is similar to the
modified gravity simulations, the trend in the dashed lines is quite
different from that in the solid lines. Therefore, the convergence

quantitative analyses are required to assess any systematic effects on the
abundance of high peaks.
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Figure 1. Impact of f(R) gravity on the convergence power spectrum. Left: we show the dependence on |fR0| of the convergence power spectrum. In the top
panel, the coloured points represent the average power spectrum over 100 realizations for the three models, while the bottom shows the relative difference
between �CDM and the two f(R) models. The black dashed line in the top panel corresponds to the shape noise contribution, while the coloured lines are
theoretical models based on a fitting formula of the three-dimensional matter power spectrum (Zhao 2014). In the bottom panel, coloured dashed line represents
the relative difference of the convergence power spectrum for �CDM model when we vary the value of σ 8 to match to those in the f(R) models. In the left-hand
panels, the error bars represent the standard error of the average (i.e. the standard deviation of the each measurement divided by

√
100). Right: we show the

integrand of the convergence power spectrum (14) as a function of redshift z. In the top panel, the dashed lines correspond to the �CDM case, while the solid
lines are for the F5 model. There, different coloured lines show the case of different multipoles as shown in the figure legend. In the lower panel, we show the
comoving scale k that contributes to the convergence power spectrum at the multipole � at a given redshift z. As a reference, the grey hatched region represents
the region where the linear matter perturbations would be enhanced by the additional scalar field degree of freedom.

power spectrum can be a useful probe of f(R) gravity, whereas the
effect is partly compensated by a change of σ 8.

We further examine the contribution to Pκ from the lens at a
given redshift to understand when f(R) gravity enhances the pro-
jected power the most significantly. The top right-hand panel in
Fig. 1 shows the integrand in equation (14) using the fitting for-
mula in Zhao (2014). Compared to �CDM, F5 model enhances
the amplitude of the matter density fluctuations at z � 0.6 for all
the multipoles depicted here. In the bottom right-hand panel, we
show the wavenumber k(z) = �/χ (z) contributing in the calcula-
tion of equation (14) for a given redshift z. On linear scales where
δρm � ρ̄m, the Compton wavelength of the extra scalar field fR can
be expressed as

λ−1
C =

(
1

3(n + 1)

R̄

|fR0|
(

R̄

R̄0

)n+1
)1/2

. (37)

The grey hatched region in the bottom panel represents k > aλ−1
C

where the fifth force due to fR can efficiently enhance the linear
density fluctuations. Although the competition between the non-
linear gravitational growth and the chameleon mechanism would
make the situation more complicated, the criterion of k > aλ−1

C

provides the typical scale where f(R) gravity affects the density
distribution. On large scales where � � 300, the linear approx-
imation works fairly well and the deviation from �CDM can
be mainly explained by the scale-dependent linear growth rate.
On the other hand, the chameleon mechanism does not com-
pletely suppress the effect of f(R) gravity on the matter distribution
on small scales.

5.1.2 Bispectrum

We next consider the convergence bispectrum Bκ . Fig. 2 summa-
rizes the simulation results obtained from 100 ray-tracing maps
for the three different models with |fR0| = 0, 10−6 and 10−5. In
the left-hand panels, we show the result of Bκ for the equilateral
triangle configuration with �1 = �2 = �3 = �. First of all, we com-
pare the simulation result for the �CDM model and the theoreti-
cal prediction. In the calculation, we adopt the fitting formula of
the three-dimensional matter bispectrum Bδ proposed in Gil-Marı́n
et al. (2012) and plug it into equation (17). This fitting formula
explicitly includes the three-dimensional matter power spectrum
and we use the fitting formula in Zhao (2014) (which is equiva-
lent to Takahashi et al. 2012 for �CDM) for that. We find that
the fitting formula is in good agreement with the simulation results
again over the range of � � 7000 for �CDM model. This result
is consistent with a previous work by Sato & Nishimichi (2013).
For � � 300, the difference between the simulation results and the
analytic models appears to be relatively large, mildly larger than
the error bars estimated from the scatter among realizations. This
is possibly because we repeatedly use a single N-body simulation
to generate a quasi-independent ensemble and thus the quoted er-
ror level might be not very accurate. Another reason for the small
discrepancy is the finite area of the simulated maps. This can be
expressed as a convolution with a window function corresponding
to the 5◦ × 5◦ geometry, and this corresponds to �= 360/5 = 72
in multipole. The low-� data points are not so far from this typi-
cal length scale. Furthermore, the fitting formula can also provide
a reasonable fit to both F5 and F6 models, even though the fitting
formula for Bδ is constructed for a �CDM cosmology by numerical
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Figure 2. Impact of f(R) gravity on the convergence bispectrum. Left: we show the dependence on |fR0| of the convergence bispectrum for equilateral
configuration with �1 = �2 = �3 = �. In the top panel, coloured points represent the average bispectrum over 100 ray-tracing realizations for three models,
while the bottom left one shows the relative difference between �CDM and the two f(R) models. The coloured solid line in the top panel shows the theoretical
model based on equation (17) with the fitting formula in Gil-Marı́n et al. (2012). The error bars represent the standard error on the estimated average (i.e.
the standard deviation divided by

√
100). Right: the relative difference of the convergence bispectrum between �CDM and the f(R) models for more general

triangular configurations (�1, �2, �3) as shown on the axes. The red error bars show the standard error on the average bispectrum for �CDM model, while the
green and blue lines are the ratio for F5 and F6 model, respectively. Note that we impose the condition of �1 ≤ �2 ≤ �3 to count every triangle configuration
once.

simulations. In order to quantify the effect of |fR0| on Bκ , we also
show the relative difference of the bispectrum between the �CDM
and the f(R) models in the bottom left-hand panel and the right-hand
panels of Fig. 2. The bottom left-hand panel represents the result
for the equilateral configuration, while the right-hand panels sum-
marize more general configurations specified by three multipoles,
�1 ≤ �2 ≤ �3. In the right-hand panels, we reduce the number of bins
for �2 and �3 to show the effect of |fR0| in an easy to see manner.
Overall, we find that the F5 model affects the convergence bispec-
trum by �20 per cent and the dependence on the triangle shape is
rather weak except for �i � 2000. On the other hand, we cannot
find significant deviation from the �CDM for F6 model. Although
the effect of |fR0| on Bκ seems similar to that on Pκ for the angu-
lar scale of � � 2000, the statistical uncertainty of Bκ would be
larger than Pκ , implying that the bispectrum would be less sensitive
to f(R) gravity and provide a weaker constraint on |fR0| compared
to the power spectrum. We revisit the constraining power on |fR0|
with cosmic shear statistics in Section 5.2. Nevertheless, we should
note that Bκ would play an important role to break the degener-
acy among cosmological parameters such as �m0 and σ 8 in cosmic
shear analyses.

5.1.3 Peak count

We here summarize the results of the peak counts. We define the
differential number density of peaks and then compare the results
among three different models. Fig. 3 shows the effect of f(R) gravity
on the peak counts. The left-hand panel represents the simulation
results with the smoothing scale of 1 arcmin, while the right-hand
panel represents the smoothing with θG = 4.5 arcmin. In both pan-
els, red, green and blue points (or lines) represent the average of
number density of peaks for �CDM, F5 and F6 models, respec-
tively. As in Fig. 1, we show the difference of the number density in

the middle panels, while we normalize the difference by the stan-
dard error of average for the �CDM model in the bottom panels.
We find that the effect of f(R) gravity on the peak counts appears
in not only ν ≥ 3 but also ν ∼ 1. The peaks with ν ≥ 3 cor-
respond to isolated massive dark matter haloes along the line of
sight [see Fan et al. (2010) for analytical estimate of the shape
noise contamination on these peaks and also Higuchi & Shirasaki
(2016) for the detailed comparisons in f(R) model]. General trend
of the number density among three models is found to be consistent
with the expectation from the halo mass function (e.g. Shirasaki
et al. 2016). The number density of high peaks increases in the
range of ν ≥ 3 in the HS model. These specific features would
reflect the non-trivial dependence of halo mass function on |fR0|
(e.g. Li & Hu 2011; Li & Efstathiou 2012; Lombriser et al. 2013;
Cataneo et al. 2016). With a larger smoothing scale, which roughly
corresponds to the removal of Fourier modes with � � 2000, a
bumpy feature at ν ∼ 3.5 for the F5 model disappears. For larger
θG, the halo-peak correspondence gets worse because sharp struc-
tures such as haloes are erased by the smoothing operation. This
would indicate that the simple framework presented in Shirasaki,
Hamana & Yoshida (2015) cannot explain the number count of
peaks on ν > 3 as θG would become larger. Also, we find the num-
ber density at ν ∼ 1 is significantly changed from �CDM when
we set |fR0| = 10−5. This could originate from the larger density
fluctuations in F5 and F6 models expressed in terms of σ 8 (Kra-
tochvil et al. 2010) or the superposition of less massive objects
(Yang et al. 2011). Although it is still not straightforward to phys-
ically interpret these low-S/N peaks and thus it might be safer
to avoid them in cosmological tests, we would like to stress here
that they do have sensitivity to the parameter |fR0| in a statistical
sense, even in the presence of realistic shape noise. We reserve the
study on the degeneracy between |fR0| and σ 8 in peak counts in
Section 5.3.
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Figure 3. Impact of f(R) gravity on the peak counts. Left: we show the dependence of the peak counts on |fR0|. In the top panel, the red points represent the
average (differential) number density of peaks over 100 realizations for the �CDM model, while the green and blue lines are for the F5 and F6 models. The
middle one shows the difference between �CDM and f(R) models, while the bottom is for the difference normalized by the standard error of average for the
�CDM model. Right: similar to the left-hand panel, but larger smoothing scale of 4.5 arcmin is adopted. In both panels, the error bars represent the standard
error of the average (i.e. the standard deviation divided by

√
100). Note that the error level corresponds to 100 × (5 deg)2 = 2500 deg2.

5.1.4 Minkowski functionals

We then present the measurements of the lensing MFs obtained
from 100 simulations. Fig. 4 summarizes the effect of |fR0| on the
lensing MFs. First of all, we confirm the non-Gaussian feature in
lensing MFs for the three models even when we add the shape noise
for which we assume Gaussian distribution. The shape of the MFs
obtained from simulations cannot be explained by the Gaussian
expectation in equations (30)–(32) depicted by the dashed lines,
implying that the lensing MFs are useful probe of non-Gaussian na-
ture of the convergence field that cannot be captured by the power
spectrum. Our results are broadly consistent with a previous work
by Ling et al. (2015). In the case of F5 model, we find that the
deviation from �CDM is at most ∼10 per cent and the clear devia-
tions are found at x = (K − 〈K〉)/σ ∼ 2–5. On the other hand, we
find only �1 per cent differences between F6 and �CDM models.
Note that the deviation from the �CDM we observe is found to be
smaller than Ling et al. (2015) have shown. One of the reasons be-
hind this trend is in the difference of the adopted values of |fR0| and
other cosmological parameters. The model parameters used in Ling
et al. (2015) are different despite the same label: their F5 means
|fR0| = 1.29 × 10−5 instead of 10−5. They also adopted smaller �m0

and σ 8, both indicating weaker screening and therefore stronger
deviation from GR for the same |fR0|. Besides, the difference be-
tween our result and previous one would be partly explained by
the projection effect. Our simulations include the projection effect
and the shape noise simultaneously, while Ling et al. (2015) have
focused on the surface mass density at z = 0.1. Furthermore, we
find that the difference of the lensing MFs between the �CDM
and the HS model has the similar trend to a change of σ 8 (e.g. see
fig. 2 in Shirasaki & Yoshida 2014).

5.2 Detectability of imprint of f (R) gravity

In order to quantify the detectability of f(R) gravity in a given
statistical quantity, we start by writing a measure of a goodness

of fit:

χ2 =
∑
i,j

C−1
ij [O(xi ; true) − M(xi ; test)]

× [O(xj ; true) − M(xj ; test)
]
, (38)

where M(xi ; test) represents a theoretical model of cosmic shear
statistic at the ith bin of x for a cosmological model that one wishes to
test,O(xi ; true) is an observed statistic drawn from the true unknown
cosmology and C is the covariance matrix of the observed data vec-
tor O. In our case, O corresponds to either the power spectrum,
bispectrum, peak counts or MFs, while x refers to the multipole
�, the peak height ν or the normalized convergence (K − 〈K〉)/σ
depending on the statistics. In what follows, we also consider a data
vectorO composed of different statistics when we examine parame-
ter constraints from joint analyses of more than one statistic. In such
cases, we properly take into account the off-diagonal components
relevant to the two statistics of interest in the covariance matrix.

When O follows a multivariate Gaussian distribution and if we
assume the correct model in M(xi ; test), the quantity defined by
equation (38) follows the χ2 distribution with the degree of freedom
of Nbin − 1 as the name suggests, where Nbin represents the total
number of bins for the observables O. Borrowing the idea behind
equation (38), which compares the levels of estimated (in the form
of a covariance matrix) and measured (the actual scatter around the
mean) cosmic variances, we define a similar quantity to assess the
statistical power to constrain |fR0| by replacing the numerator with
the difference of the expected statistics in two models:

(S/N)2 =
∑
i,j

C−1
ij [M(xi ; |fR0|) − M(xi ; �CDM)]

× [M(xj ; |fR0|) − M(xj ; �CDM)
]
, (39)

where we consider the f(R) cosmology characterized by |fR0| and
the fiducial �CDM cosmology.

One can assess the discriminating power of the statistic by the
(S/N)2 defined above. Note that this quantity does not depend on
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Figure 4. Impact of f(R) gravity on the Minkowski functionals (MFs). The three panels represent the results of V0, V1 and V2. In every panel, the error bars
represent the standard error of the average (i.e. the standard deviation divided by

√
100). Also, coloured points represent the average MF over 100 realizations

for the three models, while the bottom portion shows the relative difference of MF between �CDM and f(R) models. The dashed line shows the Gaussian
prediction for �CDM model.

the binning scheme explicitly, as long as we take a binning fine
enough not to miss important features in the statistics. In the ab-
sence of degeneracy between different cosmological parameters,
one can straightforwardly convert the (S/N)2 to the expected level
of constraint on |fR0|; (S/N)2 = 4 for |fR0| = 10−5 corresponds to
σ|fR0| = 10−5/

√
4 = 5 × 10−6, for instance. Note that we consider

the degeneracy among cosmological parameters in Section 5.3 in
details.

In equation (39), we estimateM(xi ; |fR0|) andM(xi ; �CDM) as
the ensemble average over 100 realizations of our ray-tracing maps
as shown in Section 4.1. To derive accurate covariance matrices of
these observables and the cross-covariance between two different
observables, we also make use of the 1000 ray-tracing simulations
performed by Sato et al. (2009). The maps in Sato et al. (2009)
have almost the same design as our simulations, but are gener-
ated for slightly different cosmological parameters [consistent with
Wilkinson Microwave Anisotropy Probe (WMAP) 3-year results
(Spergel et al. 2007)]. We use the maps with a sky coverage of
5 × 5 deg2 for zsource = 1. In order to estimate cosmic shear statis-
tics, we properly take into account the contamination from the

intrinsic shape of sources by adding a Gaussian noise to shear (also
see Section 4.1). For a given observable O, we estimate the covari-
ance matrix using the 1000 realizations of ray-tracing simulations
as follows:

Cij = 1

Nrea − 1

Nrea∑
r=1

[O(r)(xi) − Ō(xi)
]

× [O(r)(xj ) − Ō(xj )
]
, (40)

Ō(xi) = 1

Nrea

Nrea∑
r=1

O(r)(xi), (41)

where Nrea = 1000 and O(r)(xi) is the observable obtained from
rth realization of simulations for ith bin of x. When we calculate
the inverse covariance matrix, we multiply a debiasing correction,
α = (Nrea − Nbin − 2)/(Nrea − 1), with Nrea = 1000 and Nbin being
the number of total bins in our data vector (Hartlap, Simon &
Schneider 2007). In the following, we assume that the covariance
matrix is scaled as the inverse of the survey area and consider

MNRAS 466, 2402–2417 (2017)



2412 M. Shirasaki et al.

Table 2. Summary of the S/N among cosmic shear statistics. We show (S/N)2 defined by equation (38). We show the results for |fR0| = 10−5 in the upper half,
and for |fR0| = 10−6 in the bottom half. In addition to the fiducial analysis, we also show the results when we increase the smoothing scale to θG = 4.5 arcmin,
or the source number density is set to ngal = 30 arcmin−2. All values are for the sky coverage of 1500 deg2.

Pκ Bκ Peak MFs Pκ + Bκ Pκ + Peak Pκ + MFs

|fR0| = 10−5

Fiducial analysis 127.6 45.1 121.7 1000.9 130.5 201.6 1066.0
Larger smoothing scale 127.6 45.1 53.5 35.3 130.5 151.1 185.1
Higher source number density 255.1 73.9 608.2 2837.2 264.5 668.6 2972.2
|fR0| = 10−6

Fiducial analysis 2.63 0.301 4.85 4.28 2.64 6.52 6.51
Larger smoothing scale 2.63 0.301 1.39 0.237 2.64 3.37 3.45
Higher source number density 5.44 0.540 29.0 19.3 6.49 30.3 27.3

a hypothetical lensing survey with a sky coverage of 1500 deg2,
which corresponds to the ongoing imaging survey with Subaru
Hyper Suprime-Cam5(Miyazaki et al. 2006). Note that under the
assumed scaling of the covariance matrix, one can easily calculate
the corresponding (S/N)2 for a given sky coverage of A deg2 by
multiplying the (S/N)2 presented in this section by a factor of
A/1500. Table 2 summarizes the results of this section.

5.2.1 Fiducial analysis

As the fiducial analysis, we consider a situation in which the
two spectra Pκ and Bκ are measured in the range of 100 ≤ � ≤
2000, while we have the number density of peaks in the range of
−2 < ν < 4 and MFs are given for −3 ≤ (K − 〈K〉)/σ ≤ 4. For the
two convergence spectra, we adopt the same binning as summarized
in Section 4.2, leading to 14 bins for Pκ and 78 bins for Bκ in total.
On the other hand, we construct the number density of peaks in 10
bins with width of �ν = 0.6, while we employ 12 bins to measure
each lensing MF.

As shown in Table 2, the values of (S/N)2 indicates that all the
cosmic shear statistics considered here can distinguish the F5 model
from the �CDM model with a high significance level when the other
cosmological parameters are fully known. Even a very small modi-
fication to GR such as our F6 model is detectable by these statistics
except when we employ the bispectrum alone. Surprisingly, non-
standard statistics such as the peak counts or the MFs have very high
S/N competitive or significantly larger than the conventional anal-
yses using the power or bispectra (Liu et al. 2016). This indicates
that the weak lensing convergence field indeed exhibits strong non-
Gaussianity that is difficult to capture by low-order polyspectra.
Geometrical measures such as the MFs are especially powerful in
such a regime. We also find the (S/N)2 from combined analyses with
two statistics is slightly smaller than the simple sum of the individ-
ual values (the three right-hand columns). This is due to the cross-
covariance between the statistics. While we can access independent
information through different measures reflecting an increase in the
(S/N)2 from the combined analyses, part of it is common to that in
the power spectrum. This demonstrates the importance of a proper
account of the cross-covariance in actual data analyses.

5.2.2 Dependence on smoothing scale and shape noise

We have seen so far the statistical power of four different measures in
testing the possibility of modified gravity. Among the four statistics,

5 http://www.naoj.org/Projects/HSC/j_index.html

the power and the bispectra are given explicitly as a function of the
physical scale. Since we expect that smaller scales are more severely
contaminated by, e.g., intrinsic alignment or baryonic physics, we
can conduct a more reliable cosmological test by limiting ourselves
in large scales. On the other hand, the dependence of the peak counts
and the MFs on the physical scale is less clear. What we have done
so far is based on the statistics at one given scale θG = 1 arcmin,
chosen to have a good correspondence between peaks and massive
clusters. We thus investigate in this section the dependence of the
detectability of a non-zero |fR0| on the smoothing scale that defines
the peaks and MFs. We also test the dependence on the mean density
of source galaxies, which can alter the result significantly.

We first examine the dependence on the smoothing scales by
setting θG = 4.5 arcmin, which roughly corresponds to � = 2000.
For this choice of smoothing, all the four statistics probe roughly
the same angular scale and thus we expect that they have a similar
level of theoretical uncertainties due to small scale effects. In this
sense, we can do a fairer comparison among the four. The results are
shown in Table 2 both for |fR0| = 10−5 and 10−6. Compared to the
fiducial analysis with θG = 1 arcmin, the level of non-Gaussianity
in the smoothed map is strongly suppressed. As a result, the S/N
from the lensing MFs is greatly reduced. The statistical power of the
peak counts is also suppressed, but to a much lesser extent. When
we combine these statistics with the power spectrum, we have a
larger increase in the S/N for the MFs than for peak counts, because
there is a larger overlap in information for the peak counts and the
power spectrum with this choice of θG. Although we lose significant
(S/N)2 in the MFs, they still probe independent information to the
power spectrum.

Another test is a larger source number density with the smoothing
scale unchanged. We consider 30 arcmin−2, and this leads to the
shape noise level reduced by a factor of 1/

√
3 ∼ 0.57. We reanalyse

the power and the bispectra in addition to the peak counts and the
MFs in this case. We can see in Table 2 that such a deeper imaging
survey with a higher source number density provides a significantly
improved S/N. Especially, the peak counts and lensing MFs are sen-
sitive to the number density. We find that (S/N)2 for peak counts and
MFs increases by a factor of ∼5 and ∼2.8, respectively. Provided
that the small-scale uncertainties are well under control, these two
statistics have a potential to distinguish the F5 or even F6 model
from the �CDM model with a very high significance in upcoming
deep imaging surveys.

5.3 Degeneracy among cosmological parameters

We then study the degeneracy between |fR0| and cosmological pa-
rameters. Cosmic shear observables depend sensitively on the two
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Figure 5. Degeneracy between cosmological parameters and f(R) gravity. Each panel represents the relative difference of one of a various cosmic shear
statistics between the fiducial �CDM model and the other models. The green and blue lines correspond to the F5 and F6 model, respectively. On the other
hand, the black solid line shows the case of �CDM with �m0 larger by 0.025, while the black dashed line is for a model with σ 8 larger by 0.050. Note that the
grey error bars in each panel correspond to the cosmic variance from a survey with the sky coverage of 1500 deg2. The detailed configuration of triangles in
bispectrum is summarized in Appendix A.

parameters of �m0 and σ 8 through equation (12). Thus, we focus
on these parameters and investigate how well we can constrain |fR0|
when these parameters are jointly varied. We first construct a model
of the parameter dependence of cosmic shear statistic O(x) by ex-
panding into the Taylor series around a fiducial point (�m0, fid, σ 8, fid,
|fR0| = 0):

O(xi ; �m0, σ8, |fR0|) � O(xi ; �m0,fid, σ8,fid, |fR0| = 0)

+∂O(xi)

∂�m0
(�m0 − �m0,fid) + ∂O(xi)

∂σ8
(σ8 − σ8,fid)

+∂O(xi)

∂|fR0| |fR0|, (42)

where �m0, fid = 0.315, σ 8, fid = 0.830, and the first derivatives are
estimated from the five simulations at the bottom of Table 1 by the
finite difference method (both sided for �m0 and σ 8, and one sided
for |fR0|).

Fig. 5 summarizes our cosmic shear statistics as a function of
|fR0|, �m0 and σ 8. In this section, we consider the same binning of
observables as in the fiducial analysis in Section 5.2. Fig. 5 shows
the fractional difference of cosmic shear statistic compared to the
fiducial model. The green and blue lines in the figure represent the
ratio for F5 and F6 model, respectively. The black solid and dashed
lines are for �CDM with higher �m0 and σ 8. For visualization,
we classify the triangular configuration of the arguments of the
convergence bispectrum into equilateral (�1 = �2 = �3), isosceles
(�1 = �2) and scalene (�1 �= �2 �= �3). The grey error bars represent
the statistical uncertainty in a hypothetical survey with 1500 deg2

estimated from the 1000 ray-tracing simulations in Sato et al. (2009).
As a whole, the dependence of |fR0| is found to be quite similar to
that of �m0 and σ 8 because f(R) model predicts a higher σ 8 for a
fixed amplitude of initial curvature perturbations and cosmic matter
density through a more rapid growth of structure.

The Fisher matrix approach provides a quantitative method
to evaluate the importance of degeneracy among cosmological

parameters. The Fisher matrix Fαβ is given by

Fαβ =
∑

ij

C−1
ij

∂O(xi)

∂pα

∂O(xj )

∂pβ

, (43)

where pα and pβ run for cosmological parameters (i.e. |fR0|, �m0 and
σ 8 in our case). Note that we ignore the cosmological dependence
of the covariance matrix in equation (43). We here consider two
error levels; unmarginalized error of |fR0| and marginalized error of
|fR0| considering �m0 and σ 8. The former corresponds to the case in
which the parameters �m0 and σ 8 (or the amplitude of the primordial
fluctuations, As, in realistic situations) are already constrained very
tightly from independent observations, while the latter takes into
account the effect of parameter degeneracy on error estimate. Thus,
we can see the importance of parameter degeneracy by comparing
the unmarginalized and marginalized errors.

Table 3 summarizes both unmarginalized and marginalized errors
of |fR0| for a hypothetical imaging survey with the sky coverage of
1500 deg2. The two upper rows correspond to our fiducial case with
�max = 2000 and θG = 1 arcmin. According to the Fisher analysis,
the power-spectrum analysis results in the most degraded constraint
on |fR0| after marginalization over �m0 and σ 8; the error level gets
∼5 times larger. Although the other cosmic shear statistics do also
suffer from parameter degeneracy, combinations of two or more
observables can improve the situation quite significantly. We can
confirm in the table that the parameter degeneracy is gradually
broken by adding statistics one by one. By properly using the four
cosmic shear statistics presented in this paper, one can provide a
better marginalized constraint on |fR0| than the unmarginalized error
expected from the power-spectrum analysis alone. These results
would demonstrate the importance of use of different cosmic shear
statistics in upcoming imaging surveys.

So far, our discussion is based on the fiducial analysis. It is, then,
of importance to quantify the constraining power from different
physical scales. Indeed, the maximum multipole �max = 2000 used in
the power and the bispectra and the smoothing scale θG = 1 arcmin
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Table 3. Expected constraint on |fR0| from Fisher analysis for various statistics. We show the 1σ error level in units of 10−6, assuming the fiducial
survey parameters; θG = 1 arcmin, ngal = 10 arcmin−2 and 1500 deg2. We consider both unmarginalized and marginalized cases over �m0 and σ 8. We
adopt the maximum multipole for the power and the bispectra to be �max = 2000 in the top two rows, while the bottom two rows include information
on smaller scales up to �max = 8000, which probes roughly consistent length scales to the peak counts and the MFs.

Pκ Bκ Peak MFs Pκ + Bκ Pκ + Peak Pκ + MFs Pκ + Bκ + Peak Pκ + Bκ + MFs All

Unmarginalized 0.616 1.799 0.454 0.483 0.615 0.392 0.392 0.398 0.398 0.281
Marginalized 3.069 3.980 0.565 0.936 1.400 0.546 0.802 0.533 0.753 0.409

Unmarginalized 0.394 1.21 0.454 0.483 0.405 0.317 0.310 0.329 0.327 0.262
Marginalized 1.29 2.46 0.565 0.936 0.607 0.522 0.634 0.431 0.522 0.365

for the peak counts and MFs correspond to somewhat different
length scales, as we already mentioned earlier. We now change the
former to �max = 8000 to roughly match to θG = 1 arcmin. Note that
this choice is a bit too aggressive, given the larger uncertainties in
both theoretical modelling and measurements. We show this ideal
case only to see the information on the gravity theory in different
statistics from a fair comparison at similar scales.

The resulting constraints on |fR0| are listed in the bottom two
rows of Table 3. The bottom line is the same as the fiducial anal-
ysis; the conventional power-spectrum analysis exhibits the most
notable degradation of the constraint on |fR0|, and this is mitigated
by combining more and more statistics. Now, thanks to the small-
scale information from the power and the bispectra, the error level
from each of the statistics is very similar.

Although Fig. 5 shows clear degeneracy among three parameters
of |fR0|, �m0 and σ 8 in cosmic shear statistics, the effect of |fR0|
is not compensated by different �m0 and σ 8 exactly. For instance,
the scale-dependent linear growth rate and the specific feature in
the halo mass function in the f(R) model are quite unique and thus
difficult to absorb by a change in �m0 and σ 8 within the �CDM
scenario.

In order to demonstrate this situation more quantitatively, we
consider the effective bias on the �m0–σ 8 plane assuming the F6
model is the true cosmological model that governs the universe but
�CDM model is wrongly adopted in the data analysis. We estimate
the bias in parameter estimation as (Huterer et al. 2006)

δpα =
∑

β

F−1
GR,αβ [O(xi ; F6) − O(xi ; fid)] C−1

ij

∂O(xj )

∂pβ

, (44)

where pα = (�m0, σ 8), O(xi ; fid) represents the assumed �CDM
model, while O(xi ; F6) is the true cosmological model, corre-
sponding to the F6 model in this case. The matrix of FGR, αβ in
equation (44) is the Fisher matrix for �m0 and σ 8, and is the sub-
matrix of that in equation (43). The Fisher matrix FGR, αβ provides
the confidence region around the fiducial �CDM parameter. If the
difference of the cosmic shear statistics between F6 and �CDM
models can be explained by simply the difference in σ 8, the bias by
equation (44) would be equal to the difference of two values of σ 8

in these models. More specifically, the bias on �m0–σ 8 plane would
be equal to (δ�m0, δσ 8) = (0, σ 8(F6) − σ 8(�CDM)), where σ8(F6)
represents the resulting σ 8 in F6 model, and so on.

Fig. 6 shows the result of this analysis. While we show the stan-
dard Fisher analysis within the �CDM framework in the left-hand
panel, we show in the right-hand panel the biased estimation in
�m0–σ 8 plane induced by the difference between F6 and �CDM
model. We show the 95 per cent confidence region estimated from
the Fisher matrix with an ideal future survey with the sky coverage
of 20 000 deg2. The centres of ellipses in the right-hand panel are
off from the true position depicted by the crossing point of the hor-
izontal and the vertical dotted lines, and the displacement from that

Figure 6. Consistency among cosmic shear statistics. In the left-hand panel,
we show the 95 per cent confidence region of (�m0, σ 8) for �CDM. In the
right-hand panel, we represent the bias on the �m0–σ 8 plane when F6 model
is the true model, but we use �CDM model in parameter constraints. The
grey star point in the right-hand panel is the expected bias assuming that
the difference of statistics between F6 and �CDM can be explained by
difference of σ 8. In both panels, coloured symbols correspond to different
cosmic shear statistics (black for power spectrum, red for bispectrum, green
for peak counts and blue for MFs). In this figure, we assume the sky coverage
of 20 000 deg2 and the source number density of 30 arcmin−2.

point shows the effective bias given by equation (44). For simplicity,
we employ the size the ellipses the same as in the left-hand panel.
We also show by the grey star symbol the expected central value if
the difference between F6 and �CDM can completely be explained
by the change in σ 8.

According to the right-hand panel, we find that the effect of f(R)
gravity on the power spectrum would be mainly determined by the
change of σ 8, but the other statistics suggest that the difference also
propagates to the estimated �m0. Since the convergence bispectrum
is less sensitive to |fR0|, the bias from using it alone on �m0–σ 8

plane would be smaller than the statistical uncertainty in a survey
of 20 000 deg2. This implies that it is difficult to distinguish the
F6 model from �CDM model with bispectrum alone. Interestingly,
peak counts and lensing MFs would predict higher �m0 and lower
σ 8 if F6 is the true model. The amount of bias in lensing MFs is
smaller than the one in peak counts, because of different sensitivity
of |fR0| as shown in Section 5.2.

The result indicates that one can eventually find a clue beyond the
�CDM model by detecting discrepancies in the allowed parameter
regions from multiple statistics. Notably, a realistic analysis of the
power and the bispectra up to �max = 2000 can find this with a high
significance for a value of |fR0| as small as 10−6. The additional
statistics such as the peak counts and the MFs would provide an even
more promising path towards the law of gravity on cosmological
scales.
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6 C O N C L U S I O N A N D D I S C U S S I O N

In this paper, we studied the effects of f(R) gravity on statistical
properties of the weak gravitational lensing field. For this purpose,
we have performed N-body simulations to investigate structure for-
mation in a universe under the f(R) model proposed in HS model.
We then employed ray-tracing method to realize a realistic situa-
tion of weak lensing measurements in galaxy imaging survey. In
ray-tracing simulations, we have properly taken into account the
deflection of light along the line of sight and galaxy shape noise.
The large set of these mock lensing catalogues enables us to study
the information content about f(R) gravity in cosmic shear statistics
that have already been conducted in previous imaging surveys. Our
main findings are summarized as follows:

(i) The convergence power spectrum contains information about
f(R) gravity because of the scale-dependent linear growth rate and
the environment dependence of non-linear gravitational growth. As-
suming the source redshift is set to be 1, f(R) gravity would enhance
the amplitude of the spectrum at �= 1000 with a level of ∼12
and 2 per cent for |fR0| = 10−5 and 10−6, respectively. Although the
change of convergence power spectrum is expected given by the
difference of σ 8 between f(R) and �CDM models, correct under-
standing of the non-linear gravitational growth in f(R) gravity would
be required to determine the amplitude accurately (e.g. Zhao 2014).

(ii) The convergence bispectrum is the lowest order non-
Gaussian information in weak lensing field. We find that it can
change by ∼10 per cent with the model of |fR0| = 10−5 and the de-
pendence on the triangle configuration in Fourier space is weak.
However, the information of f(R) gravity in convergence bispec-
trum would be less important than that in the power spectrum,
because the change of amplitude would be smaller than the statis-
tical uncertainty even in an upcoming survey with a sky coverage
of 20000 deg2. Our results indicate that the information from the
convergence bispectrum should be used to break the degeneracy be-
tween |fR0| and the present amplitude of matter fluctuations σ 8 in the
convergence power spectrum. This is consistent with the previous
investigation in Gil-Marı́n et al. (2011).

(iii) Peak counts in a reconstructed smooth convergence field
are expected to be informative for constraining the nature of grav-
ity, because the modification of gravity can affect the abundance
of massive dark matter haloes. We find that the number density
of peaks can be affected by the presence of extra scalar degree of
freedom with |fR0| = 10−5 with a level of a few per cents. Besides
the peaks with high height caused by isolated massive objects along
a line of sight, the peaks with S/N of ∼1 can be useful to distin-
guish the f(R) model with |fR0| = 10−5 from GR. This information
at intermediate peak height is similar to the effect of changing σ 8

in �CDM (cf. Fig. 5; lower left-hand panel), but again it is difficult
to exactly compensate the difference of peak counts in f(R) gravity
and GR by varying σ 8.

(iv) MFs are an interesting statistic to extract non-Gaussian infor-
mation from a given random field. Previous study (Ling et al. 2015)
has investigated the possibility of using them to constrain on f(R)
model, while we improve the analysis by considering realistic ob-
servational situations. We find that lensing MFs in a reconstructed
smooth convergence field show 2–3 per cent differences between
two cases of |fR0| = 10−5 and 0 (or GR). The effect of |fR0| in lens-
ing MFs are reduced by the presence of shape noise and projection
effect compared to the previous work, showing our approach with
realistic ray-tracing simulations would be essential to predict them.
Although f(R) model with |fR0| = 10−5 would affect the lensing
MFs with only a few per cent, MFs are still useful to constrain
f(R) gravity because of their small statistical uncertainty. However,

the constraining power of |fR0| in lensing MFs would be strongly
dependent on the smoothing scale in reconstruction.

(v) Among the four statistics, the convergence power spectrum,
peak counts and lensing MFs have a similar sensitivity to f(R) grav-
ity in typical ground-based imaging surveys if the small-scale clus-
tering of lensing fields at �1 arcmin can be properly modelled.
When we apply a larger smoothing to match the probed scale effec-
tively to � � 2000, the non-Gaussian statistics have shown similar
sensitivity to f(R) gravity. Nevertheless, the information of peak
counts and lensing MFs can be improved by a factor of 2–3 when
one can reduce the shape noise contaminations in a smoothed con-
vergence map by increasing the source number density. In terms
of degeneracy among cosmological parameters, the convergence
power spectrum has the strongest degeneracy between |fR0| and σ 8,
while peak counts and lensing MFs would show a different degen-
eracy. Therefore, a complete and accurate understanding of peak
counts and lensing MFs would be helpful to break the degeneracy
between modified gravity and the concordance �CDM parameters.
Note that the convergence bispectrum can be an unbiased indicator
of �m0 and σ 8 because of weak dependence of |fR0|.

Our findings are important for constraining the nature of grav-
ity with weak lensing measurement. There still remain, however,
crucial issues on the cosmic shear statistics proposed in this paper.

Although the peak counts and lensing MFs can be used to ex-
tract cosmological information beyond the two-point statistics, at
the crucial length scales of structure probed by them, perturba-
tive approaches break down because of the non-linear gravitational
growth (Taruya et al. 2002; Petri et al. 2013). In order to sample
a Likelihood function for a wide range of cosmological parame-
ters, we require accurate theoretical predictions of the non-local
statistics in convergence map beyond perturbation methods (e.g.
Matsubara 2003). A simplest approach to build the predictions for
various cosmological models is to use a large set of cosmological
N-body simulations (Shirasaki & Yoshida 2014; Liu et al. 2015;
Petri et al. 2015), while there exists a more flexible approach to
predict the non-local statistics (e.g. Lin & Kilbinger 2015). An-
other important issue is theoretical uncertainties associated with
baryonic effects. Previous studies (e.g. Semboloni, Hoekstra &
Schaye 2013; Zentner et al. 2013) explored the effect of includ-
ing baryonic components to the two-point correlation of cosmic
shear and consequently to cosmological parameter estimation. Os-
ato et al. (2015) have studied baryonic effects on peak counts and
lensing MFs with hydrodynamic simulations under GR. Although
the baryonic physics would play an important role in the regions
where GR should be recovered, the modification of gravity might af-
fect the large-scale structure. Since the peak count and lensing MFs
would involve in the cosmological information of various struc-
tures in the Universe in complex way, we need to develop accurate
modelling of cosmic shear statistics incorporated with both modi-
fications of gravity and baryonic effects. The statistical properties
and the correlation of source galaxies and lensing structures are still
uncertain but could be critical when making lensing mass maps. For
example, source–lens clustering (e.g. Hamana et al. 2002) and the
intrinsic alignment (e.g. Hirata & Seljak 2004) are likely to affect
the information content of f(R) gravity in cosmic shear statistics.
There is a possibility that these two effects can induce the system-
atic effect on reconstruction of lensing mass maps (e.g. Kacprzak
et al. 2016). We plan to address these important issues in future
works.

Upcoming imaging surveys would provide imaging data of bil-
lions of galaxies at z ∼ 1. Detailed statistical analyses of these
precious data sets can reveal matter density distribution in the
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Universe regardless of which cosmic matter is luminous and dark.
Since matter contents in the Universe can be evolved by non-linear
gravitational growth, a map of matter distribution observed in future
would be a key to understand the nature of gravity. Cosmological
tests of GR with imaging surveys are just getting started and the
present work in this paper would a useful step in understanding the
nature of gravity with future weak lensing data.
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A P P E N D I X A : TH E D E TA I L E D
C O N F I G U R AT I O N O F T R I A N G L E S I N
L ENSING BISPECTRUM

We provide the information of lensing bispectrum used in Fig. 5.

Table A1. The configuration of triangles in lensing bispec-
trum shown in Fig. 5. The ordering of ID corresponds to the
data in Fig. 5 from left to right.

ID �1 �2 �3

Equilateral
1 119.4 119.4 119.4
2 242.4 242.4 242.4
3 345.5 345.5 345.5
4 492.4 492.4 492.4
5 701.7 701.7 701.7
6 1000.0 1000.0 1000.0
7 1425.1 1425.1 1425.1
Isosceles
1 119.4 119.4 170.1
2 119.4 119.4 242.4
3 170.1 170.1 242.4
4 170.1 170.1 345.5
5 242.4 242.4 345.5
6 242.4 242.4 492.4
7 345.5 345.5 492.4
8 345.5 345.5 701.7
9 492.4 492.4 701.7
10 492.4 492.4 1000.0
11 701.7 701.7 1000.0
12 701.7 701.7 1425.1
13 1000.0 1000.0 1425.1

Table A2. Similar to Table A1, but for scalene triangles.

ID �1 �2 �3

Scalene
1 119.4 170.1 242.4
2 119.4 170.1 345.5
3 119.4 242.4 345.5
4 119.4 242.4 492.4
5 119.4 345.5 492.4
6 119.4 492.4 701.7
7 119.4 701.7 1000.0
8 119.4 1000.0 1425.1
9 170.1 242.4 345.5
10 170.1 242.4 492.4
11 170.1 345.5 492.4
12 170.1 345.5 701.7
13 170.1 492.4 701.7
14 170.1 701.7 1000.0
15 170.1 1000.0 1425.1
16 242.4 345.5 492.4
17 242.4 345.5 701.7
18 242.4 492.4 701.7
19 242.4 492.4 1000.0
20 242.4 701.7 1000.0
21 242.4 1000.0 1425.1
22 345.5 492.4 701.7
23 345.5 492.4 1000.0
24 345.5 701.7 1000.0
25 345.5 701.7 1425.1
26 345.5 1000.0 1425.1
27 492.4 701.7 1000.0
28 492.4 701.7 1425.1
29 492.4 1000.0 1425.1
30 701.7 1000.0 1425.1
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