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ABSTRACT

We investigate the information content of various cosmic shear statistics on the the-
ory of gravity. Focusing on the Hu-Sawicki type f(R) model, we perform a set of
ray-tracing simulations and measure the convergence bispectrum, peak counts and
Minkowski functionals, paying a special attention to their complementarity to the
standard power spectrum analysis. We first show that while the convergence power
spectrum does have sensitivity to the current value of extra scalar degree of freedom
| frol, it is largely compensated by a change in the present density amplitude parameter
os and the matter density parameter €2,,0. With accurate covariance matrices obtained
from 1000 lensing simulations, we then examine the constraining power of the three
additional statistics. We find that these probes are indeed helpful to break the param-
eter degeneracy, which can not be resolved from the power spectrum alone. We show
that especially the peak counts and Minkowski functionals have the potential to rig-
orously (marginally) detect the signature of modified gravity with the parameter | fro]
as small as 1075 (107°) if we can properly model them on small (~ 1arcmin) scale in
a future survey with a sky coverage of 1,500 squared degrees. We also consider a more
conservative analysis with a larger smoothing scale to match the proved length scale to
£ < 2,000 that is the maximum multipole moment used in the power and bispectrum
analysis. We show that the signal level is similar among the additional three statistics
and all of them provide complementary information to the power spectrum. These
findings indicate the importance of combining multiple probes beyond the standard
power spectrum analysis to detect possible modifications to General Relativity.

Key words: gravitational lensing: weak, large-scale structure of Universe

1 INTRODUCTION

General Relativity (GR) is the standard theory of gravity
and plays an essential role for astronomy, astrophysics and
cosmology. The theory can provide a reasonable explanation
for various phenomena, e.g., the anomalous perihelion pre-
cession of Mercury’s orbit, the deflection of radiation from
a distant source known as gravitational lensing (e.g., Dyson
et al. 1920; Fomalont et al. 2009), the time delay by the time
dilation in the gravitational lensing in the Sun (e.g., Shapiro
et al. 1971; Bertotti et al. 2003), the redshift of light moving
in a gravitational field, (e.g., Vessot et al. 1980), the orbital
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decay of binary pulsars, (e.g., Taylor & Weisberg 1982), and
the propagation of ripples in the curvature of space-time
measured by the Advanced LIGO detectors (Abbott et al.
2016). Assuming that GR is the correct theory of gravity
even on cosmological scales, an array of large astronomical
observations (e.g., Perlmutter et al. 1997; Tegmark et al.
2006; Planck Collaboration et al. 2015a) has established the
standard cosmological model called the ACDM model. Al-
though the ACDM model can provide a remarkable fit to
various observational results, the correctness of GR on cos-
mological scales is poorly examined so far. A simple exten-
sion of the ACDM model can be realized by modification
of GR. This class of cosmological models is known as mod-
ified gravity which can explain the cosmic acceleration at
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redshift of 2 < 1 without introducing the cosmological con-
stant A. In order to probe the modification of gravity on
cosmological scales, the measurement of the gravitational
growth of cosmic matter density would be essential because
the modification could lead to some distinct features from
the ACDM model in the matter distribution in the Universe
(for a review, see e.g., Clifton et al. 2012).

f(R) gravity is a type of modified gravity theory which
generalizes GR by introducing an arbitrary function of the
Ricci scalar R in the Einstein-Hibert action. This exten-
sion can explain the accelerated expansion, and the result-
ing extra scalar degree of freedom can increase the strength
of gravity and enhance structure formation. The deviation
from standard gravity must be suppressed locally to pass
stringent tests of GR in the solar system, and this can be
achieved by virtue of the chameleon screening. Interestingly,
viable models of f(R) gravity predict that gravitational lens-
ing effect is governed by the same equation as in GR (e.g.,
de Felice & Tsujikawa 2010). Observationally, gravitational
lensing is known as a robust probe of the underlying mat-
ter distribution in the Universe independent of the galaxy-
biasing uncertainty. Thus, such measurements in upcoming
imaging surveys could be a powerful tool to constrain cosmo-
logical scenarios governed by f(R) gravity. Cosmic shear is
the small distortion of images of distant sources originating
from the bending of light rays passing through the large-
scale structure in the Universe. In practice, image distortion
induced by gravitational lensing is smaller than the intrin-
sic ellipticity of sources. Therefore, one needs to analyze the
data statistically in order to extract purely cosmological in-
formation arising from gravitational lensing. Furthermore,
the statistics of the cosmic shear field significantly deviates
from Gaussian, reflecting the non-linearity of the structure
growth. This fact means that one can not extract the full in-
formation in cosmic shear by using two-point statistics alone.
Ongoing and future galaxy imaging surveys are aimed at
measuring the cosmic shear signal with a high accuracy over
several thousand squared degrees. Thus, it is important and
timely to investigate the information about f(R) gravity in
various cosmic shear statistics for the purpose of making the
best use of galaxy imaging surveys.

In this paper, we perform ray-tracing simulations of
gravitational lensing in the framework of f(R) gravity and
explore the cosmological information content in four differ-
ent statistics; the convergence power spectrum, bispectrum,
the abundance of peaks and the Minkowski functionals. The
first statistic is the basic quantity in modern cosmology and
describes the correlation of cosmic shear at two different
directions. The other three quantities would contain infor-
mation that supplement the power spectrum. They extract
non-Gaussian aspects of the cosmic shear field through the
correlation at three points, the abundance of massive objects
associated with rare peaks near the edge of the (one-point)
distribution and the morphology of the field, respectively.
These statistics have already been measured in existing weak
lensing surveys (e.g., Kilbinger et al. 2013; Fu et al. 2014,
Shirasaki & Yoshida 2014; Liu et al. 2015) and their useful-
ness in cosmological analyses have also been demonstrated
theoretically (e.g., Takada & Jain 2003; Hamana et al. 2004,
Valageas et al. 2012; Kratochvil et al. 2012; Shirasaki et al.
2012). We extend the previous analyses of cosmic shear to
modified gravity scenarios governed by f(R) gravity using

numerical simulations and testing their statistical power to
constrain the parameter in the model.

This paper is organized as follows. In Section 2, we
briefly describe the cosmological model based on f(R) grav-
ity and the characteristics of the model. In Section 3, we
summarize the basics of weak lensing and cosmic shear
statistics used in this paper. We also explain the details of
our lensing simulation and the methodology to measure cos-
mic shear statistics in Section 4. In Section 5, we provide
results of our lensing analysis in numerical simulation of
modified gravity and compare the results between the f(R)
model and the ACDM model in detail. We then quantify the
information on the deviation from GR in cosmic shear statis-
tics and compare among different statistics. Conclusions and
discussions are presented in Section 6.

2 COSMOLOGICAL MODEL

In this paper, we study a class of cosmological models with
modified gravity called f(R) gravity. This model can explain
the observed cosmic acceleration at z < 1 without introduc-
ing the cosmological constant and satisfy the solar system
tests with appropriate parameters.

f(R) model

In f(R) model, a general function of the scalar curvature R is
introduced in the Einstein-Hilbert action (Nojiri & Odintsov
2006; de Felice & Tsujikawa 2010; Shi et al. 2015);

s = [ atay=g| LI, (1)

where g is the determinant of metric and G represents the
gravitational constant. The action in Eq. (1) leads to the
modified Einstein equation as

G+ fr R — (g - DfR> G — Vo fr = 87GTp, (2)

where fr =df/dR, Guw = Ry —1/2g, R and O = VOV ,.
Assuming a Friedmann-Robertson-Walker (FRW) metric,
one can determine the time evolution of the Hubble param-
eter in f(R) model as follows:

dR  87G _

2 dH 2 f 2
H fR(Hdlna+H)+6+HfRRdlna_ 3 P (3)

where a is the scale factor and H = a~'da/dt. Structure
formation in f(R) gravity is governed by the modified Pois-
son equation and the equation of motion for the additional
scalar degree of freedom fr!;

2
Ve — 16§G5pma2—%5R, (4)
a2
Vifr = 5 OR = 87Gopn], (5)

1 Throughout this paper, we work with the quasi-static approx-

imation. de La Cruz-Dombriz et al. (2008); Bose et al. (2015)
have shown that the quasi-static approximation becomes quite
reasonable for models with |fr| < 1 today.
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where ® is the gravitational potential, 6 fr = fr(R)— fr(R),
SR =R —R, 6pm = pm — pm, and we represent the back-
ground quantity with a bar. Egs. (4) and (5) show two no-
table features in f(R) gravity. In the high curvature limit
where R — 87Gpm, the extra scalar degree of freedom fr
in Eq. (5) would vanish and Eq. (4) can reproduce the Pois-
son equation in GR as V2o = 47rGa25pm. This is known
as the chameleon mechanism required to recover GR in
high density region (e.g., Khoury & Weltman 2004). On the
other hand, fr would operate in the low curvature regime
where R < 87Gp,, and Eq. (4) can be approximated by
V2® = 167G /3a*6py, in the limit of R < 87Gpy,, making
the gravity enhanced by a factor of 1/3. Therefore, the grav-
itational force in f(R) model can be enhanced depending on
the local density environment.

In this paper, we will consider the representative ex-
ample of f(R) models as proposed in Hu & Sawicki (2007)
(hereafter denoted as HS model),

Rn

FOR) = =20 g

(6)
where A, p and n are free parameters in this model. Al-
though the model does not contain a cosmological constant
as R — 0 (or the limit of flat space-time), one can approxi-
mate the function of f(R) as follows for R > u?:

fR Rn+1
R ™

F(R) = —2A —

where Ry is the present scalar curvature of the background
space-time and fro = —2Au*/RE = fr(Ro). In the follow-
ing, we focus on the case of n = 1. In the HS model with
|fro| < 1, the background expansion is almost equivalent to
that in the ACDM model. Therefore, in practice, geometric
tests such as distance measurement with supernovae could
not distinguish between the ACDM model and the HS model
for |fro| < 1072 (Martinelli et al. 2012). Tt is thus of great
importance to have other probes to break this degeneracy at
the background level. A natural choice for this is the mea-
surement of gravitational structure growth. Indeed, Eqgs. (4)
and (5) indicate that the signature of modified gravity might
exist in the evolution of perturbations.

The evolution of density perturbations in the HS model
has been investigated with analytic (e.g., Bean et al. 2007)
and numerical approaches (e.g., Oyaizu et al. 2008; Schmidt
et al. 2009; Zhao et al. 2011; Li et al. 2013; He et al. 2013;
Zhao 2014). The matter density perturbations in the linear
regime is scale-dependent as opposed to GR, while the non-
linear gravitational growth can be even more complicated
than that in the ACDM model (e.g., the chameleon mech-
anism operates in high-density regions and the ACDM-like
gravity should be recovered in such regions). Hence, a de-
tailed investigation of matter density distribution in the Uni-
verse would be useful to constrain modification of gravity
due to fr. Note that cosmic shear is among the interest-
ing observables to measure matter density distribution in
an unbiased way.

3 WEAK LENSING

We first summarize the basics of gravitational lensing in-
duced by large-scale structure. Weak gravitational lensing
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effect is usually characterized by the distortion of image of
a source object by the following 2D matrix:

”786": l—-k—m —Y2
A'L] - 89] — ( _72 1_K/+,Y1 ’ (8)

where we denote the observed position of a source object as
0 and the true position as 3, k is the convergence, and = is
the shear. In the weak lensing regime (i.e., k,vy < 1), each
component of A;; can be related to the second derivative of
the gravitational potential ® as

Ay = by — D, )
2

by = 5 [ W) g B8 X J10)
foox) = Tx=0red) (11)

r(x)

where x is the comoving distance, r(x) is the angular diam-
eter distance, and x; = r6; represents the physical distance
(Bartelmann & Schneider 2001). By using the Poisson equa-
tion and the Born approximation (Bartelmann & Schneider
2001), one can express the weak lensing convergence field as

w00 = 5 (H2) o [*av ) B,

In general, the lensing equation is governed by the so-called
lensing potential (® + ¥)/2 where ® and ¥ are the Bardeen
potentials appearing in the metric perturbation in the New-
tonian gauge. The lensing potential in f(R) gravity would
be governed by the same Poisson equation as in GR, mak-
ing Egs. (9), (10) and (12) applicable in the HS model with
|fro| < 1 (the derivation can be found in e.g., Arnold et al.
2014). In this paper, we take into account the non-linearity
of the convergence field entering in Eq. (10) using the ray-
tracing technique over simulated density fields.

3.1 Cosmic shear statistics

We here introduce four different statistics of the cosmic
shear. In this paper, we consider statistical analysis with the
convergence power spectrum, bispectrum, peak counts and
Minkowski functionals (MFs). The power spectrum has com-
plete cosmological information when the fluctuation follows
the Gaussian statistics. However, the nonlinear structure for-
mation induced by gravity induces non-Gaussianity even if
the initial fluctuations are Gaussian distributed. Therefore,
higher-order statistics can be important to fully exploit weak
lensing maps beyond the power spectrum analysis.

3.1.1 Power spectrum

The power spectrum is one of the basic statistics in modern
cosmology (e.g., Anderson et al. 2012; Planck Collaboration
et al. 2015b; Becker et al. 2016). It is defined as the two-point
correlation in Fourier space. In case of the convergence field
K, that is

(F(£1)R(€2)) = (2m)*8D (€1 + £2) Pu(01), (13)

where dp(x) is the Dirac delta function and the multipole
¢ is related to the angular scale through 6 = 7 /{. By using
the Limber approximation (Limber 1954; Kaiser 1992) and
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Eq. (12), one can express the convergence power spectrum

O (o
o= [ a8 p (k= ) a9

where Ps(k) represents the three dimensional matter power
spectrum, s is the comoving distance to the source galaxies
and W(x) is the lensing weight function defined as

3 (Ho\*, r0:—x)rk
5(?) QmOT(l‘f‘Z(X)% (15)

where Hj is the present-day Hubble constant and Q2,0 rep-
resents the matter density parameter at present. Once P
is known, one can straightforwardly convert it to other two-
point statistics such as the ellipticity correlation function
(e.g., Schneider et al. 2002).

Note that the convergence power spectrum can be in-
ferred directly through the cosmic shear field without resort-
ing to the convergence field itself. Thus, it can be measured
without introducing any filter function. The situation is the
same for the convergence bispectrum. This is in contrast to
the peak counts and the MF's; one has to first construct a
convergence map with a filter before measuring them (see
the next Sec. 3.1.3 for more detail). This gives them an ex-
plicit dependence on the filter scale chosen for the map con-
struction. In what follows, the results should be interpreted
with care as different statistics might probe different scales.
The scale is specified by the range of multipole moment ¢
for the two spectra, while it is given by the filter scale for
peak counts and the MFs.

Wi(x) =

8.1.2 Bispectrum

For the lensing convergence field, the bispectrum is defined
as the three point correlation in Fourier space as

(R(£1)R(L2)R(£3)) = (21)*0p (L1 + €2 + £3) B (£1,£2,£3). (16)

This quantity is zero for Gaussian fields and thus B, con-
tains the lowest-order non-Gaussian information in the weak
lensing field. Similarly to the case of Py, one can relate the
convergence bispectrum to the three-dimensional matter bis-
pectrum Bs;

w(€1,£2,03) = / dx

Recent studies have shown that the convergence bispectrum
does supplement the power spectrum and we can gain 20—50
percent in terms of the signal-to-noise ratio up to a maxi-
mum multipole of a few thousands (e.g., Kayo et al. 2013).
However, the signal-to-noise ratio from a combined analysis
of the convergence power spectrum and bispectrum is still
significantly smaller than that of the ideal case of the Gaus-
sian statistics. This result motivates us to consider other
statistical quantities such as the peak counts and MFs.

3.1.8 Peak counts

The local maxima found in a smoothed convergence map
would have cosmological information originated from mas-
sive dark matter haloes and the superposition of large-scale
structures (e.g., Hamana et al. 2004; Dietrich & Hartlap
2010; Kratochvil et al. 2010; Yang et al. 2011; Shirasaki

(k17k27k37 ( )) |ki:£1‘,/X' (17)

et al. 2016). We here consider such local maxima and ex-
amine their statistical power in later sections.

In actual observations, one usually start with the cosmic
shear instead of the convergence field. The reconstruction of
smoothed convergence is commonly based on the smoothed
map of cosmic shear. Let us first define the smoothed con-
vergence map as

K(6) = / Lpr(6 - H)U(P), (18)

where U is the filter function to be specified below. We can
calculate the same quantity by smoothing the shear field ~y

as
— [@6

where 4 is the tangential component of the shear at po-
sition ¢ relative to the point 8. The filter function for the
shear field Q)+ is related to U by

0)Q+(9), (19)

0) — /0 " a8 0T — U ), (20)

We consider a filter function Q)+ that has a finite extent. In
such cases, one can write

,2/ do’ Q+

where 0, is the outer boundary of the filter function.
In the following, we consider the truncated Gaussian
filter (for U):

—Q+(0), (21)

0%
1 02
e (o)) @

v = (oo f)em(4).

for 0 < 0, and U = Q4+ = 0 elsewhere. Throughout this
paper, we set 6, = 10 X ¢ and adopt 6 = 1 arcmin as
a fiducial case. Note that this choice of 6 is considered to
be an optimal smoothing scale for the detection of massive
galaxy clusters using weak lensing for zsource = 1.0 (Hamana
et al. 2004).

Let us now move to the peaks. The height of peaks is in
practice normalized as v(0) = K(0)/0shape Where Oshape is
the noise variance coming from intrinsic ellipticity of galax-
ies. We compute oghape following

2 Tt
Oshape — 2ngal / do Q+ (24)
where oint is the rms value of the intrinsic ellipticity of the
source galaxies and nga1 is the number density of galaxies.
Unless otherwise stated, we assume oiny = 0.4 and nga = 10
arcmin~2 which are typical values for ground-based imaging
surveys.

One can evaluate the smoothed convergence signal aris-
ing from an isolated massive cluster at a given redshift by
assuming the matter density profile of dark matter halos
(e.g., Navarro et al. 1997). Based on that, Hamana et al.
(2004) present a simple theoretical framework to predict the
number density of the peaks of the K field. Their calculation
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provides a reasonable prediction when the signal-to-noise ra-
tio of v due to massive halos is larger than ~ 4 (see, Hamana
et al. 2004, for details). This is then refined by Fan et al.
(2010) by including the statistical properties of shape noise
and its impact on the peak position. We here focus on peak
counts in a wider range of v including peaks with low signal-
to-noise ratio, which is still difficult to predict with analytic
approach.

8.1.4 Minkowski functionals

MF's are morphological descriptors for smoothed random
fields. There are three kinds of MFs for two-dimensional
maps. The functionals Vp, Vi, and V> represent the area
in which K is above the threshold Cipnyre, the total boundary
length, the integral of geodesic curvature along the contours,
respectively. Hence, they are given by

1
Vo(Kinre) = Z/dA’ (25)
Q
Vl (ICthte) = l ldg, (26)
A Jpo 4
1 1
‘/YQ(ICthrc) = Z 20 ﬂKdé, (27)

where K is the geodesic curvature of the contours, dA and d¢
represent the area and length elements, and A is the total
area. In the above, we also defined @ and 9@, which are
the excursion sets and boundary sets for the smoothed field
K(x), respectively. They are given by

Q = {z|K(z) > Kinre}, (28)
0Q = {z|K(x) = Kthre}- (29)

In particular, V2 is equivalent to a kind of genus statistics
and equal to the number of connected regions above the
threshold, minus those below the threshold. Therefore, for
high thresholds, V> is almost the same as the peak counts.
For a two-dimensional Gaussian random field, the ex-
pectation values of MF's can be described as shown in Tomita

(1986):
o < ()
Vi(K) = S—%Eexp(fm;#), (31)

X exp (—m;ﬁ) , (32)

where K = (K), 02 = (K?) — K?, and 72 = ([VK|?). Al-
though MFs can be evaluated perturbatively if the non-
Gaussianity of the field is weak (Matsubara 2003, 2010), it is
difficult to adopt the perturbative approach for highly non-
Gaussian fields (Petri et al. 2013a). In this paper, we pay
a special attention to the non-Gaussian cosmological infor-
mation obtained from convergence MFs. Therefore, instead
of analytical calculations, again, we consider the numerical
measurements of MFs from the smoothed convergence field
K estimated by Eq. (19). Ling et al. (2015) have demon-
strated that lensing MFs can be a powerful probe of f(R)
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gravity, while we will further investigate them with more de-
tailed simulation of gravitational lensing in this paper. The
main difference between our analysis and Ling et al. (2015)
is in the method for the projection of the large-scale struc-
ture. While our simulation properly takes into account the
contribution from the structure along the line of sight by
ray-tracing, Ling et al. (2015) have focused on the surface
mass density field at a specific redshift of ~ 0.1.

4 SIMULATION AND ANALYSIS
4.1 N-body and Ray-tracing simulations

We generate three-dimensional matter density fields using
a N-body code ECOSMOG (Li et al. 2012), which supports a
wide class of modified gravity models including f(R) grav-
ity. This code is based on an adaptive mesh refinement code
RAMSES (Teyssier 2002). The simulation covers a comoving
box length of 240 h~*Mpc for each dimension, and the grav-
itational force is computed using a uniform 512% root grid
with 7 levels of mesh refinement, corresponding to the max-
imum comoving spatial resolution of 3.6 h~'kpc. We pro-
ceed the mesh refinement when the effective particle num-
ber in a grid cell becomes larger than 8. The density as-
signment and force interpolation are performed with the tri-
angular shaped cloud (TSC) kernel. We generate the initial
conditions using the parallel code mpgrafic developed by
Prunet et al. (2008). The initial redshift is set to zinit = 85,
where we compute the linear matter transfer function us-
ing linger (Bertschinger 1995). As the fiducial cosmologi-
cal model, we adopt the following cosmological parameters:
the matter density parameter Q.0 = 0.315, the cosmologi-
cal constant in units of the critical density Qa0 = 0.685, the
amplitude of curvature perturbations In(10'°A,) = 3.089
at k = 0.05 Mpc™!, the Hubble parameter h = 0.673 and
the scalar spectral index ns = 0.945. These parameters are
consistent with the result of Planck Collaboration et al.
(2015a). For the HS model, we consider two variants with
|fro| = 107 and 1075, referred to F5 and F6, respectively.
We fix the initial density perturbations for these simula-
tions and allow the amplitude of the current density fluctu-
ations to vary among the models. The mass variance within
a sphere with a radius of 8 Mpc/h (denoted by osg) is there-
fore different in the three models; 0.830, 0.883, and 0.845 in
ACDM, F5 and F6, respectively. The cosmic shear statistics
are known to be sensitive to the combination of Q2,0 and og
(e.g., see Kilbinger 2015, for a review). In order to study the
degeneracy of the cosmological parameters and the modi-
fied gravity parameters, we perform four additional sets of
ACDM simulations with different values of Q0 and os. Ta-
ble 1 summarizes the parameters in our N-body simulations.

For ray-tracing simulations of gravitational lensing, we
generate light-cone outputs using multiple simulation boxes
in the following manner. Our simulation volumes are placed
side-by-side to cover the past light-cone of a hypothetical
observer with an angular extent 5° x 5°, from z = 0 to 1,
similarly to the methods in White & Hu (2000); Hamana &
Mellier (2001); Sato et al. (2009). The exact configuration
can be found in the last reference. The angular grid size of
our maps is 5°/4096 ~ 0.075 arcmin. For a given cosmologi-
cal model, we use constant-time snapshots stored at various
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Table 1. Cosmological parameters used for N-body simulations. In addition to the parameter in f(R) gravity, two parameters (Qm,
og) are changed by +1o of Planck 2015 constraint (Planck Collaboration et al. 2015a). When we vary Qm, we also change Q4 to keep

the spatial flatness.

Run fro o8 Qmo QA No. of N-body sim.  No. of maps Explanation

GR 0 0.830 0.315 0.685 1 100 Fiducial ACDM model
F5 —10=5 0.883 0.315 0.685 1 100 HS model with frg = —107°
Fé6 —10-% 0.845 0.315 0.685 1 100 HS model with frg = —10~6
High Qmo 0 0.830 0.335 0.665 1 100 1o higher Q0 model
Low Qmo 0 0.830 0.295 0.715 1 100 1o lower Qp,0 model
High og 0 0.850 0.315 0.685 1 100 1o higher og model
Low og 0 0.810 0.315 0.685 1 100 lo lower og model

redshifts. We create multiple light-cones out of these snap-
shots by randomly shifting the simulation boxes in order to
avoid the same structure appearing multiple times along a
line of sight. In total, we generate 100 quasi-independent
lensing maps with the source redshift of zsource = 1 from
our N-body simulation. See Petri et al. (2016) for the va-
lidity of recycling one N-body simulation to have multiple
weak-lensing maps.

Throughout this paper, we include galaxy shape noise
e in our simulation by adding to the measured shear signal
random ellipticities which follow the two-dimensional Gaus-

sian distribution as
1 e?
exp | ——
To2 o2 )’

where e = \/e? + €3 and 07 = 07, /(nga1fs,) With the pixel
size of Opix = 0.075 arcmin.

Ple) = (33)

4.2 Statistical analyses

In the following, we summarize our methods to measure cos-
mic shear statistics of interest from simulated lensing field.

Power spectrum

We follow the method in Sato et al. (2009) to estimate
the convergence power spectrum from numerical simulations
based on the fast Fourier transform. We measure the binned
power spectrum of the convergence field by averaging the
product of Fourier modes |%(£)|?>. We employ 30 bins log-
arithmically spaced in the range of £ = 100 to 5 x 10%.
However, we consider 10 bins on ¢ < 2,000 in evaluating
the expected signal level on modified gravity, since smaller
scales are in general more difficult to predict without theo-
retical uncertainties, such as baryonic physics (e.g, Zentner
et al. 2013; Osato et al. 2015) or intrinsic alignment (for a
review, see, e.g., Troxel & Ishak 2015).

Bispectrum

We follow the method in Valageas et al. (2012); Sato &
Nishimichi (2013) to estimate the convergence bispectrum,
which is a straightforward extension of the power spectrum
measurement. We measure the binned bispectrum of the
convergence field by averaging the product of three Fourier
modes Re[k(€1)R(€2)k(£3)] where Re[- - - | represents the real
part of a complex number. We use 12 bins logarithmically
spaced in the range of £;(i = 1,2,3) = 100 to 1 x 10* for
each of the three multipoles, and focus on bins in which all

the multipoles are less than 2,000 in later sections for the
same reason as the power spectrum.

Peak counts

When measuring the number density of peaks on discretized
maps obtained from numerical simulations, we define the
peak as a pixel which has a higher value than all of its eight
neighbor pixels. We then measure the number of peaks as a
function of K. We exclude the region within 20g from the
boundary of map in order to avoid the effect of incomplete
smoothing. We consider 18 bins in the range of —4 < v < 7.
However, we exclude bins with v > 4 in the discussion of the
statistical power since we recycle one simulation to obtain
multiple convergence maps and massive halos correspond-
ing to such high peaks are heavily affected by the cosmic
variance in that one realization®.

Minkowski functionals

For discretized I maps, we employ the following estimators
of MF's, as shown in, e.g., Kratochvil et al. (2012),

Vo(Kihre) = %/G(K—Kt}lre)dxdy, (34)

Vi) = ﬁ / Sp(KC — Kene) /K2 + K2dzdy(35)

Va(Kaw) = 5o / 50(K — Kinne)
2Ky~ Ky = Kae

K2+ K3

where ©(z) is the Heaviside step function and dp(z) is the
Dirac delta function. The subscripts on K represent differ-
entiation with respect to the sky coordinate, = or y. The
first and second differentiation are evaluated with finite dif-
ference. We compute MFs for 100 equally spaced bins of
(K—=(K))/o between —10 to 10. We consider only the range
—3 < (K—(K))/o < 4 in the detectability analysis, for sim-
ilar reasons to the peak counts. We will see shortly that a
large amount of the sensitivity to the parameter | fro| comes
from this range.

2 Although the abundance of these high peaks in our simulations
are broadly explained by a simple analytical model (Higuchi &
Shirasaki 2016), more quantitative analyses is required to assess
any systematic effects on the abundance of high peaks.

MNRAS 000, 1-?7 (2016)



Imprint of f(R) gravity on weak lensing II 7

001 —————F————

e F =100 300 1000 3000 ;

g 2x107*f —— MGHalofit 1073 __ _ ACDM lfeol=107° _

N _ ——t Simulatiory E E

§ 10_:? '] S A

a0 2107

T ex107} 1o

< S ng = 10 aremin™, oy =04 | T 105 | i

1o Foo / Isourca 10 L _E E:/ E §

0.2 _—’“' PR — C ]

- o ] 107%k -

Sooip T : ; j

%/ r _. "I:‘ 10—7 1 1

:‘g 0 'ii}*i‘ii'i!ilfll-.l-olo-j 29‘ 100 w//// .

S " 1w E

“Too 1000 10* ;;ooo% : s P ;
multipole [ L z

Figure 1. Impact of f(R) gravity on the convergence power spectrum. Left: We show the dependence on |fro| of the convergence power
spectrum. In the top panel, the colored points represent the average power spectrum over 100 realizations for the three models, while the
bottom shows the relative difference between ACDM and the two f(R) models. The black dashed line in the top panel corresponds to the
shape noise contribution, while the colored lines are theoretical models based on a fitting formula of the three-dimensional matter power
spectrum (Zhao 2014). In the bottom panel, colored dashed line represents the relative difference of the convergence power spectrum
for ACDM model when we vary the value of og to match to those in the f(R) models. In the left panels, the error bars represent the
standard error of the average (i.e. the standard deviation of the each measurement divided by v/100). Right: We show the integrand of
the convergence power spectrum (14) as a function of redshift z. In the top panel, the dashed lines correspond to the ACDM case, while
the solid lines are for the F5 model. There, different colored lines show the case of different multipoles as shown in the figure legend.
In the lower panel, we show the comoving scale k that contributes to the convergence power spectrum at the multipole ¢ at a given
redshift z. As a reference, the gray hatched region represents the region where the linear matter perturbations would be enhanced by the

additional scalar field degree of freedom.

5 RESULTS

5.1 Dependence of parameter in f(R) gravity

Power spectrum

Let us first show the result of the convergence power spec-
trum P,. The left panels in figure 1 summarize the average
convergence power spectrum obtained from 100 ray-tracing
maps. In both top and bottom panels, the red, green and
blue points (or lines) correspond to the ACDM, F5 and F6
model, respectively. The red, green and blue solid lines in
the top panel represent the corresponding theoretical predic-
tions based on Eq. (14). To calculate Eq. (14) for the f(R)
models, we adopt the fitting formula of three-dimensional
matter power spectrum as developed in Zhao (2014). Note
that this fitting formula can reproduce the result in Taka-
hashi et al. (2012) in the case of |fro] = 0. We find that
the predication provides a reasonable fit to our simulation
results for three different models in the range of £ < 7000.
In the bottom panel, we show the relative difference of P
between the f(R) models and ACDM. The red error bars in
the bottom panel corresponds to the standard error of the
average convergence power spectrum for ACDM model. We
confirm that the F5 and F6 models change the convergence
power spectrum in the range of £ < 7000 by < 20% and
< 4%, respectively. In comparison, we also consider the rel-
ative difference of P. between two ACDM models with dif-
ferent values of os. The green dashed line in the bottom left

MNRAS 000, 1-?7 (2016)

panel shows the relative difference between og = 0.883 and
os = 0.830, while the blue one is for the difference between
os = 0.845 and os = 0.830 (see also Table 1). While the
overall level of the enhancement of power is similar to the
modified gravity simulations, the trend in the dashed lines
are quite different from that in the solid lines. Therefore,
the convergence power spectrum can be a useful probe of
f(R) gravity whereas the effect is partly compensated by a
change of os.

We further examine the contribution to P, from the
lens at a given redshift to understand when f(R) gravity en-
hances the projected power the most significantly. The top
right panel in figure 1 shows the integrand in Eq. (14) using
the fitting formula in Zhao (2014). Compared to ACDM, F5
model enhances the amplitude of the matter density fluctu-
ations at z < 0.6 for all the multipoles depicted here. In the
bottom right panel, we show the wave number k(z) = ¢/x(z)
contributing in the calculation of Eq. (14) for a given red-
shift z. On linear scales where dp,, < pm, the Compton
wave length of the extra scalar field fr can be expressed as

N 72
Aol = # R (ﬁ)
© <3(Tl+ 1) | frol \ Ro '

The gray hatched region in the bottom panel represents
k > a)\gl where the fifth force due to fr can efficiently
enhance the linear density fluctuations. Although the com-
petition between the non-linear gravitational growth and
the chameleon mechanism would make the situation more

(37)
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Figure 2. Impact of f(R) gravity on the convergence bispectrum. Left: We show the dependence on |fro| of the convergence bispectrum
for equilateral configuration with £1 = 2 = £3 = £. In the top panel, colored points represent the average bispectrum over 100 ray-tracing
realizations for three models, while the bottom left one shows the relative difference between ACDM and the two f(R) models. The
colored solid line in the top panel shows the theoretical model based on Eq. (17) with the fitting formula in Gil-Marin et al. (2012).
The error bars represent the standard error on the estimated average (i.e. the standard deviation divided by 4/100). Right: The relative
difference of the convergence bispectrum between ACDM and the f(R) models for more general triangular configurations (¢1,£2,43)
as shown on the axes. The red error bars show the standard error on the average bispectrum for ACDM model, while the green and
blue lines are the ratio for F5 and F6 model, respectively. Note that we impose the condition of £; < f2 < £3 to count every triangle

configuration once.

complicated, the criterion of k > a)\al provides the typical
scale where f(R) gravity affects the density distribution. On
large scales where ¢ < 300, the linear approximation works
fairly well and the deviation from ACDM can be mainly ex-
plained by the scale-dependent linear growth rate. On the
other hand, the chameleon mechanism does not completely
suppress the effect of f(R) gravity on the matter distribution
on small scales.

Bispectrum

We next consider the convergence bispectrum B,. Figure 2
summarizes the simulation results obtained from 100 ray-
tracing maps for the three different models with |fro| =
0,107% and 1075. In the left panels, we show the result of
B, for the equilateral triangle configuration with ¢ = {3 =
l3 = {. First of all, we compare the simulation result for the
ACDM model and the theoretical prediction. In the calcula-
tion, we adopt the fitting formula of the three-dimensional
matter bispectrum Bs proposed in Gil-Marin et al. (2012)
and plug it into Eq. (17). This fitting formula explicitly in-
cludes the three-dimensional matter power spectrum and we
use the fitting formula in Zhao (2014) (which is equivalent
to Takahashi et al. (2012) for ACDM) for that. We find
that the fitting formula is in good agreement with the sim-
ulation results again over the range of £ < 7000 for ACDM
model. This result is consistent with a previous work by
Sato & Nishimichi (2013). Furthermore, the fitting formula
can also provide a reasonable fit to both F5 and F6 mod-
els, even though the fitting formula for B; is constructed
for a ACDM cosmology by numerical simulations. In order
to quantify the effect of |fro| on By, we also show the rela-

tive difference of the bispectrum between the ACDM and the
f(R) models in the left bottom panel and the right panels of
Figure 2. The bottom left panel represents the result for the
equilateral configuration, while the right panels summarize
more general configurations specified by three multipoles,
{1 < ¢y < {3. In the right panels, we reduce the number of
bins for ¢ and {3 to show the effect of |fro| in an easy to
see manner. Overall, we find that the F5 model affects the
convergence bispectrum by < 20% and the the dependence
on the triangle shape is rather weak except for ¢; 2 2000. On
the other hand, we can not find significant deviation from
the ACDM for F6 model. Although the effect of | fro| on B
seems similar to that on P, for the angular scale of £ < 2000,
the statistical uncertainty of B, would be larger than P,
implying that the bispectrum would be less sensitive to f(R)
gravity and provide a weaker constraint on |fro| compared
to the power spectrum. We revisit the constraining power on
| fro| with cosmic shear statistics in Section 5.2. Neverthe-
less, we should note that B, would play an important role to
break the degeneracy among cosmological parameters such
as Qmo and og in cosmic shear analyses.

Peak count

We here summarize the results of the peak counts. We define
the differential number density of peaks and then compare
the results among three different models. Figure 3 shows
the effect of f(R) gravity on the peak counts. The left panel
represents the simulation results with the smoothing scale of
1 arcmin, while the right panel are for the smoothing with
0c = 4.5 arcmin. In both panels, red, green and blue points
(or lines) represent the average of number density of peaks

MNRAS 000, 1-?7 (2016)



Diff(dN,,, /dv)/Err  Diff(dN,,,/dv)

Diff(dNpqpy,/dv)/Err  Diff(dN,qp,,/dv)

Imprint of f(R) gravity on weak lensing II 9

ACDM
|fgol=1072
|fgel=1078
| "

Figure 3. Impact of f(R) gravity on the peak counts. Left: We show the dependence of the peak counts on |fro|. In the top panel, the
red points represent the average (differential) number density of peaks over 100 realizations for the ACDM model, while the green and
blue lines are for the F5 and F6 models. The middle one shows the difference between ACDM and f(R) models, while the bottom is for
the difference normalized by the standard error of average for the ACDM model. Right: Similar to the left panel, but larger smoothing
scale of 4.5 arcmin is adopted. In both panels, the error bars represent the standard error of the average (i.e. the standard deviation
divided by 4/100). Note that the error level corresponds to 100 x (5deg)? = 2,500 deg?.

for ACDM, F5, and F6 models, respectively. As in Figure 1,
we show the difference of the number density in the middle
panels, while we normalize the difference by the standard
error of average for the ACDM model in the bottom panels.
We find that the effect of f(R) gravity on the peak counts ap-
pears in not only v > 3 but also v ~ 1. The peaks with v > 3
correspond to isolated massive dark matter halos along the
line of sight (see Higuchi & Shirasaki (2016) for the detailed
comparisons in f(R) model). General trend of the number
density among three models is found to be consistent with
the expectation from the halo mass function (e.g., Shirasaki
et al. 2016). The number density of high peaks increases in
the range of v > 3 in the HS model. These specific features
would reflect the non-trivial dependence of halo mass func-
tion on |fro| (e.g., Li & Hu 2011; Li & Efstathiou 2012;
Lombriser et al. 2013; Cataneo et al. 2016). With a larger
smoothing scale, which roughly corresponds to the removal
of Fourier modes with £ 2 2000, a bumpy feature at v ~ 3.5
for the F5 model disappears. For larger 6¢, the halo-peak
correspondence gets worse because sharp structures such as
halos are erased by the smoothing operation. This would
indicate that the simple framework presented in Shirasaki
et al. (2015) can not explain the number count of peaks on
v > 3 as ¢ would become larger. Also, we find the number
density at v ~ 1 is significantly changed from ACDM when
we set |fro| = 107°. This could originate from the larger
density fluctuations in F5 and F6 models expressed in terms
of og (Kratochvil et al. 2010) or the superposition of less
massive objects (Yang et al. 2011). We reserve the study
on the degeneracy between |fro| and os in peak counts in
Section 5.3.

MNRAS 000, 1-?7 (2016)

Minkowski functionals

We then present the measurements of the lensing MFs ob-
tained from 100 simulations. Figure 4 summarizes the effect
of | fro| on the lensing MFs. First of all, we confirm the non-
Gaussian feature in lensing MF's for the three models even
when we add the shape noise for which we assume Gaussian
distribution. The shape of the MF's obtained from simula-
tions can not be explained by the Gaussian expectation in
Egs. (30)-(32) depicted by the dashed lines, implying that
the lensing MFs are useful probe of non-Gaussian nature of
the convergence field that can not be captured by the power
spectrum. Our results are broadly consistent with a previous
work by Ling et al. (2015). In the case of F5 model, we find
that the deviation from ACDM is at most ~ 10% and the
clear deviations are found at z = (K—(K))/o ~ 2—5. On the
other hand, we find only < 1% differences between F6 and
ACDM models. Note that the deviation from the ACDM
we observe is found to be smaller than Ling et al. (2015)
have shown. One of the reasons behind this trend is in the
difference of the adopted values of | fro| and other cosmolog-
ical parameters. The model parameters used in Ling et al.
(2015) are different despite the same label: their F5 means
|fro| = 1.29 x 107> instead of 107°. They also adopted
smaller 2,0 and os, both indicating weaker screening and
therefore stronger deviation from GR for the same |frol-
Besides, the difference between our result and previous one
would be partly explained by the projection effect. Our sim-
ulations include the projection effect and the shape noise
simultaneously, while Ling et al. (2015) have focused on the
surface mass density at z = 0.1. Furthermore, we find that
the difference of the lensing MFs between the ACDM and
the HS model has the similar trend to a change of os (e.g.,
see Figure 2 in Shirasaki & Yoshida 2014).
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Figure 4. Impact of f(R) gravity on the Minkowski functionals (MFs). The three panels represent the results of Vp, V1 and Va. In
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points represent the average MF over 100 realizations for the three models, while the bottom portion shows the relative difference of MF
between ACDM and f(R) models. The dashed line shows the Gaussian prediction for ACDM model.

5.2 Detectability of imprint of f(R) gravity

In order to quantify the detectability of f(R) gravity in a
given statistical quantity, we start by writing a measure of
a goodness-of-fit;

XX = Z C;jl [O(xs; true) — M(z;; test)]
3

X [O(zj; true) — M(z;; test)], (38)

where M (z;;test) represents a theoretical model of cosmic
shear statistic at the i-th bin of x for a cosmological model
that one wishes to test, O(x;;true) is an observed statistic
drawn from the true unknown cosmology, and C is the co-
variance matrix of the observed data vector O. In our case, O
corresponds to either the power spectrum, bispectrum, peak
counts or MFs, while x refers to the multipole ¢, the peak
height v, or the normalized convergence (K—(K))/o depend-
ing on the statistics. In what follows, we also consider a data
vector O composed of different statistics when we examine
parameter constraints from joint analyses of more than one

statistic. In such cases, we properly take into account the
off-diagonal components relevant to the two statistics of in-
terest in the covariance matrix.

When O follows a multi-variate Gaussian distribution
and if we assume the correct model in M(z;; test), the quan-
tity defined by Eq. (38) follows the x? distribution with
the degree of freedom (DOF) of Npin, — 1 as the name sug-
gests, where Npi, represents the total number of bins for the
observables O. Borrowing the idea behind Eq. (38), which
compares the levels of estimated (in the form of a covari-
ance matrix) and measured (the actual scatter around the
mean) cosmic variances, we define a similar quantity to as-
sess the statistical power to constrain | fro| by replacing the
numerator with the difference of the expected statistics in
two models;

(S/N) = 37 Cyt M(zis| frol) — Mais ACDM)
x [M(z;; | frol) — M(z;; ACDM)] (39)

MNRAS 000, 1-?7 (2016)



where we consider the f(R) cosmology characterized by | fro|
and the fiducial ACDM cosmology.

One can assess the discriminating power of the statis-
tic by the (S/N)? defined above. Note that this quantity
does not depend on the binning scheme explicitly, as long
as we take a binning fine enough not to miss important
features in the statistics. In the absence of degeneracy be-
tween different cosmological parameters, one can straight-
forwardly convert the (S/N)? to the expected level of con-
straint on |fro|; (S/N)? = 4 for |fro| = 1075 corresponds
t0 O fpol = 1075/\/11 =5 X 1076, for instance. Note that we
consider the degeneracy among cosmological parameters in
Section 5.3 in details.

In Eq (39), we estimate M (x;; | fro|) and M (x;; ACDM)
as the ensemble average over 100 realizations of our ray-
tracing maps as shown in Section 4.1. To derive accurate
covariance matrices of these observables and the cross co-
variance between two different observables, we also make
use of the 1000 ray-tracing simulations performed by Sato
et al. (2009). The maps in Sato et al. (2009) have almost
the same design as our simulations, but are generated for
slightly different cosmological parameters (consistent with
WMAP three-years results (Spergel et al. 2007)). We use
the maps with a sky coverage of 5 x 5 squared degrees for
Zsource = 1. In order to estimate cosmic shear statistics, we
properly take into account the contamination from the in-
trinsic shape of sources by adding a Gaussian noise to shear
(also see Section 4.1). For a given observable O, we esti-
mate the covariance matrix using the 1000 realizations of
ray-tracing simulations as follows;

Cu = Nre:—li[o(r)(xi)@(“)}
x [00(2;) = Of;)] (40)
O(zi) = Niea mao(r)(xi), (41)

where Nyea = 1000 and O (z;) is the observable obtained
from r-th realization of simulations for i-th bin of . When
we calculate the inverse covariance matrix, we multiply a
debiasing correction, & = (Nyea — Nbin — 2)/(Nrea — 1), with
Nyea = 1000 and Npin being the number of total bins in our
data vector (Hartlap et al. 2007). In the following, we assume
that the covariance matrix is scaled as the inverse of the
survey area and consider a hypothetical lensing survey with
a sky coverage of 1,500 squared degrees, which corresponds
to the ongoing imaging survey with Subaru Hyper Suprime-
Cam?®(Miyazaki et al. 2006). Note that under the assumed
scaling of the covariance matrix, one can easily calculate the
corresponding (S/N)? for a given sky coverage of Adeg? by
multiplying the (S/N)? presented in this section by a factor
of A/1,500. Table 2 summarizes the results of this section.

Fiducial analysis

As the fiducial analysis, we consider a situation in which
the two spectra P, and B, are measured in the range of
100 < ¢ < 2000, while we have the number density of peaks

3 http://www.naoj.org/Projects/HSC/j_index.html
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in the range of —2 < v < 4 and MFs are given for —3 <
(K—={(K))/o < 4. For the two convergence spectra, we adopt
the same binning as summarized in Section 4.2, leading to
14 bins for P. and 78 bins for B, in total. On the other
hand, we construct the number density of peaks in 10 bins
with width of Av = 0.6, while we employ 12 bins to measure
each lensing MF.

As shown in Table 2, the values of (S/N)? indicates
that all the cosmic shear statistics considered here can dis-
tinguish the F5 model from the ACDM model with a high
significance level when the other cosmological parameters
are fully known. Even a very small modification to GR such
as our F'6 model is detectable by these statistics except when
we employ the bispectrum alone. Surprisingly, non-standard
statistics such as the peak counts or the MF's have very high
signal-to-noise ratio competitive or significantly larger than
the conventional analyses using the power or bispectra (Liu
et al. 2016). This indicates that the weak lensing conver-
gence field indeed exhibits strong non-Gaussianity that is
difficult to capture by low-order polyspectra. Geometrical
measures such as the MFs are especially powerful in such
a regime. We also find the (S/N)? from combined analyses
with two statistics is slightly smaller than the simple sum of
the individual values (the three right columns). This is due
to the cross covariance between the statistics. While we can
access independent information through different measures
reflecting an increase in the (S/N)? from the combined anal-
yses, part of it is common to that in the power spectrum.
This demonstrates the importance of a proper account of
the cross covariance in actual data analyses.

Dependence on smoothing scale and shape noise

We have seen so far the statistical power of four differ-
ent measures in testing the possibility of modified gravity.
Among the four statistics, the power and the bispectra are
given explicitly as a function of the physical scale. Since we
expect that smaller scales are more severely contaminated
by e.g., intrinsic alignment or baryonic physics, we can con-
duct a more reliable cosmological test by limiting ourselves
in large scales. On the other hand, the dependence of the
peak counts and the MFs on the physical scale is less clear.
What we have done so far is based on the statistics at one
given scale ¢ = 1 arcmin, chosen to have a good correspon-
dence between peaks and massive clusters. We thus investi-
gate in this section the dependence of the detectability of a
non-zero |fro| on the smoothing scale that defines the peaks
and MFs. We also test the dependence on the mean density
of source galaxies, which can alter the result significantly.
We first examine the dependence on the smoothing
scales by setting 8¢ = 4.5arcmin, which roughly corre-
sponds to £ = 2000. For this choice of smoothing, all the four
statistics probe roughly the same angular scale and thus we
expect that they have a similar level of theoretical uncer-
tainties due to small scale effects. In this sense, we can do
a fairer comparison among the four. The results are shown
in Table 2 both for |fro| = 107° and 10~%. Compared to
the fiducial analysis with ¢ = 1arcmin, the level of non-
Gaussianity in the smoothed map is strongly suppressed. As
a result, the signal-to-noise ratio from the lensing MF's is
greatly reduced. The statistical power of the peak counts
is also suppressed, but to a much lesser extent. When we
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Table 2. Summary of the signal-to-noise ratio among cosmic shear statistics. We show (S/N)? defined by Eq. (38). We show the results
for |fro| = 107 in the upper half, and for |frg| = 106 in the bottom half. In addition to the fiducial analysis, we also show the results

when we increase the smoothing scale to 6 = 4.5 arcmin, or the source number density is set to ng, = 30 arcmin™

2). All values are for

the sky coverage of 1,500 squared degrees.

Py Bx Peak MFs P, + B, Ps+Peak P.+MFs

|frol =107

Fiducial analysis 127.6  45.1 121.7  1000.9 130.5 201.6 1066.0
Larger smoothing scale 127.6 45.1 53.5 35.3 130.5 151.1 185.1
Higher source number density  255.1 73.9 608.2  2837.2 264.5 668.6 2972.2
|fro| = 107°

Fiducial analysis 2.63 0.301 4.85 4.28 2.64 6.52 6.51
Larger smoothing scale 2.63  0.301 1.39 0.237 2.64 3.37 3.45
Higher source number density 5.44 0.540 29.0 19.3 6.49 30.3 27.3

combine these statistics with the power spectrum, we have
a larger increase in the signal-to-noise for the MFs than for
peak counts, because there is a larger overlap in information
for the peak counts and the power spectrum with this choice
of fc. Although we lose significant (S/N)? in the MFs, they
still probe independent information to the power spectrum.

Another test is a larger source number density with the
smoothing scale unchanged. We consider 30 arcmin~2, and
this leads to the shape noise level reduced by a factor of
1/v/3 ~ 0.57. We reanalyse the power and the bispectra
in addition to the peak counts and the MFs in this case.
We can see in Table 2 that such a deeper imaging survey
with a higher source number density provides a significantly
improved signal-to-noise ratio. Especially, the peak counts
and lensing MFs are sensitive to the number density. We
find that (S/N)? for peak counts and MFs increases by a
factor of ~ 5 and ~ 2.8, respectively. Provided that the
small scale uncertainties are well under control, these two
statistics have a potential to distinguish the F5 or even F6
model from the ACDM model with a very high significance
in upcoming deep imaging surveys.

5.3 Degeneracy among cosmological parameters

We then study the degeneracy between |fro| and cosmo-
logical parameters. Cosmic shear observables depend sensi-
tively on the two parameters of Qmo and os through Eq. (12).
Thus, we focus on these parameters and investigate how well
we can constrain | fro| when these parameters are jointly var-
ied. We first construct a model of the parameter dependence
of cosmic shear statistic O(z) by expanding into the Taylor
series around a fiducial point (Qmo,fd, 08,64, | fro| = 0);

O(zi; Qmo, 08, | frol) =~ O(x4;2mo,ad, 08,64, | fro| = 0)

anO (QmO - QmO,ﬁd)
3(9 i

az )(Us — 0s,fid)
8(9(331)

where Q0,80 = 0.315, 08,60 = 0.830, and the first deriva-
tives are estimated from the five simulations at the bottom
of Table 1 by the finite difference method (both-sided for
Qmo and os, and one-sided for |frol).

Figure 5 summarizes our cosmic shear statistics as a
function of |fro|, Qmo and os. In this section, we consider
the same binning of observables as in the fiducial analysis

in Section 5.2. Figure 5 shows the fractional difference of
cosmic shear statistic compared to the fiducial model. The
green and blue lines in the figure represent the ratio for F5
and F6 model, respectively. The black solid and dashed lines
are for ACDM with higher Q2,0 and og. For visualization,
we clasify the triangular configuration of the arguments of
the convergence bispectrum into equilateral ({1 = f2 = {3),
isosceles (¢1 = £2), and scalene (¢1 # l2 # £3). The gray error
bars represent the statistical uncertainty in a hypothetical
survey with 1,500 squared degrees estimated from the 1000
ray-tracing simulations in Sato et al. (2009). As a whole, the
dependence of |fro| is found to be quite similar to that of
Qmo and og because f(R) model predicts a higher og for a
fixed amplitude of initial curvature perturbations and cosmic
matter density through a more rapid growth of structure.
The Fisher matrix approach provides a quantitative
method to evaluate the importance of degeneracy among
cosmological parameters. The Fisher matrix F,z is given by

_100(x:) 90(x;)
ag—zc RN T (43)

where po and pg run for cosmological parameters (i.e., | frol,
Qmo and og in our case). Note that we ignore the cosmologi-
cal dependence of the covariance matrix in Eq (43). We here
consider two error levels; un-marginalized error of | fro| and
marginalized error of | fro| considering Qmo and os. The for-
mer corresponds to the case in which the parameters Qo
and og (or the amplitude of the primordial fluctuations, A,
in realistic situations) are already constrained very tightly
from independent observations, while the latter takes into
account the effect of parameter degeneracy on error esti-
mate. Thus, we can see the importance of parameter degen-
eracy by comparing the un-marginalized and marginalized
errors.

Table 3 summarizes both un-marginalized and
marginalized errors of |fro| for a hypothetical imaging
survey with the sky coverage of 1,500 squared degrees.
The two upper rows correspond to our fiducial case with
lmax = 2,000 and 6g = 1 arcmin. According to the Fisher
analysis, the power-spectrum analysis results in the most
degraded constraint on | fro| after marginalization over Qmo
and os; the error level gets ~ 5 times larger. Although the
other cosmic shear statistics do also suffer from parameter
degeneracy, combinations of two or more observables can
improve the situation quite significantly. We can confirm
in the table that the parameter degeneracy is gradually
broken by adding statistics one by one. By properly using
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Figure 5. Degeneracy between cosmological parameters and f(R) gravity. Each panel represents the relative difference of one of a
various cosmic shear statistics between the fiducial ACDM model and the other models. The green and blue lines correspond to the F5
and F6 model, respectively. On the other hand, the black solid line shows the case of A CDM with Qy,0 larger by 0.025, while the black
dashed line is for a model with og larger by 0.050. Note that the gray error bars in each panel correspond to the cosmic variance from a
survey with the sky coverage of 1,500 squared degrees.

Table 3. Expected constraint on |frg| from Fisher analysis for various statistics. We show the 1-o error level in units of 1076, assuming
the fiducial survey parameters; ¢ = 1arcmin, ng, = 10 arcmin—2 and 1,500 squared degrees. We consider both unmarginalized and
marginalized cases over Q2,0 and og. We adopt the maximum multipole for the power and the bispectra to be £max = 2,000 in the top
two rows, while the bottom two rows include information on smaller scales up to £max = 8,000, which probes roughly consistent length
scales to the peak counts and the MF's.

Py By Peak MF's P, + Bk P.+Peak P.+MFs P, + Bx+Peak P, + B.,+MFs all
unmarginalized 0.616 1.799 0.454 0.483 0.615 0.392 0.392 0.398 0.398 0.281
marginalized 3.069 3.980 0.565 0.936 1.400 0.546 0.802 0.533 0.753 0.409
unmarginalized  0.394 1.21 0.454 0.483 0.405 0.317 0.310 0.329 0.327 0.262
marginalized 1.29 2.46 0.565  0.936 0.607 0.522 0.634 0.431 0.522 0.365

the four cosmic shear statistics presented in this paper,
one can provide a better marginalized constraint on |fro]
than the un-marginalized error expected from the power-
spectrum analysis alone. These results would demonstrate
the importance of use of different cosmic shear statistics in
upcoming imaging surveys.

So far, our discussion is based on the fiducial analysis.
It is, then, of importance to quantify the constraining power
from different physical scales. Indeed, the maximum mul-
tipole fmax = 2,000 used in the power and the bispectra
and the smoothing scale 8¢ = 1 arcmin for the peak counts
and MF's correspond to somewhat different length scales as
we already mentioned earlier. We now change the former to
fmax = 8,000 to roughly match to 8¢ = 1 arcmin. Note
that this choice is a bit too agressive given the larger un-
certainties both in theoretical modeling and measurments.
We show this ideal case only to see the information on the

|fro|, and this is mitigated by combining more and more
statistics. Now, thanks to the small-scale information from
the power and the bispectra, the error level from each of the
statistics is very similar.

Although Figure 5 shows clear degeneracy among three
parameters of | fro|, Qmo and os in cosmic shear statistics,
the effect of |fro| is not compensated by different Qmo and
os exactly. For instance, the scale-dependent linear growth
rate and the specific feature in the halo mass function in the
f(R) model are quite unique and thus difficult to absorb by
a change in Q0 and og within the ACDM scenario.

In order to demonstrate this situation more quantita-
tively, we consider the effective bias on the Qo — os plane
assuming the F6 model is the true cosmological model that
governs the universe but ACDM model is wrongly adopted
in the data analysis. We estimate the bias in parameter es-
timation as (Huterer et al. 2006)

gravity theory in different statistics from a fair comparison . _100(z;)

at similar scales. 0pa = Z FaRr,ap [O(z4; F6) — O(i; fid)] Cij 8pﬁj , (44)
The resulting constraints on |fro| are listed in the bot- b

tom two rows of Table 3. The bottom line is the same as the where po = (Qmo,0s), O(x;;fid) represents the assumed

fiducial analysis; the conventional power-spectrum analysis
exhibits the most notable degradation of the constraint on
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ACDM model, while O(z;; F6) is the true cosmological
model, corresponding to the F6 model in this case. The ma-
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trix of For,ap in Eq. (44) is the Fisher matrix for Qmo and
os, and is the sub-matrix of that in Eq (43). The Fisher
matrix Fgr,os provides the confidence region around the
fiducial ACDM parameter. If the difference of the cosmic
shear statistics between F6 and ACDM models can be ex-
plained by simply the difference in os, the bias by Eq (44)
would be equal to the difference of two values of og in these
models. More specifically, the bias on Qo — os plane would
be equal to (6Qmo,d0s) = (0, 08(F6) — 0s(ACDM)), where
0s(F6) represents the resulting os in F6 model, and so on.

Figure 6 shows the result of this analysis. While we show
the standard Fisher analysis within the ACDM framework
in the left panel, we show in the right panel the biased esti-
mation in 0 — os plane induced by the difference between
F6 and ACDM model. We show the 95% confidence region
estimated from the Fisher matrix with an ideal future sur-
vey with the sky coverage of 20,000 squared degrees. The
centers of ellipses in the right panel are off from the true po-
sition depicted by the crossing point of the horizontal and
the vertical dotted lines, and the displacement from that
point shows the effective bias given by Eq. (44). For simplic-
ity, we employ the size the ellipses the same as in the left
panel. We also show by the gray star symbol the expected
central value if the difference between F6 and ACDM can
completely be explained by the change in os.

According to the right panel, we find that the effect of
f(R) gravity on the power spectrum would be mainly deter-
mined by the change of og, but the other statistics suggest
that the difference also propagates to the estimated Qmo.
Since the convergence bispectrum is less sensitive to |frol,
the bias from using it alone on Q2,0 — os plane would be
smaller than the statistical uncertainty in a survey of 20,000
squared degrees. This implies that it is difficult to distin-
guish the F6 model from ACDM model with bispectrum
alone. Interestingly, peak counts and lensing MFs would pre-
dict higher Q0 and lower og if F6 is the true model. The
amount of bias in lensing MF's is smaller than the one in peak
counts, because of different sensitivity of |fro| as shown in
Section 5.2.

The result indicates that one can eventually find a clue
beyond the ACDM model by detecting discrepancies in the
allowed parameter regions from multiple statistics. Notablly,
a realistic analysis of the power and the bispectra up to
fmax = 2,000 can find this with a high significance for a
value of | fro| as small as 107%. The additional statistics such
as the peak counts and the MFs would provide an even more
promissing path towards the law of gravity on cosmological
scales.

6 CONCLUSION AND DISCUSSION

In this paper, we studied the effects of f(R) gravity on sta-
tistical properties of the weak gravitational lensing field.
For this purpose, we have performed N-body simulations
to investigate structure formation in a universe under the
f(R) model proposed in Hu & Sawicki (2007). We then em-
ployed ray-tracing method to realize a realistic situation of
weak lensing measurements in galaxy imaging survey. In ray-
tracing simulations, we have properly taken into account the
deflection of light along the line of sight and galaxy shape
noise. The large set of these mock lensing catalogs enables
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Figure 6. Consistency among cosmic shear statistics. In the
left panel, we show the 95% confidence region of (Qmo,os) for
ACDM. In the right panel, we represent the bias on the Qo —
og plane when F6 model is the true model but we use ACDM
model in parameter constraints. The gray star point in the right
panel is the expected bias assuming that the difference of statistics
between F6 and ACDM can be explained by difference of og. In
both panels, colored symbols correspond to different cosmic shear
statistics (black for power spectrum, red for bispectrum, green for
peak counts, and blue for MFs). In this figure, we assume the sky
coverage of 20,000 squared degrees and the source number density

of 30 arcmin—2.

us to study the information content about f(R) gravity in
cosmic shear statistics which have already been conducted
in previous imaging surveys. Our main findings are summa-
rized as follows:

(i) The convergence power spectrum contain information
about f(R) gravity because of the scale-dependent linear
growth rate and the environment-dependence of non-linear
gravitational growth. Assuming the source redshift is set
to be 1, f(R) gravity would enhance the amplitude of the
spectrum at £ = 1000 with a level of ~ 12% and 2% for
|fro| = 107° and 107°, respectively. Although the change
of convergence power spectrum is expected given by the dif-
ference of s between f(R) and ACDM models, correct un-
derstanding of the non-linear gravitational growth in f(R)
gravity would be required to determine the amplitude accu-
rately (e.g., Zhao 2014).

(ii) The convergence bispectrum is the lowest-order non-
Gaussian information in weak lensing field. We find that it
can change by ~ 10% with the model of | fro| = 10™° and the
dependence on the triangle configuration in Fourier space is
weak. However, the information of f(R) gravity in conver-
gence bispectrum would be less important than that in the
power spectrum, because the change of amplitude would be
smaller than the statistical uncertainty even in an upcoming
survey with a sky coverage of 20,000 squared degrees. Our
results indicate that the information from the convergence
bispectrum should be used to break the degeneracy between
| fro| and the present amplitude of matter fluctuations og in
the convergence power spectrum. This is consistent with the
previous investigation in Gil-Marin et al. (2011).

(iii) Peak counts in a reconstructed smooth convergence
field are expected to be informative for constraining the na-
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ture of gravity, because the modification of gravity can affect
the abundance of massive dark matter halos. We find that
the number density of peaks can be affected by the presence
of extra scalar degree of freedom with |fro| = 10~° with a
level of a few percents. Besides the peaks with high height
caused by isolated massive objects along a line of sight, the
peaks with signal-to-noise ratio of ~ 1 can be useful to dis-
tinguish the f(R) model with |fro| = 107° from GR. This
information at intermediate peak height is similar to the ef-
fect of changing os in ACDM (c.f. Figure 5; lower left panel),
but again it is difficult to exactly compensate the difference
of peak counts in f(R) gravity and GR by varying os.

(iv) Minkowski functionals (MFs) are an interesting
statistic to extract non-Gaussian information from a given
random field. Previous study (Ling et al. 2015) has inves-
tigated the possibility of using them to constrain on f(R)
model, while we improve the analysis by considering realistic
observational situations. We find that lensing MF's in a re-
constructed smooth convergence field show 2—3% differences
between two cases of | fro| = 107° and 0 (or GR). The effect
of | frol| in lensing MFs are reduced by the presence of shape
noise and projection effect compared to the previous work,
showing our approach with realistic ray-tracing simulations
would be essential to predict them. Although f(R) model
with |fro| = 107" would affect the lensing MFs with only a
few percent, MFs are still useful to constrain f(R) gravity
because of their small statistical uncertainty. However, the
constraining power of | fro| in lensing MFs would be strongly
dependent on the smoothing scale in reconstruction.

(v) Among the four statistics, the convergence power
spectrum, peak counts and lensing MFs have a similar
sensitivity to f(R) gravity in typical ground-based imag-
ing surveys if the small-scale clustering of lensing fields at
Z 1 arcmin can be properly modeled. When we apply a
larger smoothing to match the probed scale effectively to
¢ < 2,000, the non-Gaussian statistics have shown similar
sensitivity to f(R) gravity. Nevertheless, the information of
peak counts and lensing MFs can be improved by a fac-
tor of 2 — 3 when one can reduce the shape noise contam-
inations in a smoothed convergence map by increasing the
source number density. In terms of degeneracy among cos-
mological parameters, the convergence power spectrum has
the strongest degeneracy between |fro| and os, while peak
counts and lensing MFs would show a different degeneracy.
Therefore, a complete and accurate understanding of peak
counts and lensing MF's would be helpful to break the degen-
eracy between modified gravity and the concordance ACDM
parameters. Note that the convergence bispectrum can be
an unbiased indicator of Qo and og because of weak de-
pendence of |frol.

Our findings are important for constraining the nature
of gravity with weak lensing measurement. There still re-
main, however, crucial issues on the cosmic shear statistics
proposed in this paper.

Although the peak counts and lensing MF's can be used
to extract cosmological information beyond the two-point
statistics, at the crucial length scales of structure probed by
them, perturbative approaches break down because of the
non-linear gravitational growth (Taruya et al. 2002; Petri
et al. 2013b). In order to sample a Likelihood function for a
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wide range of cosmological parameters, we require accurate
theoretical predictions of the non-local statistics in conver-
gence map beyond perturbation methods (e.g., Matsubara
2003). A simplest approach to build the predictions for vari-
ous cosmological models is to use a large set of cosmological
N-body simulations (Shirasaki & Yoshida 2014; Liu et al.
2015; Petri et al. 2015), while there exists a more flexible
approach to predict the non-local statistics (e.g., Lin & Kil-
binger 2015). Another important issue is theoretical uncer-
tainties associated with baryonic effects. Previous studies
(e.g., Semboloni et al. 2013; Zentner et al. 2013) explored
the effect of including baryonic components to the two-point
correlation of cosmic shear and consequently to cosmologi-
cal parameter estimation. Osato et al. (2015) have studied
baryonic effects on peak counts and lensing MFs with hy-
drodynamic simulations under GR. Although the baryonic
physics would play an important role in the regions where
GR should be recovered, the modification of gravity might
affect the large-scale structure. Since the peak count and
lensing MFs would involve in the cosmological information
of various structures in the Universe in complex way, we
need to develop accurate modeling of cosmic shear statistics
incorporated with both modifications of gravity and bary-
onic effects. The statistical properties and the correlation of
source galaxies and lensing structures are still uncertain but
could be critical when making lensing mass maps. For ex-
ample, source-lens clustering (e.g., Hamana et al. 2002) and
the intrinsic alignment (e.g., Hirata & Seljak 2004) are likely
to affect the information content of f(R) gravity in cosmic
shear statistics. There is a possibility that these two effects
can induce the systematic effect on reconstruction of lensing
mass maps (e.g., Kacprzak et al. 2016). We plan to address
these important issues in future works.

Upcoming imaging surveys would provide imaging data
of billions of galaxies at z ~ 1. Detailed statistical analyses
of these precious data set can reveal matter density distri-
bution in the Universe regardless of which cosmic matter is
luminous and dark. Since matter contents in the Universe
can be evolved by nonlinear gravitational growth, a map of
matter distribution observed in future would be a key to
understand the nature of gravity. Cosmological tests of GR
with imaging surveys are just getting started and the present
work in this paper would a useful step in understanding the
nature of gravity with future weak lensing data.
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