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Abstract 8 

A complete reconstruction of the last British-Irish Ice Sheet (BIIS) is hindered by uncertainty 9 

surroundingits offshore extent and dynamic behaviour.  This study addresses this problem by 10 

reconstructing the depositional history of four sediment cores taken from a series of sinuous 11 

glacigenic sediment ridges on the continental shelf west of Ireland.  We present new geomorphic, 12 

sedimentary and micropaleontological data that record a maximum westward BIIS extentthat was at 13 

least 80 km farther offshore from any previous estimates.  The data suggests that a large ice shelf 14 

formed over parts of the shelf prior to retreat.  This new data increases the areal extent of grounded 15 

BIIS ice by ~6,700 km
2
 from previous estimates, which representsa ~3% increase in the Irish Sector 16 

of the ice sheet.  Three new AMS radiocarbon dates demonstrate for the first time that the BIIS 17 

advanced to the shelf edge during last glaciation (Late Midlandian/Late Devensian), with ice advance 18 

onto the Porcupine Bank occurring after 24,720±260yrCal. BP.  Deglaciation was complete by 19 

19,182±155 yrCal. BP, thus constraining BIIS occupation over the Porcupine Bank to less than 5,500 20 

years.  Estimated retreat rates of marine-terminating ice across the shelf range from ~70-180myr
-1

.   21 
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1. Introduction 25 

Despite more than a century of investigation, there remains much about the last(Midlandian) 26 

British-Irish Ice Sheet (BIIS)that is poorly understood, particularly with respect to its marine-27 

terminating margins, whichwould likely have been crucial to ice sheet dynamicsand mass balance 28 

given the sensitivity of such margins to environmental forcing (Rott et al., 2002; Rignot et al., 2004; 29 

Scambos et al., 2004; Domack et al., 2005; Pfeffer, 2007; Pritchard et al., 2009; Glasser et al., 2011).  30 

Additionally, the BIIS has been proposed as a possible analogue for sections of the West Antarctic Ice 31 

Sheet (WAIS) (Clark et al., 2012a) that are thought to be potentially unstable (Lowe and Anderson, 32 

2003; Gladstone et al., 2012; Park et al., 2013; Ren et al. 2013), highlighting the importance of 33 

developing a better understanding of marine-based ice masses.  This research is the first to produce 34 

dated sedimentary and geomorphological evidence of what is likely the westernmost extent of the last 35 

BIIS‘s marine-terminating margin.   36 

Previous investigations of the last glaciation of the Irish continental shelf using marine 37 

geophysical data have identified large arcuate ridges north and west of Ireland (King et al., 1998; 38 

Sejrup et al., 2005; Benetti et al., 2010; Dunlop et al., 2010; Ó Cofaigh et al., 2010; Fig. 1a).  These 39 

ridges were first interpreted by King et al. (1998) as end moraines (Fig. 1a) and Sejrup et al. (2005) 40 

subsequently confirmed this interpretation on the basis of seismic data.  More recently, detailed 41 

geomorphic analyses have been completed on the Irish continental shelf west and north of Donegal 42 

Bay and the Malin Sea.  This research has documented nested end- and recessional-moraines, lateral 43 

moraines, drumlin swarms, and extensive areas of iceberg scouring that confirm the presence of 44 

grounded, marine-terminating ice lobes on the continental shelf (Benetti et al., 2010; Dunlop et al., 45 

2010; Ó Cofaigh et al., 2010).   46 

Despite these geomorphologic advancements, no analyses of the glacial sedimentology or 47 

palaeoenvironment have been completed west of Ireland.  Furthermore, no previous research has 48 

dated the advance of the BIIS onto the continental shelf west of Ireland.  This research coordinates 49 
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new geomorphology that addresses a previously uninvestigated area of the glaciated North Atlantic 50 

margin using multibeam swath bathymetric data withsedimentary and micropaleontological data 51 

gathered from vibro-cores.  This study employs these datato elucidate the chronology and behaviour 52 

of the BIIS west of Ireland.  The bathymetric and sedimentary data are collected from a series of 53 

sediment ridges on the northern Porcupine Bank and Slyne Trough, offshore western Ireland,(Fig. 1b).  54 

These landforms are situated on the outer continental shelf, ~60 km northwest (i.e. farther offshore) of 55 

the large moraine offshore of County Galway(referred to in this paper as the Galway Lobe Moraine) 56 

described by Clark et al. (2012a) (Fig. 1).   57 

The Porcupine Bank itself forms a dome-like westward projection of the Irish continental shelf, 58 

situated north of the Porcupine Seabight (Fig. 1). Water depths across the Porcupine Bank range from 59 

~155-200 m bsl and it ismade distinct from the continuous continental shelf by the Slyne Trough (Fig. 60 

1), a relatively low relief, N-S trending ‗saddle‘ formed by a Mesozoic sedimentary basin (Murphy 61 

and Croker, 1992).  These features constitute a relatively complex shelf bathymetry that was likely to 62 

have affected BIIS behaviour.  Previous studies have investigated the evolution of cold-water coral 63 

mounds that occupy deeper water flanking the Porcupine Bank, some of which identified intervals of 64 

IRD (e.g., De Haas et al., 2009; Heindel et al., 2010; Smeulders et al., 2014); however no 65 

palaeoglaciological investigations have previously been completed on the Porcupine Bank and the 66 

glaciological significance of the IRD is uninvestigated. 67 

The sediment ridges across the Porcupine Bank and Slyne Trough have not been previously 68 

studied.  In this paper we present a series of data that indicate that these ridges are glacial in origin.  69 

We also present several AMS radiocarbon dates that offer the first chronologic constrains for ice 70 

advance across the shelf, which indicate BIIS advance during the last (late Midlandian) glaciation 71 

(MIS 2).  This study area was selected for three reasons: (1) the origin of the ridges was unknown, (2) 72 

bathymetric data coverage is precise and complete in this area and (3) previous studies of the Irish 73 

continental margin (e.g. Benetti et al., 2010; Ó Cofaigh et al., 2010; Sacchetti et al., 2012) call into 74 

question the western extent of the last BIIS and its behaviour along its marine termini.  These 75 
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properties allowed us to address the aims of this study, which were to: (1) identify BIIS maximum 76 

extent west of Ireland, (2) provide the first age constraints for the timing of this advance, (3) identify 77 

depositional mechanisms and ice-proximal palaeoenvironmental signals that reveal BIIS behaviour, 78 

and (4) constrain the timeframe of BIIS marine margin retreat west of Ireland.   79 

2. Methods 80 

This research employsmultibeam swath bathymetric raster data collected by the Irish National 81 

Seafloor Survey (INSS)—now the Integrated Mapping for the Sustainable Development of Ireland‘s 82 

Marine Resource (INFOMAR) programme—to investigate the western margin of the Irish continental 83 

shelf.  The data were collected in 2000 and 2001 by the RSV Siren using a hull-mounted Simrad© 84 

EM1002 multibeamsystem.  The data are compiled into a series of 25 m resolution bathymetric rasters 85 

using a Geographic Information System (GIS) to analyse the seafloor geomorphology and to target 86 

ridge crests and troughs for coring.  The INSS data was used to create bathymetric hillshades and 87 

digital elevation models (DEMs) of the study area, which clearly reveal a series of sinuous ridges and 88 

extensively furrowed areas of seabed (Fig. 1b).  Geomorphologic characterisation of the landforms in 89 

the study area is assisted by seafloor profile analyses using the ArcGIS® 3D analyst tool.   90 

Four vibro-cores: CE10008_42, CE10008_43, CE10008_44 and CE10008_45 (henceforth 91 

referred to as cores 42, 43, 44 and 45, respectively), were collected during the CE10008 research 92 

cruise conducted in 2010 aboard the RV Celtic Explorerand are used to examine the sedimentological 93 

composition of the ridges (Table 1).  Information onlithology, sedimentary structures, grain size and 94 

sediment physical properties were recorded in order to reconstruct depositional environments.  X-95 

radiographs were acquired and sediment physical properties were measured prior to splitting the cores 96 

at the University of Ulster, Jordanstown and the National University of Ireland, Maynooth, 97 

respectively.  Digital x-radiographs were collected using a CARESTREAM DRX Evolution system 98 

and allow improved sedimentary structure identification.  X-radiograph data are displayed as 99 

sketchesin the sediment logs to characterise discernible structures and display them in a usable 100 
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manner.  Original, representative x-radiograph examples of lithofacies are also provided.  Sediment 101 

physical properties of cores 42 and 44 were measured using a GEOTEK© multi sensor core logger 102 

and consist of P-wave velocity, wet bulk density and magnetic susceptibility.  A smoothed average 103 

magnetic susceptibility value was calculated to allow comparisons between cores without anomalies 104 

caused by large clasts; this was done by removing anomalously high measurements (four 105 

measurements >100 SI units x 10
-5

 in core 42 and three measurements >300 SI units x 10
-5

 in core 45) 106 

from the dataset and calculating the remaining data‘s average.Shear stress was measured with an 107 

MCC© Impact shear vane from core centres in areas that allowed shear vane penetration without clast 108 

contact, which yields spurious measurements.  Shear strength measurement intervals are typically ≤15 109 

cm, except where prohibited by clast abundance.  Water content is calculated as the difference 110 

between sediment wet and dry weights.  Lithofacies were described visually and refined with x-111 

radiograph examinations.  Grain size analyses (GSA) were performed via laser granulometry using a 112 

MALVERNMastersizer© at Trinity College, Dublin on 31 bulk sediment samples collected from 113 

cores at intervals guided by lithofacies data.   114 

Table 1: sediment core information. 115 

Core Latitude (N) Longitude (W) Water depth (m) Core length (m) 

CE10008_42 53° 46.2655‘ 12° 38.6542‘ 298.5 1.76 

CE10008_43 53° 43.6649‘ 12° 31.4036‘ 312.5 1.17 

CE10008_44 53° 38.9150‘ 12° 16.8818‘ 295.1 2.30 

CE10008_45 53° 37.7487‘ 12° 08.0713‘ 293.7 2.94 

 116 

Micropaleontological analyses were conducted on 31 one-cm slab subsamplesthat correlate to 117 

the GSA sample intervals and are considered representative of the range of lithofacies in the cores.  118 

Benthic foraminifera assemblages were examined because they are strongly influenced by local ocean 119 

conditions (Murray,2006).  The subsamples were oven dried at <45°C for >48 hours and washed 120 

through a 63 µm sieve to remove the mud fraction.  Aliquots containing >300 foraminiferal tests were 121 

divided using a Green Geological© microsplitter and dry sieved to remove the <125 µm fraction 122 
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following the recommendation of Schönfeld et al. (2012).  Foraminifera<125 µm were not counted 123 

because most foraminiferal tests below this size comprised unidentifiable fragments and recent 124 

comparative studies show that, at least for some samples, the constituents of the >63 µm fraction 125 

identify ecological controls that are similar to the >125 µm fraction (Mojtahid et al., 2009; Bouchet et 126 

al., 2012).  Every identifiable foraminiferal test within the aliquotswasdocumented to the species level 127 

whenever possible using an Olympus SZX16 low-power binocular microscope on all benthic and 128 

planktonic tests, primarily following the taxonomic descriptions of Murray (2003).  Dominance (1-129 

Simpson‘s index) and Fisher‘s α diversity statistics were calculatedon benthic foraminiferal counts 130 

using the micropaleontological software PAST 3.02a (Hammer et al., 2001) on >200 tests (cf.Thomas 131 

et al., 1995; Jennings et al., 2014).  Fisher‘s α is preferred for this study over the Shannon-Wiener 132 

index because the latter is based on relative proportions of species (Buzas and Gibson, 1969) and thus 133 

can yield spuriously high results for counts with highly dominant taxa (Dorst and Schönfeld, 2013).  134 

Fisher‘s αrelates the count of individuals to the number of species in a sample (Fisher et al., 1943) 135 

resulting in high valuesindicating high diversity (e.g., Samir et al., 2003).  Dominance ranges from 0.0 136 

(all species are equally represented) to 1.0 (one species is absolutely dominant);thereforehigh values 137 

are associated with low diversity (e.g., Samir et al., 2003).  Individual species counts are converted to 138 

relative abundances (RA), which standardises the data by describing counts as percentages of the 139 

sample population.  The percentage of planktonic individuals (PTr)is calculated as a percent of the 140 

total foraminiferal count and can provide information on palaeo-surface productivity, although this 141 

must be considered strictly qualitatively in the absence of palaeo-water depths and differential 142 

dissolution data (Berger and Diester-Haass, 1988).  The foraminiferal density is calculated as the ratio 143 

of the number of foraminifer individuals per mass of sediment >63 µm in milligrams (mg) and reveals 144 

qualitative, comparative information on palaeoproductivity.  Severely damaged tests are defined in 145 

this study as broken or abraded beyond positive recognition of species while still comprising≳50% of 146 

the originalmaterial; this standard reducesthe chance of over representing easily fragmented or easily 147 

recognisable (as fragments) species.  Severely broken tests were counted for each sample and the 148 

severely damaged/identifiable test ratio (SDr)is calculated as a percent of the total foraminiferal count 149 

to elucidate the likelihood that foraminifera areallochthonous.   150 
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Three samples for accelerator mass spectrometer (AMS) radiocarbon analysis were selected 151 

using detailed bio-lithostratigraphic data derived from the sedimentological and micropaleontological 152 

investigations outlined above.  Sediment unitsinterpreted as ice-proximal during deglaciation on the 153 

basis of lithofacies, physical properties and foraminiferal assemblage data were specifically targeted 154 

to reveal depositional age constraints and establish a nascent retreat pattern across the Irish 155 

continental shelf.  The three calcareous samples wereobtained from 1 cm thick slab samples and 156 

comprise cold water coral fragments (Lophelia pertusa) and paired and single bivalve shells.  157 

Radiocarbon results are presented as both conventional (
14

C BP) and corrected (Cal BP) ages (Table 158 

4).  Radiocarbon ages were calibrated using Calib© 7.0.2 software using the global ocean average∆ r 159 

marine reservoir correction of 400years because a regional marine reservoir effect is unavailable 160 

(Stuiver and Reimer, 1993).   161 

3. Results 162 

3.1. Geomorphology 163 

A series of sinuous, approximately E-W trending ridges occupy the northern Porcupine Bank 164 

and Slyne Trough (Figs. 1b, 2).  The ridges range from ~5 to >65 km long and are predominantly 165 

concentrated on the Porcupine Bank, with some extending continuously into the Slyne Trough (Fig. 166 

2a, b).  The two largest ridges are located in the Slyne Trough and reach heights of >30 m.  The ridges 167 

are asymmetric in profile, with gentle southern and steep northern slopes (Fig. 2a, c).  A broad (>5 km 168 

wide and at least 25 km long) ridge extends across the east of the study area and has a distinct NNE-169 

SSW orientation (Fig. 2a, b).  A series of high-relief (up to 15 m amplitude) corrugations oriented 170 

obliquely to the overall azimuth of the ridge occur along its crest.  The southeastern corner of the 171 

study area is characterised by a gradually sloping (7.93°), relatively smooth area of seafloor.  The 172 

southwestern corner of the study area is characterised by a low-relief, crenulated texture with no 173 

ridges or furrows, interpreted to be Porcupine Bank bedrock (cf. Mazzini et al., 2012).   174 
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The bathymetry also reveals long, meandering furrows that tend to cluster on the southern 175 

slopes of the ridges and in the Slyne Trough (Fig. 2a).  The seafloor furrows are irregular and cross-176 

cutting in pattern with a typical N-S orientation.  They increase in size and occurrence toward the 177 

south of the study area and within the Slyne Trough where they reach depths of >10 m and are 178 

typically bordered laterally by berms (Fig. 2c).  The depth of the furrows generally increases with 179 

bathymetric shallowing and often the furrows terminate on the southern slopes of the ridges in the 180 

study area (Fig. 2a).   181 

3.2. Sedimentology 182 

Seven lithofacies (Table 2) are identified based on core lithology, sedimentary structures and 183 

physical property measurements.  These sedimentary properties are summarised in Table 2 and some 184 

of the x-radiograph facies are exemplified in Fig. 3.  Three lithofacies associations are identified: 185 

lithofacies association 1 (LFA 1) is diamicton, occurs at the bottom of all four cores and consists of 186 

Dmm, Dmmclithofacies (Table 2; Figs. 4, 5, 6, 7); lithofacies association 2 (LFA 2) consists of Dcm 187 

and Fl lithofacies (Table 2); the tops of all four cores are represented by lithofacies association 3 188 

(LFA 3), which consists of Sm, Sh and Suf lithofacies (Table 2; Figs. 4, 5, 6, 7). 189 

3.2.1. Lithofacies association 1 190 

The basal diamictons consist of Dmm lithofacies and, in cores 42 and 44, an underlyingDmmc 191 

lithofacies (Figs. 4, 5, 6, 7), is differentiated by its high consolidation (>50-120 kPa, Table 2).  In core 192 

44, this Dmmc diamicton is further differentiated by its low water content (<12%, Fig. 6).  The 193 

diamictons are heterogeneous in colour and grain size and contain abundant >2 cm long lonestones of 194 

variable roundness.  Lonestones usually consist of black, fine-grained igneous rock, but with more 195 

variable lithologies(including granite and limestone) towards the top of the diamictons.  Occasional 196 

small, highly abraded shell fragments arepresent in the diamictons (Figs. 4, 5, 6, 7).  Cores 42 and 44 197 

consist of both Dmm and Dmmclithofacies; in both cores the Dmm interval is at least ~1 m thick with 198 

gradational lower contacts that separateit from the underlying Dmmc lithofacies (Figs. 4, 6).  The 199 
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diamictons of cores 42 and 43 are sandy (typical sand fractions >60%), while core 44 and 45 200 

diamictons are muddy (sand fractions <50% and as low as 30%)(Figs. 6, 7).Shear strength 201 

measurements decrease upwards from >40 kPa to <20 kPa through the diamicton in cores 42, 43 and 202 

44 (Figs. 4, 5, 6) and in cores 42 and 44 measurements up to 61 kPa and 123 kPa, respectively, have 203 

been recorded near the bottom of the Dmmc lithofacies (Figs. 4, 6).  The water content,wet bulk 204 

densities and P-wave velocities of these basal diamictons are typically highly variable (Figs. 4, 5, 6, 205 

7); however, especially in core 44, the water content steadily decreases down core and reaches values 206 

as low as 11.5%.  The diamicton of core 42 yields markedly lower magnetic susceptibility 207 

measurements (smoothed average measurement of 27.95 SI units x 10
-5

; Fig. 4) than those of core 45 208 

(smoothed average measurement of 150.23 SI units x 10
-5

; Fig. 7).   209 

3.2.2. Lithofacies association 2 210 

In each core except core 43, a massive, clast-supported, ~15 cm thick Dcm diamicton with a 211 

gradational lower contactoverlies the LFA 1 diamictons (Figs. 3, 6, 7).  A clast supported framework 212 

is clearly identifiable in x-radiographs (Fig. 2c) and the occurrence and amount of clast contact 213 

increases upwards through the lithofacies (i.e., the amount of matrix decreases upwards); however, 214 

there is no discernible clast orientation or sorting by size.  Similar to the underlying diamictons, the 215 

Dcm diamictons are heterogeneous in colour and grain size and contain abundant large (>2 cm) clasts; 216 

although, unlike lower in the cores, the Dcm clasts are composed of variable lithologies.  In core 45 a 217 

~2.5 cm long clast found 62 cm bsf (Fig. 7) exhibits distinct striations, a rounded nose and a ―plucked 218 

lee‖ (i.e., the clast is ―bullet shaped‖).  Sediment physical properties are also highly variable.  The 219 

Dcm lithofacies contain abundant shell fragments and in core 45 the lower contact is characterised by 220 

sandy irregularities that extend sub-vertically to vertically into the underlying Dmm.  The Dcm 221 

lithofacies also infrequently incorporate deformed, randomly oriented, soft-sediment clasts (Fig. 7).  222 

In core 45, the Dcm contains a soft sediment clast composed of greyish brown (2.5Y 5/2) massive 223 

mud (Fig. 7).   224 
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In core 43 LFA 1 is overlain by horizontally bedded sand (Sh, LFA 3) and interbedded with 225 

horizontally laminated silt and clay (Fl) (Fig. 5).  The Fl lithofacies is ~5 cm thick and consists of 226 

normally graded laminations ~0.5 cm thick.  The Fl interval has a sharp lower contact with the 227 

underlying Dmm diamicton.  Laminae fine upwards from silty fine sand to clayey silt and have sharp 228 

lower contacts.   229 

Table 2: Lithofacies summary.  Codes modified from Miall (1978) and Eyles et al. (1983).  230 

Code Lithofacies Description  Interpretation and [references]* 

Fl Laminated 

sandy silt and 

clay 

(LFA 2) 

Planar, parallel laminae, ~0.5 cm thick, normally 

graded, with sharp lower contacts.  No identified 

biogenic material. 

Suspension settling from meltwater 

plumes or fine-grained turbidites; 

alternatively, soft sediment rip-up 

clasts.  [1], [2], [3], [4] 

Sm Massive sand 

(LFA 3) 

Massive, fine-to-coarse, poorly sorted sand with shell 

fragments; <15 cm thick; light yellowish brown 

(2.5Y 6/4); sharp, conformable lower contact.  

Coincident with apparent coring deformation.   

Outer-shelf bottom-current 

sedimentlikely deformed by coring.  

[5], [6], [7] 

Sh Horizontally-

bedded sand 

(LFA 3) 

Poorly developed, planar, parallel beds <2 cm thick; 

units are 20-35 cm thick and occasionally fine 

upwards; typically olive (5Y 5/3); sharp or 

gradational lower contact.  Abundant shell 

fragments.  High water content (up to 26%).  P-wave 

velocity from 1,000-1,800 m/s.   

Outer-shelf bottom-current sediment.  

[5], [6], [7]   

Suf Upward-

finning sand 

(normally 

graded) 

(LFA 3) 

Massive, <40 cm thick beds of poorly sorted sand; 

high concentration of shell fragments, and some 

granules, especially low; variable colour (2.5Y 5/2 

and 6/3); sharp, conformable lower contacts.  

Magnetic susceptibility varies from 50-200 SI units x 

10-5 from west to east.   

Outer-shelf bottom-current sediment 

with variable terrigenous sediment 

content that has been winnowed of 

fines.  Likely records seafloor 

transgression. [5], [6], [7], [8], [9], [10], 

[11] 

Dcm Clast-

supported, 

massive 

diamicton 

(LFA 2) 

Massive, 15-20 cm thick beds of clast-supported 

diamicton in a sandy matrix; randomly-oriented soft-

sediment clasts; shell fragments and bioturbation 

present; gradational lower contact. Low shear stress 

(<20 kPa), highest magnetic susceptibility 

measurements in study (up to 398 SI units x 10-5) and 

highly variable P-wave and wet bulk ρ 

measurements.   

Glaciomarine diamicton from 

suspension settling with IRDand/or ice-

shelf rain out. High clast concentration 

records increased dropstone production 

or winnowing of fines. Possibly 

reworked by iceberg turbation. [4], 

[12], [13], [14], [15], [16] 

Dmm Loose (<50 

kPa), massive 

diamicton 

(LFA 1) 

Massive, 90->200 cm thick units of unconsolidated 

muddy diamicton;randomly-oriented soft-sediment 

clasts; abundant lonestones of various lithology high 

in core and similar lithology low; typically greyish 

brown (2.5Y 5/2); gradational lower contacts.  Rare, 

small shell fragments; rare bioturbation at top.  

Variable P-wave and wet bulk ρ measurements.   

Glaciomarine diamicton from 

suspension settling, IRD and/or ice-

shelf rain outwith areas of iceberg 

turbation. [12], [13], [14], [16], [17], 

[18] 

Dmmc Compact (>50 

kPA), massive 

diamicton  

Massive, at least 25-80 cm thick consolidated 

diamicton; abundant lonestones of similar lithology; 

variable colour (2.5Y 5/2 and 6/2); stratigraphically 

low with unknown lower contacts.  Very rare small 

Till, possibly resulting from short-lived 

ice shelf recoupling events that 

reworked and compressed existing 

glaciomarine sediment.  Progressive 
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(LFA 1) shell fragments. Low water content (typically <14%). 

Variable P-wave velocities and wet bulk ρ up to 2.4 

g/cm3; shear stress measurements up to 123 kPa.  

upwards decrease in shear strength 

indicates a reduction in compressive 

vertical pressure through time.  [16], 

[17], [19], [20], [21] 

* References: [1] Powell, 1983; [2] Hein and Syvitski 1992; [3] Ó Cofaigh and Dowdeswell, 2001;[4] Hillenbrand et al., 231 
2013; [5] Bishop and Jones, 1979;[6] Fyfe et al., 1993; [7] Viana et al. 1998;[8] Robinson et al., 1995;[9] Saito et al., 1998; 232 
[10] Amorosi et al., 1999; [11] Barrie and Conway, 2002; [12] Kilfeather et al., 2011; [13] Anderson et al., 1983;[14] Eyles, 233 
1988; [15] Vorren et al., 1983; [16] Hillenbrand et al., 2010; [17] Evans and Pudsey, 2002; [18] Smith et al., 2011; [19] 234 
Anderson, 1999; [20] Hillenbrand et al., 2005; [21] Ó Cofaigh et al., 2005.   235 

3.2.3. Lithofacies association 3 236 

The top of each core is composed of a sand interval that contains abundant shell fragments, 237 

which typically decrease in size and occurrence upwards (Figs. 4, 5, 6, 7).  The sand intervals vary in 238 

structure and are categorised as Sm, Sh and Suf lithofacies (Table 2).  The sand lithofacies have sharp, 239 

apparently conformable lower contacts with the underlying lithofacies and vary in thickness from 28 240 

cm in core 43 to 50 cm in core 45.  The Suf lithofacies fine upwards from poorly-sorted coarse and 241 

medium sand with granules to poorly-sorted medium sand and occur in cores 44 and 45 below Sh and 242 

Sm lithofacies with gradational lower contacts (Figs. 6 and 7).  Typically, the top 5-10 cm of the sand 243 

lithofacies are deformed by the coring process.  244 

3.3. Micropaleontology 245 

Foraminifera are present in each lithofacies and analyses of all cores revealed 42 benthic taxa 246 

(Appendix 1, Tables A2, A3).  Benthic foraminiferal diversity indices and general foraminiferal 247 

statistics are displayed in Appendix 1 (Table A1) and Figure 8.  A maximum species richness of 24 248 

species is counted in cores 44 and 45 at 46 cm bsf and 94 cm bsf, respectively, while the lowest count 249 

of 12 species is obtained from core 43 at 85 cm bsf.  Benthic foraminiferal diversity, revealed by 250 

dominance and Fisher‘s α values,ishighest in cores 44 and 45; in these two cores, Fisher‘s α values 251 

reach >0.6 and dominance values are consistently <0.2 (Fig. 8).  In cores 42 and 43, diversity 252 

generally increases upwards, evidenced by dominance values that decrease upwards from >0.3 to <0.2 253 

in both cores (Fig. 8).  In all cores except core 42, foraminiferal density decreases down core from 254 

>10 to <5 tests/mg; in core 42 density is highly variable, ranging from 0.44-14.84 tests/mg with a 255 

peak at 139 cm bsf (Fig. 8).   256 
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Lithofacies association 1 generally coincides with high foraminiferal dominance (up to 0.38 in 257 

cores 42 and 43) and SDr(typically >15%) values (Gig. 8, Table 3).  In cores 43, 44 and 45, LFA 1 is 258 

marked by low foraminiferal density (typically >5 tests/mg, Fig. 8).  The top of LFA 1 and LFA 2 259 

typically display a relatively abrupt increase in PTr that ranges up to 74%in core 43 (Fig. 8; Table 3).  260 

Lithofacies association 2 displays highly variable benthic foraminiferal diversity indices (Fisher‘s α 261 

values from 5.2-4.8 and density from 4.2-7.3; Fig. 8; Table 3).  Lithofacies association 3 typically 262 

yields low values for dominance (<0.2) and SDr(as low as 8.7% in core 44), with high values 263 

(typically>10 tests/mg) for foraminiferal density (Fig. 8; Table 3).   264 

Table 3: Lithofacies association correlations to summarised micropaleontological data. 265 

Lithofacies 

association 
Foraminiferal statistics 

Dominant or characteristic 

foraminifera 

1 High dominance; highSDr; low density 
Elphidium clavatum; 

Cassidulina reniforme 

2 
HighPTr; variable benthic foraminifera 

diversity indices 

Discanomalina coronata; 

Trifarina angulosa 

3 Low dominance; low SDr; high density 

Cassidulina laevigata; 

Uvigerina mediterranea; 

Bulimina marginata 

Cibicides lobatulus(Walker and Jacob, 1798) is dominant throughout the majority of the cores 266 

and common in every lithofacies (Appendix 1, Tables A2, A3).  C.lobatulusthrives in sandy, high-267 

current environments that experience sediment winnowing (Gooday and Hughes, 2002; Schönfeld, 268 

2002).  Despite its dominance in the population, the ubiquity of this species throughout the sediment 269 

record renders it of little use as a palaeoenvironmental proxy for this study.   270 

Two foraminifer species associated with glacial conditions in modern oceans have been 271 

identified: Elphidium excavatum forma clavatum (Feyling-Hanssen, 1972) and Cassidulina reniforme 272 

(Nørvang, 1945).  Both species are present throughout LFA 1, however the relative abundance of both 273 

species peaks near the top of the Dmm lithofacies (Fig. 9).  The highly opportunistic species 274 

E.clavatum reaches relative abundances of up to 5% near the bottom of cores 44 and 45 within LFA 1 275 

and is generally absent towards the core tops(Fig. 9).  E. clavatumadopts both epifaunal and infaunal 276 

strategies to thrive near ice-marine interfaces with high sedimentation rates, variable salinity, average 277 
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water temperatures <1ºC, and often with sea ice cover (Mudie et al., 1984; Murray, 1991; Hald et al., 278 

1993, 1994; Linke and Lutze, 1993; Hald and Korsun, 1997; Polyak et al., 2002; Stalder et al., 2014).  279 

The infaunal species C. reniformeis also abundant in LFA 1 (Fig. 9) and is well documented in ice-280 

proximal marine environments in the northeastern Atlantic (Sejrup and Guilbault, 1980; Hald and 281 

Korsun, 1997; Sejrup et al., 2004).  These species are typically well preserved in LFA 1, displaying 282 

less breakage and abrasion than many of the accompanying foraminifer species.   283 

In most cores, the relative abundances of Discanomalina coronata (Parker and Jones, 1865) 284 

increase just below the lower contact of LFA 2 (Fig. 9).  D.coronata is common in areas with high 285 

bottom currents and coarse sediment or bedrock (Hald and Vorren, 1987; Schönfeld, 1997) and is 286 

reported to thrive in areas of dead coral fragments (Morigi et al., 2012; Smeulders et al., 2014).  D. 287 

coronata is associated with areas of bedrock that are distal to coral mounds on the modern Porcupine 288 

Bank (Smeulders et al., 2014).  The infaunal foraminifer species Trifarina angulosa (Williamson, 289 

1858) is abundant throughout the examined cores and has been documented as a common species on 290 

the Porcupine Bank (Weston, 1985; Smeulders et al., 2014) and in Atlantic polar front regions 291 

(Mackensen et al., 1993).  T. angulosa is reported to thrive in areas of coarse sediment and high 292 

bottom currents (Mackensen et al., 1993; Klitgaard Kristensen and Serjup, 1996) and in cores 42 and 293 

43 its relative abundances undergo rapid changes near the lower contact of LFA 2 (Fig. 9).  Cibicides 294 

refulgens (de Montfort, 1808) is also common near LFA 2 and is associated with high bottom currents 295 

and areas of sediment winnowing (Gooday and Hughes, 2002; Smeulders et al., 2014).   296 

The dominant foraminifer species in LFA 3 are the epifaunal Cassidulina laevigata (d'Orbigny, 297 

1826, 1847) and infaunal species Uvigerina mediterranea(Hofker, 1930) (Fig. 9).  Both species are 298 

associated locally with sheltered areas, preferentially on or near cold-water coral mounds (Smeulders 299 

et al., 2014).  Bulimina marginata (d'Orbigny, 1826) is common near the core tops and is also 300 

associated with modern living and dead coral mounds on the Porcupine Bank (Morigi et al., 2012; 301 

Smeulders et al., 2014) as well asphytodetrital sediment in the Rockall Trough (Gooday and Hughes, 302 

2002).   303 
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3.4.Chronology 304 

AMS radiocarbon dating was conducted on three samples consisting of bivalve shells and cold-305 

water coral (Lophelia pertusa) fragments; results are summarised in Table 4.  The radiocarbon ages 306 

arewithin marine isotope stage (MIS) 2.  The oldest radiocarbon age recovered in this study is ~25 307 

Cal. kaBP.  This ageis derived from a Lophelia pertusa fragment collected 180 cm bsfin core 44, 308 

encased in a Dmmc diamicton (Fig. 6).  Lophelia pertusa is known to colonise the modern seafloor 309 

near the study area (Scoffin and Bowes, 1988; Heindel et al., 2010; Smeulders et al., 2014) and thus is 310 

considered a viable source of locally bio-mineralised radiocarbon-datable material.  The youngest age 311 

of ~19ka Cal. BP is from a paired, unabraded and unbroken bivalve shell; this sample was collected 312 

form Suf sand (the only age derived from a non-diamictic lithofacies) 36 cm bsf in core 42 (Fig. 4; 313 

Table 4).  A single (unpaired), unbrokenand unabraded bivalve shell sampled from Dmm diamicton 314 

94 cm bsf in core 45 yielded an age of ~20 ka Cal. BP (Table 4).  All specimens sampled for 315 

radiocarbon dating were largely free of obvious surface wear and are deemed to have been 316 

incorporated into the surrounding sediment close to their point of origin based on the quality of their 317 

preservation.   318 

Table 4: radiocarbon results. 319 

Core 
Depth 

(cm bsf) 

Sample 

material 

14C age (yrs. 

BP) 

Calibrated age 

(yrs. BP) 

δ13C 

(‰) 

Surrounding 

lithofacies 

Laboratory 

code 

42 36 
Paired 

bivalve shell 
17900±89 19182±155 -4.7 Suf Poz-66484 

44 180 
Coral 

fragment 
20710±90 24720±260 -1.3 Dmmc Beta-334419 

45 94 
Single 

bivalve shell 
18733±107 20254±151 4.3 Dmm Poz#2-66430 

 320 

4. Interpretation 321 

4.1. Geomorphology 322 

4.1.1. Seafloor furrows 323 
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Seafloor furrows are common in the study area and are concentrated in the Slyne Trough (Fig. 324 

2).  Because of their irregular patterns, adjacent presence of lateral berms (Fig. 2a) and bathymetric 325 

association (amplified depth and berm formation with height), the seafloor furrows are interpreted as 326 

iceberg scours (Belderson et al., 1973; Dowdeswell et al., 1993; Ó Cofaigh et al., 2002, 2010); the 327 

common N-S orientation and tendency to deepen or end on the southern ridge slopes suggest a calving 328 

ice margin toward the south of the study area and a northward palaeocurrent direction.  Thus we 329 

interpret the primary ice source to be the BIIS, which is in agreement with an ice-rafted detritus (IRD) 330 

study of deep sea cores along the western BIIS continental margin (Scourse et al., 2009).   331 

4.1.2. Seafloor ridges 332 

Sinuous ridge asymmetry is typical of the ice proximal/distal discrepancy expected from glacial 333 

push moraines (Boulton, 1986).  Some ridges possess southern slopes with low gradients (Fig. 2b), 334 

forming an asymmetrical profile that more closely resembles grounding-zone wedges (e.g., Bart and 335 

Cone, 2012; Dowdeswell and Fugelli, 2012; Jakobsson et al., 2012).  However, the sinuosity and in 336 

places ―scalloped‖ form of the ridges contrasts slightly withtypical, arcuate end moraine structures 337 

(e.g. Bradwell et al., 2008; Ó Cofaigh et al., 2010).   338 

Although the geomorphic interpretation of the individual E-W trending ridges is uncertain, the 339 

parallel to sub-parallel, ostensibly sequential organisation of the ridges across the study area, coupled 340 

with their extension across varied terrain suggest ice-marginal formation.  Furthermore, the intensive 341 

iceberg scouring supports the concept of a nearby palaeo-ice margin.  Thus, the landforms are 342 

tentatively interpreted as a record of westward BIIS extension across the Irish continental shelf.  Due 343 

to discrepancies in scale and morphology with previously documented BIIS end moraines west of 344 

Ireland (which are arcuate and reach lengths of ~125 km; Ó Cofaigh et al., 2010; Clark et al., 2012a) 345 

an interpretation of ice-marginal deposition duringrelatively short-lived ice extensions with an 346 

actively calving margin is preferred.  The radiocarbon ages recovered from on and near the sinuous 347 

ridges date from MIS 2, demonstrating that the landforms incorporate calcareous material that was 348 

bio-mineralised during the Midlandian Glaciation.   349 
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The orientation of the large, corrugated SSW-NNE trending ridge relative to the 350 

aforementioned abundant E-W trending ridges suggests a different geomorphic evolution.  The 351 

corrugations are apparently a series of E-W trending ridges that are overprinted on the larger SSW-352 

NNE trending ridge.  They have a similar orientation to the neighbouring sinuous ridges and appear to 353 

be situated as eastward extensions of those ridges (Fig. 2a).  Because of these characteristics, we 354 

tentatively interpret this ridge as an earlier glacial landform, likely an end moraine, which has been 355 

subsequently overprinted by the E-W trending ridges.   356 

4.2. Sedimentology and palaeoenvironment  357 

The four cores analysed for this study are interpreted to provide a record of glacigenic 358 

sedimentation in the Slyne Trough and on the Porcupine Bank.  Two of the cores (44 and 45) are 359 

taken from near the crests of moraines in the Slyne Trough and recover 2.3-2.9 m of sediment.  360 

Because this sediment has properties characteristic of subglacial deposition and is sampled from the 361 

moraine crests, we interpret it as the ridge-forming deposit.   362 

4.2.1. Lithofacies association 1 363 

The massive structure, low water content and high (50-123 kPa) shear strengthsthat characterise 364 

the Dmmc lithofacies are consistent with vertical compaction from an overriding glacier; the 365 

progressive up-core decrease in shear strength suggests a gradual decrease in compaction over time 366 

(Anderson, 1999; Evans et al., 2005).  Furthermore, the striated, ―bullet shaped‖ morphologic 367 

characteristics on a clast sampled from core 45 are interpreted to indicate proximal subglacial 368 

transport (Sharp, 1982).  The presence of heavily fragmented shell material indicates that the 369 

diamicton incorporated earlier marine deposits and the westward decrease in magnetic susceptibility 370 

measurements denotes a reduction in terrigenous sediment supply (Robinson et al., 1995; Shevenell et 371 

al., 1996).  These variables are interpreted as a record of subglacial sedimentation (till, Fig. 10).  The 372 

incorporation of biogenic material and reduction of magnetic susceptibility along the geographically 373 

and geomorphologically interpreted ice flow direction (westward) suggests either a subglacial 374 
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sediment supply that incorporated large amounts of pre-glacial marine sediment or an ice mass that 375 

was only periodically grounded and failed to transport large amounts of terrigenous sediment to the 376 

shelf edge (cf.Ó Cofaigh et al., 2005; Garcia et al., 2011).   377 

The Dmm lithofacies are characterised by abundant lonestones in a less compact (shear strength 378 

<50 kPa, often <10 kPa), mud-rich matrix that is consistent with subglacial deposition as a dilatant till 379 

(Evans et al. 2005; Ó Cofaigh et al., 2005, 2007), or glaciomarine sedimentation from suspension 380 

settling and IRD (Evans and Pudsey, 2002; Hillenbrand et al., 2005; Kilfeather et al., 2011; Smith et 381 

al., 2011).  The relative paucity of observable shell fragments or bioturbation in the Dmm diamicton 382 

from cores 42 and 44and the bottom of core 43 (Figs. 4, 5, 6), along with their variable and moderate 383 

shear strengths (8-42 kPa) suggests that these diamictons are a dilatant till deposited over a highly 384 

compact till unit by a deforming, overriding ice mass (e.g, Smith, 1997; Vaughan et al., 2003; Ó 385 

Cofaigh et al., 2005).  Conversely, the low shear strength (<15 kPa), relatively abundant shell 386 

fragments, appearance of till pellets and bioturbation within the Dmm diamicton of core 45 and at the 387 

top of LFA 1 in core 43 (Figs. 5, 7) suggest that the diamicton was deposited by proglacial or sub-ice 388 

shelf rainout (e.g., Evans and Pudsey, 2002; Hillenbrand et al., 2005; Kilfeather et al., 2011; Smith et 389 

al., 2011).  The stratigraphic position of the proglacial suspension sediment above the dilatant till in 390 

core 43 indicates that the suspension settling occurred during BIIS retreat from the Porcupine Bank.   391 

Lonestones within the sub-ice shelf or proglacial Dmm diamicton are interpreted as IRD based 392 

on their random orientations and variable sizes (e.g., Grobe, 1987; Heinrich, 1988).  Their abundance 393 

suggests intense iceberg activity or periods of sub-ice shelf sedimentation (Evans and Pudsey, 2002).  394 

A sub-ice shelf interpretation is supported by the lithologic similarity of the dropstones at the base of 395 

the Dmm diamicton, which tends to be variable in open-water environments (Pudsey and Evans, 396 

2001; Domack et al., 2005).  Thus, the Dmm diamicton in core 45 and at the top of LFA 1 in core 43 397 

is interpreted as in situ sub-ice shelf or ice-proximal iceberg rain-out sediment (Fig. 10).   398 
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High foraminiferal dominance values and the commonly low foraminiferal density in LFA 1 399 

(Table 3) suggest poor palaeoproductivity.  The typically low PTr values of LFA 1 may indicate a 400 

reduction in surface productivity (Diester-Haass, 1978; Ovsepyan et al., 2013), although this metric 401 

may also reflect changes in sea level and rates of carbonate dissolution (Berger and Diester-Haass, 402 

1988).  An anomalously low PTr value of 21.5% is recorded in core 42 at 78 cm bsf (Fig. 8), which 403 

correlates with the highest SDr value (35.8%) recorded in this study; this suggests that the low PTr 404 

value may record the preferential breaking of fragile planktonic tests during sediment reworking or 405 

sample processing rather than actual palaeoenvironmental conditions.  The occurrence of well-406 

preserved E. clavatum and C. reniformenear the top ofLFA 1 suggests a palaeoenvironment that 407 

experienced high sedimentation rates, variable salinity and average water temperatures <1ºC (Murray, 408 

1991; Hald et al., 1993, 1994; Linke and Lutze, 1993; Hald and Korsun, 1997; Sejrup et al., 2004).  409 

The Dmmc lithofacies at the bottom of core 44 is associated with a high SDr value (>25%; Fig. 9), 410 

which suggests an increased amount of subglacial and ice-proximal transport in this sediment (Melis 411 

and Salvi, 2009).  Because of its sedimentological and micropaleontological characteristics, LFA 1 is 412 

interpreted to indicate glacial conditions that likely experienced ice-proximal meltwater influx, cold 413 

temperatures and periods of overriding by the BIIS that resulted in sediment compaction (Dmmc) and 414 

the incorporation of allochthonous foraminifer species. 415 

Two AMS radiocarbon dates are derived from samples taken from LFA 1 between 75 and 180 416 

cm bsf (Fig. 10; Table 4).  These dates range from 24,720±260to 20,254±151Cal. BP, confirming a 417 

Midlandian depositional age.The ages are from cores 44 (180 cm bsf) and 45 (94 cm bsf) and 418 

constrain the deposition of the Dmmc and overlying Dmm lithofacies, respectively (Fig. 10; Table 4).  419 

In core 44 the date from 180 cm bsf provides a maximum age for the diamicton and indicates thatits 420 

deposition occurred after 24,720±260 Cal. BP (Fig. 10).  In core 45 the sample from 94 cm bsf also 421 

provides a maximum age for the Dmm diamictonand indicates that it was deposited after 20,254±151 422 

Cal. BP (Fig. 10).   423 

4.2.2. Lithofacies association 2 424 
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The similarities in clast size, roundness and lithology between the Dcm lithofacies and the top 425 

of the underlying LFA 1 diamictons suggest a similar primary sediment source.  Thus the increase in 426 

clast contact in LFA 2 is interpreted as the result of either fine sediment winnowing (Eyles, 1988) or a 427 

period of increased IRD production (Kilfeather et al., 2011).  Fine sediment winnowing may result 428 

from increased palaeocurrents.  Given the geomorphically interpreted, northward palaeocurrent 429 

direction through the Slyne Trough, it is plausible that palaeocurrents may have been hindered by ice 430 

occupation and, thus, ice loss would have resulted in an abrupt palaeocurrent increase.  An increase in 431 

IRD production may also result from ice shelf break up (Kilfeather et al., 2011).  Soft-sediment clast 432 

inclusions have similar sedimentary properties to the underlying diamicton and are interpreted as rip-433 

up clasts that were likely dislodged during iceberg turbation (Hillenbrand et al., 2013) or till pellets 434 

from iceberg rainout (Ovenshine, 1970).  The IRD lithological variability indicates a multitude of 435 

sediment provinces, which suggests the establishment of an open-water environment and deposition 436 

from icebergs (Domack et al., 2005).  The vertical, sandy irregularities that bisect the lower contact of 437 

the Dcm diamicton in core 45 are interpreted as infilled burrows (bioturbation, Fig. 7); this and the 438 

increased occurrence and size of shell fragments support an interpretation of deposition during ice 439 

shelf break up leading to an open water environment and an increasingly distal ice margin (Smith et 440 

al., 2011).   441 

Based on its planar, parallel structure and silty fine sand to clayey silt texture, the Fl lithofacies 442 

may be interpreted as ice-distal suspension sediment or a fine-grained turbidite.  Its position within 443 

the IRD-rich glaciomarine diamicton (Dmm) and its discrete occurrence in the core suggest that it is 444 

most likely a turbidite that originated on the nearby 1.4° slope of the Porcupine Bank or the flanks of 445 

sediment ridges (Fig. 2).  This interpretation is supported by previous studies that document 446 

subaqueous fine-grained turbidite formation on similar gradient slopes (e.g., Schwab et al., 1996).  447 

Alternatively, the Fl lithofacies may be a large soft-sediment clast that happens be oriented with its 448 

laminae horizontal and spans the 11 cm width of the core.  If this interpretation is correct, the Dmm 449 

lithofacies in core 43 is relatively rich in rip-up clasts (cf. Hillenbrand et al., 2013) and their similarity 450 

to the underlying Dmm diamicton suggests that they are plucked from overridden glaciomarine 451 
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deposits and subsequently deposited below a floating ice mass as till pellets (Domack et al. 1999; 452 

Evans et al. 2005; O Cofaigh et al. 2005).  Either interpretation is compatible with sedimentation 453 

during transition from ice-proximal glacial conditions to the establishment of open-water conditions 454 

following an eastward retreating ice margin.   455 

The abrupt increase in PTr values in LFA 2 indicates an increase in surface productivity 456 

(Diester-Haass, 1978; Ovsepyan et al., 2013), which supports an interpretation of ice break up and 457 

retreat.  Lithofacies association 2 also marks the transition to a palaeoenvironment dominated by 458 

foraminifer species associated with modern, high-current conditions on the Porcupine Bank.The 459 

increase in D.coronata relative abundance just below the lower contact of LFA 2 suggests an increase 460 

in palaeocurrent velocities (Hald and Vorren, 1987; Schönfeld, 1997).  Increases in the relative 461 

abundance of C.refulgens also indicates energetic palaeocurrents and sediment winnowing (Gooday 462 

and Hughes, 2002; Smeulders et al., 2014).  Rapid, although occasionally opposing, fluctuations in 463 

the relative abundance of T. angulosa suggest a period of palaeoenvironmental transition.  Because of 464 

these foraminiferal characteristics this group is considered indicative of a transition to unsheltered 465 

habitats that experience high currents and receive a relatively high food supply. 466 

Based on its sedimentological and micropaleontological characteristics, LFA 2 is interpreted to 467 

record a transitional period between the underlying ice-proximal and subglacial sediment and the 468 

overlying sandy deposits of LFA 3.  This transitional period likely experienced an increase in 469 

palaeocurrent activity that coincided with an increased rate of IRD sedimentation.  These conditions 470 

likely resulted from an increase in the geomorphically-revealed northward palaeocurrent due to the 471 

loss of an ice mass over or grounded to the Slyne Trough.  Additionally, ice shelf break up in the area 472 

could also account for an increase in IRD production.  These conditions are interpreted to mark the 473 

initiation of BIIS retreat and the establishment of open ocean conditions in the area.  The age of these 474 

lithofacies is constrained by AMS radiocarbon dates derived from underlying and overlying strata to 475 

between 20,254±151 and 19,182±155 Cal. BP (Fig. 10).   476 
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4.2.3. Lithofacies association 3 477 

Based on lithology, structure, biogenic content, stratigraphic position and geographic position 478 

on the shelf, LFA 3 is interpreted as postglacially-reworked glacigenic material (cf. Fyfe et al., 1993).  479 

A glacially-influenced, primary depositional environment is supported by the higher magnetic 480 

susceptibility measurements in core 45 (smoothed average SI units x 10
-5

 of 150.23, Fig. 7) relative to 481 

the westernmost core 42 (smoothed average SI units x 10
-5

 of 27.95, Fig. 4), which may indicate 482 

higher terrigenous sediment supplies to the east (Robinson et al., 1995; Shevenell et al., 1996).  The 483 

sands were likely reworked by strong, but gradually weakening (suggested by Suf lithofacies), bottom 484 

currents (Bishop and Jones, 1979; Fyfe et al., 1993; Viana et al. 1998).  This interpretation is further 485 

supported by winnowing in the underlying LFA 2 and previous micropaleontological (Smeulders et 486 

al., 2014) and sedimentological (De Haas et al., 2009) studies on the Porcupine Bank and flanks of the 487 

nearby Rockall Trough.This gradual palaeocurrent weakening is interpreted as a signature of sea level 488 

transgression on the Irish continental shelf and shares similar sedimentary characteristics with other 489 

postglacial transgressive marine sediment deposits and stratigraphic sequences (Saito et al., 1998; 490 

Amorosi et al., 1999; Barrie and Conway, 2002).   491 

The low foraminiferal dominance values in LFA 3 (Fig. 8; Table 3), indicatehigh surface 492 

palaeoproductivity (Diester-Haass, 1978; Ovsepyan et al., 2013).  The typically high foraminiferal 493 

density values also indicate increased palaeoproductivity, likely from decreasing glacial influence 494 

(Hebbeln and Wefer, 1991; Carmack and Wassmann, 2006).  The increasing relative abundance of C. 495 

laevigata, U. mediterranea and B. marginata in LFA 3 suggests an increased food supply and the 496 

emergence of a palaeoenvironment resembling modern ―on-mound‖ (i.e. on cold water coral mounds) 497 

environments on the Porcupine Bank (Smeulders et al., 2014).  Thus, based on its sedimentological 498 

and micropaleontological attributes, LFA 3 is interpreted as outer-shelf bottom-current sediment with 499 

variable terrigenous sediment content that has been winnowed of fines; the normal grading of the Suf 500 

lithofacies records sea level transgression (Bishop and Jones, 1979; Fyfe et al., 1993; Viana et al. 501 

1998).   502 
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The age of LFA 3 is constrained by an AMS radiocarbon age derived from 36 cm bsf in core 42 503 

to likely be younger than 19182±155 Cal. BP (Fig. 10; Table 5).  Because this age is calculated from 504 

the westernmost (likely most ice-distal) core, it is interpreted to most accurately represent the earliest 505 

phase of post-glacial sedimentation in the study area.  This record of transgression is slightly earlier 506 

than some terrestrial (shoreline) data indicators (e.g., Kuchar et al., 2012), which is likely the result of 507 

an earlier onset of deglaciation and a diminished glacio-isostatic effect on the outer shelf.   508 

5. Discussion 509 

5.1. The late Midlandian BIIS on the Porcupine Bank  510 

5.1.1. Signature of BIIS position 511 

The seafloor morphology of the study area is dominated by long, sinuous ridges seemingly 512 

deposited sequentially across the northern flank of the Porcupine Bank and the Slyne Trough (Figs. 2, 513 

11a).  These ridges are largely composed of glaciomarine diamicton (LFA 1) that tends to be compact 514 

(>50 kPa) and low in water content towards the core bottoms, suggesting periods of BIIS overriding 515 

and compression (Anderson, 1999; Evans et al., 2005).  Homogeneous clast lithology and structure in 516 

the lower diamicton (Dmmc and upper Dmm) suggests a subglacial or sub-ice shelf origin (Pudsey 517 

and Evans, 2001; Domack et al., 2005).  Changes in LFA 1magnetic susceptibility (Figs. 4, 7) and 518 

grain size (sand-sized particles 30% by weight in core 45 Dmm and 69% in core 43 Dmm) across the 519 

study areasuggest that the BIIS overrode and remobilised pre-glacial material as till (cf. Evans and Ó 520 

Cofaigh, 2003; Ó Cofaigh et al., 2011).  The abundance of foraminiferal tests (up to 1.3-1.4 benthic 521 

individuals/mg in core 44, Appendix 1, Table A3) with signs of remobilisation (SDr up to 25% in core 522 

44, Fig. 8) and the presence of both cold and warm water taxa in the Dmmc lithofacies supports an 523 

interpretation of glacitectonised pro- and pre-glacial marine material (Hald et al., 1990; Melis and 524 

Salvi, 2009).  Thus, the ridges are interpreted as a combination of BIIS end moraines, grounding-zone 525 

wedges, or possibly push ridges from ice shelf recoupling (Fig. 11).  An interpretation of ridge 526 

formation from temporary ice shelf recoupling is compatible with sedimentary and 527 
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micropaleontological evidence of ice shelf formation.  Furthermore, the sequential ridge formation is 528 

concentrated on bathymetric highs on the Porcupine Bank and Slyne Trough, suggesting formation 529 

along a floating ice mass during periods of grounding (Fig. 2).   530 

The large, corrugated ridge in the east of the study area is geomorphically and, presumably, 531 

genetically distinct from the abundant sinuous ridges.  Individual corrugations appear to be oriented 532 

with the smaller moraines on the Porcupine Bank and Slyne Trough (i.e. as extensions thereof) and 533 

have a similar scale (Fig. 2).  This suggests that the corrugated ridge is overprinted by the smaller, 534 

sinuous ridges and is therefore older.  Based on its differing orientation, larger scale, and apparent 535 

older age, we hypothesise that this large ridge is a BIIS terminal moraine (or grounding-zone wedge) 536 

deposited in front of an ice lobe that was grounded to the continental shelf.  In the absence of any 537 

chronological control, it is unknown if this landform dates to the Midlandian or an earlier glaciation.   538 

5.1.2. Ice shelf formation and break up 539 

The Dmm diamicton in core 45 and overlying the dilatant till at the base of core 43 is 540 

interpreted to record a period of post-grounded ice advance, sub-ice shelf sedimentation based on its 541 

loose consolidation (typically <15 kPa), abundant dropstones, incorporation of till pellets, and 542 

upwards increase in biogenic activity (bioturbation and shell fragments) (cf.Hillenbrand et al., 2010; 543 

Kilfeather et al., 2011).  The presence of till pellets and abundant dropstones oriented randomly 544 

within a matrix of fine-grained sand and mud is consistent with sedimentation from rain out from 545 

icebergs or ice shelves (Evans and Pudsey, 2002; Hillenbrand et al., 2005; Kilfeather et al., 2011; 546 

Smith et al., 2011).  Clast lithologic homogeneity is similar between the lower glaciomarine sediment 547 

and the underlying till, suggesting a sub-ice shelf depositional environment (Pudsey and Evans, 2001; 548 

Domack et al., 2005; Kilfeather et al., 2011) or a proximal ice source.  The formation of an ice shelf is 549 

supported by the common, upwards increases in planktonic foraminifera and overall foraminiferal 550 

densities in the Dmm diamicton (Fig. 8) because these increases suggest an increase in 551 

palaeoproductivity (Hebbeln and Wefer, 1991; Carmack and Wassmann, 2006), which may have 552 

resulted from the introduction of relatively warm Atlantic water influx (cf. Kilfeather et al., 2011; Fig. 553 
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11).  The successive, sinuous ridges along the Porcupine Bank and Slyne Trough are also compatible 554 

with the development of an ice shelf following the advance of grounded ice across the shelf to the 555 

Porcupine Bank.  This ice shelf likely developed over the Slyne Trough, with the Porcupine Bank 556 

acting as a pinning point (e.g. Joughin et al., 2004) during initial uncoupling (Fig. 11).   557 

An upwards increase in lithological heterogeneity through the glaciomarine (Dmm) diamicton 558 

suggests the emergence of a period of IRD deposition from ice with multiple source areas (Pudsey 559 

and Evans, 2001; Domack et al., 2005).  We interpret this as the signature of initial ice shelf break up 560 

that lead to the eventual establishment of open water conditions (cf. Kilfeather et al., 2011).  A period 561 

of either increased palaeocurrent activitythat enabled winnowing, or increased coarse sediment 562 

supply, or a combination of both followed the ice break up, evidenced by the Dcm lithofacies that 563 

overlies the glacial diamicton (Fig. 11).   564 

The numerous iceberg scours in the study area appear preferentially aligned with the Slyne 565 

Trough and indicate a roughly N-S oriented palaeocurrent following the ice shelf break (Figs. 2a, 566 

11d).  Further qualitative geomorphic evidence for an approximately northward palaeocurrent is 567 

provided by a common northward deepening of scours against the rising floor of the Slyne Trough 568 

and scours that terminate on the southern flanks of ridges (Figs. 2a, 11d).  If this palaeocurrent 569 

interpretation is correct, the extension of the ice sheet over the Slyne Trough may have sufficiently 570 

disrupted local palaeocurrentsthrough the Slyne Trough to allow the deposition of silt and clay seen in 571 

the underlying Dmmc and Dmm lithofacies (Fig. 11).  572 

5.2. Implications for BIIS chronology 573 

5.2.1. BIIS extent and chronology of advance 574 

We present multiproxy data on ice position that indicates a ~80 km extension from previous 575 

reconstructions of maximum BIIS extent west of Ireland that locate the maximum extent 576 

approximately along the Galway Lobe Moraine (Sejrup et al., 2005; Scourse et al., 2009; Clark et al., 577 

2012a; Fig. 1a).  This ice advanced as a grounded ice massthat traversed the Slyne Trough to the 578 
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northern Porcupine Bank (Figs. 1, 11).  This extension constitutes a ~180 km advance offshore of 579 

County Mayo, Ireland at maximum extent.  This places BIIS maximum extent~100-km farther west 580 

from the shelf moraines offshore of County Donegal described by Benetti et al. (2010), Ó Cofaigh et 581 

al. (2010) and Dunlop et al. (2010) and provides supporting evidence for grounded ice extension to 582 

the shelf edge west and north of Ireland.  The new extent adds a ~6,700 km
2
 areal increase over 583 

previous BIIS estimates, summarised by Clark et al. (2012a) to be ~840,000 km
2
.  This constitutes a 584 

~3% increase in the estimated areal extent of the BIIS Irish Sector, previously projected to have 585 

reached ~222,500 km
2
 (Greenwood and Clark, 2009).  Sedimentary and micropaleontological 586 

evidence indicates that this ice mass likely uncoupled from the seafloorand formed an ice shelf prior 587 

to retreat (Fig. 11).   588 

Three new AMS radiocarbon ages are the first to constrain the advance of the BIIS onto the 589 

western Irish continental shelf to within the last ~24,720±260 Cal. BP (Table 5; Figs. 10, 11a).  The 590 

oldest date of 24,720±260 Cal. BP (Table 5) is sampled from a Dmmc diamicton interpreted to be till 591 

based on its high consolidation (>80 kPa) andlow water content (<14%) (Fig. 6).  This suggests an ice 592 

advance at least as far offshore as the Slyne Trough≤24,720±260 Cal. BP; this is ≥2,000 years 593 

younger than previous estimates of BIIS extension to the western Irish shelf edge established by 594 

radiocarbon ages from IRD-rich sediment along the western Irish margin and Rosemary Bank (Peck 595 

et al., 2006; Scourse et al., 2009) and sediment supply to the Donegal-Berra Fan (Wilson et al., 2002).  596 

However, this younger advance is consistent with a scenario of continued BIIS extension beyond the 597 

previously suspected last glacial (Midlandian) maximum extenton the Irish continental shelf (Fig. 1a).  598 

Midlandian ice advance to the Slyne Trough suggests that the shelf moraines west and north of 599 

County Donegal (Benetti et al., 2010; Dunlop et al., 2010; Ó Cofaigh et al., 2010) were also likely 600 

deposited during the last glaciation.  This ice sheet advance towards the Porcupine Bank 601 

likelypredates formation of the large Galway Lobe Moraine on the shelf west of Ireland (Clark et al., 602 

2012a; Fig. 1).  This is consistent with the interpretation of the large corrugated ridge (Fig. 2a, b) as 603 

an earlier, potentially Midlandian, BIIS moraine and previous geomorphological models of Irish Ice 604 

Sheet behaviour (e.g., Greenwood and Clark, 2009; Clark et al., 2012a).   605 
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5.2.2. Chronology of BIIS retreat 606 

The importance of establishing a complete record of BIIS retreat is outlined by Clark et al. 607 

(2012a) and improvements should logically begin with refining ice sheet chronology and maximum 608 

extent.  This paper provides the geographic and chronologic starting points for retreat rate calculations 609 

for the westernmost margin of the BIIS.  AnAMS radiocarbon ageof 19,182±155 Cal. BP (Table 5) 610 

derived from postglacial lithofacies (LFA 3) that overlie the transitional glaciomarine lithofacies 611 

(LFA 2)dates the establishment of open water conditions (Fig. 11c, d).  This age confines the likely 612 

duration of BIIS occupation on the outer shelf as either grounded or floating ice to a ~5,500 year 613 

window commencing ~25,000BP andwith retreat underway by~19,500 BP (Fig. 11).  Ice occupation 614 

may have been prolonged by the development of an ice shelf that acted as a buttress against ice flow 615 

(Rignot et al., 2004; Alley et al., 2007; Fig. 11).   616 

Given this chronologic evidence, we interpret the Galway Lobe Moraine as a recessional 617 

moraine or grounding-zone wedge.  The Galway Lobe Moraine‘s flat-topped morphology (Clark et 618 

al., 2012a; Fig. 1b) is compatible with formation as a grounding-zone wedge (cf. Bart and Cone, 619 

2012; Dowdeswell and Fugelli, 2012; Jakobsson et al., 2012) and its large size (>20 km wide, Fig 1b) 620 

suggests that it was formed during a significant stillstand during retreat (Dowdeswell et al., 2008).  621 

This stillstand may be the product of ice flow buttressing by the ice shelf that persisted over the Slyne 622 

Trough, which is evidenced by sub-ice shelf sedimentation and paleontological indications for ice-623 

proximal meltwater influx and cold temperatures.   624 

No other age constraints are currently available across the western Irish shelf.  Thus we are 625 

forced to consider terrestrial age constraints from the west of Ireland to assess implications for marine 626 

termini retreat rates.  Many terrestrial ages from the west of Ireland are contested(e.g., Bowen et al., 627 

2002; Ó Cofaigh and Evans, 2007; Clark et al., 2009, 2012a; Ballantyne, 2010) and relatively few are 628 

available from counties Galway and Mayo (Clark et al., 2012a).  Most ages place initial deglaciation 629 

of the west Irish coast around ~20 kayr BP (McCabe et al., 2005; Ballantyne, 2010; Clark et al., 630 

2012a).  Thus, we agree with the assessment of Ballantyne (2010) that the best estimate for the start of 631 



27 

 

terrestrial deglaciation (ice free ―peripheral zones‖) is ~20 ka BP.  This estimate suggests that 632 

retreatfor the ~180 km long western BIIS marine sector occurred during a ~1,000-2,500 year time 633 

window, yielding a range of possible retreat ratesfrom ~180 to 72 myr
-1

.  These rates are comparable 634 

to those for BIIS retreat along the Irish Sea Lobe marine-terminating margin, estimated at 145 myr
-1

 635 

(Clark et al., 2012).  Other comparable estimates for retreat rates are reported from Antarctic marine 636 

margins during West Antarctic Ice Sheet retreat from the outer Antarctic Continental Shelf during the 637 

last deglaciation in the Ross and Bellingshausen seas (Conway et al., 1999; Kilfeather et al., 2011).   638 

6. Conclusions 639 

 Geomorphic, sedimentary and micropaleontological data from the Porcupine Bank and Slyne 640 

Trough, west of Ireland, indicate that a series of sinuous ridges on the outer shelf are most likely 641 

moraines or grounding-zone wedges.  Their presence confirmsand extends the 642 

geomorphologicalevidence of BIIS extension across the Irish continental shelf.   643 

 These new data extend the BIIS margin by up to ~80 km further to the west.  This equates to an 644 

estimated 6,700 km
2
 areal increase in grounded ice and a ~3% increase in the estimated areal 645 

extent of the BIIS Irish Sector.   646 

 A radiocarbon age sampled from highly consolidated till that underlies loose dilatant till provides 647 

the first constraints on the timing ofBIISmarine margin advance to after 24,720±260 Cal. BP.   648 

 Ice shelf development and possible readvance(s) onto the Porcupine Bank likely followed 649 

uncoupling of the grounded ice sheet on the Slyne Trough.  The northern Porcupine Bank 650 

probably acted as an ice shelf pinning point during uncoupling and minor readvances are recorded 651 

by glaciotectonicridges.   652 

 Sedimentological and micropaleontological evidence are strongly stratigraphically correlated and 653 

record ice shelf break up and the establishment of open water conditions over the Slyne Trough.   654 
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 A radiocarbon age from the draping Holocene marine sedimentconstrains ice shelf break up to 655 

before19,182±155 Cal. BP, following a ≤5,500 year occupation and a retreat rate of ~180 to 72 656 

myr
-1

 from the northern Porcupine Bank to the Slyne Trough. 657 

 Iceberg scours indicate a roughly northward iceberg trajectory following ice shelf break up.  658 

Icebergs were concentrated in the Slyne Trough where palaeocurrents forced iceberg keels into 659 

bathymetric highs, suggesting a BIIS ice provenance.   660 
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Figure 1: (a) Regional schematic map locating the study area (bold black rectangle) amongst BIIS extents (discussed in text) 679 
and relevant palaeoglaciological features west of Ireland.  Core locations shown as white dots.  ―Previous westernmost BIIS 680 
extent‖ represents BIIS extent prior to this study and is modified from Sejrup et al. (2005), Scourse et al. (2009), Clark et al. 681 
(2012a) and Sacchetti et al. (2012); ―BIIS maximum (this study)‖ incorporates interpretations from this study.  The 682 
―Previously accepted LGM‖ is adapted from Bowen et al. (1986).  Abbreviations: D.B. = Donegal Bay, G.B. = Galway Bay.  683 
(b) DEM of the study area created from an INFOMAR bathymetric raster; area coincides with the bold black rectangle in 684 
(a).  Core locations are shown as labelled white dots.  Arrows 1 and 2 indicate sinuous ridges and arrow 3 marks the large, 685 
corrugated N-S trending ridge.  The large moraine mapped by Clark et al. (2012a) is visible and labelled (referred to here as 686 
the Galway Lobe Moraine) in the hillshaded OLEX® data west of the study area (Courtesy of Ocean DTM).   687 

 688 

Figure 2: (a) INFOMAR bathymetric 25-m resolution DEM revealing seafloor morphology and core locations (white, 689 
labelled dots).  Sets of sinuous, E-W trending ridges are discernible and some are highlighted with grey dashed lines.  The 690 
large, corrugated, roughly N-S trending ridge is outlined with a black dashed line; individual corrugations are indicated with 691 
arrows.  Seafloor furrows are visibly concentrated within the Slyne Trough and towards the south of the study area.  A series 692 
of approximately N-S oriented transects (X-X‘, Y-Y‘, Z-Z‘) correlate to seafloor profiles shown in (c); a small (0.6 km long) 693 
transect labelled FP (Furrow profile) bisects a prominent, but fairly typical, seafloor furrow and correlates with the ‗Furrow 694 
profile‘ in (c).  (b)Geomorphic map depicting the geographical locations of the sinuous ridges, corrugated ridge and core 695 
locations on the Porcupine Bank and Slyne Trough.  Transect A-A‘ corresponds with the sedimentary profile provided in the 696 
interpretation section.  (c) Seafloor profiles derived from transects in (a).  Profile X-X‘ is >18 km long and bisects three 697 
prominent sinuous ridges (red arrows) and possibly two subtle ridges (blue dotted arrows) to the north and south of core 43.  698 
Y-Y‘ and Z-Z‘ bisect large ridges within the Slyne Trough near cores 44 and 45, respectively; both elucidate areas of 699 
intensefurrowing on the southern flanks of the ridges.  Furrows on the southern flanks of ridges are visible on all three 700 
profiles.  The furrow profile reveals a depth of ~10 m and flanking berms >3 m high. 701 

 702 

Figure 3: Representative x-radiograph facies.  (a) Horizontally-bedded sand in Core 45; black arrows highlight some of the 703 
prominent horizontal structures.  The unit also fines upwards and has less biogenic material at its top.  (b) Upward fining 704 
sand with areas of bioturbation (prominent burrows outlined with white dotted lines) in Core 42.  (c) Massive, clast-705 
supported diamicton from Core 42.  Diffuse lower contact with underlying Dmm diamicton is highlighted (black dashed 706 
line).  (d) Massive, matrix-supported diamicton in Core 44.   707 

 708 

Figure 4: Core 42 sedimentary data; (a) true-colour photograph; (b) X-radiograph structure sketch; red boxes indicate 709 
locations of x-radiograph facies examples (Fig. 3b, c); (c) sedimentary log including lithofacies codes (Table 2) and 710 
calibrated radiocarbon age ranges where applicable (calcareous sample material symbol marks depth below seafloor; refer to 711 
Table 5 for specific radiocarbon data).  Lithofacies association (LFA) bar correlates with sedimentary data and stratigraphic 712 
profile in interpretation section (Fig. 9).  Physical and sedimentological properties are plotted against depth.  Sand, silt and 713 
clay percentages are shown as pie charts, centred at appropriate depth intervals.  The smoothed average magnetic 714 
susceptibility value is shown as a green line.   715 

 716 

Figure 5: Core 43 sedimentary data; (a) true-colour photograph; (b) X-radiograph structure sketch; (c) sedimentary log 717 
including lithofacies codes (Table 2).  Lithofacies association (LFA) bar correlates with sedimentary data and stratigraphic 718 
profile in interpretation section (Fig. 9).  Sand, silt and clay percentages are shown as pie charts, centred at appropriate depth 719 
intervals.  Refer to Figure 4 for legend.   720 

 721 

Figure 6: Core 44 sedimentary data; (a) true-colour photograph; (b) X-radiograph structure sketch; red box indicates location 722 
of x-radiograph facies example (Fig. 3d); (c) sedimentary log including lithofacies codes (Table 2) and calibrated 723 
radiocarbon age ranges where applicable (calcareous sample material symbol marks depth below seafloor; refer to Table 5 724 
for specific radiocarbon data).  Lithofacies association (LFA) bar correlates with sedimentary data and stratigraphic profile 725 
in discussion section (Fig. 9).  Sand, silt and clay percentages are shown as pie charts, centred at appropriate depth intervals.  726 
Refer to Figure 4 for legend.   727 
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 728 

Figure 7: Core 45 sedimentary data; (a) true-colour photograph; (b) X-radiograph structure sketch; red box indicates location 729 
of x-radiograph facies example (Fig. 3a); (c) sedimentary log including lithofacies codes (Table 2) and calibrated 730 
radiocarbon age ranges where applicable (calcareous sample material symbol marks depth below seafloor; refer to Table 5 731 
for specific radiocarbon data).  Lithofacies association (LFA) bar correlates with sedimentary data and stratigraphic profile 732 
in interpretation section (Fig. 9).  Physical and sedimentological properties are plotted against depth.  Sand, silt and clay 733 
percentages are shown as pie charts, centred at appropriate depth intervals.  The smoothed average magnetic susceptibility 734 
value is shown as a green line.  Refer to Figure 4 for legend.   735 

 736 

Figure 8: Graphs displaying benthic-foraminifera diversity indices and total-count foraminifera statistics.  Calibrated AMS 737 
radiocarbon ages are provided to the left of the diversity plots (Table 4).  Stratigraphically-correlated lithofacies and 738 
lithofacies associations are shown on the right.  Abbreviations: PTr = percentage of planktonic individuals; SDr = ratio of 739 
severely damaged; LFA = lithofacies association.   740 

 741 

Figure 9: Graphs of relative abundances (shown as a percent along abscissae) for select benthic foraminifera species.  742 
Species are grouped into three palaeoenvironment species groups identified based on modern habitat preferences (see text 743 
for details).  Calibrated AMS radiocarbon ages are provided to the left of the abundance plots (Table 4).  Note that abscissae 744 
dimensions are only plotted to a relative scale between species to better display changes in species with lower maximum 745 
relative abundances.  Abbreviations: LFA = lithofacies association; C. leav. = C. laevigata; U. med. = U. mediterranea; B. 746 
marg. = B. marginata; D. marg. = D. coronata; T. angu. = T. angulosa; C. reni. = C. reniforme; E. clav. = E. clavatum.   747 

 748 

Figure 10: Stratigraphic profile showing interpreted facies across transect A-A‘ (Fig. 2b).  Core locations and lithofacies 749 
associations are marked by labelled, vertical bars that correlate with those in Figures 3, 4, 5, 6, 7 and 8.  Arrows show 750 
locations of radiocarbon sample acquisition and calibrated results are provided.   751 

 752 

Figure 11: depositional model schematic of glacial history on the Porcupine Bank and Slyne Trough, west of Ireland.  (a) 753 
Maximum westward extent of BIIS reaches the Porcupine Bank ≤24,720±260 Cal BP.  A terminal moraine/grounding-zone 754 
wedge forms from till.  Loose glaciomarine diamicton forms proglacially from sediment plume suspension settling and 755 
sediment rain out (IRD).  (b) Initial retreat moves ice margin east and uncoupling from the Slyne Trough allows the inflow 756 
of Atlantic water below the BIIS within 24,720±260 to 19,182±155 Cal BP.  Minor readvances create ice shelf push ridges 757 
on the Porcupine Bank.  A new grounding-zone wedge forms in the Slyne Trough.  Loose glaciomarine diamicton is 758 
deposited proglacially and as sub-ice shelf rain out.  Debris flows on the Porcupine Bank ridges are likely.  (c) Sub-ice shelf 759 
and proglacial diamicton sedimentation continues.  Ice shelf thins due to climate amelioration and continued Atlantic water 760 
inflow.  Sea level rise and ice thinning causes rapid ice shelf break up ≤19,182±155 Cal BP, which deposits a clast-rich 761 
glaciomarine diamicton.  Increased palaeocurrents winnow the glaciomarine sediment of fines.  A new grounding-zone 762 
wedge forms farther to the east in the Slyne Trough.  (d) Open water conditions emerge following ice shelf break up.  A 763 
north-northeastward palaeocurrent concentrates iceberg drift into the Slyne Trough where iceberg keels scour the seafloor 764 
and butt against the southern slopes of grounding-zone wedges, moraines and push ridges.  Note that for enhanced clarity, 765 
this schematic simplifies the orientation of Porcupine Bank and Slyne Trough ridges (cf. Fig. 2); also, relative elevations of 766 
ice thickness, sea level and bathymetry are drawn to optimise graphical clarity.  Overlying sandy Holocene sediments 767 
deposited postglacially by bottom current reworking are not shown.   768 

 769 
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Appendix 1 1099 

Table A1: foraminiferal diversity index data.   1100 

Core Interval (cm bsf) SDr (%) PTr (%) Fisher’s α Dominance 

42 

36 18.04878 63.41463 5.304 0.1363 

58 9.973046 68.46361 5.232 0.1668 

66 12.97539 65.43624 4.785 0.379 

78 35.76159 21.52318 3.879 0.2627 

88 36.02484 65.99379 2.729 0.2584 

108 27.0979 56.46853 3.508 0.2968 

139 17.29323 59.54887 3.134 0.3251 

157 22.51256 50.25126 2.677 0.2335 

43 

28 13.66806 70.99024 4.04 0.1893 

44 17.24138 74.03017 5.53 0.2773 

65 11.78248 66.76737 4.639 0.2629 

85 16.66667 63.4058 2.794 0.3835 

44 

5 8.726415 56.25 3.948 0.1325 

27 10.36107 60.75353 4.772 0.1207 

46 16.15799 56.55296 5.872 0.1156 

80 12.66376 56.55022 5.533 0.1685 

120 8.439898 47.82609 5.872 0.1908 

139 16.08775 52.10238 5.382 0.1622 

180 25.15723 53.45912 5.702 0.1892 

223 19.7561 50.4878 5.916 0.1626 

45 

31 10.25358 53.47299 4.365 0.1465 

57 16.61491 48.91304 4.993 0.1229 

94 13.53383 48.87218 6.272 0.1076 

142 8.523909 54.67775 5.759 0.1265 

254 12.36559 51.43369 5.328 0.1129 
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Table A2: Benthic foraminifera absolute abundances (number of individuals) and general micropaleontological data for 1103 
cores 42 and 43.  Species with >2% relative abundance in in at least one core (42, 43, 44, 45) in bold, >5% in bold and 1104 
underlined.  (Refer to Table A3 for core 44 and 45 data.) 1105 

 Core 42 Core 43 

Cm (bsf) 36 58 66 78 88 108 139 157 28 44 65 85 

Species Individuals Individuals 

Amphicoryna scalaris 0 0 0 0 0 0 0 0 0 0 0 0 

Bigenerinanodosaria 2 0 0 0 0 0 0 0 0 1 1 0 

Buccella frigida 1 0 0 3 0 0 0 0 0 0 0 0 

Bulimina elongata 0 0 0 0 0 0 0 0 0 0 1 0 

Bulimina gibba 2 1 2 1 0 1 1 0 2 2 5 1 

Bulimina marginata 6 8 1 2 1 2 3 2 10 7 6 4 

Bulivina sp. 1 2 2 0 0 0 0 0 0 3 0 0 

Cassidulina laevigata 27 19 10 2 3 15 24 70 27 14 2 3 

Cassidulina obtuse 9 12 17 0 0 1 2 1 15 1 0 0 

Cassidulina reniforme 8 3 1 4 2 3 6 7 2 5 6 3 

Cibicides lobatula 46 59 183 101 67 65 61 46 66 63 106 113 

Cibicides refulgens 38 45 15 40 35 15 3 104 2 5 12 13 

Cibicidoides pachyderma 0 0 0 0 0 1 2 0 1 0 0 3 

Dentalina subsoluta 0 0 0 1 0 0 0 0 0 0  0 

Discanomalina coronata 4 6 6 50 12 13 10 31 3 4 17 8 

Eggerella bradyi 0 0 1 0 0 0 0 0 0 0 0 0 

Elphidium excavatum 
clavatum 

0 1 2 0 0 0 0 0 1 0 0 0 

Elphidium excavatum 
selseyensis 

0 1 3 2 0 0 0 0 1 0 0 0 

Fissurina sp. 3 3 0 0 0 0 0 0 2 1 1 0 

Gavelinopsis translucens 0 0 0 0 1 0 0 0 0 0 0 0 

Globocassidulina subglobosa 2 0 1 1 5 2 2 4 1 2 1 0 

Guttulina sp. 0 0 0 0 0 0 0 0 0 0 0 1 

Gyroidinoides soldanii 0 1 0 0 1 0 1 16 0 0 0 0 

Hyalinea balthica 0 0 0 0 0 0 0 0 0 0 0 0 

Lagena sp. 0 1 0 0 0 0 0 2 0 1 0 0 

Lagena striata 0 0 0 1 0 1 1 0 0 1 1 0 

Lenticulina sp. 1 0 0 1 0 0 0 0 0 1 7 0 

Melonis barleeanus 0 3 3 0 0 2 0 5 3 3 0 0 

Miliammina fusca 0 0 0 0 0 0 0 0 0 0 1 0 

Miliolinella chukchiensis 0 0 0 0 0 0 0 0 0 0 0 0 

Nonionella turgida 1 1 2 0 0 0 0 0 0 0 0 0 

Oolina caudigera 0 0 0 0 0 0 0 0 0 1 0 0 

Planulina ariminensis 3 1 2 0 0 2 0 2 4 3 0 0 

Pyrgo sp. 0 0 0 0 0 0 0 0 0 0 0 0 

Pyrgo williamsoni 0 0 2 0 0 0 0 0 0 0 0 0 

Quinqueloculina sp. 3 5 3 5 3 0 3 1 0 1 4 1 

Reophax sp. 0 0 0 0 0 0 0 0 0 0 0 0 

Sigmoilopsis schlumbergeri 0 0 0 0 0 0 0 0 0 0 0 0 

Textularia sp. 5 2 4 2 8 8 13 0 9 4 9 1 

Trifarina angulosa 45 54 41 15 80 116 138 196 50 108 26 51 

Triloculina tricarinata 1 0 7 0 0 1 0 0 0 0 4 0 

Uvigerina mediterranea 17 6 1 6 1 1 0 8 9 10 10 0 

Total benthic foraminifera 225 234 309 237 219 249 270 495 208 241 220 202 

Total planktonic foraminifera 390 508 585 65 425 323 396 500 509 687 442 350 

Sample weight (mg) 148 137 138 679 169 100 45 99 68 84 177 138 

Foraminifera/mg 4.2 5.4 6.5 0.4 3.8 5.7 15 10 11 11 3.7 4.0 
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Table A3: Benthic foraminifera absolute abundances (number of individuals) and general micropaleontological data for 1108 
cores 44 and 45.  Species with >2% relative abundance in in at least one core (42, 43, 44, 45) in bold, >5% in bold and 1109 
underlined.  (Refer to Table A2 for core 42 and 43 data.) 1110 

 Core 44 Core 45 

Cm (bsf) 5 27 46 80 120 139 180 223 31 57 94 142 209 254 

Species Individuals Individuals 

Amphicoryna scalaris 2 1 1 0 0 0 0 0 0 2 0 0 0 0 

Bigenerinanodosaria 2 2 2 0 1 0 0 0 4 6 1 0 0 1 

Buccella frigida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bulimina elongata 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Bulimina gibba 4 0 6 5 12 10 7 8 2 3 13 8 11 3 

Bulimina marginata 43 29 20 6 7 5 6 4 65 69 6 9 11 10 

Bulivina sp. 10 9 3 2 3 10 4 4 17 7 7 6 5 2 

Cassidulina laevigata 77 47 30 12 20 14 23 13 79 55 23 19 34 23 

Cassidulina obtuse 9 5 3 2 3 1 2 3 5 1 3 2 5 8 

Cassidulina reniforme 0 0 1 8 5 7 4 11 0 11 14 5 9 6 

Cibicides lobatula 51 32 52 63 77 87 82 66 26 27 38 54 58 69 

Cibicides refulgens 5 2 13 7 3 20 14 7 7 12 18 16 19 4 

Cibicidoides pachyderma 1 0 0 0 1 0 0 0 2 0 0 1 0 0 

Dentalina subsoluta 0 0 0 0 0 0 0 0 0 0  0 0 0 

Discanomalina coronata 1 1 5 9 5 8 2 5 3 2 1 4 10 8 

Eggerella bradyi 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

Elphidium excavatum 
clavatum 0 0 1 10 5 8 6 7 0 6 8 5 9 9 

Elphidium excavatum 
selseyensis 0 5 4 2 0 1 1 1 2 3 4 6 6 4 

Fissurina sp. 0 2 0 0 0 0 0 0 3 0 0 0 0 0 

Gavelinopsis translucens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Globocassidulina 
subglobosa 0 0 1 2 0 2 1 0 0 0 1 3 2 0 

Guttulina sp. 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

Gyroidinoides soldanii 0 0 2 0 0 1 0 0 0 0 2 0 3 0 

Hyalinea balthica 0 0 1 0 0 1 0 0 2 0 0 0 0 0 

Lagena sp. 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

Lagena striata 1 0 0 0 0 0 0 0 2 0 1 0 1 1 

Lenticulina sp. 2 3 3 3 1 2 1 5 0 1 1 2 0 0 

Melonis barleeanus 2 1 2 1 3 4 4 7 7 5 7 8 7 1 

Miliammina fusca 0 1 1 3 0 0 0 2 1 0 0 1 1 0 

Miliolinella chukchiensis 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Nonionella turgida 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Oolina caudigera 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

Planulina ariminensis 27 18 13 4 1 4 1 3 23 11 3 3 8 1 

Pyrgo sp. 0 0 0 0 0 0 0 0 0 6 0 0 0 0 

Pyrgo williamsoni 0 0 0 1 0 0 2 0 0 0 0 0 0 0 

Quinqueloculina sp. 0 0 2 4 2 5 3 4 0 0 3 4 7 6 

Reophax sp. 0 0 0 0 1 0 0 1 0 0 3 0 0 1 

Sigmoilopsis schlumbergeri 0 0 0 0 2 3 1 2 0 1 1 4 4 1 

Textularia sp. 24 19 11 3 6 6 5 2 15 13 2 3 0 5 

Trifarina angulosa 45 33 28 46 33 46 37 39 52 36 38 41 48 50 

Triloculina tricarinata 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

Uvigerina mediterranea 67 40 38 6 13 16 14 7 105 53 6 13 10 12 

Total benthic foraminifera 371 250 242 200 204 262 222 203 422 329 204 218 271 226 

Total planktonic forams. 477 387 315 259 187 285 255 207 485 315 195 263 287 215 

Sample weight (mg) 83 88 105 143 100 84 162 160 82 99 132 152 186 144 

Foraminifera/mg 10 7.3 5.3 3.2 3.9 6.5 2.9 2.6 11 6.5 3.0 3.2 3.0 3.1 
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