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We study the boundary conditions in topologically twisted Chern-Simons matter theories with the Lie
3-algebraic structure. We find that the supersymmetric boundary conditions and the gauge-invariant
boundary conditions can be unified as complexified gauge-invariant boundary conditions which lead to
supergroup Wess-Zumino-Witten (WZW) models. We propose that the low-energy effective field theories
on the two-dimensional intersection of multiple M2-branes on a holomorphic curve inside K3 with two
nonparallel M5-branes on the K3 are supergroup WZW models from the topologically twisted Bagger-
Lambert-Gustavson model and the Aharony-Bergman-Jafferis-Maldacena model.
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I. INTRODUCTION

One of the most important clues to understanding M
theory is the investigation of the two types of branes,
namely M2-branes and M5-branes. It has been proposed
that the low-energy dynamics of multiple M2-branes
probing a flat space is described by three-dimensional
superconformal Chern-Simons matter theories known as
the Bagger-Lambert-Gustavson (BLG) model [1–5] and the
Aharony-Bergman-Jafferis-Maldacena (ABJM) model [6].
The world-volume theory of the M5-branes is believed to
be a six-dimensional N ¼ ð2; 0Þ superconformal field
theory. It is much less understood due to the lack of a
classical Lagrangian description, although there have been
many interesting discoveries via its compactification. Also
the two-dimensional intersection of M2-branes with M5-
branes still remains elusive. This brane setup is believed to
be one of the most promising approaches to the description
of the M5-branes as it is realized when the strongly coupled
(2,0) theory is away from the conformal fixed point.
The aim of the present paper is to study the two-

dimensional intersection of multiple M2-branes on a
supersymmetric two-cycle. In particular, we consider a
holomorphic curve inside K3 with two nonparallel M5-
branes on the K3, which we will refer to as M5- and M50-
branes. We investigate the low-energy effective description
by starting with the topologically twisted Chern-Simons
matter theories describing the M2-branes on the holomor-
phic curve and examining the boundary conditions. Given
the brane configuration of the M2-M5-M50 branes on the
K3, we determine the boundary conditions for the matter

fields as supersymmetric boundary conditions while we
impose those on the gauge fields as gauge-invariant
boundary conditions. We find that these two different types
of boundary conditions can be combined into complexified
gauge-invariant boundary conditions. Together with the
twisted fermionic fields, i.e. the spin-zero fermions and the
spin-one fermions, we obtain conformal field theories on
the Riemann surface as the PSLð2j2ÞWess-Zumino-Witten
(WZW) action from the twisted BLG model and the
GLðNjNÞ WZW action from the twisted UðNÞk ×
UðNÞ−k ABJM model. We propose that such supergroup
WZW models are realized as the effective topological
theories on the intersection of the M2-M5-M50 system on
K3, which we will call “topological M-strings.”
The paper is organized as follows. In Sec. II we present a

brane configuration in M theory on K3 and establish our
setup of the topological M-strings. We describe the world-
volume theory on the M2-branes wrapping a holomorphic
curve inside K3 by performing a partial topological twist on
the BLG-model [7]. In Sec. III we analyze the boundary
conditions of the topologically twisted BLG theory. The
matter fields satisfy the supersymmetric boundary condi-
tions imposed by the 5-brane while the gauge fields obey
the gauge-invariant boundary conditions so that we keep
the combined system of the M2-branes [8]. We find the
merging of the two boundary conditions as complexified
gauge-invariant boundary conditions. In Sec. IV we derive
the boundary action by taking into account the boundary
conditions. We argue that the complexified gauge-invariant
boundary conditions lead to the sum of the WZW models
for complexified gauge group. By putting together the
conformally invariant terms involving the twisted fermions,
which are known as symplectic fermions [9], i.e. fermionic
scalar fields and fermionic one-form fields, we find the
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supergroup WZW models. We propose that the supergroup
WZW models are the conformally invariant effective
theories of the topological M-strings. Finally in Sec. V
we close with some discussion.

II. TOPOLOGICAL M-STRINGS

We consider M theory on the background

K3 ×R7: ð2:1Þ

We take the K3 as a cotangent bundle T�Σg over a Riemann
surface Σg where Σg is a holomorphic curve of genus g ≠ 1

in the x0, x1 directions.1 We take the nontrivial normal
bundle NΣ over the surface in the x9, x10 directions. Let us
consider multiple wrapped M2-branes on Σg × I where I is
an interval in the x2 direction with length L. At one end of
the interval we put a single 5-brane on K3 ×R2

34, which we
will call an M5-brane, and at the other end a 5-brane on
K3 ×R2

56, which we will call an M50-brane. The configu-
ration is summarized as

0 1 2 3 4 5 6 7 8 9 10

M5 ∘ ∘ ∘ ∘ ∘ ∘
M50 ∘ ∘ ∘ ∘ ∘ ∘
M2 ∘ ∘ ∘

ð2:2Þ

and it is depicted in Fig. 1.
Since the K3 decomposes the holonomy group SOð4Þ of

the flat four-manifold into SUð2Þ, the spinor representation
follows the branching rule 4 → 2 ⊕ 1 ⊕ 1 and there
remains half of the supersymmetry, 16 supercharges in
the M-theory background (2.1). The presence of the M2-
branes, the M5-brane and the M50-brane splits the SOð7Þ
Euclidean symmetry group into SOð2Þ34 × SOð2Þ56 ×
SOð2Þ78 and breaks 1=8 of the background supersymmetry
as a consequence of three projections. Altogether, there are
two supercharges preserved on the world volume of the
branes.
As the 5-branes are infinite in the directions which are

not shared by the membranes, the 5-branes are much
heavier than the membranes. Thus the parameters of the
5-branes would be fixed and the low-energy effective
theory of the branes would essentially describe the
stretched M2-branes. The M2-branes represent minimum
energy states in a specific topological sector as
Bogomol’nyi-Prasad-Sommerfeld (BPS) states. We con-
sider the field theory of the membranes in which the
distance L goes to zero and thus it is a two-dimensional

sigma model on the intersection. The target space of this
sigma model would be the moduli space of solutions to the
BPS constraints which encompass the supersymmetric
boundary conditions. In what follows we will consider
such effective theories on the M2-branes. Recently there
have been intriguing approaches for the study of M2-branes
stretched between M5-branes, the so-called M-strings [10].
In our brane setup (2.2) the M2-branes cannot fluctuate in
the flat directions, i.e. in x3; x4;…; x8, so the effective
theories on the wrapped M2-branes may only capture the
topological sector of the M-strings, which we call the
topological M-strings. We will seek the topological sigma
model on the intersection as the effective theory of the
topological M-strings.
The low-energy effective theory of curved branes wrap-

ping supersymmetric cycles can be obtained by a topo-
logical twisting of an effective theory of flat branes
propagating in a flat space [11]. We shall firstly discuss
the case of twoM2-branes. The low-energy effective theory
of two coincident membranes propagating in a flat space
R8 is expected to be realized as the BLG model [1–5]. The
BLG model is a three-dimensional N ¼ 8 superconformal
Chern-Simons matter theory whose action is

SBLG ¼ Smatter þ STCS; ð2:3Þ

where

Smatter ¼
Z

d3x

�
−
1

2
DμXIaDμXI

a þ
i
2
Ψ̄aΓμDμΨa

þ i
4
Ψ̄bΓIJXI

cXJ
dΨafabcd

−
1

12
fabcdfefgdXI

aXJ
bX

K
c XI

eXJ
fX

K
g

�
ð2:4Þ

is the matter action and

STCS ¼
1

2
ϵμνλ

�
fabcdAμab∂νAλcd

þ 2

3
fcdagfefgbAμabAνcdAλef

�
ð2:5Þ

FIG. 1. M2-branes stretched between an M5-brane and an M50-
brane along the x2 direction.

1To make the discussion precise, we focus on the case with
g ≠ 1 since genus one may require a different treatment for the
twisting as the surface is flat and the supercharges have no charge
under the associated flux F. However, the resulting topologically
twisted theory would be defined on the surface of genus one.
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is the twisted Chern-Simons action in terms of the structure
constants fabcd of the Lie 3-algebra. Only the A4 algebra
with fabcd ¼ 2π

k ϵ
abcd, k ∈ Z, a; b;…;¼ 1;…; 4 admits a

finite dimensional nontrivial representation of the Lie 3-
algebra with a positive definite metric. The field content is
eight real scalar fields XI

a, I ¼ 1;…; 8 describing the
position of the M2-branes in the flat eight-dimensional
space, fermionic fields Ψa defined as the SOð1; 10Þ
Majorana spinor obeying the projection Γ012Ψ ¼ −Ψ
and gauge fields Aμab, μ ¼ 0, 1, 2 where the gauge indices
a; b;… run from 1 to 4. The theory has a three-dimensional
Lorentz group SOð1; 2Þ as the rotational symmetry group
on the world volume of the membranes and the R-
symmetry group SOð8ÞR as the isometry of the transverse
space of the membranes. The fields XI

a, Ψa and Aμab

transform under the SOð1; 2Þ × SOð8ÞR as ð1; 8vÞ, ð2; 8cÞ
and ð3; 1Þ, respectively. The action (2.3) is invariant under
the supersymmetry transformations

δXI
a ¼ iϵ̄ΓIΨa; ð2:6Þ

δΨa ¼ DμXI
aΓμΓIϵ −

1

6
XI
bX

J
cXK

d f
bcd

aΓIJKϵ; ð2:7Þ

δ ~Aμ
b
a ¼ iϵ̄ΓμΓIXI

cΨdfcdba; ð2:8Þ

where we have defined ~Aμ
b
a ≔ fcdbaAμcd. The supersym-

metry parameter ϵ is the SOð1; 10Þ Majorana spinor
satisfying the projection Γ012ϵ¼ϵ and transforms as ð2; 8sÞ.
In order to study the two wrapped M2-branes on a

holomorphic Riemann surface Σg, we consider a partial
topological twisting of the BLG model. Such a topological
twisting replaces the Euclidean symmetry group SOð2ÞE of
the two-dimensional space by a different subgroup SOð2Þ0E
of the SOð2ÞE × SOð8ÞR so that there exist scalar super-
charges as discussed in [7]. There are plenty of twists by
taking a homomorphism h∶ SOð2Þ → SOð8ÞR. The partial
topological twisting for the M2-branes wrapped on a
holomorphic curve inside K3 can be uniquely determined
by decomposing the SOð8ÞR → SOð2ÞR × SOð6ÞR and
defining SOð2Þ0E ¼ diagðSOð2ÞE × SOð2ÞRÞ. After the
twist the bosonic matter fields transform under SOð2Þ0E ×
SOð6ÞR as

60 ⊕ 12 ⊕ 1−2 ð2:9Þ

and one obtains the resultant bosonic scalar fields 60 which
we denote by ϕI, where now I ¼ 1;…; 6 and a bosonic
one-form 12 and 1−2 which we denote by Φz and Φz̄. The
representation of the fermionic fields is

42 ⊕ 4̄0 ⊕ 40 ⊕ 4̄−2; ð2:10Þ

where 40, 4̄0 are the fermionic scalar fields which we will
denote by ψ, ~λ while 42, 4̄−2 are the fermionic one-form

fields which we will denote by Ψz, ~Ψz̄. The supersymmetry
parameter ϵ transforms as

40 ⊕ 4̄2 ⊕ 4−2 ⊕ 4̄0 ð2:11Þ

under SOð2Þ0E × SOð6Þ and thus one can find eight scalar
supercharges associated with the supersymmetric parame-
ters ξ, ~ξ in the representation 40 ⊕ 4̄0. Note that topological
twisting modifies the original theory so that the new
symmetry group SOð2Þ0E is defined by the diagonal sub-
group of SOð2ÞE and SOð2ÞR¼SOð2Þ910 as diagðSOð2ÞE×
SOð2Þ910Þ. In other words, the new generator of SOð2Þ0E
has been created by the generator of SOð2ÞE and that of
SOð2Þ910. So we could only say that the resulting twisted
theory contains the modified SOð2Þ0E symmetry group.
From the M-theory point of view, a compactification on

K3 retains seven flat directions and six of them are
transverse to the membranes’ world volume Σg × I. Thus
we see that the above topological twisting exactly realizes
the required bosonic field content in the effective theory of
the M2-branes wrapped on Σg inside K3. The six bosonic
scalars ϕI describe the displacement of the M2-branes in
the six flat directions while the bosonic one-form field Φα

on the Riemann surface describes the motion of the M2-
branes inside K3, i.e. the nontrivial normal bundle NΣ over
Σg. The existence of eight covariantly constant spinors in
(2.11) reflects the fact that K3 breaks half of the
supersymmetry.

III. BOUNDARY CONDITIONS

A. Supersymmetric boundary conditions

To extend the study of the compact M2-branes wrapped
around a holomorphic curve inside K3 to the M2-M5-M50
system (2.2), we will analyze the boundary conditions
which should be imposed by the M5-brane and the M50-
brane at the ends of the M2-branes in the x2 direction. Let
us start our investigation by considering maximally super-
symmetric boundary conditions, i.e. half-BPS boundary
conditions of the BLG model which include the case where
the M2-branes end on an M5-brane.2

The supersymmetry is preserved on the boundary when
the normal component of the supercurrent vanishes on the
boundary [12–15]. The supersymmetric transformations
(2.6)–(2.8) lead to a supercurrent

Jμ ¼ −DνXIaΓνΓIΓμΨa −
1

6
XI
aXJ

bX
K
c fabcdΓIJKΓμΨd:

ð3:1Þ

Let the M2-branes with world volume ðx0; x1; x2Þ end on a
single M5-brane with world volume ðx0; x1; x3; x4; x9; x10Þ

2See [12] for more general discussions.
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at, say, x2 ¼ 0. According to the existence of the
M5-brane the SOð8ÞR splits into SOð4Þ34910 × SOð4Þ5678.
Correspondingly we will decompose the eight scalar fields
into two parts: Xi¼fX3;X4;X9;X10g, Yî¼fX5;X6;X7;X8g.
Then the supersymmetric boundary conditions can be
written as

0¼ ϵ̄J2jbdy
¼DαXiðϵ̄Γiα2ΨÞþDαYîðϵ̄Γîα2ΨÞ
þD2Xiðϵ̄ΓiΨÞþD2Yîðϵ̄ΓîΨÞ

−
1

6
½Xi;Xj;Xk�ðϵ̄ΓijkΓ2ΨÞ−1

6
½Yî;Yĵ;Yk̂�ðϵ̄Γî ĵ k̂Γ2ΨÞ

−
1

2
½Xi;Xj;Yk̂�ðϵ̄Γijk̂Γ2ΨÞ−1

2
½Xi;Yĵ;Yk̂�ðϵ̄Γiĵ k̂Γ2ΨÞjbdy:

ð3:2Þ

To find the solutions to the half-BPS boundary con-
ditions which correspond to the M2-M5 system, we should
take into account several constraints from the brane
configuration. We observe that all the parameters of the
M5-brane are fixed so that the scalar fields Yî should obey
the Dirichlet boundary conditions DαYî ¼ 0. Since we do
not expect the M5-brane to impose both Neumann and
Dirichlet boundary conditions on the scalar fields Yî,
D2Yî ¼ 0 should not also be constrained at the boundary.
Therefore, in order to satisfy the boundary condition (3.2)
we also need to choose appropriate boundary conditions for
the fermionic fields.
Noting that the unbroken supersymmetry parameter ϵ

must satisfy the projections Γ0134910ϵ ¼ ϵ due to the M5-
brane and Γ012ϵ ¼ ϵ due to the M2-branes, one finds

Γ01ϵ ¼ Γ2ϵ ¼ Γ34910ϵ ¼ Γ5678ϵ: ð3:3Þ

There remain eight supercharges on the two-dimensional
boundary. In two dimensions supersymmetry has a
definite chirality. Equation (3.3) shows that the chiralities
of the supersymmetry parameter under the SOð1; 1Þ01, the
SOð4Þ34910 and the SOð4Þ5678 are the same. It is easily
checked that Γ01 is Hermitian, traceless and squares to the
identity on the eight-dimensional subspace of spinors
satisfying Eq. (3.3). Thus N ¼ ð4; 4Þ supersymmetry is
preserved on the two-dimensional boundary of the M2-
branes ending on the M5-brane.
As in the projection conditions (3.3), we can employ the

boundary condition ansatz for the fermions Γ0134910Ψ ¼ Ψ
so that the space-time symmetry of the brane configuration
is maintained. Combining the boundary conditions (3.2)
with the fermionic boundary conditions satisfying the
restrictions from the M2-M5 configuration we get the
half-BPS boundary conditions at the M5-brane

D2Xi þ 1

6
ϵijkl½Xj; Xk; Xl�jbdy ¼ 0; ð3:4Þ

DαYîjbdy ¼ 0; ð3:5Þ

where ϵijkl is an antisymmetric tensor with ϵ34910 ¼ 1.3 The
first boundary condition (3.4) is the Basu-Harvey equa-
tion [16] which would describe the displacement of the
M2-branes in the four-dimensional space inside the
M5-brane. The second boundary condition (3.5) fixes
the boundary values of the position of the M2-branes
in the remaining four-dimensional space which is normal to
the M5-brane.
One can easily obtain the boundary conditions from

an additional 5-brane. Consider the 5-brane with world
volume ðx0; x1; x5; x6; x7; x8Þ, which wewill denote by fM5-
brane. By exchanging a role of Xi and Yî, we obtain the
boundary conditions

D2Yî þ 1

6
ϵî ĵ k̂ l̂½Yĵ; Yk̂; Yl̂�jbdy ¼ 0; ð3:6Þ

DαXijbdy ¼ 0: ð3:7Þ

Adding the boundary conditions (3.6) and (3.7) from thefM5-brane to the boundary conditions (3.4) and (3.5) from
the M5-brane does not break further supersymmetry. So the
effective theories of the intersecting M2-M5-fM5 system in
a flat space would be two-dimensional N ¼ ð4; 4Þ super-
conformal field theories. Although the knowledge of such
field theories is still limited, the M2-M5-fM5 solutions
whose near-horizon geometries take the form AdS3 × S3 ×
S3 have been constructed in the gravity dual perspective
[17–19].
Let us instead consider the flat M50-brane located along

ðx0; x1; x5; x6; x9; x10Þ having four common directions with
the M5-brane. The isometry of the transverse space of the
M2-branes reduces to SOð2Þ34 × SOð2Þ56 × SOð2Þ78×
SOð2Þ910. We thus decompose the eight scalar fields as

Xi ¼ ðX9; X10Þ, Yî ¼ ðX7; X8Þ, Zi ¼ ðX3; X4Þ and Ẑî ¼
ðX5; X6Þ. The preserved supersymmetry parameters ϵ
should satisfy Γ012ϵ ¼ ϵ, Γ0134910ϵ ¼ ϵ and Γ0156910ϵ ¼ ϵ,
from which one can read their chiralities under the
SOð1;1Þ01×SOð2Þ34×SOð2Þ56×SOð2Þ78×SOð2Þ910 as
ðþ;þ;þ;−;−Þ, ðþ;−;−;þ;þÞ, ð−;þ;þ;þ;þÞ and
ð−;−;−;−;−Þ. Thus N ¼ ð2; 2Þ supersymmetry is pre-
served on the two-dimensional intersection of the
M2-M5-M50 system.

Adopting the fermionic boundary conditions
Γ0134910Ψ ¼ Ψ on the M5-brane and Γ0156910Ψ ¼ Ψ on

3There is also a third condition imposed, ½Xi; Yĵ; Yk̂� ¼ 0, but
we could simply set Yî ¼ 0 on the M5-brane, noting the Dirichlet
boundary conditions (3.5).
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the M50-brane, in the limit where the M5-M50 separation is
small, we find the common set of boundary conditions on
the bosonic fields

D2Xi þ 1

2
ϵijkl½Xj; Zk; Zl� þ 1

2
ϵijk̂ l̂½Xj; Ẑk̂; Ẑl� ¼ 0; ð3:8Þ

DαYî ¼ 0; ð3:9Þ

DαZi ¼ 0; D2Zi þ 1

2
ϵijkl½Zj; Xk; Xl� ¼ 0; ð3:10Þ

DαẐ
î ¼ 0; D2Ẑ

î þ 1

2
ϵî ĵ kl½Ẑĵ; Xk; Xl� ¼ 0: ð3:11Þ

The first equation (3.8) is the Basu-Harvey–like equation
for Xi with two of the elements in the three-bracket
replaced by Zi or Ẑî. The second equation (3.9) is the
Dirichlet boundary condition on Yî. The last two equations
are curious since the Zi and Ẑî are required to be fixed at the
boundary by one of the 5-branes while they should also
keep the Lie 3-algebraic structure due to the nonvanishing
three-bracket. Although the direct analysis of the N ¼
ð2; 2Þ superconformal field theories is still difficult, their
supersymmetric ground states, the chiral rings, the BPS
spectra and the sphere partition functions have been
investigated by taking the mass deformation in [20].
Now we will proceed to the boundary conditions in the

topologically twisted BLG theory describing the curved
M2-branes. Let us decompose the SOð1; 10Þ gamma
matrices as

8<
:

Γμ ¼ γμ ⊗ Γ̂7 ⊗ σ2 μ ¼ 0; 1; 2;

ΓIþ2 ¼ I2 ⊗ Γ̂I ⊗ σ2 I ¼ 1;…; 6;

Γiþ8 ¼ I2 ⊗ I8 ⊗ γi i ¼ 1; 2;

ð3:12Þ

where γμ, μ ¼ 0, 1, 2 are 2 × 2 matrices; γ0 ¼ σ1, γ1 ¼ σ3
and γ2 ¼ iσ2, while Γ̂I are the SOð6Þ gamma matrices
satisfying the relations

fΓ̂I; Γ̂Jg ¼ 2δIJ; ðΓ̂IÞ† ¼ ΓI; ð3:13Þ

Γ̂7 ¼ −iΓ̂12…6 ¼
�
I4 0

0 −I4

�
: ð3:14Þ

The SOð1; 10Þ charge conjugation matrix C is
decomposed as

C ¼ ϵ ⊗ Ĉ ⊗ ϵ; ð3:15Þ

where the SOð2Þ charge conjugation matrix ϵ and the
SOð6Þ charge conjugation matrix Ĉ obey the relations

ϵT ¼ −ϵ; ϵγμϵ−1 ¼ −ðγμÞT; ð3:16Þ

ĈT ¼ −Ĉ; ĈΓ̂IĈ−1 ¼ ðΓ̂IÞT; ĈΓ̂7Ĉ−1 ¼ −ðΓ̂7ÞT:
ð3:17Þ

We will write the twisted bosonic fields as

ϕI ≔ XIþ2; ð3:18Þ

Φz ≔
1ffiffiffi
2

p ðX9 − iX10Þ; Φz̄ ≔
1ffiffiffi
2

p ðX9 þ iX10Þ; ð3:19Þ

Az ≔
1ffiffiffi
2

p ðA1 − iA2Þ; Az̄ ≔
1ffiffiffi
2

p ðA1 þ iA2Þ: ð3:20Þ

To treat the twisted fermionic fields we expand them as

Ψαβ
A ¼ iffiffiffi

2
p ψAðγþϵ−1Þαβ þ i ~Ψz̄Aðγz̄ϵ−1Þαβ −

iffiffiffi
2

p ~λAðγ−ϵ−1Þαβ

− iΨzAðγzϵ−1Þαβ; ð3:21Þ

where we have introduced the 2 × 2 matrices γ�, γz and γz̄

defined by

γþ ≔
1ffiffiffi
2

p ðI2 þ σ2Þ; γ− ≔
1ffiffiffi
2

p ðI2 − σ2Þ; ð3:22Þ

γz ≔
1ffiffiffi
2

p ðγ1 þ iγ2Þ ¼ 1ffiffiffi
2

p
�
i 1

1 −i

�
; ð3:23Þ

γz̄ ≔
1ffiffiffi
2

p ðγ1 − iγ2Þ ¼ 1ffiffiffi
2

p
�−i 1

1 i

�
; ð3:24Þ

and the indices α, A and β label the SOð2ÞE spinor, the
SOð6ÞR spinor and the SOð2ÞR spinor, respectively. The
supersymmetry parameter can be expanded in a similar
fashion:

ϵαβA ¼ iffiffiffi
2

p ~ξAðγþϵ−1Þαβ þ iϵz̄Aðγz̄ϵ−1Þαβ

−
iffiffiffi
2

p ξAðγ−ϵ−1Þαβ − i~ϵzAðγzϵ−1Þαβ: ð3:25Þ

Note that only ξ and ~ξ play the role of supersymmetry
parameters on Σg as they behave as covariantly constant
spinors.
Using the expressions defined above, we find the

supersymmetric boundary conditions in the twisted BLG
theory:
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0 ¼ ξ̄J 2 − ~̄ξ ~J 2jbdy
¼ −ξ̄

�
D2ϕ

IΓ̂I −
1

6
½ϕI;ϕJ;ϕK�Γ̂IJK − ½Φz;Φz̄;ϕI�Γ̂I

�
ψ

− ξ̄½iDz̄ϕ
IΓ̂I�Ψz − ξ̄½2iDz̄Φz�~λ − ξ̄

�
D2Φz þ

1

2
½ϕI;ϕJ;Φz�Γ̂IJ

�
~Ψz̄

þ ~̄ξ

�
D2ϕ

IΓ̂I −
1

6
½ϕI;ϕJ;ϕK�Γ̂IJK − ½Φz;Φz̄;ϕI�Γ̂I

�
~λ

þ ~̄ξ½iDzϕ
IΓ̂I� ~Ψz̄ þ ~̄ξ½2iDzΦz̄�ψ þ ~̄ξ

�
−D2Φz̄ −

1

2
½ϕI;ϕJ;Φz̄�Γ̂IJ

�
Ψz

����
bdy

; ð3:26Þ

where J 2 ( ~J 2) is the Becchi-Rouet-Stora-Tyutin (BRST)
current associated with the supersymmetry parameter ξð~ξÞ
transforming as a scalar on Σg (see Fig. 2).
Although there would be various solutions to Eq. (3.26),

we are interested in the solutions which correspond to the
M2-M5-M50 system (2.2). We can apply the general lesson
we have learned in the flat case to find them. At the
boundary of the M5-brane the bosonic one-form field Φα

should obey a particular boundary condition. However, the
bosonic scalar fields ϕI should have two different types of
boundary conditions due to the tangent and normal direc-
tions of the attached M5-brane. These are expected to be
the Basu-Harvey–like boundary condition describing a
nontrivial geometry inside the M5-brane and the
Dirichlet boundary condition, respectively. Let ϕî, î ¼ 1,
2 be the scalar fields ϕ1 and ϕ2 which represent the position
of the M2-branes within the M5-brane and let ρp̂, p̂ ¼
1;…; 4 be ϕ3;…;ϕ6 which correspond to the transverse
directions of the M5-brane. To obtain the Dirichlet con-
dition on ρp̂ we must require the fermionic boundary
conditions

ξ̄Γ̂p̂þ4ψ jbdy ¼ 0; ~̄ξΓ̂p̂þ4 ~λjbdy ¼ 0: ð3:27Þ

On the other hand, the Basu-Harvey–type condition on ϕî

can be acquired by choosing the fermionic boundary
conditions

ξ̄Γ̂îþ2Ψzjbdy ¼ 0; ~̄ξΓ̂îþ2 ~Ψz̄jbdy ¼ 0: ð3:28Þ

The set of equations (3.27) and (3.28) states that the
fermion bilinear forms cannot play the role of generators
of translations in the corresponding directions.
Employing the fermionic boundary conditions (3.27)

and (3.28), we can read off from the generic supersym-
metric condition (3.26) the boundary conditions at the
intersection of the M2-branes and the M5-brane in the
brane configuration (2.2):

D2ϕ
î − ½Φz;Φz̄;ϕî�jbdy ¼ 0; ð3:29Þ

Dz̄ρ
p̂jbdy ¼ 0; Dzρ

p̂jbdy ¼ 0; ð3:30Þ

Dz̄Φzjbdy ¼ 0; DzΦz̄jbdy ¼ 0; ð3:31Þ

ξ̄

�
D2Φz þ

1

2
½ρp̂; ρq̂;Φz�Γ̂p̂ q̂

�
~Ψz̄

����
bdy

¼ 0;

~̄ξ

�
D2Φz̄ þ

1

2
½ρp̂; ρq̂;Φz̄�Γ̂p̂ q̂

�
Ψz

����
bdy

¼ 0: ð3:32Þ

Equation (3.29) is the Basu-Harvey–like equation on the
scalars ϕî and the set of equations (3.30) is the Dirichlet
boundary condition on the scalars ρp̂. Note that the set of
equations (3.31) is not the Dirichlet boundary condition,
but the holomorphic and antiholomorphic boundary con-
ditions on the one-form fields Φz and Φz̄ which are
complex-valued functions on the Riemann surface Σg.
Consequently Φzdz is a holomorphic differential one-form
while Φz̄dz̄ is an antiholomorphic differential one-form on
Σg. The field Φz satisfying Eq. (3.31) describes a choice of
the holomorphic curve Σg in K3.

FIG. 2. The BRST current J 2 in the effective theory of the M2-
branes wrapping Σg. The current is associated with the BRST
charges defined on Σg. We require that it vanishes at the
boundary.
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Likewise we can find the boundary conditions at the
M50-brane by exchanging the pair of directions ðx3; x4Þ
with ðx5; x6Þ. Putting the M50-brane in the M2-M5 con-
figuration breaks down the space-time symmetry group
SOð4Þ3456 to SOð2Þ34 × SOð2Þ56 while it maintains the
preserved supersymmetry, as we will see momentarily. Let
φî, i ¼ 1, 2 be the bosonic scalars which correspond to the
position of the M2-brane in the ðx3; x4Þ, ςl̂, l̂ ¼ 1, 2 be
those in the ðx5; x6Þ and ϱp̂, p̂ ¼ 1, 2 be those in the
ðx7; x8Þ. The first two, φî and ςl̂, should obey the Basu-
Harvey–type condition as they probe in one of the 5-branes
while the third ϱp̂ must be subject to the Dirichlet
condition. Now consider the limit in which the distance
L goes to zero, the intersection of the M2-M5-M50 branes
(2.2). The boundary conditions can be determined by
combining the two types of conditions required from
M5-brane and M50-brane as

D2φ
î − ½Φz;Φz̄;φî�jbdy ¼ 0; Dzφ

îjbdy ¼ 0;

Dz̄φ
îjbdy ¼ 0; ð3:33Þ

D2ς
l̂ − ½Φz;Φz̄; ςl̂�jbdy ¼ 0; Dzς

l̂jbdy ¼ 0; Dz̄ς
l̂jbdy ¼ 0;

ð3:34Þ

Dzϱ
p̂jbdy ¼ 0; Dz̄ϱ

p̂jbdy ¼ 0; ð3:35Þ

D2Φz þ
1

2
½ϱ1; ϱ2;Φz�jbdy ¼ 0; Dz̄Φzjbdy ¼ 0; ð3:36Þ

D2Φ_þ
1

2
½ϱ1; ϱ2;Φz̄�jbdy ¼ 0; DzΦz̄jbdy ¼ 0: ð3:37Þ

We see that the two bosonic scalars φî and ςl̂ are also
subject to the Dirichlet conditions in Eqs. (3.33) and (3.34)
which are required by the other 5-brane. These conditions
imply that they must be at fixed values so that they are the
solutions to the Basu-Harvey–type equations. Namely, the
scalars φî and ςl̂ obeying the boundary conditions (3.33)
and (3.34) have neither nontrivial solutions nor divergent
behavior as they are fixed at one end or at the other end.
As we already explained, the conditions Dz̄Φz ¼ 0 and

DzΦz̄ ¼ 0 in Eqs. (3.36) and (3.37) are the holomorphic
and antiholomorphic conditions rather than the Dirichlet
boundary conditions. So they cannot completely fix the
complex-valued Φz and Φz̄, which may still satisfy the
Basu-Harvey–like conditions in Eqs. (3.36) and (3.37).
Also note that the solutions to the Basu-Harvey–like
equations of the complex-valued one-forms do not have
divergent behavior as opposed to those of scalars with
Nahm-like poles. Thus we expect that the bosonic degrees
of freedom on the intersection of M2- andM5-branes inside
the K3 can be effectively described by means of the bosonic
one-form Φα by taking an appropriate limit.

Since the M5-brane and the M50-brane break the
isometry of the flat directions as

SOð6Þ345678 → SOð2Þ34 × SOð4Þ5678
→ SOð2Þ34 × SOð2Þ56 × SOð2Þ78 ð3:38Þ

via two projections, the 16 components of the fermionic
fields in Eq. (2.10) reduce to a pair of complex fermionic
scalar fields in holomorphic and antiholomorphic sectors,
which we will call θ and θ̄, and a pair of complex fermionic
one-form fields in holomorphic and antiholomorphic sec-
tors, which we will call pz and p̄z̄.
Here we want to pay special attention to the Basu-

Harvey–type supersymmetric boundary conditions in
(3.33), (3.34), (3.36) and (3.37) because they provide for
us a hint about the effective theory as a topological sigma
model. Given the Basu-Harvey–type equations as the
boundary conditions, the three-bracket structure can sur-
vive at the boundary and the Hermitian 3-algebra can be
constructed by a pair ðsoð4Þ; VÞ where V is a faithful
orthogonal representation of the Lie algebra soð4Þ
equipped with a three-bracket. Quite interestingly, it was
shown in [21] that the Hermitian 3-algebra is generically
embedded into a complex matrix Lie superalgebra sg with
an even subalgebra gC, the complexification of the corre-
sponding Lie algebra g, and an odd subspace V ⊕ V�. In
fact it has been pointed out more directly in [22] that the
Basu-Harvey–type equations are sufficient conditions to
realize the Lie superalgebra. In general the Jacobi identity
of a Lie superalgebra consists of four components corre-
sponding to the relationship between three elements
of the Lie superalgebra; even-even-even, even-even-odd,
even-odd-odd and odd-odd-odd. Among them the only
nontrivial piece is the odd-odd-odd Jacobi identity and the
Basu-Harvey–type equation guarantees the odd-odd-odd
Jacobi identity. Hence the appearance of the Basu-Harvey
equations in the supersymmetric boundary conditions
indicates that the target space of the effective sigma
model is a Lie superalgebra. As we will explicitly see
later, it is the Lie superalgebra pslð2j2Þ with even sub-
algebra slð2;CÞ ⊕ slð2;CÞ.

B. Gauge-invariant boundary conditions

So far we have determined the supersymmetric boundary
conditions for the matter fields of the twisted BLG model
that would describe the M2-M5-M50 system (2.2).
However, we have not yet determined the boundary
conditions for the gauge fields from supersymmetry
because the supercurrent does not contain the field strength
which demands the Neumann or the Dirichlet-type boun-
dary conditions for gauge fields. While there are many
choices of boundary conditions for gauge fields, we are
especially interested in those which keep a full gauge
symmetry. Boundary conditions for the gauge field in
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ABJM theory have previously been studied in [8,12,23]
and in [8] a boundary action was introduced which
preserved the full gauge symmetry. However, here we will
come up with an amazing result as a combination with the
supersymmetric boundary conditions (3.33)–(3.37) on the
twisted matter fields.
Since the twisted Chern-Simons term (2.5) whose

variation produces a boundary term is not gauge invariant,
we want to fix the boundary conditions for the gauge fields
so that the gauge invariance of the bulk theory can be
completely preserved.4 First, let us consider the pure
Chern-Simons action. The variation of the Chern-Simons
action

SCS ¼
k
4π

Z
M
d3xϵμνλTr

�
Aμ∂νAλ þ

2i
3
AμAνAλ

�
ð3:39Þ

yields

δSCS ¼
k
4π

Z
M
d3xϵμνλTrðδAμFνλÞ

þ k
4π

Z
∂M

d2xϵαβTrðδAαAβÞ: ð3:40Þ

The second term does not automatically vanish on the
boundary, but boundary conditions which set one of the
components of the gauge field to zero at the boundary can
be chosen to make the Chern-Simons action invariant under
the gauge transformation. The effect of such boundary
conditions is that the Chern-Simons action can be
rearranged to show that the chosen component becomes
a (bulk) Lagrange multiplier, enforcing the constraint that
the field strength in the orthogonal directions vanishes [24].
For a Lorentzian two-dimensional boundary one can
choose the timelike A0jbdy ¼ 0, spacelike A1jbdy ¼ 0, or
lightlike A� ≔ A0 � A1jbdy ¼ 0 boundary conditions. The
choice of boundary conditions determines the form of the
boundary kinetic term. For example, the lightlike boundary
condition Aþjbdy ¼ 0 leads to the constraint F2− ¼ 0 [8].
The Euclidean two-dimensional boundary that we are now
considering can be realized by performing the Wick
rotation. The lightlike boundary conditions become a
holomorphic boundary condition

Az

����
bdy

¼ 1ffiffiffi
2

p ðA0 − iA1Þ
����
bdy

¼ 0 ð3:41Þ

and an antiholomorphic boundary condition

Az̄

����
bdy

¼ 1ffiffiffi
2

p ðA0 þ iA1Þ
����
bdy

¼ 0; ð3:42Þ

which, respectively, yield the conditions

F2z̄ ¼ 0 ð3:43Þ

and

F2z ¼ 0: ð3:44Þ

Now let us first assume for simplicity that this flatness
condition can be solved as the pure gauge A2 ¼ g−1∂2g,
Az ¼ g−1∂zg (or Az̄ ¼ g−1∂ z̄g) where g is a map from
∂M ¼ Σ at x2 ¼ 0 to the gauge group G, and the map is
arbitrarily smoothly extended to x2 > 0. Substituting into
the action we find

SCS ¼
k
4π

Z
M
d3xTrððg−1∂2gÞ∂zðg−1∂ z̄gÞ

− ðg−1∂ z̄gÞ∂zðg−1∂2gÞÞ

¼ k
4π

Z
M
d3xTr½−ðg−1∂2gÞðg−1∂zgÞðg−1∂ z̄gÞ

− ðg−1∂ z̄gÞðg−1∂zgÞðg−1∂2gÞ
þ ðg−1∂2gÞðg−1∂z∂−gÞ − ðg−1∂ z̄gÞðg−1∂z∂2gÞ�:

ð3:45Þ

Now integrate by parts with respect to z̄ in the first and x2 in
the second. Then the integration by parts with respect to x2

produces the standard kinetic term on the boundary while
the first does not produce a boundary term. All other terms
from the last line cancel between the two terms so that we
are left with the WZW model

SWZW ¼ −
k
8π

Z
Σ
d2xTrðg−1∂αgÞ2

−
ik
12π

Z
M
d3xϵμνλTrðg−1∂μg · g−1∂νg · g−1∂λgÞ:

ð3:46Þ

Back to the case of the BLG model with a boundary, let

us define Aμ ¼ AðþÞ
μ4i σi and Âμ ¼ Að−Þ

μ4iσi where AðþÞ
μ4i and

Að−Þ
μ4i are self-dual and anti-self-dual parts of the gauge fields

and the Pauli matrices σi are normalized as TrðσiσjÞ ¼ 2δij.
Then the twisted Chern-Simons term (2.5) in the BLG
model can be expressed as the SUð2Þk × SUð2Þ−k quiver
Chern-Simons term [25]

SCS ¼
k
4π

Z
M
d3xϵμνλ

�
Tr

�
Aμ∂νAλ þ

2i
3
AμAνAλ

�

− Tr

�
Âμ∂νÂλ þ

2i
3
ÂμÂνÂλ

��
ð3:47Þ

with k ∈ Z. Let us choose the boundary conditions
4The boundary conditions which preserve only the diagonal

part of the gauge symmetry group were studied in [12].
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Azjbdy ¼ 0; Âzjbdy ¼ 0; ð3:48Þ

which require that

F2z̄ ¼ 0; F̂2z̄ ¼ 0: ð3:49Þ

From the quiver Chern-Simons action (3.47) we then find
the boundary action

SSUð2ÞkWZW½g� þ SSUð2Þ−kWZW½ĝ�

¼ −
k
8π

Z
Σ
d2xTrðg−1∂αgÞ2

−
ik
12π

Z
M
d3xϵμνλTrðg−1∂μg · g−1∂νg · g−1∂λgÞ

þ k
8π

Z
Σ
d2xTrðĝ−1∂αĝÞ2

þ ik
12π

Z
M
d3xϵμνλTrðĝ−1∂μĝ · ĝ−1∂νĝ · ĝ−1∂λĝÞ:

ð3:50Þ

In terms of g and ĝ the action (3.47) now becomes a sum of
the two WZWactions. As discussed in [24], the measure isR ½DA�½DÂ�δðFÞδðF̂Þ ¼ R ½Dg�½Dĝ� and there is no Jacobian
in the change of variables.
Now, in general the flat condition cannot necessarily

be solved by a single-valued function on a curve as
g∶ Σg ×R → SUð2Þ. The conjugacy class of a nontrivial
holonomy of a flat connection around sources would
lead to additional boundary degrees of freedom as the
coadjoint action in the effective action [24,26].
However, even in the general case the WZW model
would be part of the description, along with a contri-
bution from the Chern-Simons action involving the
nontrivial flat connections. As the moduli space of flat
connections depends on the choice of Σg it may be more
convenient to use an alternative method to describe the
Chern-Simons theory with a boundary. This involves
adding new boundary degrees of freedom, coupled to
the bulk Chern-Simons action, in such a way that gauge
symmetry is preserved [27]. This approach has been
used in the context of the ABJM model [8,23]. In this
approach it is clear that a WZW model will arise from
the bulk gauge field on any manifold with a boundary,
even though the full result including all ABJM matter
fields and supersymmetry is not known even in the
simplest case of M ¼ R2 × ½0; L�. For our purposes the
appearance of the WZW model is the key point, and at
least in the case of pure Chern-Simons theory the
boundary conditions and boundary degrees of freedom
approaches are equivalent.

IV. SUPERGROUP WZW MODELS

A. PSLð2j2Þ WZW model and twisted BLG model

1. Bosonic action

Now we wish to collect the bosonic boundary conditions
—the supersymmetric boundary conditions (3.33)–(3.37)
and the gauge-invariant boundary conditions (3.48) and
(3.49)—to explore the effective boundary theory on the two
membranes in the M2-M5-M50 system (2.2).
Let us introduce the complexified gauge fields

~Az
b
a ¼ ~Az

b
a þ fcdbaΦz̄cφ

�
d þ fcdbaΦz̄cς

�
d; ð4:1Þ

~Az̄
b
a ¼ ~Az̄

b
a þ fcdbaΦzcφd þ fcdbaΦzcςd; ð4:2Þ

~A2
b
a ¼ ~A2

b
a þ fcdbaΦz̄cΦzd þ fcdbaφcςd þ fcdbaϱcϱ�d

ð4:3Þ

and the complexified field strength

~F μν
b
a ¼ ∂ν

~Aμ
b
a − ∂μ

~Aν
b
a − ~Aμ

b
c
~Aν

c
a þ ~Aν

b
c
~Aμ

c
a

ð4:4Þ

as well as the complexified scalars, e.g., φ ≔ 1ffiffi
2

p ðφ1 − iφ2Þ.
Then by definition we have

~F 2z̄ ¼ ~F2z̄ −
�
D2Φz þ

1

2
½ϱ; ϱ�;Φz�;φ;

�

−
�
D2Φz þ

1

2
½ϱ; ϱ�;Φz�; ς;

�
− ½Φz; D2φ − ½Φz̄;Φz̄;φ�; � − ½Φz̄; D2ς − ½Φz;Φz̄; ς�; �
þ ½Dz̄Φz̄;Φz; � þ ½Φz̄; Dz̄Φz; �
þ ½Dz̄φ; ς; � þ ½φ; Dz̄ς; �
þ ½Dz̄ϱ; ϱ�; � þ ½ϱ; Dz̄ϱ

�; �: ð4:5Þ

Therefore both the supersymmetric boundary conditions
(3.33)–(3.37) and the gauge-invariant boundary conditions
(3.48) and (3.49) can be unified as an equation:

~F 2z̄ ¼ 0 ð4:6Þ

in terms of the complexified field strength (4.4).
It is remarkable that such a complexification of the gauge

field and the simplification of the BPS equation are also
encountered in the case of wrapped D3-branes on a
holomorphic curve Σg in K3 (see, e.g., [11,28]). In that
case the effective theory can be described by the four-
dimensional twistedN ¼ 4 super Yang-Mills theory on Σg.
A set of BPS equations on Σg for g > 1 is known to be
Hitchin’s equations; Fzz̄ þ i½Φz;Φz̄� ¼ 0, DzΦz̄ ¼ 0 and
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Dz̄Φz ¼ 0. They can be summarized as the condition
F zz̄ ¼ 0, which is the flatness condition on the complexi-
fied gauge field Az ≔ Az − iΦz. Moreover, Eq. (4.6)
reflects the fact that the existence of high amounts of
supersymmetry in Chern-Simons matter theories is insepa-
rably bound up with gauge symmetry.

In trying to find the effective action of the boundary
theory, we demand that it is classically scale invariant on
the two-dimensional boundary Σg. To seek such a
Lagrangian description, it is instructive to look at the
bosonic action of the fully topologically twisted BLG
model on a general compact three-manifold M [29]:

Sbosonic TBLG ¼
Z
M
d3x

�
i
2
ϵμνλ

�
fabcdAμab∂νAλcd þ

2

3
fcdagfefgbAμabAνcdAλef

��

þ ffiffiffi
g

p
Tr

�
1

2

�
DμΦμ −

i
3

ffiffiffi
g

p ϵμνλ½Φμ;Φν;Φλ�
�

2

þ 1

4
ðDμΦν −DνΦμÞðDμΦν −DνΦμÞ

þ 1

2
DμϕIDμϕI þ 1

12
½ϕI;ϕJ;ϕK�½ϕI;ϕJ;ϕK�

þ 1

4
½Φμ;ϕI;ϕJ�½Φμ;ϕI;ϕJ�

�
; ð4:7Þ

where

Aμab ¼ Aμab −
i

2
ffiffiffi
g

p ϵμνλfcdabΦν
cΦλ

d; ð4:8Þ

ðDμXÞa ¼ ∂μXa −Aμ
b
aXb

¼ ðDμXÞa þ
i

2
ffiffiffi
g

p ϵμνλ½Φν;Φλ; X�a ð4:9Þ

are the three-dimensional versions of complexified objects
while Φμ and ϕI are component fields of the bosonic
SOð3Þ one-form field and the five bosonic scalar fields,
respectively.
However, for the partially twisted BLG model on Σg

together with boundaries, the complexification comes
about in a slightly different way from (4.8) and (4.9)
according to the breakdown of the rotational symmetry;
SOð3Þ → SOð2Þ. This allows the complexified scalar fields
to enter the complexification as in (4.1)–(4.3). Note that the
x2 component of the complexified gauge fields A2 is now

identified with a bosonic scalar field and contains addi-
tional contributions from complexified scalar fields in our
definition (4.3). Furthermore the partially twisted action
takes a different form in terms of the modified complexified
gauge fields (4.1)–(4.3). In the fully twisted action (4.7)
there are four types of classically scale-invariant terms on a
Riemann surface Σg which can contribute to the effective
boundary action:

(i) the twisted Chern-Simons term of the complexified
gauge fields in the first line,

(ii) the quadratic term ðD2Φα −DαϕÞ2 with ϕ being the
bosonic scalar fields in the third line,

(iii) the kinetic terms ðDαϕÞ2 of the bosonic scalar fields
in the fourth line,

(iv) the potential terms of the form ½Φα;ϕ;ϕ�2 in the
fifth line.

Now we point out that under the supersymmetric
boundary conditions (3.33)–(3.37) which are encoded by
the complexified gauge fields (4.1)–(4.3) as Eq. (4.6), all
the possible terms (i)–(iv) can be formally collected as the
twisted Chern-Simons term

Sbosonic TBLG ¼
Z
Σg×I

d3x

�
1

2
ϵμνλ

�
fabcdAμab∂νAλcd þ

2

3
fcdagfefgbAμabAνcdAλef

��
ð4:10Þ

of the complexified gauge fields (4.1)–(4.3). This imple-
ments the complexification of the twisted Chern-Simons
term (2.5). One can therefore view the supersymmetric
boundary conditions (3.33)–(3.37) and the gauge-invariant
boundary conditions (3.48) and (3.49) as the complexified
gauge-invariant boundary condition (4.6) in the twisted

Chern-Simons term (4.10). Following the previous logic,
we can now get the bosonic boundary action.
The twisted Chern-Simons term (2.5) can be rewritten as

a sum of two Chern-Simons actions as in (3.47). With the
aid of the gauge-invariant boundary conditions (3.48) they
give rise to a sum of two WZW actions (3.50), although as
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previously discussed we cannot exclude additional con-
tributions from nontrivial flat connections. Thus the twisted
Chern-Simons term (4.10) of the complexified gauge fields
Aμ with the boundary condition (4.6) generates the
boundary action as a sum of two SLð2;CÞ WZW actions:

Sbosonic ¼ SSLð2;CÞkWZW½g� þ SSLð2;CÞ−kWZW½ĝ�

¼ −
k
8π

Z
Σg

d2xTrðg−1∂αgÞ2

−
ik
12π

Z
M
d3xϵμνλTrðg−1∂μg · g−1∂νg · g−1∂λgÞ

þ k
8π

Z
Σg

d2xTrðĝ−1∂αĝÞ2

þ ik
12π

Z
M
d3xϵμνλTrðĝ−1∂μĝ · ĝ−1∂νĝ · ĝ−1∂λĝÞ:

ð4:11Þ

2. Including fermionic terms

As discussed at the end of Sec. III A, on general grounds
we expect to have a supergroup structure. Obviously the
natural expectation is that including the fermionic fields
will enhance the SLð2Þ × SLð2Þ WZW model to a
PSLð2j2Þ WZW model. We will first review the form of
the PSLð2j2Þ WZW action [30–32] and then discuss how
this can arise from the twisted Chern-Simons theory with
our fermionic field content.
Let us begin by considering the SLð2j2Þ WZW model

SSLð2j2Þk ½s� ¼ −
k
8π

Z
Σg

d2xStrðs−1∂αsÞ2

−
ik
12π

Z
M
d3xϵμνλStrðs−1∂μs · s−1∂νs · s−1∂λsÞ

ð4:12Þ

for supermatrices

s ¼
�
A B

C D

�
∈ SLð2j2Þ ð4:13Þ

with A and D being bosonic matrix elements of SLð2;CÞ
and B and C being fermionic matrix elements. Here a
supertrace Str is defined as StrðsÞ ¼ TrðAÞ − TrðDÞ. The
supergroup element s ∈ SLð2j2Þ admits the Gauss decom-
position [33]

s ¼ expðuÞ
�
I 0

θ̄ I

��
g 0

0 ĝ

��
I θ

0 I

�

¼ expðuÞ
�

g gθ

θ̄g θ̄gθ þ ĝ

�
ð4:14Þ

with u ∈ C and g; ĝ ∈ SLð2;CÞ. The action (4.12) satisfies
the Polyakov-Wiegmann identity [34]5

S½s1s2� ¼ S½s1� þ S½s2� þ
k
2π

Z
d2xStrðs−11 ∂ z̄s1∂zs2s−12 Þ:

ð4:15Þ

Now, SLð2j2Þ has a normal Uð1Þ subgroup consisting of
multiples of the identity. As discussed, e.g., in [32] the
SLð2j2Þ-invariant metric is degenerate. However, treating
the Uð1Þ symmetry as a gauge symmetry and quotienting
by this Uð1Þ results in a PSLð2j2Þ WZW model, with a
nondegenerate invariant metric. Since PSLð2j2Þ has
bosonic subgroup SLð2Þ × SLð2Þ this also gives the
minimal embedding of the bosonic SLð2Þ × SLð2Þ
WZW model into a supergroup WZW model.
Although PSLð2j2Þ has no representation of superma-

trices, one can descend to PSLð2j2Þ from SLð2j2Þ by
identifying supermatrices s ∈ SLð2j2Þ which differ by a
scalar multiple. Using the Polyakov-Wiegmann identity
(4.15) we can show that

SSLð2j2Þk ½eus� ¼ SSLð2j2Þ½eu� þ SSLð2j2Þk ½s�

þ k
2π

Z
Σg

d2x∂ z̄uStrðs∂zs−1Þ

¼ SSLð2j2Þk ½s�: ð4:16Þ

This states that the action (4.12) is invariant after multi-
plying the supermatrices s ∈ SLð2j2Þ with a scalar factor
expðuÞ. In other words, the PSLð2j2Þ WZW action is
equivalent to the SLð2j2Þ WZW action.
Applying the Polyakov-Wiegmann identity (4.15) to the

decomposition (4.14) one can rewrite the PSLð2j2Þ WZW
model (4.12) as

SPSLð2j2Þk ½s� ¼ SPSLð2j2Þk

��
I 0

θ̄ I

��
þSPSLð2j2Þk

��
g 0

0 ĝ

��

þSPSLð2j2Þk

��
I θ

0 I

��

þ k
2π

Z
Σg

d2xStr

�
0 g−1∂ z̄g∂zθ

∂ z̄θ̄ð∂zgÞg−1 ĝ−1∂ z̄θ̄g∂zθ

�
:

ð4:17Þ

The first and third terms vanish because contributions to
supertraces can arise only from nontrivial bosonic subma-
trices. Then the final result is

5Providing one replaces trace with a supertrace, the Polyakov-
Wiegmann identity for supergroups takes the same form as
that for ordinary groups according to the cyclic property of a
supertrace.
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SPSLð2j2Þk ½s� ¼ SSLð2;CÞkWZW½g� þ SSLð2;CÞ−kWZW½ĝ�

−
k
2π

Z
Σg

d2xTrðĝ−1∂ z̄θ̄g∂zθÞ: ð4:18Þ

The first two terms are the sum of two SLð2;CÞ WZW
models which we have encountered in the bosonic boun-
dary action in (4.11). Notice that the opposite level comes
from the definition of the supertrace.
Let us now proceed to discuss how this supergroup

WZW model can arise from the fermionic degrees of
freedom we have. Recall that the supersymmetric boundary
conditions in the topologically twisted BLG model allow
for the spin-zero fermionic fields θ, θ̄ and spin-one
fermionic fields pz, p̄z̄. We identify θ, θ̄ with the fermionic
fields in the supergroup WZW model. There could be a
field redefinition in this relation, but this would just
correspond to a different parametrization of the supergroup
elements. However, we note that the supergroup action
does not include the fields pz, p̄z̄.
In constructing the boundary action with fermionic

terms, we again demand that the possible boundary terms
are scale invariant at the classical level. In two dimensions,
the spin-zero and spin-one fermionic fields have scaling
dimensions zero and one, respectively. Without the cou-
plings of the fermions to the bosons, one can write a
conformally invariant action [35]

S ¼ 1

π

Z
d2xðpz∂ z̄θ̄ þ p̄z̄∂zθÞ: ð4:19Þ

This is the fermionic ghost system with central charge
c ¼ −2, the so-called symplectic fermions [9]. However,
we should consider other possible terms which stem from
the terms in the twisted BLG theory, i.e. the fermionic
kinetic term ðΨ̄;ΓμDμΨÞ and the interaction term
ðΨ̄;ΓIJ½XI; XJ;Ψ�Þ. This means that the boundary terms
are quadratic in fermionic fields, with up to one derivative
acting on the fermions, and that they can also contain the
bosonic matrix fields g, ĝ and their inverses g−1, ĝ−1 of
SLð2;CÞ. Taking into account the scale invariance, we
could have the following possible boundary terms includ-
ing the fermionic fields θ, θ̄, pz, p̄z̄ and the bosonic fields g,
ĝ, g−1, ĝ−1:

(i) terms involving two fermionic scalar fields and no
fermionic one-form field

∂zθĝ−1∂ z̄θ̄g; ∂zθĝ∂ z̄θ̄g−1; ð4:20Þ

(ii) terms involving a fermionic scalar field and a
fermionic one-form field

pzĝ−1∂ z̄θ̄g; p̄z̄ĝ∂zθg−1; ð4:21Þ

(iii) terms involving no fermionic scalar field and two
fermionic one-form fields

pzĝ−1p̄z̄g; pzĝp̄z̄g−1: ð4:22Þ

Now, the terms in (4.20) have two derivatives and do not
obviously arise from the fermionic terms in the BLG
theory. However, we note that the fermionic one-form
fields pz, p̄z̄ have no kinetic terms and they therefore
should be treated as auxiliary fields. After integrating them
out we are expected to be left with the terms as in (4.20)
which only contain the fermionic scalar fields θ, θ̄. Thus the
fermionic boundary degrees of freedom can be encoded in
the interaction term

Sint ¼
Z
Σg

d2xTrðκA∂zθĝ−1∂ z̄θ̄gþ κB∂zθĝ∂ z̄θ̄g−1Þ; ð4:23Þ

where κA and κB are constants.
Note that we did not directly derive the fermionic action

from the twisted BLG action. In fact, since g and ĝ are
dimensionless, it is consistent with dimensional analysis
that there could be a variety of terms with ð∂zθÞð∂ z̄θ̄Þ in the
final fermionic boundary action. Likewise the precise form
of the coupling to g and ĝ in (4.21) and (4.22) may seem
somewhat arbitrary. However, we would expect the require-
ment of conformal invariance (at the quantum level) to be
highly restrictive. As we have seen above, including the
above fermionic terms with κA ¼ − k

2π, κB ¼ 0 gives the
PSLð2j2Þ WZW model, so this is certainly consistent with
all our requirements for the action.
One plausible argument to constrain the allowed fer-

mionic terms is to note that the bosonic WZW action has
the obvious global symmetry

g → ugv−1; ĝ → û ĝ v̂−1:

If we assume the classical action has this symmetry when
we include the fermions, we must assign specific trans-
formation properties to the fermions or they could not
couple to the bosonic fields. As the bulk fermions were in
the bifundamental representation, we likewise expect the
boundary fermions to allow coupling of g to ĝ. In order for
this to be possible we take the following transformation
rules:

θ → vθv̂−1; θ̄ → û θ̄ u−1; ð4:24Þ

pz → vpzv̂−1; p̄z̄ → ûp̄z̄u−1: ð4:25Þ

Similar transformation rules are possible with different
choices of u ↔ v or û ↔ v̂ but these just differ by field
redefinitions, by multiplying the fermions on the left or
right by g, ĝ or their inverses. With this particular
convention we see that only the first term in (4.22) is
allowed while both terms in (4.21) are possible. If these
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three terms are all present in the action,6 then integrating
out pz will produce exactly (4.23) with κB ¼ 0 and the
nonzero value of κA will just correspond to the normali-
zation of θ and θ̄. Even assuming the global symmetry, this
argument is not quite complete as there are possible terms
similar to those in (4.21) where the derivative acts on g or ĝ.
Allowing all such terms will generate several additional
terms after integrating out pz, e.g., g−1∂gθĝ−1∂̄ θ̄. However,
as far as we are aware, such possible fermionic couplings
do not give rise to a conformal field theory, so the
requirement of conformal invariance will not allow
such terms.
While we have not given a rigorous derivation, we believe

that this is the unique result arising from the topologically
twisted BLG model on Σg by choosing the supersymmetric
and gauge-invariant boundary conditions. Indeed, from the
form of the bosonic part of the action, and the requirement of
a supergroup structure, this is essentially the only possibility
(other than adding additional fields which do not arise from
the bulk theory.) If we simply demand conformal invariance,
it is possible that other fermionic interactions are allowed.7

However, we are not aware of any such models with the
same bosonic action (and where the fermions are coupled to
the bosonic fields). We do note that there is the interesting
possibility discussed in [32] that there is a family of
PSLðNjNÞ WZW models which are conformal even when
the coefficients of the kinetic term and the WZW term are
independent. We have only discussed the case with the
standard relation between these coefficients as that is what
we expect to get from the Chern-Simons theory. However, it
would be interesting to understand what role, if any, such
deformations have in this context.
To summarize, we have obtained the PSLð2j2Þ WZW

model from the topologically twisted BLG model on Σg by
choosing the supersymmetric and gauge-invariant boun-
dary conditions. In view of the form of the action (4.18), we
see that a heuristic construction of highly supersymmetric
conformally invariant gauge theories in three dimensions as
the quiver Chern-Simons matter theories with opposite
integer levels is intimately related to the structure of the
supergroupWZWactions underlying the supertrace. Due to
the wrong sign of the kinetic term, we do not expect this to
be a unitary theory or even to directly arise from one by an
analytic continuation. So one could not extract the dynami-
cal properties of the M2-branes. However, the theory we are
now considering is the effective field theory on the
Euclidean Σg wrapped by the M2-branes. The resulting
theory, which is different from the original physical theory

via topological twisting, could only capture the topological
properties or the BPS spectrum of the curved M2-branes
wrapping a holomorphic Riemann surface Σg as a topo-
logical field theory. We expect that it can play a similar role
as other proposed effective theories arising from curved
world volumes of branes, e.g., two-dimensional topological
sigma models for wrapped D3-branes on Riemann surfaces
in K3 [11], SLð2;CÞ Chern-Simons theory for wrapped
M5-branes on 3-manifolds in Calabi-Yau three-folds [36],
and Vafa-Witten theory for wrapped M5-branes on 4-
manifolds in G2 manifolds [37]. Indeed the supergroup
WZW model is known to be a topological sigma model
[32,33] and also has been used to compute the Alexander
polynomials Δ [38]. Remarkably it has been proven in [39]
that any A polynomials which occur as the Alexander
polynomials can occur as the Seiberg-Witten invariant of an
irreducible homotopy K3. We expect to be able to address
these relations with our physical setup. In particular, for the
effective theory of the topological M-strings in the brane
configuration (2.2), the level would be k ¼ 1 since only it
can realize two flat M2-branes in a flat space. Therefore we
propose the PSLð2j2ÞWZWmodel with level k ¼ 1 as the
effective action of the two topological M-strings.

B. GLðNjNÞ WZW model and twisted ABJM model

Let us generalize our discussion to the case of an
arbitrary number of coincident M2-branes in the brane
configuration (2.2). The ABJM model [6], which is a three-
dimensional N ¼ 6 superconformal UðNÞk ×UðNÞ−k
Chern-Simons matter theory, has been proposed as the
low-energy world-volume effective theory of N M2-branes
probing C4=Zk. The theory involves four complex scalar
fields YA, four Weyl spinor fields ψA and two types of
gauge fields Aμ, Âμ. The theory has SUð4ÞR R-symmetry
group as well as Uð1ÞB flavor symmetry group. YA and ψA

are the matter fields transforming as the ðN; N̄Þ bifunda-
mental representation of the UðNÞk ×UðNÞ−k gauge group
with Uð1ÞB charge þ1, while Y†

A and ψ†A are those
transforming as the ðN̄;NÞ antibifundamental representa-
tion with Uð1ÞB charge −1. The upper and lower indices
A;B;… ¼ 1; 2; 3; 4 correspond to the 4 and 4̄ of the
SUð4ÞR R symmetry and baryonic charges 1 and −1,
respectively, while Aμ are the UðNÞ Chern-Simons gauge
fields of level þk and Âμ are the UðNÞ Chern-Simons
gauge fields of level −k. The gauge fields transform as the
trivial representation of SUð4ÞR ×Uð1ÞB.
If we try to get the low-energy effective theory of N

topological M-strings by carrying out the topological twist
on the ABJMmodel, it is necessary to consider the effect of
the Uð1ÞB charge. The global symmetry SUð4ÞR ×Uð1ÞB
has 16 currents. However, when k ¼ 1, 2 the monopole
operators provide us with 12 symmetry generators so that
the global symmetry is enhanced to SOð8ÞR with 28
generators. Thus the N ¼ 6 supersymmetry of the

6If any of these terms has zero coefficient, the fermionic part of
the action will vanish after integrating out pz and/or p̄z̄. So, we
would be left with only the bosonic SLð2Þ × SLð2ÞWZWmodel.

7These would not respect the global symmetry present in the
classical action of the bosonic sector, but we cannot directly rule
out such a possibility.
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ABJM model is expected to be enhanced to N ¼ 8 for
k ¼ 1 and k ¼ 2 by taking into account the baryon
symmetry Uð1ÞB [6,40,41]. As discussed in [42], a topo-
logical twisting procedure generically can be regarded as a
gauging of an internal symmetry group by adding to the
original action the coupling of the internal current to the
spin connection and one can also take such an internal
symmetry as a baryon symmetry.
Now we attempt to twist the ABJM model by first

decomposing the R symmetry as

SUð4ÞR → SUð3ÞR ×Uð1ÞR: ð4:26Þ

Then we define a generator s0 of the SOð2Þ0E as

s0 ¼ s −
1

2
TR −

1

2
TB; ð4:27Þ

where s is a generator of the original rotational group
SOð2ÞE, TR is a generator ofUð1ÞR and TB is a generator of
Uð1ÞB. The branching of the representation for the decom-
position SUð4ÞR → SUð3ÞR ×Uð1ÞR is

6 → 32 ⊕ 3̄−2;

4 → 3− ⊕ 13;

4̄ → 3̄þ ⊕ 1−3: ð4:28Þ
The twisting SOð2ÞE × SUð4ÞR × Uð1ÞB → SOð2Þ0E ×
SUð3ÞR reduces the supersymmetry parameter ω as fol-
lows:

ω∶ 6þ ⊕ 6− → 30 ⊕ 32 ⊕ 3̄−2 ⊕ 3̄0: ð4:29Þ

The appearance of the six covariantly constant spinors
indicates that the twisting procedure corresponds to the
M-theory background (2.1) since K3 breaks half of the
supersymmetry. After the twisting SOð2ÞE × SUð4ÞR ×
Uð1ÞB → SOð2Þ0E × SUð3ÞR, the fields transform as

YA∶ 40 → 30 ⊕ 1−2;

Y†
A∶ 4̄0 → 3̄0 ⊕ 12;

ψA∶ 4̄þ ⊕ 4̄− → 3̄0 ⊕ 12 ⊕ 3̄−2 ⊕ 10;

ψ†A∶ 4þ ⊕ 4− → 32 ⊕ 10 ⊕ 30 ⊕ 1−2: ð4:30Þ

We see that the twisted ABJM model comprises scalar
fields 30 ⊕ 3̄0 with six components, bosonic one-forms
12 ⊕ 1−2 giving two components, fermionic scalar fields
30 ⊕ 10 ⊕ 3̄0 ⊕ 10 with eight components and another
eight components from fermionic one-form fields 12 ⊕
32 ⊕ 1−2 ⊕ 3̄−2. In other words, the twisted ABJM theory
has exactly the same number of bosonic and fermionic field
components as (2.9) and (2.10) in the twisted BLG theory.
By imposing the appropriate supersymmetric boundary
conditions on these fields, we find holomorphic,

antiholomorphic fermionic scalars θ, θ̄ as well as fermionic
one-form fields pz, p̄z̄. Therefore we are led to regard the
above twisted theories as the source of the low-energy
effective description of N topological M-strings.
Since the twisting requires gauging both the Uð1ÞR and

Uð1ÞB symmetries, a straightforward decomposition of
gamma matrices and spinors cannot work. However, we
would like to make a few remarks on the effective theory.
First, the UðNÞ ×UðNÞ Chern-Simons action should
produce a sum of the two WZW actions with the hol-
omorphic boundary conditions Azjbdy ¼ 0, Âzjbdy ¼ 0 as in
(3.48) and (3.49) since the topological twisting does not
affect the gauge fields and the Chern-Simons action.
Second, the ABJM model is shown to be written in terms
of the 3-algebra [43], which enables us to define com-
plexified gauge fields as in (4.1)–(4.3). This would promote
the UðNÞ ×UðNÞ gauge fields to the complexified
GLðNÞ ×GLðNÞ gauge fields. Third, the ABJM model
has the BPS boundary conditions for the bosonic scalar
fields analogous to the Basu-Harvey equations which may
represent N M2-branes ending on the M5-brane [44]. It has
been also argued in [22] that these are sufficient conditions
for the presence of the Lie superalgebra glðNjNÞ with even
subalgebra glðN;CÞ ⊕ glðN;CÞ. Finally, the symplectic
fermions which are necessary to obtain the free field
realization of the supergroup WZW models and the
associated affine Lie superalgebra wonderfully and auto-
matically appear in the field content (4.30) of the topo-
logically twisted ABJM theory. Given the remarks above,
the topologically twisted ABJM model on Σg with the
supersymmetric and gauge-invariant boundary conditions
would provide the GLðNjNÞ WZW action8

SGLðNjNÞk ½s� ¼ −
k
8π

Z
Σg

d2xhs−1∂αs; s−1∂αsi

−
ik
24π

Z
M
d3xϵμνλhs−1∂μs; ½s−1∂νs; s−1∂λs�i:

ð4:31Þ
We note that while the supermatrix s ∈ GLðNjNÞ may

have the Gauss decomposition [33]

s ¼
�
I 0

θ̄ I

��
g 0

0 ĝ

��
I θ

0 I

�
ð4:32Þ

with g, ĝ ∈ GLðNÞ being Grassmann-even matrix elements
and θ, θ̄ being Grassmann-odd matrix elements, the
Polyakov-Wiegmann relation may be generalized for the
bilinear form h·; ·i. If we consider the effective theories of
the N topological M-strings in the brane system (2.2), they
can be realized for the level k ¼ 1 associated with a flat

8Instead of supertrace we have introduced the nondegenerate
bilinear form h·; ·i for the nonsemisimple glðNjNÞ.

TADASHI OKAZAKI and DOUGLAS J. SMITH PHYSICAL REVIEW D 94, 065016 (2016)

065016-14



background geometry. The GLðNjNÞ WZW models have
previously been proposed as an explicit realization of
topological conformal field theories [33]. From the free
field realization (4.31) upon the Gauss decomposition
(4.32) the theory has been argued to be represented as
the superposition of two decoupled parts with SLðN;CÞ
and Uð1Þ symmetries, both of which constitute topological
conformal field theories.
More generally we can consider other twisted N ¼ 6

Chern-Simons matter theories. To preserve N ¼ 6 super-
symmetry the gauge groups of Chern-Simons matter
theories are not arbitrary and the other allowed options
are UðNÞ × UðMÞ and SOð2Þ × SpðNÞ [45,46]. These
N ¼ 6 superconformal Chern-Simons theories can be also
formulated in terms of the Lie 3-algebra by relaxing the
conditions on the triple product so that it is not real and
antisymmetric in all three indices [43]. Evidently it is
straightforward to extend our discussion to these N ¼ 6
Chern-Simons matter theories by following the same
argument as the ABJM model although the M-theory
interpretation is much less transparent. Consequently we
would obtain the WZW models of the supergroups
GLðNjMÞ and OSpð2jNÞ from the N ¼ 6 UðNÞ ×
UðMÞ and SOð2Þ × SpðNÞ Chern-Simons matter theories
by performing partial topological twists on Σg and impos-
ing the supersymmetric and gauge-invariant boundary
conditions. It would also be interesting to analyze cases
with N ¼ 5 or N ¼ 4 supersymmetry where again the
gauge group must be the even part of a supergroup
[21,46–50].

V. DISCUSSION

The present work should be extended in a number of
directions. From the field theory point of view, we propose
the novel correspondence between the supergroup WZW
models and the topologically twisted Chern-Simons matter
theories. This would give a way to resolve the puzzle that
the well-known correspondence between WZWand Chern-
Simons theories for ordinary compact groups [24,27,51,52]
is not available for generic supergroups [53–56]. It is
known that the GLðNjNÞ WZW models are topological
field theories of cohomological type as they have c ¼ 0 and
their stress-energy tensors are BRSTexact. An issue worthy
of investigation is the interpretation of these topological
theories in their own right. In [57] the multivariable
Alexander-Conway knot polynomial [58,59] of links in
S3 has been explicitly obtained from the S and T matrices of
the GLð1j1Þ WZW model. Also the GLðNjNÞ WZW
models have been expected to produce the Alexander-
Conway polynomial [33,38]. It is rather interesting to note
that in [39] the homotopy K3 surfaces [60] have been
constructed from knots in three-manifolds, and the Seiberg-
Witten invariants of these manifolds have been shown to be
given by the Alexander polynomials of the knots. We
expect that our M-theory framework will prove useful to

understand and generalize the problem in that the M2-
branes wrapped on a two-cycle in K3 are described by the
supergroup WZW models having a conjectural relation to
the Alexander knot polynomials. This is currently under
investigation.
Our proposed 3d-2d relation—i.e. the relation between

three-dimensional supersymmetric Chern-Simons matter
theories, realized on the world volume of M2-branes,
and two-dimensional supergroup WZW models—has an
analogue in one higher dimension. In that case the relation
is between four-dimensional N ¼ 4 super Yang-Mills
theories, realized on the world volume of D3-branes,
and three-dimensional Chern-Simons theories. In particu-
lar, the rich structure of boundary conditions for N ¼ 4
super Yang-Mills theories was explored in [13], describing
D3-branes ending on various types of 5-branes in type IIB
string theory. There are indications that the boundary
theories admit the Lie superalgebraic structure [47,61].
In fact, Mikhaylov and Witten [55] established that the
defect theories of the topologically twisted N ¼ 4 super
Yang-Mills theories can be described by supergroup Chern-
Simons theories. They can be embedded in type IIB string
theory having the D3-branes ending on both sides of an
NS5-brane. For example, the simplest case with supergroup
UðmjnÞ arises when m D3-branes end on one side, and n
D3-branes on the other side, of an NS5-brane.
In this article we have only described in detail very

specific M2-M5 configurations. There are several possible
generalizations and we hope to report on other cases in
future work. An obvious question is what happens when
M2-branes end from both sides of an M5-brane. In the
string theory case bifundamental matter arises from open
strings connecting the D3-branes on either side. It is not
obvious what the corresponding feature is in M theory, but
we expect it is possible to derive the low-energy theory
from the Chern-Simons theories and boundary conditions.
Other natural generalizations are to relax the boundary
conditions on the scalar fields by taking orientations of the
M5-branes other than the M5-M50 case we investigated or
by allowing a finite separation between the M5-branes.
Such generalizations will have additional scalar degrees of
freedom and not result in purely topological theories.
However, our expectation is that the supergroup WZW
models will continue to describe the internal degrees of
freedom of the M2-brane boundary while additional fields
will describe the transverse degrees of freedom of the
M2-brane boundaries within the M5-branes.
A related approach to describing theories with bounda-

ries is to add boundary degrees of freedom rather than
imposing (some) boundary conditions. In this context
Belyaev and van Nieuwenhuizen [62] studied the boundary
degrees of freedom required to preserve half the bulk
supersymmetry. This approach was applied to the ABJM
theory with a boundary in [23] resulting in a partial
description of the boundary theory which was sufficient
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to derive the boundary scalar potential for certain amounts
of preserved supersymmetry, while more general boundary
conditions were analyzed in [12]. In [8] the same systems
were analyzed with particular focus on the boundary
degrees of freedom required to preserve the Chern-
Simons gauge symmetry. Some aspects of supersymmetry
were considered, but the fully supersymmetric M-string
theory was not derived. In light of the various M2-M5
configurations described above we hope to develop the
boundary action approach to derive the full (half of original
bulk) supersymmetric and fully gauge-invariant boundary
action. Work on this is currently in progress and we hope to
report results in the near future. Applied to the special
configuration considered in this article, such an approach
would give an independent derivation of the emergence of
the supergroup.
Finally, we note that there is recent work [63] on coupled

Chern-Simons-WZW systems with less supersymmetry
arising from D3-D5 configurations, and a theory of this
type has been proposed [64] which should flow at low

energies to theN ¼ ð4; 2Þ orN ¼ ð4; 4ÞM-string theories.
In part the results in this article, and our anticipated
results for the more general cases, are naturally a higher
supersymmetric analogue, and for M-strings would be a
direct derivation of the low-energy theory. However, it is
not clear at this stage whether there is any way to directly
study such a theory by flowing from the theory proposed
in [64].
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